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ABSTRACT

Context. The analysis of Fermi-Large Area Telescope (LAT) gamma-ray data in a given Region of Interest (RoI) usually consists of
performing a binned log-likelihood fit in order to determine the sky model that after convolution with the instrument response best
accounts for the distribution of observed counts.
Aims. While tools are available to perform such a fit, it is not easy to check the goodness-of-fit. The difficulty of the assessment
of the data-model agreement is twofold. First of all, the observed and predicted counts are binned in three dimensions (two spatial
dimensions and one energy dimension) and comparing two 3D maps is not straightforward. Secondly, gamma-ray source spectra
generally decrease with energy as the inverse of the energy square. As a consequence, the number of counts above several GeV
generally falls into the Poisson regime, which precludes performing a simple χ2 test.
Methods. We propose a method that overcomes these two obstacles by producing and comparing, at each pixel of the analyzed
RoI, spatially integrated count spectra for data and model. The comparison follows a log-likelihood approach that extends the χ2

test to histograms with low statistics. This method can take into account likelihood weights that are used to account for systematic
uncertainties.
Results. We optimize the new method so that it provides a fast and reliable tool to assess the goodness-of-fit of Fermi-LAT data and
we use it to check the latest gamma-ray source catalog on 10 years of data.

Key words. methods: data analysis – methods: statistical – gamma rays: general

1. Introduction

Since its launch in June 2008, the Fermi Large Area Telescope
(LAT, Atwood et al. 2009) has been continuously observing the
gamma-ray sky in the energy range between 30 MeV and 2 TeV.
The Fermi-LAT data are public1 and have been widely used
by the gamma-ray community. The Fermi-LAT latest general
catalog, 4FGL-DR2 (Abdollahi et al. 2020; Ballet et al. 2020),
reports almost 5800 sources, among which are hundreds of pul-
sars, tens of supernovae remnants and pulsar wind nebulae, and
thousands of blazars.

The usual way to analyze LAT data in a given Region of
Interest (RoI) is to bin the data in a 3D map (two spatial dimen-
sions and one energy dimension2) and then search for the sky
model that best predicts the number of gamma rays observed in
this RoI. The sky model is a list of gamma-ray sources, whose
position, spatial nature (point-like or extended), as well as their
energy spectrum are provided. The Fermi-LAT analysis package,
Fermitools3, is used to convolve the emission of each source
with the instrument response functions (IRFs, Ackermann et al.
2012) in order to predict the number of observed counts. As a
consequence, one of the main steps of the analysis is generally
a log-likelihood fit that finds the source spectral parameters that

1 https://fermi.gsfc.nasa.gov/ssc
2 A typical example is a 12◦ × 12◦ map with a pixel size of 0.1◦ and 10
logarithmically spaced bins per decade in energy.
3 https://fermi.gsfc.nasa.gov/ssc/data/analysis/
documentation

give the best agreement between the observed and predicted 3D
count maps.

After the fit has converged, it is important to check that the
obtained agreement is satisfactory but the user faces the diffi-
culty of comparing two 3D maps. The simplest way would be to
define an energy band and produce the corresponding 2D resid-
ual (data–model) count map. However, the energy band defini-
tion and the analysis of the residual map is not straightforward
because of the energy dependence of the point spread function
(PSF) of the instrument: its 68% containment angle varies from
5◦ at 100 MeV to 0.1◦ at 30 GeV (Atwood et al. 2009, 2013)4. As
a consequence, the binning of the residual map should depend on
the energy range definition. Furthermore, since the spectral char-
acteristics of a potential data-model mismatch are unknown, it is
not obvious to choose an energy range a priori, often leading to
look at several energy bands.

The Fermitools provide a method to quantify the data-
model agreement which is frequently used. It consists of com-
puting a test statistic (TS) map: at each pixel, the presence of
an additional source is tested by computing twice the differ-
ence in log-likelihood obtained with and without the source. A
TS = 25 corresponds to ∼4σ significance (Mattox et al. 1996).
The drawbacks of this method are twofold: it is computation-
ally intensive and, above all, it is not sensitive to negative devi-
ations (data<model) because the flux of the additional source is
bound to be positive. Another public analysis package, Fermipy

4 https://www.slac.stanford.edu/exp/glast/groups/
canda/lat_Performance.htm
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(Wood et al. 2017), offers a simplified version of the TS maps
that is much faster but is still blind to negative deviations.

In this paper we propose a method to perform data-model
comparison that overcomes the aforementioned problems. As in
the case of residual or TS maps, we want to provide spatial infor-
mation. So the goal is to quantify the level of deviation between
data and model at each pixel of the RoI. Since we go from 3D
count maps to a 2D deviation map, it implies that the spectral
information must be fully utilised in the process of the deviation
assessment. So, for each pixel of the RoI, the method consists
of building and comparing data and model count spectra. We
present in Sect. 2 a simple way to build spatially-integrated count
spectra that takes into account the PSF of the instrument. Since
it is not always possible to perform a simple χ2 test to compare
these count spectra, we apply a log-likelihood approach that is
presented in Sect. 3 and its extension to take into account sys-
tematic uncertainties is presented in Sect. 4. We optimize and
verify this new method in Sect. 5 and the results obtained when
using it to check the 4FGL-DR2 catalog are given in Sect. 6.

2. PSF-like integrated count spectra

Since we want to be as sensitive as possible to discrepancies
between data and model, it is useful to list the possible causes
for such discrepancies in order to find the optimal way to cre-
ate the count spectra that we compare in Sect. 3. The two pos-
sibilities are that one source is missing in the model or that it is
mismodeled. In both cases, the resulting discrepancy depends on
the point-like or extended nature of the source. In the point-like
case, the region of the discrepancy corresponds to the PSF and,
as a consequence, its size follows the energy dependence of the
PSF.

The LAT PSF 68% containment angle can be parameter-
ized as p0(E/100 MeV)−p1 ⊕ p2, the addition being in quadrature
(Ackermann et al. 2013). For LAT PASS 8 SOURCE class events,
p0 and p2 are about 5 and 0.1◦ and p1 = 0.8.

If the source is slightly extended (e.g., 0.5◦), the size of the
discrepancy region can be modeled by the same parameteriza-
tion, replacing p2 by the sum of 0.1◦ and the extension of the
source. For diffuse sources such as the Galactic diffuse emission,
one can use an even larger p2.

