
HAL Id: hal-03467864
https://hal.science/hal-03467864

Submitted on 6 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reservoir Pattern Sampling in Data Streams
Arnaud Giacometti, Arnaud Soulet

To cite this version:
Arnaud Giacometti, Arnaud Soulet. Reservoir Pattern Sampling in Data Streams. European Confer-
ence on Machine Learning and Knowledge Discovery in Databases. (ECML PKDD 2021), Sep 2021,
Bilbao (virtuel), Spain. pp.337-352, �10.1007/978-3-030-86486-6_21�. �hal-03467864�

https://hal.science/hal-03467864
https://hal.archives-ouvertes.fr


Reservoir Pattern Sampling in Data Streams

Arnaud Giacometti[0000−0003−0270−5146] and Arnaud
Soulet[0000−0001−8335−6069]�

Université de Tours, LIFAT, Blois, France
firstname.lastname@univ-tours.fr

Abstract. Many applications generate data streams where online anal-
ysis needs are essential. In this context, pattern mining is a complex task
because it requires access to all data observations. To overcome this prob-
lem, the state-of-the-art methods maintain a data sample or a compact
data structure retaining only recent information on the main patterns.
This paper addresses online pattern discovery in data streams based on
pattern sampling techniques. Benefiting from reservoir sampling, we pro-
pose a generic algorithm, named ResPat, that uses a limited memory
space and that integrates a wide spectrum of temporal biases simulating
landmark window, sliding window or exponential damped window. For
these three window models, we provide fast damping optimizations and
we study their temporal complexity. Experiments show that the perfor-
mance of ResPat algorithms is particularly good. Finally, we illustrate
the interest of our approach with online outlier detection in data streams.

1 Introduction

Many applications generate data streams, especially with the rise of network
sensors [2] and the Internet of Things [8]. Beyond their operational utility, the
analysis of these data streams raise strategic issue in mobile data stream mining
[25], online transaction analysis [18] and so on. In most cases, it is not possible
to consider storing these data to perform an off-line analysis because of their
volume. In addition, the usefulness of certain analyzes like early outlier detec-
tion necessarily relies on online processing. Unfortunately, knowledge discovery
in data streams remains a challenging task due to the continuous arrival of data
observations that must be processed in a short time (time constraint) despite a
limited memory space (space constraint) [19,24]. This problem is particularly ex-
acerbated for pattern mining whose combinatorial complexity is costly by nature
[11,16]. It aims to maintain a collection of interesting patterns extracted from
the data stream while respecting these constraints. For this purpose, a first strat-
egy consists in maintaining a compact data structure containing the information
on the pattern occurrences appearing in each data observation [15,21,22,26]. In
addition to being expensive to update, the size of this structure is not limited
and sometimes requires significant memory space. A second strategy is to main-
tain a data sample representative of the data stream. It is then possible to mine
the interesting patterns from this sample [1,4,23]. However, the expensive cost



of this mining step prevents it from being repeated at the arrival of each data
observation and then, from having an up-to-date collection of patterns.

This paper revisits the pattern discovery in data streams at the light of pat-
tern sampling [3,5]. Frequent pattern sampling consists in drawing patterns at
random proportionally to their frequency. In our context, the principle is to
maintain a sample of k patterns representative of the data stream. For exam-
ple, a pattern twice as frequent will be twice as likely to be picked. To the best
of our knowledge, no method exists to sample patterns in data streams. For
this purpose, the key idea is to benefit from reservoir sampling. This family of
randomized algorithms picks a random sample of k items from a population of
unknown size in a single pass over the items [10,20,27]. Unfortunately, the ex-
isting reservoir sampling methods are not suitable to deal with two challenges:
output space and temporal bias. First, existing reservoir sampling methods are
designed to perform input space sampling (i.e., from data observations) and not
output space sampling (i.e., from patterns covering the data observations). Of
course, it is not possible to enumerate the exponential number of patterns con-
tained in each data observation to build the population to be sampled. Second,
there are reservoir sampling methods that take into account a static distribution
on the population [10]. To the best of our knowledge, existing reservoir sampling
methods do not incorporate a temporal bias to favor the most recent observa-
tions. However, the damping of the oldest data observations is important for
pattern mining in data streams [17].

This paper provides the first pattern sampling method in data streams using
reservoir sampling. The general principle is to generate a key for each occurrence
of patterns and to keep in the reservoir the k occurrences with the largest keys.
More specifically, our contributions are as follows:

– We present a generic algorithm ResPat that performs exponential random
jumps in the output space so as not to compute a key for each occurrence and
that updates the value of the keys of the reservoir to integrate several window
models. We also propose fast damping optimized algorithms (ResPatno,
ResPatwin and ResPatexp) for three window models that avoid having to
explicitly modify the keys of the reservoir.

– We demonstrate that the proposed ResPat algorithm family based on reser-
voir sampling is exact and that it requires a memory space linear with the
sample size k. Interestingly, our theoretical study proves its efficiency by
computing the complexity of the number of insertions in the reservoir.

– We evaluate the effectiveness of our algorithm family by performing exper-
iments on UCI benchmarks and synthetic data. This experimental study
shows the important contribution of the exponential jump and fast damping
optimizations. A use case also illustrates the interest of pattern sampling
to detect outliers in data streams. In particular, our online and one-pass
method rediscovers the outliers of an off-line method with a good accuracy.

The outline of this paper is as follows. Section 2 reviews some related work
about pattern mining in data streams and pattern sampling methods. Section 3
introduces basic definitions and the formal problem statement. We present our



reservoir pattern sampling algorithms for data streams in Section 4. We evaluate
our approach in Section 5 and conclude in Section 6.

