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POLYNOMIAL CONTROLLER. DESIGN BASED ON
FLATNESS

F. Rotella, F.J. Carrillo, M. Ayadi

LGP-ENIT, 47 av. d'Azerexx, BP48,
65016 Tarbes CEDEX, France.
Emarl: {rotella, carmllo, ayndi}@enit. fr

Abstract: By the use of flatness the problem of pole placement, which consists
in imposing closed loop system dynamics can be related to tracking. Polynomial
controllers for finite-dimensional linear systems can then be designed with very natural
choices for high level pararueters design. This design leads to a Bezout equation which
is independent of the closed loop dynamics but depends only on the system model.
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1. INTRODUCTION

For finite-dimensional linear systems, a well-
kpoown control design technique is constituted
by polynomial two-degrees-of-freedom controllers
(Astrém, and Wittenmark, 1990; Franklin, et al,,
1998; Kutera, 1991), which have been introduced
forty years agn by Horowitz (1963). Whatever the
chosen design method, this powerful method is
based on pole placement and presents one defi-
ciency: it needs to know a prier: where to place
all the poles of the closed loop system. Following
(Astrom et al., 1991): “the key issue is to choose
the closed loop poles. This choice requires consid-
erable insight...”. This can be done, for instance,
through LQR design, but the problem is then
replaced by the correct choice of the weighting
matrices in the cost functions.

In order to overcome the drawback of this design
technique, it will be seen, in the following, that
the use of a new method for system control,
namely with a flatness point of view, enlightens
the choice of the high level parameters and brings
physical meanings to obtain a clear guideline
for polynomial pole placement design. Following
(Fliess, et al., 1995; Fliess, et al., 1999), flatness is

a very interesting property of processes to design
a control, specially for trajectory planning and
tracking for nonlinear systerms.

The paper is organized as follows. Section 2 and
3 are devoted to survey very quickly, the design
of polynomial controllers for the first one and,
for the second one, the flatness property and
the control design implied for a flat system. At
the end of the section 3, a methodology for the
control of flat systems is proposed and illustrated
on finite-dimensional linear systems in the section
4. This point of view leads to propose a flatness-
based two-degrees-of-freedom controller which is
realized in the section 5.

In the following, the paper will be developed
in a continuous time formulation, but all the
developments can be extended to discrete time
linear systems. For n € N, the following notations
will be used , u(™)(t) = 28 = pry(t), where p
denotes the differential operator.

The paper will also be developed, for the sake

of shortness, for SISO linear systems, but all the
results can be adapted to MIMO linear systems.



2. POLYNOMIAL CONTROLLERS

This section offers a short <escription of the
design principles of the polynomial two-degrees-
of-freedom controllers for linear systeins. More
details are given in {Astrom. and Wittenmark,
1990:; Frankliu, et al.. 1998: Kutera, 1991) and
the references therein, and in the following these
controllers will be denored as RST controllers
(Landau, 1993).

Consider the finite-dimensional SISO linear sys-
tem described by the input-output model:

4y = Bu. (1)

where y and u are the output and control signals,
A is monic and A and B are coprime polynoruials.

For (1), the RST (two-degreesof-freedom) con-
troller (Astrém and Wittenmark, 1990) is given
bv:

Ru=—Sy + Tr, (2)

where r 1s the reference to track, and R, S and T
are polynomialsin the considered operator. These
polynomials are given by the following rules: R
and S are solutions of the Diophantine (or Bezout)
equation:

P= AR+ BS, (3)

where the roots of the polynomial P are con-
stituted by the desired closed loop and observer
poles, and P and R are monic; T is given by the
desired closed loop transfer such that:

PBm = TBAn. (4)

When all these conditions are fulfilled, the closed
loop behavior is obtained:

Ay = Bt (5)

Some remarks for the design:

(i) Denoting by deg P the degree of a polynomial
P. For realizability conditions, the RST controller
must be such that (Astrdm and Wittenmark,
1990):

deg T < deg R, (6)
deg S < degR. M

(ii) Another remark is that it has been used, for
the choice of T, the point of view developed in
(Astrom and Wittenmark, 1990), where (B, Ay)
was a model-to-follow, but it can be also chosen
the proposed one in (Landau, 1993), where r is
given by:

A_r»= R_ (8)

where (Bm.A;n) defines a trajectory-to-follow or
a trajectory generator of r(t). In this last point of
view, T is designed such that:

TB=P. (9)

(iii) For the implementation, the RST controller
(2) must be written in the proper operator (p~')
which leads to write the RST control as:

R (p~ u(t) =
~ST ) + T )r(t). (10)

with R*(0) = 1. As a remark il can be noted
that all the design of a RST controller can be
performed with all the polynomials written in
realizable operators, as in (Landau, 1993), and
in this case, if A(0) = R(0) = P(0) = 1, the
realizability conditions (6) and (7) disappear.

