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By the use of flatness the problem of pole placement, which consists in imposing closed loop system dynamics can be related to tracking. Pol yn omial controllers for fini te-dimensional linea:r systems can then be designed v. r ith very natural choices for high level pararueters design. This design leads to a Bezout equation whlch is independent. of the closed loop dyna.mlcs but depends onJy on the system -model.

INTRODUCTION

For fuùte-dimensional lin. ear systf-.ms, a well known control design t, ochnique is r.onstituted by pol yn omial two-degr�f-freedom controllers (Astrôm, and Witten.mark, 1990;[START_REF] Franklin | :kman[END_REF]Kuoera, 1991), w h lch b.ave been. in. troduced for ty years ago by [START_REF] Horowitz | Synthe. 'i7-9 of Feéd[END_REF]. Wbatever the cbosen design method, thls powerful method is based on pole placement and presents one defi cienc y: it neecls to know a priori where to place ail the pole. of the closed loop system. Foll owing [START_REF] Astrôm | Solution usin& robust adapth•e pole place ment[END_REF]: ''the key issue is to choose the closed loop poles. This choice requires consid erable insight ... ". This can be done, for instance, through. LQR design, but the p.roblem is then :replaced by the correct choioe of the weigbting matrioes in the cost functions.

In order to overcome the drawback of this design technique, it wïÏl be seen, in the following, that the use of a new method for system control, namely with a flatness point of view, enlightens the choice of the hlgh level para.meters and brings physical meanings t.o obtain a clear guideline for polynomial pole placement design. Followmg (Fliess, et al., 1995;Fliess, et al., 1999), ftatness is a very interesting p:roperty of processes to design a control, i,pecially for trajectory planning and traclring for nonlinear systems.

The paper is organized as follows. Section 2 and 3 are devoted to survey very quic:kly, the design of polynomial controllers for the first one and, for the second one, the fiat ness proper ty and the control design implied for a fiat system. At the end of the section 3, a methodology for the control of fiat systems is proposed and illustrated on finite-dimensional linear systems in the section 4. This point of vîew Ieads to propose a fiatness based two-degrees-0!-freedom r.ontroller which is rea.lized in the section_ 5. lu t.he fol iowing, the paper will be developed in a con. tinuous tirne formulation, but alJ the developments can be extended to discrete tirne linear systems. For n EN, the following not ations will be used , u.<n>(t) = dâ;l t l = p"u(t), where p denotes the dlfferential operator.

The paper will aLso be developed, for the sake of shortness, for S180 linear systems, but ail the reslllts can be adapted to MIMO linear systems.

POLYNOi\UAL CONTROLLERS

This section offers a short -descri-ption of lhe design principles of the polynolli.ial Lwo--<legrees of-free.dom controllers for linear systems. More detaîls are given in (Aslrom, ahd Wittenmark, 1990: Franklin, el al.. 1998;Kuoera, 1991) and the references therein, and in the following these controllers wfü be den.or. ed as RST controUers [START_REF] Landau | lde:n.ti fi.cation. el Communde des P.ror[END_REF].

Consider the finitwïmensionàl $ISO linear sys tem described by r.he input.-ouLpuL mode!:

Ay = Bu, (1) 
where y and -u are the output and contrai signais, A is monic and A and B are coprime poly nornials.

For (1), the RST (two-de gr ees-of-freedom) con trol ler (Astrèim and Wittenmark, 1990) is given. by:

Rv.=-Sy+T-r, (2) 
wbere r JS the reference to track, and R, S and T are pol y nom ials in r.he considered operator. These pol y nomials are given by the fol lowing rul es: R and Sare.solutions of the Diophantine ( or Be-rout) equation:

P=AR+BS,

whete the roots of the polynomial P are constituted by the desired closed loop and obsenrer poles, and P and R are monic; T is given by the desired cloeed loop transfer such that:

PBm=TBAm, (4) 
When ail these conditions are fulfilled, t.he cloeed loop behavior is obt,ained:

Amy=Bm'r, ( 5) 
Some remarks for the design: Ali these points, which have been for malized through the Lie-Backlund eqwvalente of systems in (Fli=, et al.. 1993;Fliess, et al. 1999 ), lead to propos e a nonlinea:r feedback which ensur e s a stabilized tracking of a desired motion for the flac output. This methodology bas bee.n applied on many industriaJ processes as 1t has beeo shov.11 previously, for instance, oo magnetics bearings [START_REF] Lévine | A nonlincar approach to the control of mag netic bearings[END_REF]. ehernical reactors (Roth.fuil et al., 1996), cranes or filght control (Lêvine, 1999) or t.urning process (Rotella, and Carrillo, 1998; Rotella, and [START_REF] Carrillo | proposed control to over come unoertainty in mode! pa:rameters[END_REF], arooog many other examples.

To be more precise the use of flatness leads to the following methodology t.o design a control.

The main objective of t;his control is to insure an asymptotic tracking of a desired trajectory and can be ensured through the followi.ng steps : (i) Explicit the flatness: namely, the analytic ex pression s are obtained. here�

-h( (lJ (<>) ) .Z - X, U s 'U. , ••• � 'U , x==A(z, ... ,z(�l), u=B(z, ... ,zUHIJ), (15) (16) (17) 
where u is the chosen co11trol variables, and x, the whol e set of internat variables. lt must be noted here that the relationship which gives x wil1 not be use<l in th.e followi.ng, but it i. s neoes.sary to confum z as a flat output. I.ndeed, if one of the interna! variable is not de.fined by z, then z is not a flal output.