For these reasons, we propose to use an energy-dependent
distance of the form p0(E/100 MeV)−p1 ⊕ p2 to build for each
pixel of the RoI the spatially integrated count spectra for both
data and model. We start with the SOURCE class PSF 68% con-
tainment angle but the definition of the integration region is
revisited and optimized in Sect. 5. Examples of PSF 68% inte-
grated count spectra are shown in Fig. 1. For simplicity’s sake,
the spatial integration is performed directly on the data and
model 3D count maps used in the fit (by summing over the pixels
within the energy-dependent distance). This choice allows us to
compare data and model using the closest information to the one
used in the fit.

Regarding the energy binning of the count spectra, it is use-
ful to consider the expected spectral features of potential data-
model deviations. The known gamma-ray sources do not exhibit
any narrow peak or dip in their spectra in the Fermi-LAT energy
range and we thus do not expect particularly sharp data-model
deviations from either a spectrally mismodeled source or a miss-
ing source. Any deviation would be smeared by the energy res-
olution of the LAT, which is 10% at 1 GeV, corresponding to a
68% containment interval of about 0.1 in log10 E. As a result,
it is not useful to use a bin smaller than 0.1. On the contrary, a
larger binning may increase the deviation sensitivity by increas-
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Fig. 1. PSF 68% integrated count spectra at the center pixel of the RoIs
centered on the Galactic center (top) and the Galactic North pole (bot-
tom) for data (black) and model (red). The dashed red line shows for
comparison the model count spectra integrated over 1◦. The average
likelihood weights, introduced in Sect. 4, are also shown.

ing the statistics in each bin. The choice of the optimal bin size
is investigated in Sect. 5.

3. Estimation of the deviation probability

In order to assess the level of deviation between the data and
model integrated count spectra, we want to compute the p-value,
that is to say the probability that the statistical fluctuations can
reach a level of deviation as large as the one observed in the data,
under the assumption that the model represents the data.

If all the bins of the count spectra were in the Gaussian
regime, we could simply perform a χ2-test to estimate the
p-value. However, because of the general E−γ power-law spec-
trum of gamma-ray sources (with photon indices γ between 1
and 3 for most of the sources as well as for the background) and
the energy dependence of the PSF 68% selection, the integrated
count spectra fall steeply with energy and the numbers of counts
at high energy are generally in the Poisson regime, which pre-
cludes performing a χ2-test.

In order to overcome this limitation, we adopt a log-
likelihood approach and define the random variable

L = −
∑

k

logP(xk,mk) (1)

where P is the Poisson probability and xk are independent ran-
dom Poisson variables of mean mk, the spatially integrated num-
ber of model counts in the spectral bin k. The p-value is the
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integral of the probability distribution function (pdf) of L above
Ldata = −

∑
k logP(nk,mk), the value obtained with the data inte-

grated count spectra nk. In other words, the p-value is the L com-
plementary cumulative distribution function (CCDF) at Ldata.

It is common to compute expected likelihood distributions by
performing simulations but it can be very computationally inten-
sive, especially when requiring the resulting statistical fluctua-
tions to be below the percent level. Here we choose to compute
the L pdf in an iterative way, as fully described in Appendix A.
When the number of counts in part of the spectrum is large
enough, it is possible to optimize the computation by taking
advantage of the χ2 approximation of the log-likelihood. For the
spectral bins with Gaussian statistics, the Poisson probability of
parameter mk can be replaced with a Gaussian with mean and
variance equal to mk. Ignoring the constant term, we have

LGaus =
1
2

∑
k

(xk − mk)2

mk
· (2)

As a consequence, the LGaus pdf can be simply derived from the
χ2 distribution with a number of degrees of freedom equal to the
number of spectral bins with Gaussian statistics.

In order to compute the L pdf, we thus start by sorting the
counts in decreasing order, then compute the LGaus pdf corre-
sponding to all the bins with a number of counts greater than 100
and finally perform the iterative computation over the remaining
bins. We note that this p-value computation provides a simple
extension of the χ2-test to histograms with counts in the Poisson
regime.

We define PS5, the data-model deviation estimator, as

|PS| = − log10(p-value) (3)

and give it the sign of the sum of the residuals in sigma units:

sign(PS) = sign

∑
k

(nk − mk)/max
(
1,
√

mk

) (4)

which allows us to estimate whether the deviation is positive
(data>model) or negative (data<model). To our knowledge, this
is the first time that such an estimator is proposed.

The advantage of using the logarithm of the p-value rather
than converting it into σ units is that, when considering the max-
imum value of a PS map, the correction for the number of trials
is simply done by subtracting the logarithm of the number of pix-
els in the map. The 3, 4 and 5σ thresholds correspond to PS =
2.57, 4.20 and 6.24, respectively. For a typical 100 × 100 pixels
map, assuming that the PS are independent, the 3, 4 and 5σ
thresholds correspond to uncorrected PS = 6.57, 8.20 and 10.24,
respectively.

4. Systematic uncertainty handling with weighted
log-likelihood

Log-likelihood weights have been introduced in the Fermi-LAT
general catalog analysis in order to account for systematic uncer-
tainties, especially those coming from the modeling of the
diffuse emission (Abdollahi et al. 2020). This is done by per-
forming the spectral fit with the following definition of the log-
likelihood (Hu & Zidek 2002):

logL =
∑
i, j,k

Wi jk(Ni jk log Mi jk − Mi jk) (5)

5 The name PS was chosen because P can stand for both p-value and
PSF and also because the output map name, PS map, sounds close to
TS map.

where the indices i, j, k run over the 3D maps and W,N and M are
the map pixel weight, number of observed and predicted counts,
respectively. The Fermi-LAT catalog analysis uses data-based
weights corresponding to a level of systematic uncertainty of 3%
(see Appendix B of Abdollahi et al. 2020, for more details).

We note that in the Gaussian regime, the Poisson contribu-
tions in Eq. (5) can be replaced with Gaussian probabilities:

1
2

Wi jk(Ni jk − Mi jk)2/Mi jk =
1
2

(Ni jk − Mi jk)2/(Mi jk/Wi jk) (6)

which highlights that the effect of the weights is to increase the
variance by 1/Wi jk.