3. SHORT SURVEY ON FLATNESS

The flat property, which has been introduced
recently (Fliess, et al,, 1992; Fliess, et al., 1993;
Fliess, et al., 1995) for continuous time nonlinear
systems, leads to interesting points of view for
control design. In the following, a short review
about flatness of systems and the application of
this property to design a controller will be given.
The interested reader may find more details in the
quoted literature and the references therein.

A system described by:
M = f(z,u), (11)

where z is the state vector of dimension n, and « is
the control vector, possesses the flatness property
(or is flat) if there exists a vector z:

.Z:h-(z\uvu(l)l-" ‘u(o))‘ (12)

where @ € N , such that the components of z
are differentially independent, and such that there
exist two functions A(.) and B(.), and an integer
3 such that:

,20), (13)
;A (14)

T=A(zZy .z
u=B(z,...

The selected output z is called a flat output and,
obviously, there is no uniqueness. But, as it has
been observed on numerous examples, the flat
output has a simple and physical meaning.

Roughly speaking, the implications of flatness are
of very importance in several ways for control. For
motion planning, by imposing a desired trajec-
tory on the flat output, the necessary control to
generate the trajectory, can be obtained explicitly
(without any integration of the differential equa-
tions). The desired trajectory, z4(t), must be (3+
1)-times continuously differentiable. For feedback



control which only ensures a good stabilization
around the desired motion z,4(¢).

All these points, which have been formalized
through the Lie-Bicklund equivalence of systems
in (Fliess, et al.. 1993; Fliess, et al. 1999), lead
to propose a nonlinear feedback which ensures a
stabilized tracking of a desired motion for the flat
output. This methodology has been applied on
many industrial processes as it has been shown
previously, for instance, on magnetics bearings
(Lévine et al, 1996). chemical reactors (Rothfufs
el al., 1996), cranes or flight control (Lévine, 1999)
or turning process (Rotella, and Carrillo, 1998;
Rotella, and Carrillo, 1999), among many other
examples.

To be more precise the use of flatness leads to
the following methodology to design a control.
‘The main objective of this control is to insure an
asyvmptotic tracking of a desired trajectory and
can be ensured through the following steps :

(1) Explicit the flatness: namely, the analytic ex-
pressions are obtained here:

2’;’1(3‘ u"(l.“)‘... 91“(“))1 (15)
J::A(z,... ,Z(B)), (16)
u:B(Z,... \Z(ﬂ+”)- (17)

where u is the chosen control variables, and z, the
whole set of internal variables. It must be noted
here that the relationship which gives z will not
be used in the following, but it is necessary to
confirm z as a flat output. Indeed, if one of the
internal variable is not defined by 2, then z is not
a flat output.

(i1) Litearization: by the control:

u=B(z,...,28v), (18)

where v is a new control, the linear system
28+ = ¢ is obtained. It must be noted here
that this step is an intermediate one and must
be followed by the next ones.

(i) Motion planning: it comnsists in the design
of a trajectory defined by z4(t). which must be
differentiable at the order (8 +1).

(iv) Motion tracking: by the control:

B .
v=200) + S k(P(0) - 20@),  (19)
=0

where the k; ensure that the polynomial K(p) =
pot +Z?=0 k;p* is Hurwitz, the complete control
is then as follows:

wi= Bz, ,z(‘”,

B :
() + 3 kP - )
“‘=0

=&(z,, .., 2% K(p)za(t)), (20)

which leads to an asymptotic tracking of the
desired trajectory.

It must be noted here that the information needed
by this control can be obtained through observers.
and a major advantage of this controller with
respect to other nonlinear strategies is that it
overcomes the problems generated by non stable
zeros dynamics (Isidori, 1989; Nijmeijer, and Van
der Schaft, 1990).

