
HAL Id: hal-03468087
https://hal.science/hal-03468087

Submitted on 6 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic rule-based device recommendation for
service-migration in multiple-device contexts
Dimeth Nouicer, Nizar Messai, Yacine Sam, Ikbal C Msadaa

To cite this version:
Dimeth Nouicer, Nizar Messai, Yacine Sam, Ikbal C Msadaa. Semantic rule-based device recom-
mendation for service-migration in multiple-device contexts. 30th IEEE International Conference on
Enabling Technologies: Infrastructure for Collaborative Enterprises WETICE 2021, Oct 2021, Bay-
onne (en ligne), France. �hal-03468087�

https://hal.science/hal-03468087
https://hal.archives-ouvertes.fr


Semantic rule-based device recommendation for
service-migration in multiple-device contexts

Dimeth Nouicer
LIFAT, ISTIC

University of Carthage
Tunisia

dimethnoucer@gmail.com

Nizar Messai
LIFAT

University of Tours
France

nizar.messai@univ-tours.fr

Yacine Sam
LIFAT

University of Tours
France

ycaine.sam@univ-tours.fr

Ikbal C. Msadaa
LARINA, ENSTAB

University of Carthage
Tunisia

ikbal.msadaa@ensta.u-carthage.tn

Abstract—Over the last few years, multiple-device ownership
have continuously and rapidly increased, driven by the contin-
uous progress of Internet of Things solutions deployment. At
the same time, the way people use their multiple devices is also
changing making it common and even necessary to switch from
one device to another for the same task. This evolution raises
several issues regarding the migration process and the choice of
the device to migrate to. In this paper, we address the problem
of recommending the most suitable devices for a successful
migration. We propose a semantic and rule-based approach for
device recommendation that takes into account the characteristics
of devices, services, and migration contexts. We propose an
OWL ontology defining the necessary concepts describing devices,
services, users, etc. and the relationships between them. Based
on this ontology, we propose a set of SWRL rules defining the
common requirements for a successful service migration across
devices. The ontology is populated in real-time using appropriate
APIs to get devices and context characteristics. This allows the
rule-based reasoning to be held over updated values and provides
relevant recommendations. The approach is implemented as a
recommendation system within a web application to demonstrate
its effectiveness and scalability.

I. INTRODUCTION

Nowadays, multiple-device ownership is increasing more
and more driven by the high availability of smart objects, their
increasing performances and the progress of data management
and transfer protocols. It is indeed expected that by 2025,
more than 75 billion smart devices will be in use, according
to Statistica1 and Cisco2. It is now common to use simulta-
neously or in sequence at least 2 smart devices by the same
user to perform daily tasks. Especially with the paradigm of
Everything-as-a-Service (XaaS), people can access different
services anywhere, anytime and from almost any device. In
this context, multiple-device ownership raises new challenges
when users run services over their different devices. One of the
very common challenges to switch from one device to another
while keeping interaction with the same service. An example
that fits perfectly with the world’s current situation is online
conference attendance and animation. Because of Covid-19,
users need to attend conferences online using their devices,

1https://www.statista.com/statistics/1101442/iot-number-of-connected-
devices-worldwide/

2https://www.cisco.com/c/en/us/solutions/internet-of-things/future-of-
iot.html

but they also might need to go to work or switch location for
some reason. For example, first a user will be attending with a
laptop at home, then he would switch to his smartphone when
driving to his office while still keeping the call on. And when
he arrives, he would want to use the TV or the desktop for a
better user experience.

In this scenario, a migration process needs to be triggered
to allow to smoothly move user-service interaction between
devices. Today, cloud/server-side synchronization allows such
a migration but requires for each device to be individually
connected to the server, as it is the case of Google suite (Docs,
Meet, etc.), Android and others [1], [2]. Also, some approaches
such as LiquidJS [3], which is based on Liquid Software
principals [4], allow to adapt services to device characteristics.
Recently, approaches such as CUBE [5] have proposed to deal
with the migration of REST services from a user-side per-
spective without depending on server/cloud synchronization.
However, whatever is the considered approach, the user needs
to manually select the target device to migrate to.

Furthermore, in multi-device environments, client-side syn-
chronization is not only a problem in user-service interaction
scenarios, but also in data centers and Internet of Things (IoT)
firms. This may concern for example the offloading tasks in
an IoT Multi-Edge Computing (MEC) context. The need to
migrate content freely between devices seems to become a
must. In these specific scenarios, the migration decision and
the target device choice should be made automatically as
there are no users to monitor and trigger the migration all the
time.