If log-likelihood weights are used in the spectral fit, they also
have to be taken into account when assessing the goodness-of-
fit. The first thing to do is thus to also introduce weights in the
definition of the random variable L used to compute the p-value
and Eq. (1) becomes

L = −
∑

k

wk logP(xk,mk). (7)

Since mk is the sum of predicted counts in the integration region,
its variance is the sum of the pixel variances. Following Eq. (6),
we interpret mk/wk as the expected variance of mk and thus
define wk such that mk/wk =

∑
i j Mi jk/Wi jk, where the sum runs

over the integration region corresponding to the spectral bin k.
Since we adopt the data-based weights as in the 4FGL-DR2 anal-
ysis, the average is actually weighted with the data counts rather
than the model counts: nk/wk =

∑
i j Ni jk/Wi jk. When nk = 0,

wk is set to 1. Examples of such average weights are shown in
Fig. 1.

Although Eq. (7) accounts for the relative importance of the
systematic uncertainties between spectral bins, it does not take
into account their absolute meaning. This is simply because the
variances of the individual Poisson distributions are unchanged.
A clear symptom of this problem is that the p-value is invariant
with a global rescaling of the weights.

This serious limitation can be naturally overcome for the bins
of the count spectrum that follow Gaussian statistics, for which
the introduction of the weights modifies Eq. (2) as

LGaus =
1
2

∑
k

(xk − mk)2

mk/wk
· (8)

As a consequence, using the χ2 approximation LGaus to compute
the L pdf in the weighted log-likelihood case allows us to ensure
that the absolute meaning of the systematic uncertainty is prop-
erly taken into account, as long as the uncertainties of the spec-
tral bins are taken as

√
mk/wk instead of

√
mk.

In order to study the case of the spectral bins with
Poisson statistics, we performed simulations for different lev-
els of systematic uncertainties, whose results are described in
Appendix C. The conclusion of this study is that introducing
the weights in the definition of L is helpful for large systematic
uncertainty and unimportant for small systematic uncertainty,
where the needed correction is actually small. In this study con-
sidering only the bins with Poisson statistics, the resulting error
on PS is within 3% for systematic uncertainties on the order of
3%, as currently used in LAT analyses. When computing the
PS with all the bins of the count spectra, the true error on PS
is actually smaller thanks to the bins in the Gaussian regime,
which make up about 50% of the spectral bins in the analysis of
10 years of LAT data, as reported in the next section.

Because of the overall positive role of the weights to take
systematic uncertainty into account, we decided to keep the
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weighted version of L to compute the PS. As a consequence,
when computing the L pdf, we first compute the LGaus pdf corre-
sponding to all the spectral bins with a number of counts greater
than 100, using Eq. (8), and then perform the iterative computa-
tion over the remaining bins using Eq. (7). Compared to Eq. (4),
the PS sign definition is modified as

sign(PS) = sign

∑
k

(nk − mk)/max
(
1,

√
mk/wk

) . (9)

5. PS optimization and calibration

We use the PS method to assess how well the Fermi-LAT gen-
eral catalog describes the whole sky in terms of predicted counts.
This verification, named catXcheck, performed on the latest pub-
lished catalog, that is 4FGL-DR2, gives us the opportunity to
measure and optimize the PS sensitivity.

5.1. catXcheck framework

It consists of the analysis of 438 RoIs (120 × 120 pixels, with a
pixel size of 0.1◦) covering the whole sky. The RoI centers lie on
Galactic parallels whose latitudes go from −90 to 90 with a 10◦
step. The longitude step is 10◦ for |b| ≤ 30 and it is 12, 15, 20,
30 and 45◦ for |b| = 40, 50, 60, 70 and 80, respectively.

The analysis of each RoI is performed with the Fermitools.
We use the same data as in the 4FGL-DR2 catalog analy-
sis, namely Pass 8 SOURCE class data (Atwood et al. 2013;
Bruel et al. 2018) collected during the first 10 years of the mis-
sion. We select data above 100 MeV whose zenith angle is less
than 90◦ to avoid Earth’s limb contamination. Using the PSF
event-type partition improves on average the point source sensi-
tivity but it is not particularly useful when assessing data-model
agreement. We thus combine all events in the analysis. We use
10 bins per decade between 100 MeV and 1 TeV. On top of the
Galactic diffuse emission and the isotropic template6, as well
as the Sun and Moon steady emission templates, the sky model
comprises all point-like and extended sources from 4FGL-DR2,
within 5 + 0.015(σsrc − 4) degrees of the RoI border, where σsrc
is the significance of the source as reported in the catalog.

The only free parameters of the spectral fit are the ones of the
Galactic diffuse emission (power-law correction) and isotropic
(normalization) templates. We use the P8R3_SOURCE_V2 IRFs
and energy dispersion is taken into account for the Galactic dif-
fuse emission and the 4FGL sources.

5.2. PS optimization

The PS estimator is designed to detect data-model deviations.
A way to quantify and optimize its sensitivity is to create arti-
ficial deviations. This is done within the catXcheck framework:
for each 4FGL source inside an RoI and more than 1◦ away from
its border, we removed the source from the model, recomputed
the total predicted 3D count map and then computed the PS and
TS around the position of the source. In order to find the spatial
selection parameters as well as the energy binning of the count
spectra that maximize the PS, we compared the PS to the TS
over the whole set of 4FGL-DR2 sources. We stress that com-
paring the PS and TS does not imply that we suggest that the
PS could replace the TS as a way to quantify the significance of
a known gamma-ray source. The only goal of the PS estimator

6 https://fermi.gsfc.nasa.gov/ssc/data/access/lat/
BackgroundModels.html
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Fig. 2. Distribution of the ratio of PS over TSp (TS expressed as
− log10(p-value)) for the 4FGL-DR2 sources closer (red) and further
than 5◦ (black) from the Galactic plane.

is to search for data-model deviations. As such, it can detect a
potential missing source in the sky model of an RoI but it is not
the optimal way to characterize a known gamma-ray source.