4. IMPLICATION FOR LINEAR SYSTEMS:
TOWARDS RST CONTROLLERS

Despite the fact that flatness has been firstly
developed for nonlinear systems, it has been ap-
plied to finite-dimensional linear systems (Bitaud,
et al., 1997, Fliess, et al., 1998) and extended
for infinite-dimensional ones (Fliess and Mounier,
1998). It will be seen, in this section, that applying
the guideline induced by a flatness based control
to a linear system leads to express it in a natural
RST form.

The previous methodology will be applied now to
a linear lumped parameter SISO system defined
by the transfer:

A(p)y(t) = B(p)u(t), (21)

where the notations have been previously defined
but, with:

n—1

Alp)=p"+) ap' =p"+A'(p). (22)
=0
n-—1]
B(p)=>_bip'. (23)
=0

From coprimeness, it has been shown in (Bitaud,
et al., 1997; Fliess, et al, 1999), that this system
is flat with a flat output defined by:

2(t) = N(p)y(t) + D(p)u(t), (24)
where N(p) and D(p) are the polynomial solutions
of the following Bezout equation:

N(p)B(p) + D(p)A(R) =1.  (25)

Due to coprimeness, existence of N(p) and D(p)
are guaranteed and the minimum degree solution
is, for n > 1. such that degN = n — 1 and
degD=n - 2.

The explicit expressions of the output y(t) and the
control u(t) are given by:



u(t) = A(p)z(t), (26)
y(t) =B(p)z(t). (27)
which allows to relate the Hat output of a linear

system to the partial state defined by several
authors (Kailath, 1980).

Following the step (iv) of the methodology, the
control is given by:

u(t) = v(t) + A" (p)z(t), (28)
where:

n=~1
vit) =z () + D ki (1) — 20().  (29)
=0

and by introducing the polynomials:
n-—1
Kp)=p"+> kp'=p"+K'(p), (30)
=0

the control u(%) is given by:
u(t) = K(p)za(t) + |47 (p) — K°(p)] 2(2). (31)

Taking into account that z(t) = N(p)y(t) +
D(p)u(t), then it can be written:

u(t) = K(p)za(t) + (A’ (p) — K~(p))
IN@)y(t) + D(p)u(t)], (32)

which leads to:

[1-4%(p) - K*(p)] D(p) u(t)
= K(p)za(t) + |A"(p) — K* ()] N(ply(2). (33)

This appears as a RST controller form with:

Rip)=1-|A"(p) - K*(p)) D(p),  (34)
S(p)=—|A"(p) — K*(p)) N(p), (35)

with the difference that here the trajectory to
follow is directly integrated to the controller with
the term K'(p)z4(t). An important property of this
controller can be also deduced, due to the fact that.
P = AR + BS. From the previous definitions of
R(p) aud S(p), and with the help of N(p)B(p) +
D(p)A(p) = 1, and A*(p) — K" (p) = A(p) - K (p),
it follows:

A(p) R(p) + B(p)S(p) = K(p)- (36)

From (36), it is then obtained that the closed
loop dynamics of the RST controllers are those
designed for the tracking of the desired flat out-
put trajectory. The choice of these poles is then
lighted. But as:

deg(1 —[A® — K*| D) = deg([A° — K°| N) — 1,
(37)

it is not realizable. The realization of this ¢on-

troller will be the subject of the next part.

5. REALIZATION

To implement the control (31), it can be used an
observer of the vector Z = [z(t) ... z{n=1)(g) ]T
which is the state vector of the controllable Lu-
enberger realization of u(t) = A(p)z(¢), y(t) =
B(p)z(t). namely:

ZN=AZ + bu. (38)
y=cZ. (39)
where:
1 0
e T e
1

—ay —a; *+* —Gpe1 1

c=[lo by -+ buey]. (40)

A (full order) observer of Z is given by:
ZM = (A=Te)Z + bu + Ty, (41)

where I" is chesen such that the eigenvalues of
F = A—Tc are with negative real part. This lesds
to:

Z = (pI — F)™ ' (bu+Ty) (42)

