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A B S T R A C T

Machine learning techniques are increasingly used to predict material behavior in scientific applications and
offer a significant advantage over conventional numerical methods. In this work, an Artificial Neural Network
(ANN) model is used in a finite element formulation to define the flow law of a metallic material as a function
of plastic strain "p, plastic strain rate

.
"p and temperature T . First, we present the general structure of the

neural network, its operation and focus on the ability of the network to deduce, without prior learning, the
derivatives of the flow law with respect to the model inputs. In order to validate the robustness and accuracy of
the proposed model, we compare and analyze the performance of several network architectures with respect to
the analytical formulation of a Johnson–Cook behavior law for a 42CrMo4 steel. In a second part, after having
selected an Artificial Neural Network architecture with 2 hidden layers, we present the implementation of
this model in the Abaqus Explicit computational code in the form of a VUHARD subroutine. The predictive
capability of the proposed model is then demonstrated during the numerical simulation of two test cases: the
necking of a circular bar and a Taylor impact test. The results obtained show a very high capability of the
ANN to replace the analytical formulation of a Johnson–Cook behavior law in a finite element code, while
remaining competitive in terms of numerical simulation time compared to a classical approach.

1. Introduction

Numerical simulation of forming processes, machining or the behav-
ior of structures subjected to dynamic loads and impacts requires the
use of specific material behavior laws, whose parameters are identified
by tests based on Taylor impacts, Hopkinson bars or Gleeble thermome-
chanical simulator. The behavior laws are selected according to their
availability in a finite element code or the possibility, if not available,
to implement them through user subroutines. In this study, our work
is based on the use of the finite element code Abaqus Explicit which
offers the possibility to define user behavior laws through FORTRAN
subroutines VUMAT or VUHARD [1,2] like the work proposed by Duc-
Toan et al. [3] or more recently by Ming et al. [4]. The usual procedure
is to select a mathematical form of the behavior law among those
available in the literature (Johnson–Cook, Zerilli Armstrong, . . . ) and
then, from the results of experimental tests, to identify via a regression
method, the parameters of the selected law.

In most cases, the behavior of the material at high temperatures
and strain rates is highly nonlinear, and the effects of many factors
on the flow stress are also nonlinear, which reduces the accuracy of
the prediction by the regression methods usually used and limits the
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field of application. In addition, the selection, development, and numer-
ical implementation of such constitutive equations is time-consuming.
Artificial intelligence techniques allow advances concerning the laws
of behavior in order to allow a better identification of these laws.
Thus, Versino et al. [5] used a Machine Learning technique based on
symbolic regression for the development of data-driven constitutive
model. Obtaining a flow equation, and thus its analytical derivative,
allows the use of iterative solvers that employ Jacobians (i.e., the
Newton–Raphson scheme) that allow a higher order of convergence.
This symbolic regression technique has also been used by other authors
since, such as Bomarito et al. [6], Park et al. [7] using constrained
symbolic regression technique, or Nassr et al. [8] using evolutionary
polynomial regression.

Given this situation, it is therefore natural to look for a method
to eliminate some intermediate steps between experimental tests and
numerical simulation in order to simplify the computational chain. In
this perspective, recent advances in deep learning constitute a way of
investigation. The basic idea is to replace the analytical formulation
used to calculate the flow stress � of the material as a function of the
plastic strain "p, the plastic strain rate

.
"p and the temperature T , by



an Artificial Neural Network (ANN). This neural network is trained 
to reproduce the behavior of the considered material only from the 
experimental data resulting from the tests, ignoring any assumption 
on the analytical form of the assumed flow law. Consequently, it is no 
longer necessary to postulate an analytical form of the behavior law in 
order to implement it in a FEM code.

Artificial neural networks and deep learning are becoming more 
and more important in today’s society, and their fields of application 
are getting wider and wider. After a boom in the early 1990s and 
a decline in interest towards the end of the 20th century, neural 
networks are experiencing a resurgence of interest and even a huge 
media hype under the name of deep learning. Their use in science and 
physics is now widespread, notably because of the current availability 
of efficient tools allowing to program Artificial Neural Networks thanks 
to widely available libraries such as Tensorflow [9] for example. The 
most publicized applications of deep learning are mainly related to 
medical diagnosis, robotics, images and language recognition, but the 
applications go far beyond that and all sciences can now use these 
techniques, including thermomechanical numerical simulation.