For the integrated count spectra used to compute the PS, we
first used a bin width of 0.1 in log10 E. For the TS computa-
tion, the putative source was modeled with a power law with
a photon index fixed to 2.3, which is the average photon index
of the 4FGL-DR2 sources. So we assume that the TS follows
a χ2 distribution with one degree of freedom. The PS sensitiv-
ity can be compared to that of the TS by simply looking at the
ratio of the maximum PS to TSp, the maximum TS expressed
as − log10(p-value). This ratio (which, for simplicity’s sake, we
refer to as PS/TS) is shown in Fig. 2 for sources with TSp > 7
in (|b| < 5◦) and outside (|b| > 5◦) the Galactic plane. These
distributions are relatively wide with a peak at around 0.6.

The PS is computed on the integrated count spectra
and the energy-dependent spatial selection is defined with
p0(E/100 MeV)−p1⊕p2. In order to find which parameters maxi-
mize the PS sensitivity, we computed the PS/TS ratio on a p0, p1
grid for p2 = 0.1, 0.15 and 0.20◦. Above 30 GeV, for a pixel
size of 0.1◦, these three values of p2 correspond to an integration
region of 5, 9 and 13 pixels, respectively.

For each configuration, we fitted the PS/TS distribution with
a log normal in order to estimate the peak position. Figure 3
shows how this peak position varies with the parameters. There
is no significant difference between the results obtained with
p2 = 0.1 and 0.15 but the results are on average worse with
p2 = 0.2. Over most of the p0, p1 grid, the variation is modest
compared to the typical 0.15 width of the distributions. A pre-
cise choice of the parameters is thus not critical and we choose
p0 = 4 and p1 = 0.9. We note the that the dependence of the
ratio on the parameters p0 and p1 is opposite in the Galactic
plane and away from it: a larger integration region at low energy
is preferred in the former case. This is due to the fact that the
spectrum of the Galactic diffuse emission is harder in the plane
than away from it, whereas the 4FGL-DR2 sources are on aver-
age softer. Regarding p2, we choose 0.1◦ in order to minimize
the level of correlation between pixels, as discussed in the next
section. These parameters, defining the optimized spatial selec-
tion, are the ones used to produce the PS/TS ratio distributions
of Fig. 2.

All these results have been obtained with a TS computed as
normally done in the computation of TS maps, that is to say
assuming a power-law spectrum. This choice, along with the fact
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that the PS and TS are computed using the same data and model
3D maps, ensures a fair PS/TS comparison. However ∼30% of
the sources in 4FGL-DR2 are better modeled with a curved spec-
trum so the power-law assumption may bias the optimization of
the spatial selection parameters. In order to check this possibil-
ity, we performed the same comparison but using the TS reported
in the 4FGL-DR2 catalog, which is computed with the curved
spectral shape (either a log normal or a subexponentially cutoff
power law) when the source spectrum is found to be significantly
curved. We find that, compared to the results presented in Fig. 3,
the average value is decreased by ∼10% but the variation of the
PS/TS ratio with the spatial selection parameters is the same,
which shows that the optimization procedure was not biased by
the power-law assumption.

So far we have used an energy binning of 0.1 in log10 E.
Using the optimized spatial selection, we computed the PS/TS
ratio for a log10 E bin width of 0.2, 0.3, 0.4 and 0.5. Figure 4
shows that increasing the log10 E bin width reduces the differ-
ence between low and high Galactic latitude sources and that a
maximum PS/TS ratio of 0.65 is reached for a bin width of about
0.3.

We conclude that the PS sensitivity is on average about 65%
of the TS sensitivity. The sensitivity loss with respect to the TS
is the cost of performing the energy-dependent integration. We
note that the loss is rather modest, considering the pixel count
information that is lost by the energy-dependent integration, and
it is somewhat mitigated by the gain in computation speed.
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is a uniform disk with a 0.5◦ radius. The average is computed over
20 simulations and the error bars correspond to the root mean square.

Using a larger energy binning has also the advantage of
slightly increasing the fraction of the spectral bins that are in
the Gaussian regime, and for which the absolute meaning of the
systematic uncertainty is fully taken into account by the weights,
as explained in Sect. 4. Since we use systematic uncertainties of
about 3%, they do not have any impact on the bins with very few
counts. The fraction is thus computed with respect to the num-
ber of spectral bins with at least one predicted count. For the RoI
centered on the North Galactic pole, the average of this fraction
over the pixels increases from 44% to 50% when the energy bin-
ning in log10 E is widened from 0.1 to 0.3. For the RoI with much
more statistics centered on the Galactic center, it increases from
60% to 65%.

5.3. Extended deviation case

Since most of the 4FGL-DR2 sources are point-like sources, the
optimized spatial selection, especially p2 = 0.1◦, is optimal for
point-like sources. As noted in Sect. 2, we expect that a larger
value of p2 increases the PS sensitivity to extended deviations.
In order to investigate this possibility, we computed the PS as a
function of p2 for a simulated source whose spatial extension is a
uniform disk with a 0.5◦ radius and also for a point-like source.
To perform this test, we used the catXcheck RoI centered on
(l = 0◦, b = 20◦), which has no 4FGL-DR2 source within 3◦ of
its center. We placed the simulated source at the center of the RoI
and set its spectrum to a power law with a photon index of 2. In
both the point-like and extended cases, the flux has been chosen
such that the resulting PS is about 30 on average.

We simulated 20 mock 3D count data maps with the simu-
lated source in the model and computed the PS map with these
data maps and the predicted count map when the simulated
source is removed from the model. We then computed the aver-
age and the root mean square of the PS map maximum over the
20 simulations. Figure 5 shows the variation of the average PS
with p2. In the point-like case, the maximum is obtained with
p2 = 0.1◦, as expected. In the case of the extended source, the
maximum is reached for p2 between 0.5 and 0.6◦, which is on the
order of the source extension, and is about twice the PS measured
with p2 = 0.1◦, confirming that the PS sensitivity to extended
deviations is significantly enhanced by increasing p2.