2 Related Work

Data mining over data streams is a daunting task [19,24], especially pattern
mining [11,16]. Most of the existing methods aim to extract all the frequent
patterns and more rarely, are limited to the top-k frequent patterns [28] or other
measure like max-frequency [6]. Itemsets is the most popular pattern language
and only few works are interested in particular forms like maximal patterns [18]
or closed patterns [7,22]. Several static window models [17] are implemented to
consider (i) the entire stream from a certain time (landmark window) [7,21,28],
(ii) only the data observations inside a window (sliding window) [7,22,26] or (iii)
the entire data stream by weighting the observations to favor the most recent
ones (damped window) [15,23]. Clearly this latter is the more complex model
and it is also the least dealt with in the literature. The majority of methods
relies on a tree-like data structure in order to efficiently store and manipulate
the current mined patterns [15,21,22,26]. This structure is updated according
to the data stream to maintain a collection taking into account the considered
window. Statistical techniques such as the Chernoff bound [28] are often used
to estimate the frequency of the patterns in order to safely remove the less
promising ones. Most of these techniques compute approximated collection of
patterns contrary to our proposal, which guarantees an exact sampling: whatever
the window model, the mined sample is equivalent to what would be mined if
all the data observations were stored in memory.

Rather than incrementally maintaining the collection of interesting patterns,
another approach consists in incrementally maintaining a data sample repre-
sentative of the data stream benefiting from reservoir sampling [10,20,27]. The
idea is then to extract the collection of patterns from this data sample by simu-
lating different window models (e.g., sliding window [4], exponential bias [1] or
tilted window [23]). Unfortunately, this approach makes it necessary to repeat
the pattern discovery after each modification of the data sample, which is very
costly (both for the frequent pattern mining and for the pattern sampling). For
this reason, it would be more advantageous to directly sample the output space
(i.e., pattern space) instead of the input space (i.e., data space). To the best of
our knowledge, there are methods for sequential data [9] but not for sampling
patterns in a data stream. First, stochastic methods [3] require evaluating the
measure m on the entire data for selecting the next state of the random walk.
This evaluation is impossible in a data stream because we do not have all the data
observations. Second, multi-step random procedures [5,9] have the advantage of
not directly evaluating the measure. They consist in drawing a data observation
proportionally to the utility sum of patterns that it contains and then, in draw-
ing a pattern from these patterns proportionally to its utility. Unfortunately, the
essential normalization constant for drawing the transaction will only be known
at the end of the stream. In short, all the pattern sampling methods require a



T
im

e

Data stream D
Time. Items

0 A B D
1 A B C D
2 A C E
3 A B C
4 C D E
5 C D E

Damping function ω

ωno ω2
win ω0.3

exp

1 0 0.223
1 0 0.301
1 0 0.406
1 1 0.549
1 1 0.741
1 1 1.000

Table 1. A running example with three damping functions

full-access to data incompatible with the notion of data stream where not all the
data observations can be stored. Thus, this work proposes to extend reservoir
sampling methods dedicated to the input space so that they effectively deal with
the output space with a time bias.

3 Preliminaries

Data stream and patterns This paper exclusively addresses itemset language.
Given a set of literals I, a data stream is a sequence of transactions with times-
tamps: D = 〈(t1, d1), . . . , (tn, dn)〉 such that dj ⊆ I for j ∈ [1..n] and tj < tj+1

for j ∈ [1..n− 1]. Without loss of generality, we consider that t1 = 0. The item-
set language LI = 2I is the set of all patterns (or itemsets). The cover of a
pattern ϕ in a data stream D, denoted by D[ϕ], is the set of data observations
containing ϕ: D[ϕ] = {(t, d) ∈ D : ϕ ⊆ d}. For instance, Table 1 provides a
data stream with 6 data observations described by 5 items I = {A,B,C,D,E}.
ABD is the transaction of the first data observation containing 8 itemsets:
2d0 = {∅, A,B,D,AB,AD,BD,ABD}. Of course, a data stream evolves over
the time with the addition of new data observations (e.g., a transaction will
likely be added at timestamp 6).

Interestingness measure A damping function ω : <+ → [0, 1] is a decreasing
function that assigns a lower weight to the oldest data observations such that
ω(0) = 1. This damping function enables us to consider the different existing
window models [17]: (i) Landmark window: A landmark window ωno considers
all the data observations equally since a landmark point (as t1 without loss of
generality): ωno : t 7→ 1 (ii) Sliding window: The (time-stamp based) sliding
window ωTwin considers only the most recent data observations [12]. Formally,
ωTwin : t 7→ 1 if t ≤ T and 0 otherwise, where T > 0 is the window time size. (iii)
Exponential damped window: A popular damped window is the exponential
bias [1] defined as ωαexp : t 7→ e−αt where α is the damping factor. For instance,
Table 1 illustrates this three damping functions. It is easy to see that the damping
functions ω2

win and ω0.3
exp gives a larger weight to the most recent observations.

This is suitable for applications where people are interested only in the most



recent information of the data streams. For this purpose, we weight the support
with the damping function:

Definition 1 (Damping support). Given a damping function ω, the damped
support of a pattern ϕ in D = 〈(t1, d1), . . . , (tn, dn)〉 is defined as below:

suppω(ϕ,D) =

∑
(t,d)∈D[ϕ] ω(tn − t)∑
(t,d)∈D ω(tn − t)

Obviously, the damping function ωno leads to the traditional support. For
instance, suppωno

(AB,D) = 3/6 and suppωno
(CDE,D) = 2/6 meaning that AB

occurs more frequently than CDE. On the latest data observations, the situation
is reversed: suppω2

win
(AB,D) = 1/3 (or suppω0.3

exp
(AB,D) = 1.073/3.220) is lower

than suppω2
win

(CDE,D) = 2/3 (or suppω0.3
exp

(CDE,D) = 1.741/3.220).