A successful migration decision, whether it is done au-
tomatically or manually, requires to follow some criteria to
know which target device is the most suitable for the ser-
vice/application that will be migrated. Also, it has to capture
the users preferences, timeline and other features related to
security, reliability, compatibility of devices, constraints of the
services, etc., in order to be able to suggest the right device.
This issue has been widely covered from the cloud/server
perspective, as part of cloud resource management [6] or in the
context of IoT device management [7]. From user/edge per-
spective however, efficient device recommendation modules
are still to be defined. Such issue is more challenging as far
as we consider the limited device computation performances



and the lack of access to large semantic resources, such as
Linked Open Data, for similarity calculation.

In this paper, we tackle the device recommendation chal-
lenge which will help users achieve a smooth service migration
between devices from user/Edge side within a decentralized
approach that roams between users devices. To address this
challenge, we propose a declarative approach that relies first
on semantic web ontologies and inference rules to provide
a device recommendation system that can be integrated in
existing migration solutions. The approach is built upon three
main contributions: we first model the main concepts de-
scribing devices, services, users and contexts into a small
OWL ontology that can be held on each device independently.
Second, we define a set of typical semantic inference rules,
in Semantic Web Rule Language (SWRL), formalizing the
migration requirements based on the concepts of the ontology.
Third, we implement the approach within a prototype that
populates the ontology based on APIs and user interactions,
applies a reasoning through the semantic rules, and infers
device recommendations for service migration.

The rest of the paper is organized as follows: Section II
discusses related contributions that align with our motiva-
tion and work. Section III presents the proposed declarative
approach for device recommendation from user perspective,
using ontologies and inference rules. Section IV illustrates the
proposed approach on a typical migration scenario. Section V
details the evaluation settings to demonstrate the effectiveness
of the proposed approach. Finally, Section VI concludes the
paper and highlights related future research directions.

II. RELATED WORK

In the literature so far, the challenge of migrating running
services/tasks between devices was defined in two manners:
either with cloud computing paradigm or with user side (client
repository architecture).

The first perspective is cloud computing where this chal-
lenge is referred to as part of Elasticity which consists of
increasing or decreasing allocated resources for a given task or
process depending on its execution needs (computing, storage,
etc.). A detailed survey on cloud elasticity approaches and
industrial solutions is given in [8]. The basic idea is that for
each process, a Service Level Agreement (SLA) is defined, and
resources allocation is then managed to avoid SLA violation.
Adapted languages such as SYBL [9] allows to express
necessary constraints to trigger resource allocation/reduction.

The second perspective is user side. A survey on approaches
from this perspective is given in [10]. There, Palmeira et al.
classify state-of-the-art approaches based on operating system,
on synchronization method: server-side vs user-side, etc.
An interesting approach is LiquidJS [3]: a framework that
enables the creation of distributed Web applications running
on multiple devices based on Liquid Software principles,
a paradigm that adapts services to devices to run on. The
migration process consists in synchronizing only necessary
parts of the service execution between devices using ”Liquid
components” on top of Web Components.

The approach that is most likely to work with our recom-
mendation system is CUBE, described in [10] and illus-
trated through another prototype in [11]. CUBE also follows
Liquid Software principles but from a user-side to migrate
service states from one device to another without any server
synchronisation. The framework is designed through 3 main
components: A set of services, called OUTER CUBE, a set of
user devices to interact with services, called INNER CUBE,
and an interaction space between both, called POOL AREA.
The migration relies on the transfer of REST service status
between devices in the interaction space.

In this paper, we rather focus on approaches that manage
service migration between devices from a user/edge perspec-
tive. These approaches focus on the migration process, that
is service state synchronization, data transfer, etc., in a rather
empirical way where the choice of the target device to migrate
to is made by the user. Although Palemeira et al. describe a
search space that offers a list of available devices when the
user triggers the migration request, there is no an in-depth
study of their characteristics and context of use nor a reasoning
on their ability to host and successfully run the migrated
service. The present work is intended to complete the state-of-
the-art approaches by a recommendation phase that provides
users and systems with the right choice of device to achieve a
smooth and successful migration. The recommendation relies
on a declarative framework to capture devices and services
characteristics following a proposed ontology. It then defines
a set of semantic rules over these characteristics to recommend
or not a device for the migration.