Figure 6 shows some of the average PS maps obtained with
these simulations. For the point-like source, the PS map with
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Fig. 6. 2◦×2◦ region of the average PS map around the simulated source
for a point-like source (top) and an extended source (bottom), whose
spatial model is a uniform disk with a 0.5◦ radius. The PS is computed
with p2 = 0.1 (left) and 0.5 (right). The pixel size is 0.1◦ and the radius
of the superimposed circle is 0.5◦. The cross indicates the position of
the simulated source.

p2 = 0.1◦ is clearly peaked at the position of the source, whereas
with p2 = 0.5◦ it is almost flat over a disk of radius ∼0.5◦. The
results are reversed in the case of the extended source: the aver-
age PS map is flatter with p2 = 0.1◦ than with p2 = 0.5◦. But
with the latter, the PS map is not as peaked as in the point-like
source case with p2 = 0.1◦. We conclude that a flat PS peak with
p2 = 0.1◦ likely corresponds to an extended deviation, which
can be further confirmed by computing the PS with a larger p2.
We note however that the PS statistical fluctuations, visible in
Fig. 5, are such that a precise extension measurement requires
performing a standard TS-based analysis.

5.4. PS calibration

For each of the 438 RoIs, catXcheck produces a PS map and
we look for |PS|max, the maximum PS measured in the RoI. The
asymptotic behavior of the expected CCDF of |PS|max can be eas-
ily derived from that of the PS if there is no correlation between
pixels: it corresponds to a 10−x function scaled by the trial cor-
rection factor 120 × 120 or, equivalently, shifted horizontally by
log10(120 × 120) ∼ 4.16. In order to check the existence of cor-
relations, we simulated 100 000 mock 3D count data maps and
computed the corresponding PS maps, with the spatial selection
parameters p0 = 4 and p1 = 0.9 and a log10 E bin width of
0.1. No systematic effect was included in this simulation and all
weights were thus set to 1. We performed this test for two RoIs:
the ones centered on the Galactic center and on the North Galac-
tic pole. These two RoIs allow us to test very different situations
in terms of statistics, as is clear from the integrated spectra at
their respective centers shown in Fig. 1.

We first checked the |PS| CCDF derived from all the pixels,
which is displayed in Fig. 7 for PS computed with p2 = 0.10◦.
For the two RoIs, it closely follows the 10−x expectation: the
deviation from expectation expressed as an error on PS is within
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Fig. 7. Simulations of the Galactic North pole (solid) and the Galactic
center (dotted) RoIs: |PS| (black) and |PS|max (red) CCDF as well as the
corresponding expected distributions (thin solid).
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Fig. 8. PS distribution in simulations of the Galactic North pole (solid)
and the Galactic center (dotted) RoIs, as well as the corresponding
expected distributions (thin solid).

3%. Figure 7 also shows the |PS|max CCDF. There is no signifi-
cant deviation at large |PS|max values from the expectation after
correction for the number of pixels. This demonstrates that the
level of correlation between pixels is very low. When the PS is
computed with p2 = 0.15◦, the |PS| CCDF is almost identical to
p2 = 0.10 but the |PS|max CCDF is systematically ∼3% below the
expectation, as shown in Fig. 7. It actually follows the expecta-
tion with a trial correction corresponding to an effective number
of pixels equal to ∼1102, smaller than 1202, expected when there
is no correlation. This shows that, for a pixel size of 0.1◦, there
is some correlation between adjacent pixels with p2 = 0.15◦.

The distribution of the signed PS differs from the exponential
expectation in two aspects, as can be seen in Fig. 8 for the two
RoIs. The first difference is a systematic ∼0.1 horizontal shift
with respect to the expectation. This is very likely due to the sim-
ple prescription we use to derive the PS sign. The second differ-
ence is at the peak around 0 and is the consequence of a lack of
precision for p-values close to 1. This feature could be reduced
by changing the L pdf computation parameters (especially npdf).
However, the large p-value region is not critical when looking
for significant data-model deviations so it does not seem useful
to slow down the PS computation only to reach a better agree-
ment with the expectation around 0. We note that, when PS is
expressed in σ units, the notch at 0 is even more apparent.
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Fig. 9. PS distribution obtained in the verification of the 4FGL-DR2
catalog (10 years of data) for the three Galactic latitude selections. The
thin solid histogram corresponds to the expected 10−|x| distribution. All
histograms are normalized such that their integral is 1.

6. Results of the 4FGL-DR2 verification

In this section we present the results of the catXcheck analysis on
the 4FGL-DR2 catalog. The PS map of each RoI was computed
with the optimized spatial selection parameters and a log10 E bin
width of 0.3 (see Appendix D for a detailed description of the
PS map production). Since there are 120 × 120 pixels in each
PS map and we consider 438 RoIs, the 3, 4 and 5σ thresholds
correspond to PS = 9.4, 11 and 13, respectively. In the following
we use PS > 11 to select significant deviations.

Figure 9 shows the PS distributions for three Galactic lati-
tude samples: low (|b| < 5◦), mid (5◦ < |b| < 35◦) and high
(|b| > 35◦) latitudes. There is no significant deviation in the high-
latitude selection whereas the low and mid-latitude distributions
exhibit positive and negative broad tails, respectively.

From the PS maps of the 438 RoIs, it is possible to construct
an all-sky PS map. We use a HEALPix (Górski et al. 2005) map
in Galactic coordinates with Nside = 256 and we set the PS of
each pixel to the maximum of the PS found among the individual
RoI pixels falling into that HEALPixel. The resulting all-sky PS
map is shown in Fig. 10.

The most significant negative deviations (clusters of many
pixels with PS < −11) correspond to five negative spots located
at (l, b) ∼ (112.8◦, 16.6◦), (157.6◦,−21.2◦), (302.6◦,−14.7◦),
(206.9◦,−16.7◦) and (205.0◦,−14.1◦). Since they are all close to
large molecular clouds (the first one is associated with Cepheus,
the second with Perseus, the third with Chamaeleon and the
two last ones with Orion B), they are due to imperfections in
the modeling of the Galactic diffuse emission7. A more detailed
analysis of these imperfections will be included in the forthcom-
ing 4FGL-DR3 catalog publication.