Artificial neural networks can solve problems that are difficult 
to conceptualize using traditional computational methods. Unlike a 
classical approach based on a regression method, an Artificial Neural 
Network does not need to know the mathematical form of the model it 
seeks to reproduce. The Artificial Neural Network learns from the train-
ing data and can reproduce the behavior of a model from the simple 
knowledge of a series of input and output values with no prior assump-
tion on their nature and their interrelations. Hornik et al. [10] have 
rigorously established in 1989 that feed-forward Neural Network are a 
class of universal approximators, extending the work proposed twenty 
years before by Minsky and Papert [11] where they demonstrated that 
the simple two-layer perceptron is incapable of usefully representing 
or approximating functions outside a very narrow and special class. 
The ANN has adjustment, memorization and anticipation capabilities, 
and better performances than the approach based on implementing a 
constitutive equation. Therefore, Artificial Neural Networks can now 
enable novel approaches for modeling the behavior of materials and 
have been successfully applied in the prediction of constitutive relation-
ships of some metals and alloys in recent years. Applicability of ANN to 
model path dependent plasticity has been explored and some review of 
the literature can be found for example in Gorji et al. [12] concerning 
the use of Recurrent Neural Network, in Jamli et al. [13] concerning 
their application in finite element analysis of metal forming processes, 
or in Jiao et al. [14] concerning the applicability to meta-materials 
and their characterization. A distinction must be made between ANN-
based hardening models and ANN-based constitutive models. Both 
approaches have been studied by many researchers over the last thirty 
years. Ghaboussi et al. [15] published a pioneering paper, in which 
they proposed an ANN-based constitutive model for planar concrete 
under monotonic biaxial loading and cyclic uniaxial loading in which 
they successfully predicted several loading paths in the biaxial loading 
condition. They improved NN architecture by introducing Adaptive NN 
and Autoprogressive NN in [16,17] where the network architecture 
evolves during the training phase to better learn complex stress–strain 
behavior of materials using a global load–deflection response. The 
approach adopted for this study is an ANN-based hardening model for 
which, the evaluation of the material flow stress calculated by the ANN 
is combined with a Radial Return type integration scheme.

Lin et al. [18] developed a neural network to predict the flow stress 
of 42CrMo4 steel in hot compression tests on a Gleeble thermomechan-
ical device and showed a very good correlation between experimental 
and predicted results. An extension to the numerical implementation 
of this approach would have been desirable. Javadi et al. [19] used a 
neural network to capture the behavior of complex materials using a FE 
model incorporating a backpropagation neural network. Lu et al. [20] 
presented a comparative study of the modeling of an Al–Cu–Mg–Ag 
alloy behavior by a constitutive equation based on the Zener–Hollomon

parameter and a neural network. It also shows that the model based on
the ANN proposes a better prediction than the constitutive equation.
Ashtiani et al. [21] compared the prediction capabilities of an ANN
against a conventional approach based on several behavior laws such
as Johnson–Cook, Arrhenius and Strain compensated Arrhenius and
concluded better efficiency and accuracy of the neural network in
predicting the hot behavior of Al–Cu–Mg–Pb alloy. Ashtiani et al. [21]
have shown that a well-trained ANN can efficiently overcome the
lacks of physics coming from analytical constitutive behaviors such
as the Johnson–Cook, or the Arrhenius one. Ali et al. [22] presented
an ANN model coupled with a rate dependent crystal plasticity finite
element method to simulate the stress–strain behavior of material and
its microstructure evolution in a AA6063-T6 under simple shear and
tension. Stoffel et al. [23,24] applied ANN to complicated structural
deformations of shock-wave loaded plates involving both geometrical
and physical non-linearities. Li et al. [25] implemented a VUMAT
subroutine for Abaqus where parameters were identified through a
combination of analytical formulas and a back propagation algorithm.
Recently, Huang et al. [26] developed a neural network model to
predict the flow stress and the microstructure evolution of Ti–6Al–4V
alloy. It also showed the superiority of this approach over an Arrhenius
behavior model, especially because the ANN can predict the flow stress
in the whole range of deformation. Temporal Convolutional Networks
have also been applied by Abueidda et al. [27] to predict the history-
dependent responses of a class of cellular materials. Thermodynamics
based ANN where also proposed by Masi et al. [28] to reduce physically
inconsistencies in the predictions of the NN. They demonstrate the wide
applicability of TANNs for modeling elasto-plastic materials, using both
hyper- and hypo-plasticity models. As presented by Knight et al. [29],
evolution of Neural Network Architectures is not the only way to
progress, constant evolution of the hardware architecture to implement
ANN will also have to be taken into account for the next future.