Considering the semantic aspects, ontology-based user-side
approaches are also to be defined. From server-perspective,
however, many approaches have been proposed to manage
cloud resources. Among them we can cite the mOSAIC
ontology [12] for cloud resources annotation and management
intended to ease multi-cloud oriented applications develop-
ment. In the same context, the approach in [6] deals with
job allocation in cloud systems using OWL ontology and
SWRL rules. In both approaches, large ontologies (in terms
of concepts and instances) are defined to cover all the aspects
of the cloud systems. In the present work, limited computing
capacities from user-side perspective require to use a rather
light weighted ontology and a set of rules that can easily be
run on users devices to identify the next device to migrate
to. The designed ontology is therefore only focused on the
main concepts to describe commonly needed characteristics
for service migration.

III. DECLARATIVE FRAMEWORK FOR DESCRIBING
DEVICES AND MIGRATION RULES

A. Approach overview

In order to better position our contribution, we summarize
in Figure 1 the overall architecture of service migration
in multiple devices environment from user perspective. The
architecture is decomposed into two main steps. First, the
device discovery and recommendation phase, shown in the



Fig. 1: Overall architecture for device recommendation and
service migration in multiple device contexts.

left side of the figure. This part is composed of the following
3 modules:

• Requirements characterisation of services to be migrated;
• Device discovery and characterisation in the user context;
• Matchmaking check and recommendation of the most

suitable device for migration.

Second, the service migration phase, shown in the right side
of the figure, which consists of 4 main modules:

• Target device selection to start the migration;
• Authentication on the target device;
• Service state/data migration to the target device;
• Additional synchronization, if needed, to keep the inter-

action progress.

As discussed in the state-of-the-art section, service migration is
covered by approaches such as CUBE, a user-side migration
framework proposed in [5]. We will not therefore review it
in details. We simply point out the main issue with device
selection, prior to any service migration in CUBE as well as
LiquidJS [3] which is the following; Usually, this selection
is manually performed by the user regardless of the devices
characteristics. However, this may cause failures in the service
execution in the target device. To overcome this issue, we
propose to complete the existing migration frameworks with a
reliable device recommendation phase. The proposed approach
should take into account two main aspects related to user-side
perspective: (1) the highly dynamic context regarding devices
availability, and (2) the least computation possibilities for the
recommendation process.

Considering the first aspect, we propose a declarative ap-
proach that relies on semantic description of contextual and
real-time device characteristics, as well as a set of logical rules
to select the most suitable device to migrate to. The second
aspect requires to define a rather lightweight ontology and
a limited set of typical rules to allow running the ontology
population and the reasoning tasks on the users devices.
Each device deploying the recommendation module runs it
independently to get its own migration context and keep it
updated once in use. The recommendation module provides
a first set of rules that covers the most common migration
scenarios, and allows users to edit and enrich these rules
for a personalized user experience. The following subsections
provide a detailed description of the proposed approach.

B. Semantic description of the recommendation context: OWL
ontology CORE concepts

In this section, we present an ontology that models our
system and deals with the information related to our resources
(users, devices and services). The task of discovering devices
and recommending the potential device can be sensitive and
complex as the services requirements differ from one another.
Also, devices have a wide range of characteristics that can be
very dynamic.

Thus, we conceptualize our resources into 4 main compo-
nents: (i) the device, (ii) the owner, (iii) the service and (iv)
the characteristics.

Device This class contains three sub-classes: UserCentric,
CloudDevice and IoTdevice. Each of them contains specific
sub-classes corresponding to the device type (smartphone,
laptop, etc.).

Owner This class contains individuals that interact with
both the device and the service classes. Eventually, for every
device there should be an owner, whether it is a person or an
enterprise it does not matter. For security reasons, we cannot
recommend a device owned by a stranger; so we need to know
the owner of the devices. As mentioned in [13], this is called
ownership device discovery.

Service This class is crucial in our model because based on
the service needs and requirements, we will decide about the
suitable device. It can also be decomposed into sub-classes
based on the type of the service.

Characteristic This class includes all the necessary char-
acteristics of both the services and the devices. Characteristics
of the devices can be like location, battery percentage, screen
resolution, etc. In the same way, services also have some
characteristics, can be called requirements, like whether it
requires Internet connectivity or not, or whether it needs a high
screen resolution (e.g. 4k videos), etc. These characteristics
are important as they can help us differ between the potential
devices and match between the service and its suitable device.
For example, the location characteristic can be used in a
location discovery process, as explained in [13], that only
discovers nearby devices.

Figure 2a illustrates an overview of the 4 main classes and
few examples of their sub classes.