Problem Statement Let Ω be a population and f : Ω → [0, 1] be a measure, the
notation x ∼ f(Ω) means that the element x is drawn randomly from Ω with a
probability distribution π(x) = f(x)/Z where Z is a normalizing constant.

Given a data stream D = 〈(t1, d1), . . . , (tn, dn)〉, a language LI and a damp-
ing function ω, we aim at selecting k patterns ϕ1, . . . , ϕk in LI where the prob-
ability of each pattern ϕi to be selected is determined by its relative weight
suppω(ϕi,D): ϕi ∼ suppω(LI ,D) for i ∈ {1, . . . , k}.

As mentioned in the introduction, a method for processing data streams
must comply with two constraints: (i) Space constraint: In most cases, it is
not possible to store all the observations in the data stream D. Therefore, the
sampling method has to be done in a single pass to avoid disk storage and the
space complexity has to be independent of the number of observations n. (ii)
Time constraint: Each observation must be processed in a short time to avoid
the accumulation of continuously arriving data, which would violate the above
space constraint. Next sections address this problem using reservoir sampling.

4 Reservoir Algorithms for Pattern Sampling

4.1 Challenges and key ideas

First, we reformulate our pattern sampling problem as an occurrence sampling
problem. Drawing a pattern according to the weighted support suppω is equiv-
alent to drawing an occurrence according to the damping function ω: ϕ ∼
suppω(LI ,D) ⇔ ϕ ∼ ω(L(D)) where the multi-set L(D) =

⋃
(t,d)∈D 2d gath-

ers all the occurrences of patterns from D:

L(D) = { ϕ0
1, ϕ

1
1, . . .︸ ︷︷ ︸

2d1 with ω(tn−t1)

, ϕ0
2, ϕ

1
2, . . .︸ ︷︷ ︸

2d2 with ω(tn−t2)

, . . . , ϕ0
n, ϕ

1
n, . . .︸ ︷︷ ︸

2dn with ω(tn−tn)

}

and each occurrence ϕij ⊆ dj has a weight ω(ϕij) = ω(tn− tj). Interestingly, this
reformulation of the problem makes it possible to directly reuse reservoir sam-
pling algorithms from the literature where the occurrences form the population



to be sampled. More precisely, this family of algorithms selects a sample (often
without replacement) of a population having an unknown size in a single pass.
Some algorithms having the best complexity rely on a central result that we also
use in the rest of this paper. Given two keys key1 = u1

1/ω1 and key2 = u2
1/ω2

where ωi > 0 and ui is uniformly drawn from [0, 1], we have:

P (key1 ≤ key2) =
ω2

ω1 + ω2
(1)

Based on this observation, [10] demonstrates that assigning each occurrence in
L(D) a key ui

1/ωi where ui is a random number and then, selecting the k patterns
with the largest keys is equivalent to sampling k occurrences without replacement
from L(D) proportionally to ω. Besides, as the number of occurrences is very
large (i.e., |L(D)| � k), a sampling method without replacement is equivalent
to a sampling method with replacement. Consequently, this paper benefits from
some principles of the sampling algorithm without replacement proposed by [10].

The context of pattern sampling raises two challenges with respect to the use
of reservoir sampling. The first challenge is to address the output space L(D)
rather than the input space D. We could naively apply a reservoir sampling
method by enumerating the output space (i.e., all the occurrences for each data
observation). For the itemset language, this approach would lead to an exponen-
tial complexity 2|d| for processing a data observation d, which the time constraint
prevents. Inserting step in Section 4.2 shows how to avoid the enumeration of the
output space by directly selecting the occurrence to insert into the sample. The
second challenge is to take into account the damping function ω in the mainte-
nance of the sample. In Equation 1, the weights are static, while in our context,
they are dynamic. At the insertion time tins, all occurrences have 1 as weight
– by definition of the damping function ω, we have ω(tins − tins) = ω(0) = 1.
When new observations arrive, the weight of the patterns in the sample decreases
except for the landmark window. Whatever the damping function, Damping step
in the next subsection shows how to integrate this modification relying on Equa-
tion 1. Finally, Section 4.3 proposes fast damping optimizations for ωTwin and
ωαexp.

4.2 Generic algorithm: ResPat

Overview This section presents our generic algorithm to address the two above
challenges. Algorithm 1 takes a data stream D, a damping function ω and a
sample size k as inputs and returns a sample S containing k patterns randomly
drawn in LI proportionally to the damped support in D. Its general principle is
to process each observation one by one. The inserting step (lines 7 to 11) inserts
some occurrences of the jth observation without enumerating all the output
space. The damping step (lines 5 and 6) modifies the keys of the occurrences
contained in the sample to integrate the damping function ω.