By introducing a = [ao ay < an_l] and k =
[ko k1 ==+ ka1 ], the control (31) is imple-
mented by:

u(t) = K(p)zat) + (a —k)2(t),  (43)

as in (Fliess et al, 1998). But, in this solution
the difficulty is the choice of the observer poles.
To overcome this point the enlightening ideas sug-
gested in (Fliess, 2000) and applied in (Marquez
et al., 2000) can be used. In the one hand, from
(Kailath, 1980):

Y =002 + MasaU, (44)
where ¥ = [y . y(n—l)]T’

U = [u u(l) ) u(n—'_’) ]T, O(A,C) is the ObserV'
ability matrix:

c
cA
O, = : (45)
cA™!
and Afiab,q) is given by:

[ DY 2% ey 0

cb - :
Mage)=| cAb e . |- (46)

3 - =2 0

AAN=2L . Al sk



From this equation, and due to the fact that 4(p)
and B(p) are coprime, thus rank Q4 = 7. it
becomes:

Z=004{Y —Mapal'}- (47,

As the first component of Z is 2{t), it can be seen
that the first line gives the flat output expressed in
terms of the derivatives of y(t) and u(t). Namely.
a solution of the Bezout identity (25) is obtained
with:

NpI=[10- 0] x
O fiag {Lp.... p" 7'}, (48)
D(p)=~[10--- 0] O(4,, =

M spediag{1,p,... ,p"72}. (49)
In the other hand, from (Fliess, 2000):

M
VREN, Z=ApTFZ 4+ ) A opT,  (sp)

=1
where p~? stands for the integratiom operator:
¢
plz(t) :/ z(T)dr, (51)
—0a

with z(—oc) = 0. This last hypothesis ensures
commutativity between p and p~!. As a particular
case, it comes that for p =n—1:

n—1

Z = 4n—1 —(n— I)Z ZAi-lbp—l (52)
then, by combining (47) and (52), it follows:
7= An—IOi-Al‘C)p—(n—l)Y

—A O aMapap~ "0
n-|
+) A bpe, (53)

i=1

By replacing this expression in the control (31), it
follows the control:

u(t) = K(p)za(t) —

S (p~Ny(t) —Q (P~ ")ult). (54)

where:

S H=[k—q A"-‘o-‘c,n (55)
A0} M

Q'(P‘l)zla—klx{ f;‘i.)_ ;’Ab )b]}x

n, (56)

p! 1]7‘ and
. By denoting

with [1 = [p_("‘_!) p_("-z) ..
A== [p_(n-l) p-("_2) e p—l]T

R*(p~') = 1+Q"(p~"), this control can be written
in the RST form:

R*(p™Mu(t) = K(p)zalt) — S™(p~")u(t). (57)

As a remark. it follows also, with A = [ 10---0 ]:

n—1
z(t) = h {A""]J""-”Z + Z .4'."141"'11} ,

=]

(58
thus:
P":"':"y
p-=tly
o1 1n—
Z(t)-—h AnT O"‘L) : o
vy
n—1
h {Z A'-‘bp-'u} =
=1
p—(n-l).u
: —(n-?)u
h{d An1 O[_A].C) A/I(,“hl,-‘, ; 2
p‘lu,
=N"(p7 (t) + D" (p~ Hult), (59!

which defines the flat output in terms of the
proper operator p~!

6. CONCLUSION

This paper showed that the use of a flatness point
of view allows a simplification in the design of
high level parameters of RST controllers. The
main feature of the flatness approach for RST
controller design is to avoid the problem of the
closed loop poles choice which are constituted of
the observer poles and those obtained with a state
feedback (Astrdm and Wittenmark, 1990). Now
the design is focused in the choice of the trajectory
z4 to follow and the tracking dynamics with K(p).
These developments were done in a continuous
time framework, but are transposable for discrete
time systems.

In the case where a constant output perturbation,
for instance, is to be rejected, an integral action
must be added in R. This can be achieved by
multipliing the original 4 by p which gives a
new denominator from which the method can
be applied again. The robustness, by introducing
fixed polynomials Hg and Hg as proposed in
(Landau et al., 1998), could be treated in the same
way.

A direction of future works will be to attack the
problem of the numerical implementation of such
controllers as it has been underlined in (Rotella



and Carrillo, 1999) and to tackle with adapted
implemertations of the proposed control to over-
come uncertainty in model parameters.
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