We also define necessary properties to model the interac-
tions and relationships between theses concepts. For example,
the owner class has two object properties with the device class:
a device is ownedBy an owner, and the owner usesDevice.
These two properties are different because a user can own
several devices but only uses one of them at a time. Another
property is: the user interactsWith the service. Furthermore,
in order to define the relationship between the devices and
their characteristics or the services with their requirement, we
add two main properties. hasCharacteristics property: links
between the device and the characteristic class, while the
requireCharacteristics property: links between the service
and the characteristic class. Moreover, between the device
and the sub classes of characteristics there are also object
properties as illustrated in the example in Figure 2b.



(a) The ontology main concepts.

(b) The ontology object properties.

Fig. 2: Overview example of the ontology

C. Real-time ontology population/update based on devices
APIs and contextual information

After designing the ontology classes and properties, we
need to fill the instances with the users devices and context
information. The optimal way to do this would be to get
APIs do the job, as we should keep users intervention as
minimal as possible to facilitate the process. For instance,
Battery API can give us: the battery percentage of devices,
whether it’s charging or not, etc. We don’t want users to
manually update the ontology with their devices information
every time they need to do the migration. Also we cannot save
the information once we get it because it’s too dynamic (saving
battery percentage is meaningless as it’s always changing).
That’s why, ontology-update-process starts either when the
user manually triggers a migration request or when predefined
callback methods are automatically triggered through specific
events related to service or device life-cycle. However, APIs
cannot get all the information needed; that is why we might
need users to enter/complete them manually.

D. Formalizing migration rules with SWRL

Now we add the inference rules which are based on the
properties and classes we have defined above. Based on the
service requirements, we will try to recommend the suitable
device using SWRL rules. Table I presents some of the

Fig. 3: Illustrative scenario.

simplified inference rules that we can define to manage the rec-
ommendation. For example, rule number 1 states that devices
that have more than 10% battery percentage are considered
alive. Rule 2 for example gets us devices that are in proximity.
Thanks to these rules, we can achieve various results and
semantic meanings from all the information we have. However,
sometimes we need to combine rules together to dictate certain
orders like the migration rule. As an example, let us consider
rule 4 that combines rule 1,2 and 3 in order to achieve a
successful migration.

No Domain rules
1 Device(?d) ∧HasBattery(?d, ?b) ∧ swrlb :

greaterThan(?b, 10) → Alive(?d, true)
2 Device(?d1) ∧Device(?d2) ∧HasLocation(?d1, ?l)

∧HasLocation(?d1, ?l) → InProximity(?d1, ?d2)
3 Device(?d) ∧HasScreen(?d, ?c) ∧WatchingService(?s)∧

RequiresScreen(?s, ?c) → IsCompatiblewith(?d, ?s)
4 Device(?d1) ∧Device(?d2) ∧ Service(?s) ∧Alive(?d2, true)∧

InProximity(?d1, ?d2) ∧ IsCompatiblewith(?d2, ?s)
→ Migrate(?s, ?d2)

TABLE I: Examples of Inference rules

As seen, these inference rules can be very flexible and they
give us efficient semantic meanings to achieve relevant device
recommendation.

IV. ILLUSTRATING THE APPROACH ON A TYPICAL
MIGRATION SCENARIO

After explaining the recommendation process, the ontology
and the SWRL rules, we provide in this section a full example
to summarize and bring together the three aspects detailed
above.

As illustrated in Figure 3, we consider a user who uses
three devices: a laptop, a smartphone and a TV. As for the
service, the user needs to attend a conference online so this is
a videoconferencing service. First, he starts the call at home
with his laptop. Second he switches to his smartphone when
he’s driving to the office, so that he doesn’t miss anything
from the conference. Third, he arrives at the office and he
follows the video conference on the TV screen for a better
user experience.

This scenario can be modeled with our ontology as illus-
trated in Figure 4. We have the device class and the three
instances: device 1,2 and 3. In Figure 5 we have the service
class and the conference instance. The service in this scenario
requires a good connectivity, good screen resolution and a high
battery percentage. That’s why, in the device’s characteristics



Fig. 4: Device class that illustrates the scenario.

Fig. 5: Service class that illustrates the scenario.

we focus on satisfying the service requirements.
In this Table II we showcase few example rules that will help
us recommend the suitable device for the service.