Before detailing the two main steps, it is important to note that the reservoir
S is a set of triples 〈key, ϕ, t〉 meaning that the occurrence ϕ was inserted at time
t with the key key. The function MinKey (lines 13-17) returns the smallest key



Algorithm 1 ResPat: Pattern sampling in data streams with damping

Require: A data stream D, a damping function ω and a number of patterns k
Ensure: A sample S containing k patterns randomly drawn in LI proportionally to

the damped support in D
1: S := ∅
2: jump := 0
3: for j ∈ 〈1, . . . , n〉 do
4: i := 0

// Damping step
5: if j ≥ 2 then
6: Update the key of each element 〈key, ϕ, t〉 ∈ S with keyω(tj−1−t)/ω(tj−t)

// Inserting step
7: while i + jump < |2dj | do
8: i := i + jump
9: UpdateSample(S, k, unif(MinKey(S, k), 1),L(dj)

i, tj)
10: jump := blog(unif(0, 1))/ log(MinKey(S,k))c+ 1

11: jump := (i + jump)− |2dj |
12: return the sample S
13: function MinKey(S, k) // Return the minimum key in S
14: if |S| < k then
15: return 0
16: else
17: return min〈key,ϕ,t〉∈S key

18: procedure UpdateSample(S, k, key, ϕ, t) // Add the pattern ϕ in S
19: e := 〈key, ϕ, t〉
20: if |S| < k then
21: Add the pattern e in S
22: else
23: Replace the pattern with the minimum key in S by the pattern e

of the sample if the sample contains k occurrences and 0 otherwise. The function
UpdateSample (lines 18-23) inserts an occurrence into the sample and removes
the occurrence with the smallest key (if necessary for maintaining |S| ≤ k). Note
that the first k occurrences at the beginning of the stream are automatically
added into the sample due to the smallest key that equals to zero (lines 20-21).

Inserting step A naive algorithm could draw a uniform number between 0 and 1,
saying u, for each occurrence and it could insert this occurrence when u1/ω = u
exceeds the smallest key m (because the weight of each occurrence is 1). Instead
of enumerating one by one all the occurrences, it is enough to calculate how many
occurrences, saying jump, should be drawn before having the one that will be
inserted in the reservoir [20]. Intuitively, to insert a pattern in the reservoir, it
is sufficient to calculate the weight ω so that the key u1/ω is larger than the
smallest key in the reservoir, saying m. As each occurrence has a weight of 1,
this weight ω simply corresponds to the number of occurrences skipped and the



equation to solve is m ≤ u1/jump. This intuition is formalized by the below
property:

Property 1 (Exponential random jump [20]). Given the smallest key m, the num-
ber of occurrences to jump before reaching the occurrence to be inserted in the
sample is given by the random variable Xm:

Xm =

⌊
log unif(0, 1)

logm

⌋
+ 1

Property 1 is the first key ingredient of the inserting step at line 10 of Algo-
rithm 1. Let us assume in our running example provided by Table 1 that after
having processed the first two transactions, the smallest key of the reservoir is

m = 0.8. If we draw u = 0.1, then we get jump =
⌊
log 0.1
log 0.8

⌋
+ 1 = 11 and the

11th occurrence of ACDE is inserted into the reservoir by replacing the occur-
rence having the smallest key m. With this technique, there is 1 single draw
instead of 11 with a naive enumeration. We will measure this significant gain
both theoretically (in Section 4.4) and practically (in Section 5).

For the random jump to be really useful, we must access the jump-th occur-
rence without listing all the previous ones. For this purpose, we introduce the
notion of index operator. Given a data observation (t, d) ∈ D, an index operator
is a bijection mapping each number i ∈ [0..|2d| − 1] to a pattern ϕ ∈ 2d:

Definition 2 (Itemset index operator). Given a transaction d =
{I0, . . . , I|d|−1} and an index number i ∈ [0..2|d| − 1], we consider its value
b|d|−1 . . . b1b0 in binary system and then, the itemset X returned by L(d)i con-
tains all items Ij where bj = 1: Ij ∈ X ⇔ bj = 1.

This index operator is the second key ingredient used at line 9 of Algorithm 1
for selecting directly the right occurrence to insert in the sample without enumer-
ating all the patterns and applying a filter. For instance, L(ACDE)11 is ACE
because the decimal value (11)10 has (1011)2 as binary value. This operator is
efficient because its complexity is linear with the number of items in d.

Damping step All patterns are inserted into the reservoir with 1 as initial weight
but after, their weight must be decreased to take into account the damping
function ω. In other words, at every time tj , a pattern inserted at tins must have
a key u1/ω(tj−tins). For this purpose, the key of each pattern is raised to the

power
ω(tj−1−tins)
ω(tj−tins) at each iteration j. The below property formalizes this idea:

Property 2 (Key damping). Given a pattern ϕ inserted at time tins with a key
key considering a damping function ω, we have for any tj ≥ tins:

key
ω(tins−tins)

ω(tins+1−tins))

ω(tins+1−tins)
ω(tins+2−tins)

...
ω(tj−1−tins)
ω(tj−tins)

= key1/ω(tj−tins)

Due to lack of space, the proofs are omitted. This property follows
from the fact that the left hand-side of the equality can be rewrit-

ten as key
∏j
i=ins+1

ω(ti−1−tins)
ω(ti−tins) and the simplification of the exponent gives



key1/ω(tj−tins). Assume that ACE was inserted with the initial key key = 0.9
at time 2. Of course, this key will not be modified with the damping function
ωno. For the function ω2

win, it decreases to 0 with the sixth observation (5, CDE)

because keyω
2
win(4−2)/ω

2
win(5−2) = key1/0 is equal to 0 (by convention). Finally,

with the function ω0.3
exp, this weight is 0.9ω

0.3
exp(2−2)/ω

0.3
exp(3−2) = 0.867 at time 3,

0.867ω
0.3
exp(3−2)/ω

0.3
exp(4−2) = 0.825 at time 4 and 0.825ω

0.3
exp(4−2)/ω

0.3
exp(5−2) = 0.772

at time 5 that also corresponds to 0.91/ω
0.3
exp(5−2) = 0.772 as desired.