In Section 2, we present the main bases of the deep learning
with in details the description of the structure of the neural network
and the equations which govern its functioning. As we will see in
Section 4 concerning the numerical implementation of the flow law,
the programming of the neural network on the finite element code
Abaqus Explicit requires the determination of the 3 derivatives of the
flow stress � with respect to the plastic strain "p, the plastic strain rate
.
"p and the temperature T . The determination of these derivatives will
be the subject of the second part of Section 2. Section 3 is devoted to
a detailed presentation of the ANN learning for a Johnson–Cook type
behavior law for a 42CrMo4 steel. In this section, we will show the
influence of the network structure on the accuracy of the flow stress
and the derivatives evaluation. Section 4 is devoted to a presentation
of the numerical implementation of the neural network in the Abaqus
finite element code in the form of a FORTRAN VUHARD subroutine
as well as numerical test cases to validate the proposed approach. A
conclusion and perspectives are finally proposed at the end.

2. Artificial neural network set-up

In this section, we briefly introduce the basic concepts of backward
and forward propagating Artificial Neural Networks (ANNs) that are
relevant to this work. The global architecture we have retained for
this work is a multi-layer feed-forward network which can be seen
as a universal approximator as proposed by Hornik et al. [10]. The
proposed neural network is used to approximate non-linear functions.
The concept of neural network consists in simulating the flow of infor-
mation inside the human brain by defining a set of neurons (arranged in
different layers) defining functions producing results according to the
inputs. These neurons are interconnected from one layer to another and
continuously improve their predictive ability as the network is trained
and learns a new concept [30]. Fig. 1 presents the global architecture
of an ANN with multiple hidden layers where neurons are set up in
different layers (from the first hidden layer to the output layer) with
the following characteristics:



.
"

• The first layer, is the so-called input layer, and in our application 
concerning constitutive law, consists of 3 inputs. This one is not 
composed of neurons as they will be defined hereafter, and col-
lects the incoming information: the three values corresponding to 
the plastic strain "p, the plastic strain rate p and the temperature T 
respectively.
• The ANN contains at least one hidden layer (in the current 
paper, we will consider only one and two hidden layers ANNs)
containing a variable number of neurons.
• The last layer is the so-called output layer, and in our case consists 
of only one neuron providing the value of the von Mises flow stress 
�.
• Neurons are not connected to other neurons of the same layer but
only to the immediately preceding outputs and following inputs.

In Fig. 1 we have separated the summation ⃖⃗y(k) and the activation ⃖⃗̂y(k)

parts of all neurons within the hidden layers. Concerning the notation
used, note here that we are using the formalism of a vector (using an
arrow over the symbol) for many quantities in the equations hereafter,
even if these are not vectors in the sense of a mathematical notation.
In reality, these quantities are vertical one-dimensional arrays used to
store data, which visually correspond to the components of a vector. In
the proposed architecture, there is no activation function associated to
the neuron in the output layer, as usually done for regression problems
which is our case here. The data flows from layer to layer until we
obtain the output of the ANN. Every layer, except the first one, in
the ANN, no matter how many neurons n are in, have an input with
a variable number of items m and an output with a fixed number of
items n. In the so-called forward propagation algorithm, the output of
one layer becomes the input of the next one.

2.1. Neural network governing equations

2.1.1. Input layer
Conforming to Fig. 1, the input layer is defined by ⃖⃗x = [x1, x2, x3]

T .
In the proposed application, ⃖⃗x has three components xi related to
the plastic strain "p, the plastic strain rate

.
"p and the temperature T ,

respectively. As it will be presented in Section 2.1.4, input variables xi
are normalized to avoid ill-conditioning for the optimization procedure,
mainly because they represent various physics with a large discrepancy
in values.

2.1.2. Hidden layers
Any hidden layer k, containing n neurons, takes a weighted sum of

the outputs ⃖⃗x of the immediately previous layer (k − 1), containing m

neurons, given by the following equation:

yi
(k) =

m∑
j=1

wij
(k)xj + bi

(k) (1)

where yi
(k) is the nodal value of the ith neuron of layer k, wij

(k) is the
associated weight parameter between the ith neuron of layer k and the
jth neuron of layer (k − 1) and bi

(k) is the associated bias of the ith
neuron of layer k. Those weights and bias are the training parameters of
the ANN that we have to adjust during the training procedure described
in Section 3. Using matrix notation, Eq. (1) can be rewritten with the
following form:

⃖⃗y(k) =w(k)
⋅ ⃖⃗x + ⃖⃗b(k) (2)

where ⃖⃗y(k) = [y1
(k), y2

(k),… , yn
(k)]T contains the nodal values resulting

from the summation operation in layer k, ⃖⃗b(k) = [b1
(k), b2

(k),… , bn
(k)]T

is the nodal bias of layer k and w(k) is the [n × m] weight parameters
matrix of layer k given hereafter:

w(k) =

⎡⎢⎢⎢⎢⎣

w11
(k) w12

(k) ⋯ w1m
(k)

w21
(k) w22

(k) ⋯ w2m
(k)