No Domain rules
1 Device(?d) ∧HasBattery(?d, ?b) ∧ swrlb :

greaterThan(?b,HighV alue) → Alive(?d, true)
2 Device(?d1) ∧Device(?d2) ∧HasLocation(?d1, ?l)∧

HasLocation(?d1, ?l) → InProximity(?d1, ?d2)
3 Device(?d) ∧HasConnectivity(?d, ?c) → IsOnline(?d, true)
4 Device(?d) ∧HasScreen(?d, ?c) ∧WatchingService(?s)∧

RequiresScreen(?s, ?c) → IsCompatiblewith(?d, ?s)
5 Device(?d1) ∧Device(?d2) ∧ InProximity(?d1, ?d2)∧

Alive(?d2, true) ∧ IsOnline(?d2, true) ∧ Service(?s)∧
IsCompatiblewith(?d2, ?s) → Migrate(?s, ?d2)

TABLE II: Inference rules of the video conference scenario

V. IMPLEMENTATION AND EVALUATION

In order to evaluate our ontology, We have implemented a
simulation model. Protégé was used to design the ontology,
while Apache Jena was used for reasoning and the inference
engine to test the SWRL rules. To evaluate the recommen-
dation system, we have conducted several experiments with
different scenarios and compared the theoretical results with
the output of the system and the ontology.

In our experiments, we have developed an application
(app) that consumes a Spring Boot API. We assume that
the users of this application are the people who need to
migrate their services. The API is responsible for handling
the Jena reasoning and the SWRL rules. In other words, the
API manages and stores the facts and rules (both defined in
Apache Jena) to finally compute the recommendation results.
For instance, the facts are very dynamic and change depending
on the situation and the devices. They are stored in a “.n3”
file. As discussed in Section 2, the facts can vary from one
user to another. Thus, the facts in the n3 file change from one
scenario to another. The characteristics, in the file, are added

Fig. 6: Evaluation of users behaviour without recommendation
system.

by the app that we have developed. During the configuration
step, the app asks the user to add some of them manually from
a web interface (for security and permission reasons), while
some others can be extracted automatically from APIs (battery
API, Bluetooth API, etc.) as detailed in paragraph Real-time
ontology population. However, the rules are in a second file
and they don’t change dynamically. The rules are the same for
all scenarios unless the user wants to modify them.
The code of the application we developed can be found in
Github 3.

In order to validate the efficiency of our system, we have
carried out several performance evaluation scenarios. As illus-
trated in Figure 6, we have tested the behaviour of 5 users in
different situations with 3 services (video-conference, gaming
and email). Usually, users would choose devices intuitively
and without thinking through their choice. In these different
situations, we’ve realized that the choice they make is not
necessarily the best. As seen in Figure 6, in two scenarios
user 1 made the worst choice of devices: device characteristics
don’t match the service requirements (e.g., device is not
connected to Internet, or doesn’t have enough battery).

Next, we gave users our recommendation system to test
and measure their satisfaction with the recommended device.
As illustrated in Figure 7, some users are totally satisfied
with the result, while others are the complete opposite. For
example with user1, although he made the worst choice in
the conference scenario, he still insisted on using that device.
Overall, users who weren’t satisfied with the result are either
users who insisted on using the same device and to not do
the migration in the firs place, or the recommended device
was already being exploited by someone else or by another
service.

Here are few details of some of the users and how the
recommendation system is making the choice. For every
scenario there’s a unique n3 file created in our app. For every
new case of migration the n3 file resets the characteristics
retrieved from both the APIs and the user as we previously
discussed.

The first scenario is about attending an online conference.
The first case is related to user 1. We have these devices and
their characteristics as listed in Table III. In this case, the user

3https://github.com/dimeth-nouicer/WETICE.git



Fig. 7: Evaluation of users satisfaction with our recommenda-
tion system.

has chosen to watch from Tablet1 in red while the system
recommended Tablet2 in blue.

devices location ownership battery % Internet connectivity
Laptop home user 1 100% yes
Phone car user 1 80% yes
Tablet1 car user 1 10% yes
Tablet2 car User 1’s son 70% yes

TABLE III: Devices and their characteristics in the first case
of the conference scenario

In the second case, with user 3, we modified some attributes:
the location of Tablet1 and the Laptop, and the Internet
connectivity of the Laptop as listed in Table IV. The system
still recommends Tablet2 in blue, but user 2 chooses his
Phone in red.

devices location ownership battery % Internet connectivity
Laptop car user 1 80% no
Phone car user 1 50% yes
Tablet1 home user 1 80% yes
Tablet2 car User 1’s son 80% yes