It is clear that the damping step decreases all the keys (except for ωno) and
therefore, the smallest key m in the sample. Therefore, the stronger the damping,
the smaller the size of the jumps at the inserting step (see Property 1). Conse-
quently, our approach is less efficient with the damping functions focusing on the
latest data observations. Furthermore, the computational cost of decreasing the
keys is an important defect of this damping step because this operation is done
for each element in S at every iteration tj . Fortunately, it is sometimes possible
to skip this step for some damping functions as shown in the next section.

4.3 Fast damping algorithms: ResPatno, ResPatwin and ResPatexp

This section improves the generic algorithm ResPat by emulating the key damp-
ing without explicitly updating the key of each element contained in the reservoir.
Of course, the damping step is useless for ωno as the key value is not modified
(indeed, keyωno(tj−1−t)/ωno(tj−t) = key1/1 = key). Consequently, lines 5 and 6
can be safely removed leading to the algorithm denoted by ResPatno. But, we
show below that it is also possible to remove these lines for ωTwin and ωαexp by
adapting the functions MinKey and UpdateSample.

Sliding window Ideally, the patterns that are too old (i.e., |t− tins| > T ) should
be removed from the sample S at each damping step. Our key idea is to count
them as being missing from S even if we do not take them out. Consequently,
the number of patterns contained in the sample takes into account the too old
patterns (see lines 2 and 8 of Algorithm 2). In practice, this number is maintained
at each modification of S (lines 9 and 11) (with a circular array storing the
number of insertions for the last T times). In particular, if the pattern in S
with the minimum key (line 11) is too old, then this pattern is removed and
the pattern with the next minimum key is considered. For instance, assume that
ACE was inserted at time 2 with the initial key key = 0.9 and it remains in
the reservoir S until the end of time 4. At the beginning of time 5, the function
MinKey will return 0 whatever the value of the smallest key in S because ACE
is expired (due to 5 − 2 ≥ 3). The insertion of a new pattern will refill the
reservoir with the correct number of unexpired patterns. Later, by taking care
of timestamps, when the smallest key will be that of an expired itemset (here,
ACE with 0.9), this element will be removed from S and the next smallest key
will be considered.

Exponential damping Whatever the insertion time of the key, we can observe
that the damping function ωαexp raises the key to the same power (because ωαexp
is a memory-less bias function [1]). The below property formalizes this intuition:



Algorithm 2 ResPatwin: ResPat with sliding window fast damping

1: function MinKey-Win(S, k, t) // Return the minimum key in S
2: if |{〈key, ϕ, u〉 ∈ S : |t− u| ≤ T}| < k then
3: return 0
4: else
5: return min〈key,ϕ,u〉∈S s.t. |t−u|≤T key

6: procedure UpdateSample-Win(S, k, key, ϕ, t) // Add the pattern ϕ in S
7: e := 〈key, ϕ, t〉
8: if |{〈key, ϕ, u〉 ∈ S : |t− u| ≤ T}| < k then
9: Add the pattern e in S

10: else
11: Replace the pattern with the minimum key in S by the pattern e

Property 3 (Exponential key damping). Given a pattern ϕ inserted at time tins
with a key key and an exponent α, we have for any tj ≥ tins:

key1/ exp(α×tins)exp(α×tj) = key1/ωαexp(tj−tins)

This property follows from the fact that the two exponents can be rewritten

as a single one
exp(α×tj)

exp(α×tins) = 1/ exp(−α × (tj − tins)). Property 3 means that

the insertion time tins is useless for damping the key (if the initial insertion
weight takes it into account). For instance, let us take again the example of the
itemset ACE inserted at time 2 with the initial key key = 0.9. Benefiting from
the exponential key damping for ω0.3

exp, this itemset is inserted with the weight

key1/ exp(0.3×2) = 0.944 and its damped key at time 5 is 0.944exp(0.3×5) = 0.772

(that equals to 0.91/ω
0.3
exp(5−2) = 0.9exp(−0.3(5−2)) as desired). More generally,

ResPatexp benefits from this damping strategy (see Algorithm 3). At line 7,
we insert a new pattern at time tins with a weight greater than 1 so that the
weight of the patterns already within the reservoir do not change. Then, when
we consult the minimum key at line 5, we correct all the weights with the same
power using Property 3.

Algorithm 3 ResPatexp: ResPat with exponential fast damping

1: function MinKey-Exp(S, k, t) // Return the minimum key in S
2: if |S| < k then
3: return 0
4: else
5: return min〈key,ϕ,t〉∈S key

exp(α×t)

6: procedure UpdateSample-Exp(S, k, key, ϕ, t) // Add the pattern ϕ in S
7: e := 〈key1/ exp(α×t), ϕ, t〉
8: if |S| < k then
9: Add the pattern e in S

10: else
11: Replace the pattern with the minimum key in S by the pattern e



4.4 Theoretical analysis

This section studies the ResPat algorithm family. First, the following property
proves that these algorithms return a sample with the expected characteristics:

Property 4 (Correctness). Considering that |L(D)| � k, the generic algorithm
ResPat and its fast damping variants (ResPatno, ResPatwin and ResPatexp)
are correct: Given a data stream D, a language LI and a damping function ω,
each algorithm returns k patterns ϕ1, . . . , ϕk such that ϕi ∼ suppω(LI ,D).