The PS map of the RoI centered on (l = 160◦, b = −20◦) con-
taining the negative spot at (l = 157.6◦, b = −21.2◦) is shown in
Fig. 11. The data and model integrated count spectra correspond-
ing to the pixel with the lowest PS (−19.5) are shown in Fig. 12.
One can see that the model overpredicts the data in the energy
range between 0.3 and 10 GeV. Since the PS is relatively flat
around the minimum, we performed a PS scan over the spatial
selection parameter p2. A minimum of −47.4, much lower than

7 https://fermi.gsfc.nasa.gov/ssc/data/analysis/
software/aux/4fgl/Galactic_Diffuse_Emission_Model_
for_the_4FGL_Catalog_Analysis.pdf
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Fig. 10. All-sky PS map in Galactic coordinates (Mollweide projection).
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Fig. 11. PS map of the RoI centered on (l = 160◦, b = −20◦). The black
crosses correspond to 4FGL-DR2 sources.

−19.5, is obtained around p2 = 1.3◦, indicating that the deviation
is extended.

Both Figs. 9 and 10 show that there are several signif-
icant positive deviations. The one in the mid-latitude selec-
tion (PS = 12.3) is located in the RoI centered on (l =
110◦, b = −30◦) and it corresponds to a point-like excess which
will be included in the next 4FGL-DR3 catalog (Fermi-LAT
Collaboration, in prep.). It is also the case for most of the devi-
ations in the low-latitude selection. The most significant one
(PS = 24.25) is located at (l = 286.55◦, b = −1.15◦). The PS
map of the corresponding RoI is shown in Fig. 13 and the data
and model integrated count spectra at the maximum PS posi-
tion are shown in Fig. 14. The excess of counts in data is visible
above 1 GeV, which is typical of a missing source in the model.
After investigation, it was found that this excess corresponds to
the bright optical Nova ASASSN-18fv (Stanek et al. 2018) at
(l = 286.573◦, b = −1.088◦), whose gamma-ray emission has
been detected by Fermi-LAT (Jean et al. 2018; Aydi et al. 2020)
around April 14, 2018. This source will be included in the 4FGL-
DR3 catalog.
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Fig. 12. Integrated count spectra corresponding to the maximum PS in
the RoI centered on (l = 160◦, b = −20◦), for data (black) and model
(red), as well as the average likelihood weights (dashed blue).
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Fig. 13. PS map of the RoI centered on (l = 290◦, b = 0◦). The black
crosses correspond to 4FGL-DR2 sources.

The RoI centered on (l = 20◦, b = 0◦) provides an exam-
ple of a source whose spectrum is mismodeled. The maxi-
mum of the PS map is 9.28 and its position corresponds to the
gamma-ray binary LS 5039 (Abdo et al. 2009; Hadasch et al.
2012; Chang et al. 2016). The 4FGL-DR2 analysis considers
three spectral models (power law, power law with subexponen-
tial cutoff and log normal) for each source and selects the best
model. The LS 5039 spectrum is modeled with a log normal but
this spectral shape is not able to reproduce the integrated count
spectrum, as can be seen in Fig. 15. This is the consequence of
the presence of a second spectral component, first reported by
Hadasch et al. (2012) and recently confirmed by Yoneda et al.
(2021).

7. Conclusion

Fermi-LAT analyses are generally based on a binned log-
likelihood fit of a 3D count map but there is no fast, reliable and
sensitive tool available to check the goodness-of-fit (including

2 2.5 3 3.5 4 4.5 5 5.5
(E/MeV)

10
log

2−10

1−10

1

10

210

310

410

510

co
u

n
ts

data

model

weights

Fig. 14. Integrated count spectra corresponding to the maximum PS in
the RoI centered on (l = 290◦, b = 0◦), for data (black) and model (red),
as well as the average likelihood weights (dashed blue).
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Fig. 15. Integrated count spectra at the position of the gamma-ray binary
LS 5039, for data (black) and model (red), as well as the average likeli-
hood weights (dashed blue).

the case of negative residuals). In order to overcome the lack of
such a tool, we have developed a new method that allows Fermi-
LAT data users to quantify efficiently the data-model agree-
ment after performing a fit of an RoI. The method is based on
integrating the observed and predicted counts over an energy-
dependent region around each pixel of the map and on comput-
ing a deviation estimator, named PS, between the integrated data
and model count spectra. This method can incorporate the like-
lihood weights that are used in Fermi-LAT analyses to take into
account some systematic uncertainty.

In order to minimize the computation time, the PS algo-
rithm has been optimized while ensuring a PS precision of 3%.
The PS statistical calibration has been checked with simula-
tions and its average sensitivity to a point-like source devia-
tion has been measured at 65% of the TS. This lower sensitivity
is naturally explained by the energy-dependent spatial integra-
tion which dilutes the 3D information into 1D count spectra.
However, this integration allows the PS map computation8 to be

8 A python script computing PS maps is available at the User con-
tribution page of the Fermi Science Support Center website: https:
//fermi.gsfc.nasa.gov/ssc/data/analysis/user/. The links
to the script and the documentation are https://fermi.gsfc.
nasa.gov/ssc/data/analysis/user/gtpsmap/gtpsmap.py and
https://fermi.gsfc.nasa.gov/ssc/data/analysis/user/
gtpsmap/README.
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much faster than for TS maps. This is very convenient while
optimizing the sky model of an RoI. Another important advan-
tage of the PS is that it is sensitive to both positive and negative
deviations.

The use of PS maps to check 4FGL-DR2, the latest of the
Fermi-LAT general catalog, has proven to be useful, reporting
some positive deviations, actually corresponding to gamma-ray
sources, and some negative deviations, related to imperfections
in the modeling of the Galactic diffuse emission. The same veri-
fication is being performed in the preparation of 4FGL-DR3, the
next catalog based on 12 years of data.
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Appendix A: Iterative computation of the
log-likelihood pdf

In this appendix, we describe the iterative procedure to compute
the probability distribution function (pdf) of the random variable
L defined in Equation 1 of Section 3. Let Nbins be the number of
bins of the model integrated count spectrum and mi the model
integrated counts in bin i. Let pdfi be the probability distribution
function corresponding to the first i bins. pdf1, corresponding to
the first bin, is simply given by the Poisson distribution.