⋮ ⋮ ⋱ ⋮

wn1
(k) wn2

(k) ⋯ wnm
(k)

⎤⎥⎥⎥⎥⎦
(3)

The total number of training parameters N for any hidden layer k is
the sum of the number of weight parameters and the number of bias
parameters of layer k, so N = n(m + 1). After the summation operation
defined by Eq. (2), each neuron in the hidden layer k provides an output
value ⃖⃗̂y(k) computed from an activation function f (k) according to the
following equation:

ŷi
(k) = f (k)

(
yi

(k)
)

or ⃖⃗̂y(k) = f (k)
(
⃖⃗y(k)

)
(4)

Many activation functions are available in literature and their choice
depend mainly on the application of the ANN. In our case, it is very
important that those activation functions are derivable in order to allow
the computation of the derivative of the von Mises stress � with regard
to the plastic strain "p, the plastic strain rate

.
"p and the temperature

T . For our type of application, we have made the choice to test two
among the mainly used ones:

• the Sigmoid sig(x) activation function defined by:

sig(x) =
1

1 + exp (−x)
, sig′(x) =

exp (x)

(1 + exp (x))2
(5)

• and the Hyperbolic tangent tanh(x) activation function defined by:

tanh(x) =
exp (x) − exp (−x)

exp (x) + exp (−x)
, tanh′(x) = 1 − tanh2(x) (6)

The main guide for this choice is that the expression of their
derivatives is simple, which leads to relatively compact expressions.
Comparison and performance of those two activation functions will be
presented in Section 3.

If there exists another hidden layer (k + 1) after the current layer,
then, the output ⃖⃗̂y of layer k is then used as the input ⃖⃗x of layer (k+1).

2.1.3. Output layer
The output s is computed from the values of the last hidden layer

l of the neural network, containing m neurons, using the following
equation:

s =

m∑
j=1

wj ŷj
(l) + b (7)

where b is the bias associated to the output neuron and wi are the m

weight parameters between the last hidden layer and the output neuron
s. Using matrix formalism, one can rewrite this later as:

s = ⃖⃖⃗wT
⋅
⃖⃗̂y(l) + b (8)

with ⃖⃖⃗w = [w1, w2,… , wm]
T . As presented earlier, there is no activation

function for the output neuron, so s is directly the output of the neural
network. The total number of training parameters for the output layer is
m + 1. For a neural network with two hidden layers having m neurons
on the first hidden layer and n neurons on the second one, the total
number of training parameters is N = 4m + n(m + 2) + 1.

2.1.4. Pre and postprocessing of data
Since the ANN are set up to treat values with a limited amplitude,

it is necessary to pre-process the provided corresponding values of the
plastic strain "p, the plastic strain rate

.
"p and the temperature T in the

range [0, 1] in a same manner as the one proposed by other authors [18,
20]. Therefore, the input ⃖⃗x of the ANN is computed according to the
constitutive flow law by:

• Since the plastic deformation rate in constitutive equations usu-
ally enhances the logarithm of the plastic strain rate, we prepro-
cess the plastic strain rate by computing the natural logarithm of
the ratio of the plastic strain rate

.
"p over the referential strain rate

.
"0 given by ln(

.
"p∕
.
"0).

• Then, we normalize the xi variables in the range [0, 1] to avoid
ill-conditioned system as presented by many other authors in the
literature [18,20].



Fig. 1. Multi-layer Artificial Neural Network architecture.

Fig. 2. Comparison of precision of various ANN.

Therefore, the three components of the input ⃖⃗x are obtained from the

plastic strain "p, the plastic strain rate
.
"p and the temperature T using

the following expressions:

⃖⃗x =

⎧⎪⎪⎨⎪⎪⎩

x1 =
"p−["p]min

["p]max−["
p]min

x2 =
ln(
.
"p∕
.
"0)−[ln(
.
"p∕
.
"0)]min

[ln(
.
"p∕
.
"0)]max−[ln(

.
"p∕
.
"0)]min

x3 =
T−[T ]min

[T ]max−[T ]min

(9)

where [ ]min and [ ]max are the boundaries of the range of the corre-

sponding field. During the training of the ANN, the von Mises stresses

� will also be scaled down within the range [0, 1], using the following

expression:

s =
� − [�]min

[�]max − [�]min
(10)

So, finally, the von Mises stress � can be obtained from the output s of

the ANN using:

� =
(
[�]max − [�]min

)
s + [�]min (11)

The [ ]min and [ ]max values of plastic strain, plastic strain rate, tem-

perature, stresses and referential strain rate
.
"0 used during the training

phase should be recorded for later use during the implementation of

the ANN in the Abaqus Explicit code. They are part of the final solution

along with the weights w(k) and bias values ⃖⃗b(k) of the hidden layers

and the weights ⃖⃖⃗w and the bias b of the output layer of the neural

network that constitutes the training parameters of the neural network.