This non-trivial property relies on [10] by proving that the temporal bias is
correctly maintained thanks to the different key raising properties.

We now analyze the complexity of the algorithm family ResPat. First, the
space complexity of the different algorithms is linear with the sample size k.
To the best of our knowledge, our proposal has the smallest space complexity
for frequent pattern sampling and it is the first one-pass algorithm for frequent
pattern sampling. Second, considering the time complexity, it is clear that the
efficiency of fast damping algorithms depends essentially on the number of inser-
tions (especially with the optimized versions without damping step). Of course,
the lower this number, the more efficient the approach.

Property 5 (Number of insertions). Given a data stream D, a language LI and
a sample size k, the expected number of insertions into the reservoir is (after

the filling phase): (i) O(k · log
(
|L(D)|
k

)
) for the landmark window ωno (see [10]),

(ii) O(k/T · n) for the sliding window ωTwin (T � n) and (iii) O(k · α · n) for the
damped window ωαexp

Unlike other pattern methods in data streams [7,22,26], the weaker the damp-
ing is, the more efficient the approach is. In particular, for the sliding window,
the larger the window T , the lower the number of insertions. For the exponential
damping, the lower the exponent α, the lower the number of insertions.

5 Experimental Evaluation

This experimental study investigates the performance of our reservoir sampling
approach in Section 5.1 and it shows its interest for outlier detection in Sec-
tion 5.2. We use 12 benchmark datasets coming from the UCI Machine Learning
repository and the FIMI repository, and 3 large synthetic datasets coming from
[21]. Note that the condition |L(D)| � k is satisfied by these large datasets:
|L(D)| � k. The methods are implemented with the Java language1. All exper-
iments are performed on a 2.5 GHz Xeon processor with the Linux operating
system and 2 GB of RAM memory. Each of the reported measurements is the
mean of 10 runs where the transactions were swapped.



No damping ωno Sliding window ω1000
win Exp. damping ω0.003

exp

Dataset 2-Step A-Res ResPatno A-Res ResPat ResPatwin A-Res ResPat ResPatexp

abalone 0.079 0.8 0.8 75.9 81.1 2.1 79.5 84.4 2.9
chess 0.220 - 10.5 - 102.1 28.4 - 83.7 14.3
cmc 0.080 0.8 0.7 25.2 26.2 1.0 27.7 28.6 1.5
connect 0.725 - 14.3 - 2433.0 746.9 - 1569.5 20.0
crx 0.121 4.0 2.0 18.1 13.9 2.1 20.6 16.1 2.5
hypo 0.132 61.2 3.5 146.5 73.1 8.0 170.5 71.2 6.0
mushroom 0.201 - 5.6 - 218.3 30.8 - 184.9 14.3
retail ∗ 6.669 - 115.9 - 2260.2 1025.6 - 1651.1 116.8
sick 0.153 851.8 4.4 938.4 71.7 10.4 964.2 65.1 7.3
T10I4D100K ∗ 0.730 - 7.6 - 1948.3 334.0 - 2104.5 83.3
T10I4D1000K ∗ oom - 5.2 - 17835.9 1615.2 - 19624.4 73.1
T15I6D1000K ∗ oom - 9.1 - 19395.0 3367.6 - 19387.3 18.2
T30I20D1000K ∗ oom - 6474.0 - - 21229.8 - 29903.9 7008.3
vehicle 0.124 22.9 3.0 46.7 18.2 3.2 51.8 21.2 3.7
waveform 0.165 955.6 4.6 1104.3 131.0 17.6 1144.6 114.6 9.8

oom: out of memory / -: out of time (≥ 10h) / ∗: variable size transactions

Table 2. Running time in seconds for sampling 100k patterns

5.1 Global and longitudinal performance study

The first experiment assesses the overall efficiency by measuring its total exe-
cution time. For this purpose, Table 2 compares the ResPat algorithm family
with two state-of-the-art algorithms: the two step random procedure 2-Step [5]
and the baseline A-Res [10] that corresponds to ResPat without the exponential
random jump (see Property 1). We consider the execution times for a sample
size k =100,000 and three damping functions: no damping ωno, a sliding window
ω1000
win and an exponential damping ω0.003

exp . First, we observe that our ResPat
algorithm family manages to process large datasets with 1000K transactions,
while the two step random procedure 2-Step does not have enough memory
(denoted by oom in Table 2). Of course, in return, our reservoir sampling ap-
proach is slower than 2-Step. Second, it is clear that the fast damping algorithms
ResPatno, ResPatwin and ResPatexp outperform the baseline A-Res and the
generic algorithm ResPat. Indeed, as soon as the number of items per trans-
action is large, the exponential random jump becomes mandatory to maintain
a reasonable processing time explaining timeouts for A-Res (denoted by -). Be-
sides, the cost of the generic damping step is really prohibitive when the sample
size is large because of the high number of key decreases for ResPat. It is more
efficient to simulate these key decreases as for the sliding window (see ResPatwin

column) as well for the exponential damping (see ResPatexp column). Finally,
Figure 1 plots the execution times of ResPatno, ResPatwin and ResPatexp for
the 6 largest datasets with respect to the sample size k. Unfortunately, our ap-
proach struggles for datasets containing very long transactions (here, retail and
T30I20D1000K) regardless of the sample size k. Indeed, for very long transactions,
the random jump is no longer enough to curb the combinatorial explosion of