In order to build pdfi from pdfi−1, we must consider all the
ways that a realization of the data could alter the values of the
log-likelihood. Given the model integrated counts mi, drawing
a value of the counts k changes L by − logP(k,mi). Thus, the
iteration consists of computing the probability weighted sum of
all the possible values of k. In other words, each k contribution
corresponds to Li−1 shifted by − logP(k,mi) and multiplied by
P(k,mi), and pdfi is obtained by simply summing all these con-
tributions:

pdfi(x) =
∑

k

P(k,mi) × pdfi−1
(
x + logP(k,mi)

)
. (A.1)

In order to minimize the computing time, we apply the fol-
lowing prescriptions. Firstly, the L pdf is computed as an his-
togram with npdf ×Nbins bins on the range [0, 20Nbins]. Secondly,
we introduce the precision parameter ε and, at each iteration,
we only consider k in the interval [k0(mi), k1(mi)] defined as the
narrowest interval such that

∑
k P(k,mi) ≥ 1 − ε. The k0(m) and

k1(m) parameterizations are given in Appendix B.
An example of such an iteration is shown in Figure A.1.

In this example, we use npdf = 200 and ε = 10−15 and
the count spectrum corresponds to a 40 bins E−2 spectrum
between 100 MeV and 1 TeV with 10000 counts in the first bin.
Figure A.1 shows the 12th iteration, corresponding to the 12th
spectral bin for which mi = 39.81. The L pdf of the previous
step is shown in black in the top panel. It is used to derive the
k contributions to the L pdf for k in [0, 100], as shown in the
bottom panel after division by the maximum contribution (cor-
responding to k = 39). Summing all these contributions along
the y-axis leads to the L pdf after the iteration that is shown in
red in the top panel.

As explained in Section 3, we first compute the contribution
of the spectral bins with Gaussian statistics from the χ2 distribu-
tion with a number of degrees of freedom equal to the number of
these bins, and then run the iterative computation over the spec-
tral bins with Poisson statistics.

The algorithm to compute the L pdf thus depends on three
parameters: ε, defining the interval [k0(m), k1(m)], npdf , defining
the number of bins of the L pdf histogram (npdf × Nbins) and Ng,
the lower limit on the number of counts to decide whether a spec-
tral bin is in the Gaussian regime.

The choice of Ng is not critical because of the steepness of
the count spectra. For a log10 E bin size of 0.1, the count ratio
of neighboring bins is typically 2. So increasing Ng from 100
to 200, for instance, moves at most one spectral bin from the
Gaussian regime to the Poisson regime, which is not enough to
change significantly the final L pdf.

In order to test the sensitivity to ε, we set npdf = 200 (cor-
responding to a very fine binning of the L pdf histogram) and
Ng = 100 and we compare the results obtained with ε ranging
from 10−5 to 10−15, the latter being used as the reference. For
each ε value, we compute the L complementary cumulative dis-
tribution function (CCDF) in order to obtain the curve PS(L).
Figure A.2 shows the ratio of these curves as a function of the
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Fig. A.1. L distributions at the beginning (black) and the end (red) of an
iteration of the L pdf computation algorithm (top) and the corresponding
individual k contributions (bottom) after division by the maximum con-
tribution (corresponding to k = 39). The number of predicted counts in
this step is 39.81 and the y-axis range corresponds to the [k0, k1] interval
obtained with ε = 10−15.
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Fig. A.2. Ratio of PS to the reference PS as a function of the refer-
ence PS for several choices of ε, the precision parameter that defines
the interval of k considered during the L pdf computation. The ratio is
actually evaluated as a function of L and L is converted to the PS for
ε = 10−15.

reference PS. One can see that ε = 10−7 is small enough to get a
2% precision up to PS = 20, that is to say well above 10, which
corresponds to ∼5σ for a typical 100 × 100 pixels map. Ensur-
ing a 1% precision up to PS = 100 can be useful when using
the PS map around a positive excess to estimate the position of
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a possible point source at the origin of the deviation. In that case
a smaller ε is needed, at the expense of computation time.

Regarding the choice of npdf , we compare the results
obtained with npdf = 10, 20, 50, 100 and 200, the latter being
used as the reference. Differences larger than 1% are only seen
for npdf = 10 and 20. In order to minimize computation time
while ensuring a 2% precision, we use the following parameters:
ε = 10−7, npdf = 50 and Ng = 100.

Appendix B: [kmin, kmax] interval parameterization
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Fig. B.1. Fit of kmax as a function of log m for three choices of ε
(10−5, 10−10, 10−15).

For a given number of predicted counts m and a given precision
parameter ε � 1, let kmin and kmax be the boundaries of the nar-
rowest k interval such that

∑
k P(k,m) ≥ 1 − ε. In this appendix,

we derive the parameterizations of kmin and kmax as functions of
m and ε. We note that the goal of the introduction of ε is mostly
to be able to vary the level of precision of the L pdf computa-
tion (described in Section 3) in order to find an optimal choice
with respect to the computation speed. As a consequence, the
fact that

∑
k P(k,m) monotonically increases when ε decreases is

more important than ensuring a high level of accuracy for these
parameterizations.

For m < 5, we set kmin(m, ε) = 0. In order to determine
kmax(m, ε), we first compute kmax as a function of log m for sev-
eral values of ε, and fit these curves with the function a + bmc,
as shown in Figure B.1.

We then look at the variation of the parameters a, b and c as a
function of log10 ε between −15 and −5. We fit these curves with
a simple quadratic function, as shown in Figure B.2. We find the
following parametrizations:

a(ε) = 0.715029 + 0.049825 log10 ε + 0.011768(log10 ε)
2,

b(ε) = −0.308206 − 1.309547 log10 ε − 0.028455(log10 ε)
2,

c(ε) = 0.817286 + 0.050841 log10 ε + 0.001828(log10 ε)
2.

For m ≥ 5, in order to find the narrowest [kmin, kmax] interval
such that

∑
k P(k,m) ≥ 1 − ε, we sort the Poisson probabilities

P(k,m) in decreasing order, find the smallest subset for which∑
k P(k,m) ≥ 1− ε and then find the lowest and highest k among

this subset. Rather than trying to directly parameterize their vari-
ations with m and ε, we compare them to the Gaussian expecta-
tions m ± σ(ε)

√
m, with σ(ε) =

√
2erf−1(1 − ε). Because of the

positive skewness of the Poisson distribution, both kmin and kmax
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Fig. B.2. Variations with log10 ε of the parameters of the function a+bmc

used to fit the dependence of kmax with m.
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Fig. B.3. ∆min and ∆max, the differences between kmin and kmax with
respect to their Gaussian expectations, as a function of log10 ε.

are greater than their Gaussian expectations. We find that, for
a given ε, these differences are almost constant (± 1 unit) for
m < 200. So we define

∆min(ε) = min5<m<200

(
kmin − (m − σ(ε)

√
m)

)
,

∆max(ε) = max5<m<200

(
kmax − (m + σ(ε)

√
m)

)
.