(ü) Linearization: by the control:

u = B(z, ... , z<P), v), ( 18 
)
where v is a ne w control, the linear system z(BH) = v is obtained. It must be noted here that thls step is an intermedia.te one a.nd must be fol lowed by the next ones.

(ili) Motion planning: it coo sists in the design of a trajectory defined by Zd(t). whlc h must be d.ifferentiable at the or der (/3 + 1).

(iv) !viotion tracking: by the control:

v == z;f+ 1 )(t) + I)i,(z�')(t) -z { •)(t)), ( 19 
) i,=O
where the k, ensUie that the _poly nomial K(p) = p o+ 1-t 2::� k;p' is Hurwitz, the complete control is tbeu as follows:

u= B(z .... ,z (Pl , {J z,r+11 ( t) + L k,(z�')(t) -z<•)(f)))

1-=0

= <P(z., • , z ( /1), K(p)zd(t)), ( 20) which leads to an asyroptotic traclcing of t.he desired tra.jectory. [START_REF] Bitaud | A flatness based oontrol syothesi s of li:near systemS and application to WÛldshield wipers[END_REF]Fliess, et al., 1998) and extended for infinite--dimensional ones (Fliess an.d Mounier, 1998). It will be seen, in this section, that .i.pply i ng the guideline .induced by a .B.atness based control to a linear system lea.ds to e.xpress it in a .natural RST form.

The previ ous methodology will be applied now to a linear lumped parameter SISO system defined by t,he transfer:

A (p)y( t) = B(p)u(t), (21)

where the notations have been previously defined but with:

n-1

A(p) ==p n + E a.p i == p" +A"(p), ( 22)

-n-J_ B(p)= Eb,p;.

(2 3 ) i=O Ftom coprimeness, it has been sbown in [START_REF] Bitaud | A flatness based oontrol syothesi s of li:near systemS and application to WÛldshield wipers[END_REF]Fliess, et, al,, 1999), that this system is fiat with a flat output defined by: The explicit expressions of the output y(t) and the control u(t) are given by:

  ( i) Denoting by deg P the degree of a. pol y nomial P. For realiza.bility conditions, the RST controller must be such that (Astrôm and Witqinmark, repui.rk is that it has been used, for the choioe of T, the point of view developed in(AstrôJD and Wittenmark, 1990), where (B m , A,,.) was a wodel-to-fol low, but it can be also chosen the proposed one î,n[START_REF] Landau | lde:n.ti fi.cation. el Communde des P.ror[END_REF], where r is given by:(8) where (B rn , A m ) defines a trajectory-to-follow or a trajccuiry generat, or of r(t). ln thls lasn point of view, T is designed such that: As a remark Ît can be noted that ail the design of a RST controller cap be performed with ail the pol y nQmials \l,Titten in rea.lizable opera.tors, as in[START_REF] Landau | lde:n.ti fi.cation. el Communde des P.ror[END_REF], and in this case, if:A(O) = R(O) = P(O) = 1,the realizability conditions (6 ) and (7) disappear. 3; SHORT SURVEY ON FLATNESS The fiat prope.rr.y, whlch has been introduced recently (F liess, et al., 1992; Fliess, et al., 1993; Fliess, et al., 1995} for continuous time nonlinear systems, leads to interesti ng points of vie.w for control design . In the following, a short revîew about fla.tness o[ systems and the application of thi$ property to design a controller will be given.. The .i nterested reader �Y .find more details in the quot.ed literarure and the references therein. A system described. .e:re is no unique ness. But, as it bas been obsei:ved on numerous e:x:ample s, the fiat output has a simple and physical meaning. Roughly speakmg, the implications of fiatness are of ve. ry importance in several ways for control For motion planning, by impoeing a desi:red trajector y on the fiat out.put, the neces.58. control to generate the trajectory, can be obtained e:x:plicitly (witbout any integration of the differential equa tions). The desired trajectory, zd(t), must be (J3 + 1)-times continuously differentiable. For feedback control whlch on ly cnsures a good stabilization around t, he desired motion Z'.t(t).

  p) and D(p) are the pol yn omial solutions of the following Bez.out equation: imeness, existence of N(p) and D(p) are gua.ranteed and the minimum degree solutfon is, for n > 1. such that degN = nl and degD =n-2.

  It must be noted here that the information needed by dùs cont.rol can be obtained through observers. and a major advao.tage of tlùs controller wit.h respect to other nonlinE'.ar strategies is that it overcomes the problems generatced by non st able zeros d yn amics(Isidori, 1989;[START_REF] Nijmeijer | Nonlin ear Dynamical ConGrol Systems[END_REF] 

	der Scha.ft, 1990).
	4. IMPLICATION FOR LINEAR SYSTE: MS: TOWARDS RST CONTR. OLLERS
	Despite the fact that flatness bas been firstly developed for nonlinear systems, it bas been air plied to firute-dime.nsional linear system s

ll ( t) = A(p)z(t), y(t) = B(p)z(I )•

(26) (27) which allows to relar. e the fiai output of a. linear system to the partial state defined by several authors [START_REF] Kailath | Linear Systems[END_REF].

FoUowing the step (jY) of the meth, odology, the contrnl is given by: where: u ( t) = t•(t) + .4.(p)z(t), (28) n-l v(t) = z�">(t) + L k,(zJ 1 (t)-z ( •)(t)). ( 29 

h is not realizable. The realization of this con troller will be the subject of the next part.

R.EALIZATION

To implement the control (31), ÎL can be� an. 

observer of the vector

where: A direction of future works will be to atta.ck the problem of tbe numerical implement ation of su. ch controllers as it bas been_ underlined in (R.otel la