1 The source code is available: https://github.com/asoulet/ResPat

https://github.com/asoulet/ResPat


 0.01

 0.1

 1

 10

 100

 1000

 10000

 10  100  1000  10000  100000

Sampling size k

Time (s) / No damping

T10I4D100K
T10I4D1000K
T15I6D1000K

T30I20D1000K
connect

retail

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10  100  1000  10000  100000

Sampling size k

Time (s) / Sliding window with 1000

T10I4D100K
T10I4D1000K
T15I6D1000K

T30I20D1000K
connect

retail

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10  100  1000  10000  100000

Sampling size k

Time (s) / Exp. damping with 0.003

T10I4D100K
T10I4D1000K
T15I6D1000K

T30I20D1000K
connect

retail

Fig. 1. Running time in seconds (y-axis) with respect to the sample size (x-axis)

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

10.000000

 1  10  100  1000

T
im

e
 (

s
)

Transaction

Mushroom

A−Res
No

Win
Exp

0.0000010

0.0001000

0.0100000

1.0000000

100.0000000

 1  10  100  1000

T
im

e
 (

s
)

Transaction

T15I6D1000K

A−Res
No

Win
Exp

Fig. 2. Longitudinal performance of reservoir sampling algorithms

the occurrence space. In contrast, for the other four datasets, the asymptotically
linear behavior is visible in accordance with Property 5.

This second experiment assesses the longitudinal efficiency of our algorithm
by measuring the execution time that is required for processing each trans-
action. Figure 2 plots the execution time per transaction for a sample size
k = 100, 000 and four algorithms: A-Res/ResPatno for ωno, ResPatwin for ω1000

win

and ResPatexp for ω0.003
exp . We consider two datasets mushroom and T15I6D1000K

that respectively represent the datasets with fixed size transactions and the
datasets with variable size transactions (denoted by ∗ in Table 2). First, we see
again the strong impact of the exponential random jump that drastically reduces
the execution time per transaction once the first transactions have been com-
pleted (magenta dots are above the others). Second, for mushroom, the execution
time decreases steadily when there is no damping ωno. For ω1000

win , a disturbance is
observed once the sliding window moves (after 1000) with values varying between
a few milliseconds and several tens of milliseconds. For the exponential damping
ω0.003
exp , the execution time per transaction stabilizes around a few milliseconds.

Third, for T15I6D1000K, the situation is less visible because the execution time
for each transaction depends strongly on its size. Because of the logarithmic



 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000  100000  1×10
6

Sampling size k

2−Step

K=10
K=50

K=100
K=500

K=1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000  100000  1×10
6

Sampling size k

ResPat

K=10
K=50

K=100
K=500

K=1000

Fig. 3. Accuracy comparison between 2-Step (left) and ResPat (right)

scale and high dot density, one might imagine that the execution time increases,
which is not true on average.

5.2 Use case: One-pass frequent pattern outlier detection

This section illustrates the interest of our sampling technique to detect outliers
by performing a single pass on the data (as it is necessarily the case in a stream).
We aim to rediscover the K outliers that we would have obtained with a multi-
pass FPOF method. More precisely, the frequent pattern outlier factor of a

transaction d ∈ D is defined as: FPOF (d,D) =
∑
ϕ⊆d supp(ϕ,D)

maxd′∈D
∑
ϕ⊆d′ supp(ϕ,D) . The

lower this score is, the more likely to be an outlier the transaction is. Therefore,
our goal is to detect the K transactions minimizing this score. We benefit from
the formula proposed in [14] to approximate the FPOF from a sample of patterns
S (drawn from D with respect to the support):

lim
|S|=∞

|{ϕ ∈ S : ϕ ⊆ d}|
maxd′∈D |{ϕ ∈ S : ϕ ⊆ d′}|︸ ︷︷ ︸

FPOF (d,S)

= FPOF (d,D)

Basically, the idea is to maintain a sample of frequent patterns S with our
reservoir sampling approach. At the same time, we apply this formula using the
current sample to estimate the FPOF of each transaction. The K transactions
minimizing the FPOF are kept throughout the pass on the dataset. At the end,
the remaining transactions are considered to be the K outliers. Of course, the
sample computed on the first transactions is not very representative of the entire
dataset (i.e., far from the final sample) and it is possible to miss true outliers.

Figure 3 plots the average accuracy of a multi-pass FPOF (2-Step) and a
one-pass FPOF (ResPatno) with the sample size k for retrieving the top-K
outliers in all the datasets having a fixed size transaction except connect. Inter-
estingly, we observe that our approach approximatively retrieves in a data stream
the outliers that would be obtained by storing all the data observations (using
2-Step). As expected, the accuracy of the two approaches increases rapidly with
the sample size k. The gain of ResPat is very strong between 10 and 1,000 but,



much lower between 1000 and 1,000,000. The higher the number of outliers K,
the more accurate the approach. On the one hand, the imprecision of the sam-
pling only has an impact around the Kth outlier. On the other hand, a high K
makes it possible to build a more representative sample from the first K trans-
actions (which are all considered as outliers at the beginning of the pass). The
latter explains why our approach is slightly less stable and less accurate than a
non-streaming context with 2-Step.

6 Conclusion

This paper presents the first frequent pattern sampling approach in data streams
based on reservoir sampling. The strength of our generic algorithm is do deal
with any damping function while having a space complexity only linear with
the sample size. We have also shown how to optimize this algorithm for three
damping functions usuallly considered in the state-of-the-art. Surprisingly, our
theoretical analysis proves that these algorithms work best when the damping is
low. Of course, they turn out to be slower than the two-step random procedure,
but they require a limited memory space essential to process data streams or
to process datasets that do not fit in memory. Finally, a use case illustrates
the practical interest of an online pattern sample to detect outliers in one pass.
Of course, this simple outlier detection method could be improved by keeping
more transactions as candidate outliers and by using a bound to get statistical
guarantees on rejected transactions as done in [14]. We would like to extend our
approach to other languages and other interestingness measures. In both cases,
the challenge lies in extending the index operator for mapping each value to a
specific occurrence within a data observation. Finally, it would be interesting to
consider a dynamic damping function for learning with drift detection [13].