TABLE IV: Devices and their characteristics in the second
case of the conference scenario

The second scenario is about gaming service. The first case
is about user 1 and we have the different devices and their
characteristics listed in Table V. The user chooses to play on
the Desktop in red while the system recommends the Laptop
in blue.

devices location ownership battery % Screen Resolution
Phone home user 1 50% HD
Laptop home user 1 70% HD
Tablet car user 1 80% HD

Desktop home user 1 10% Best quality

TABLE V: Devices and their characteristics in the first case
of the gaming scenario

As explained in these scenarios, our recommendation sys-
tem is dynamic and adapts to different services and different
use cases. In some cases, it verifies the battery percentage,
in other it prioritizes the screen resolution and Internet con-
nectivity. However, it’s important to mention the limits of
our system and our ontology. As mentioned above, in one

of the scenarios our system recommended a device that was
already being used by another user. For instance, based on the
characteristics alone, our system is not able to detect, for now,
whether a device is being used or not.

VI. CONCLUSION

In this paper, we present a declarative approach for device
recommendation to allow smooth and successful service mi-
gration in multi-device contexts for both user-centric and MEC
IoT scenarios. The approach consists in defining an OWL
ontology for describing the devices, the services to migrate,
the user and the context. Based on the ontology concepts,
we define a set of SWRL semantic rules to ensure relevant
recommendation of target devices while keeping user-service
interactions on. We’ve illustrated and validated the approach
through different scenarios to show its relevance and how it
can adapt to different environments. We’ve implemented the
proposed framework in a simulation application to showcase
real life scenarios and results.

Regarding our future steps, we intend to combine our work
with few prototypes such as CUBE or LiquidJS to provide
a full migration solution framework in user-centric contexts
as well as in Edge IoT contexts. Further tests will be done to
provide a full user experience that’s automatic, to improve our
ontology and its limits.

REFERENCES

[1] P. Hamilton and D. J. Wigdor, “Conductor: Enabling and understanding
cross-device interaction.” Association for Computing Machinery, 2014.

[2] D. Wolters, J. Kirchhoff, C. Gerth, and G. Engels, “Cross-device
integration of android apps.” Springer International Publishing, 2016.

[3] A. Gallidabino and C. Pautasso, “The liquid.js framework for migrating
and cloning stateful web components across multiple devices,” 04 2016,
pp. 183–186.

[4] J. Hartman, U. Manber, L. Peterson, and T. Proebsting, “Liquid software:
A new paradigm for networked systems,” Tech. Rep., 1996.

[5] C. Palmeira, N. Messai, Y. Sam, and T. Devogele, “User-side service
synchronization in multiple devices environment,” in Web Engineering
- 20th International Conference, ICWE 2020, Helsinki, Finland, June
9-12, ser. LNCS, vol. 12128, pp. 451–466.

[6] Y. Ma, S.-H. Jang, and J. Lee, “Ontology-based resource management
for cloud computing,” 04 2011.

[7] F. Komeiha, N. Cheniki, Y. Sam, A. Jaber, N. Messai, and T. Devogele,
“Towards a Privacy Conserved and Linked Open Data Based Device
Recommendation in IoT,” in International Conference on Service Ori-
ented Computing, ICSOC 2020, 12 2020.

[8] E. Coutinho, F. Sousa, P. Rego, D. Gomes, and J. Souza, “Elasticity in
cloud computing: a survey,” annals of telecommunications - annales des
télécommunications, 2014.

[9] G. Copil, D. Moldovan, H.-L. Truong, and S. Dustdar, “Sybl: An
extensible language for controlling elasticity in cloud applications,” in
2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing, 05 2013.

[10] C. Palmeira, N. Messai, and Y. Sam, CUBE System: A REST and REST-
ful Based Platform for Liquid Software Approaches. Web Information
Systems and Technologies, Springer International Publishing, 06 2018,
pp. 115–131.

[11] ——, “Liquid mail - a client mail based on cube model,” in 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), 07 2018.

[12] F. Moscato, R. Aversa, B. Di Martino, T.-F. Fortiş, and V. Munteanu,
“An analysis of mosaic ontology for cloud resources annotation.” in
Proceedings of the Federated Conference onComputer Science and
Information Systems, 2011.

[13] A. Gallidabino, C. Pautasso, T. Mikkonen, K. Systä, J.-P. Voutilainen,
and A. Taivalsaari, “Architecting liquid software,” J. Web Eng., 2017.