Figure B.3 shows that the variation of ∆min and ∆max with log10 ε
can be approximated with a linear parameterization. We use

kmin(m, ε) = max
(
0,m − σ(ε)

√
m − 0.523564 − 0.75129 log10 ε

)
,

kmax(m, ε) = m + σ(ε)
√

m − 1.09374 − 0.716202 log10 ε.

Appendix C: Testing the weighted log-likelihood
with simulations

When computing the PS, we use Equation 7 to take into account
the likelihood weights in the log-likelihood function. These
weights are associated to a certain level of systematic uncer-
tainty. As explained in Section 4, the absolute meaning of the
systematic uncertainty is ensured for the spectral bins with
Gaussian statistics by using the χ2 approximation to compute
the corresponding L pdf.

In order to study the case of the spectral bins with Poisson
statistics, we performed simulations in which the number of
observed counts in bin k is drawn according to a Poisson dis-
tribution of mean µk, which is itself drawn, for each realization,
according to a Gaussian distribution of mean mk and standard
deviation σmk, where σ is the systematic uncertainty level. This
simple simulation is not realistic because it ignores the likely
correlations between spectral bins but it corresponds to a situ-
ation in which the correction brought by the χ2 approximation
works exactly for Gaussian statistics. Therefore this simulation
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Fig. C.1. Simulations to test the use of likelihood weights to handle
systematic uncertainty: count spectrum and average weights (top) and
PS CCDF as a function of |PS| (bottom). The three levels of systematic
uncertainty are 3, 5 and 10%. The solid and dashed histograms corre-
spond to the weighted and unweighted PS, respectively. The expected
10−x distribution is also shown (thin solid line).

allows us to compare how well the weighted log-likelihood cor-
rection of Equation 7 performs for Poisson statistics relatively to
the corrected χ2 approximation.

A simple analytical calculation shows that the mean and vari-
ance of the number of observed counts in each spectral bin are
mk and mk +(σmk)2, respectively. It means that systematic uncer-
tainties lower than 10% have a negligible impact on spectral bins
with mk ≤ 1.

We considered a 20 bins E−2 spectrum such that the number
of counts decreases from 100 to 1 and performed simulations for
three different values of σ: 3, 5 and 10%. We set the weights
to wk = 1/(1 + mkσ

2). The count spectrum and the weights are
shown in the top panel of Figure C.1 and the resulting PS CCDF
are shown in the bottom panel, as well as the ones obtained when
no weight correction is applied.

If the weight correction were perfect, the PS CCDF should
follow the 10−x behavior. In the σ = 10% case, the weight cor-
rection has a significant effect but the error on PS is about 25%.
For σ = 3%, corresponding to the current LAT case, the weight
correction has no effect but the error on PS is within 3%. In the
σ = 5% intermediate case, the weight correction starts to play a
role but the resulting error on PS is about 10%.

It appears from this study that, although the weighted ver-
sion of the log-likelihood does not fully encompass the effect of
systematic uncertainty, it allows the PS estimator to take it partly
into account in the case of systematic uncertainty larger than 5%.

Appendix D: PS map production steps

In this appendix we recap the several steps that we go through
to produce the PS map of a given RoI from the input data and
model 3D count maps as well as the likelihood weight maps.

The data and model 3D count maps are produced with the
Fermitools9 gtbin and gtmodel, respectively. The spatial
part of the maps is a 12◦ × 12◦ map with a pixel size of 0.1◦,
while the energy part ranges from 100 MeV to 1 TeV with a
log10 E bin size of 0.1. The likelihood weights are produced with
gtwtsmap from a 3D data count map covering a larger spatial
region (22.6◦ × 22.6◦ with a pixel size of 0.1◦) in order to ensure
a good estimation of the weights within the 12◦×12◦ inner region
that is used in the PS computation.

The three steps of the PS production, whose flowchart is
shown in Figure D.1, are the spatial integration, the energy rebin-
ning and the PS computation.

data and model 3D maps weight 3D map

Spatial integration Spatial averaging

data and model 3D integrated count spectra average weight 3D map

Energy rebinning Energy rebinning

data and model 3D integrated count spectra average weight 3D map

PS map computation

2D PS map

integration
distance(E)

bin width

Fig. D.1. Flowchart of the PS map production.

D.1. Spatial integration

This step produces the 3D integrated count spectra. It is per-
formed independently for each energy bin k, whose lower bound
is noted Ek. For each (i, j) pixel, we sum all the counts in the
pixels within a distance d(Ek) from pixel (i, j), with d(Ek) =
4◦(Ek/100 MeV)−0.9 ⊕ 0.1◦. For the log-likelihood weight 3D
map, we compute the average weight over the pixels within a
distance d(Ek) from pixel (i, j), as explained in Section 4.

D.2. Energy rebinning

This step produces 3D integrated count spectra with a log10 E bin
size of 0.3 from the 3D maps produced in the previous step. For
each (i, j) pixel, the energy bins of the data and model counts are
summed by group of three, while for the log-likelihood weights
we compute the average weight over the three merged bins (with
the same prescription as explained in Section 4). The energy part

9 https://fermi.gsfc.nasa.gov/ssc/data/analysis/
scitools/references.html
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of the output 3D maps ranges from 100 MeV to 105.9 MeV with
a log10 E bin size of 0.3.

D.3. PS computation

This step produces the 2D PS map. For each (i, j) pixel, we use
the data and model integrated count spectra as well as the log-
likelihood weights from the 3D maps produced in the previous

step. The model integrated count spectra and the weights are
used to compute the L pdf (starting with the pdf corresponding
to all the spectral bins with Gaussian statistics and then perform-
ing the iterative computation described in Appendix A for the
remaining bins), which allows us to compute the p-value cor-
responding to the likelihood obtained with the data integrated
counts. The absolute value of the pixel PS is − log10(p-value)
and its sign is given by Equation 9.
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