References

1. Aggarwal, C.C.: On biased reservoir sampling in the presence of stream evolution.
In: Proc. of VLDB. pp. 607–618. VLDB Endowment (2006)

2. Aggarwal, C.C.: Managing and mining sensor data. Springer Science & Business
Media (2013)

3. Al Hasan, M., Zaki, M.J.: Output space sampling for graph patterns. Proc. of
VLDB 2(1), 730–741 (2009)

4. Babcock, B., Datar, M., Motwani, R.: Sampling from a moving window over
streaming data. In: Proc. of ACM-SIAM symposium on Discrete algorithms. pp.
633–634. Society for Industrial and Applied Mathematics (2002)

5. Boley, M., Lucchese, C., Paurat, D., Gärtner, T.: Direct local pattern sampling by
efficient two-step random procedures. In: Proc. of KDD. pp. 582–590. ACM (2011)

6. Calders, T., Dexters, N., Gillis, J.J., Goethals, B.: Mining frequent itemsets in a
stream. Information Systems 39, 233–255 (2014)

7. Chi, Y., Wang, H., Yu, P.S., Muntz, R.R.: Moment: Maintaining closed frequent
itemsets over a stream sliding window. In: Proc. of ICDM. pp. 59–66. IEEE (2004)



8. De Francisci Morales, G., Bifet, A., Khan, L., Gama, J., Fan, W.: IoT Big Data
stream mining. In: Proc. of KDD. pp. 2119–2120 (2016)

9. Diop, L., Diop, C.T., Giacometti, A., Li, D., Soulet, A.: Sequential pattern sam-
pling with norm-based utility. Knowledge and Information Systems 62(5), 2029–
2065 (2020)

10. Efraimidis, P.S., Spirakis, P.G.: Weighted random sampling with a reservoir. In-
formation Processing Letters 97(5), 181–185 (2006)

11. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review.
ACM Sigmod Record 34(2), 18–26 (2005)

12. Gama, J.: A survey on learning from data streams: current and future trends.
Progress in Artificial Intelligence 1(1), 45–55 (2012)

13. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In:
Brazilian symposium on artificial intelligence. pp. 286–295. Springer (2004)

14. Giacometti, A., Soulet, A.: Frequent pattern outlier detection without exhaustive
mining. In: Proc. of PAKDD. pp. 196–207. Springer (2016)

15. Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.S.: Mining frequent patterns in data
streams at multiple time granularities. Next generation data mining 212, 191–212
(2003)

16. Jiang, N., Gruenwald, L.: Research issues in data stream association rule mining.
ACM Sigmod Record 35(1), 14–19 (2006)

17. Jin, R., Agrawal, G.: Frequent pattern mining in data streams. In: Data Streams,
pp. 61–84. Springer (2007)

18. Karim, M.R., Cochez, M., Beyan, O.D., Ahmed, C.F., Decker, S.: Mining maximal
frequent patterns in transactional databases and dynamic data streams: A spark-
based approach. Information Sciences 432, 278–300 (2018)

19. Krempl, G., Žliobaite, I., Brzeziński, D., Hüllermeier, E., Last, M., Lemaire, V.,
Noack, T., Shaker, A., Sievi, S., Spiliopoulou, M., et al.: Open challenges for data
stream mining research. ACM SIGKDD explorations newsletter 16(1), 1–10 (2014)

20. Li, K.H.: Reservoir-sampling algorithms of time complexity O(n(1+log(N/n))).
ACM Transactions on Mathematical Software (TOMS) 20(4), 481–493 (1994)

21. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In:
Proc. of VLDB. pp. 346–357. Elsevier (2002)

22. Martin, T., Francoeur, G., Valtchev, P.: CICLAD: A fast and memory-efficient
closed itemset miner for streams. In: Proc. of KDD. pp. 1810–1818 (2020)

23. Räıssi, C., Poncelet, P.: Sampling for sequential pattern mining: From static
databases to data streams. In: Proc. of ICDM. pp. 631–636. IEEE (2007)

24. Ramı́rez-Gallego, S., Krawczyk, B., Garćıa, S., Woźniak, M., Herrera, F.: A survey
on data preprocessing for data stream mining: Current status and future directions.
Neurocomputing 239, 39–57 (2017)

25. Rehman, M.H.u., Liew, C.S., Wah, T.Y., Khan, M.K.: Towards next-generation
heterogeneous mobile data stream mining applications: Opportunities, challenges,
and future research directions. Journal of Network and Computer Applications 79,
1–24 (2017)

26. Tanbeer, S.K., Ahmed, C.F., Jeong, B.S., Lee, Y.K.: Sliding window-based frequent
pattern mining over data streams. Information sciences 179(22), 3843–3865 (2009)

27. Vitter, J.S.: Random sampling with a reservoir. ACM Transactions on Mathemat-
ical Software (TOMS) 11(1), 37–57 (1985)

28. Wong, R.C.W., Fu, A.W.C.: Mining top-k frequent itemsets from data streams.
Data Mining and Knowledge Discovery 13(2), 193–217 (2006)


	Reservoir Pattern Sampling in Data Streams