The knowledge of these quantities after the learning phase allows then

to extract the whole neural network from its formulation in Python

language to a compact version, without the back propagation learning

mechanism, for its implementation in FORTRAN in the Abaqus Explicit

FEM code.



Fig. 3. Convergence of the predicted values for the 3-15-7-1-sig ANN.

2.1.5. Loss function
In the context of optimization algorithms, the function used to

evaluate the quality of a solution is called the objective function. In
the application to neural networks, we try to minimize the error made
by the network in the prediction of the solution. The evaluation of this
error consists in measuring the difference between the predicted value
�i computed by the NN and a reference value �

y
i
coming usually from

experiments, or, in the present paper from an analytical equation, that
we want to reach for a particular data set. There are several ways to
define this error, among them, the best known is probably the average
Root Mean Square Error (ERMS) given by:

ERMS =

√√√√ 1

N

N∑
i=1

(�i − �
y
i
)2 (12)

where N is the total number of values of the training batch.

2.2. Derivatives computation

Implementation of the neural network within the radial return
algorithm proposed by Ming et al. [4] through a VUMAT subroutine
of directly through a VUHARD one for Abaqus Explicit requires that
the ANN returns not only the von Mises equivalent stress � given
by Eq. (11), but also the three derivatives )�∕)"p, )�∕)

.
"p and )�∕)T

without having been trained to compute those derivatives. So that we
do not have 4 outputs for the ANN but only one and the ability to
compute those derivatives must be intrinsic. Therefore, we need to be
able to compute those three derivatives using only the proposed ANN
architecture. One straightforward, but not recommended, solution to
this problem is to numerically compute the derivative of � with respect
to "p,

.
"p and T using the following relation:

)�(x)

)x
=

�(x + �x) − �(x)

�x
(13)

where �x is a small increase (�x = 10−6 for example) applied to one
of the 3 variables "p,

.
"p and T . We need to compute 4 times a result

from the ANN to compute the flow stress and approximate the three
derivatives which is quite time-consuming.

Another way to compute those derivatives is to compute the quan-
tity ⃖⃗s′ = [s′

1
, s′

2
, s′

3
]T containing the 3 derivatives of the output s defined

by Eq. (8) of the ANN with respect to the input ⃖⃗x. This analytic

computation depends on the number of hidden layers (hereafter we
present the results for 1 and 2 hidden layers), and the type of activation
functions used (the tanh and the sig functions). ⃖⃗s′ = )s∕) ⃖⃗x contains
the derivatives of s with respect to x1, x2 and x3 respectively. Based
on the chain-rule derivation, with 1 hidden layer and a tanh activation
function, ⃖⃗s′ takes the following form:

⃖⃗s′ =w(1)T
⋅

[
⃖⃖⃗w − ⃖⃖⃗w◦ tanh2

(
⃖⃗y(1)

)]
(14)

where ⃖⃗y(1) is given by Eq. (2) with k = 1 and ◦ is the element-wise
product, known as the Hadamard product, which is a binary operation
that takes two matricesA and B of the same dimensions and produces
another matrix C of the same dimension as the operands, where each
element Ci = Ai Bi. The tanh operator applied on quantity ⃖⃗y(1) is just
computed for each component of ⃖⃗y(1), as presented in Fig. 1, since this
is not a real but only an array of reals stacked vertically. With 1 hidden
layer and a sig activation function, we obtain:

⃖⃗s′ =w(1)T
⋅

[
⃖⃖⃗w◦ exp

(
−⃖⃗y(1)

)
[
1 + exp

(
−⃖⃗y(1)

)]2
]

(15)

When the number of hidden layers increases, the complexity of
the derivative increases, so, for 2 hidden layers and a tanh activation
function for both layers we obtain:

⃖⃗s′ =w(1)T
⋅

[
w(2)T

⋅

(
⃖⃖⃗w − ⃖⃖⃗w◦ tanh2

(
⃖⃗y(2)

))
◦
(
1 − tanh2

(
⃖⃗y(1)

))]
(16)

Finally, for 2 hidden layers and a sig activation function for both
layers we obtain:

⃖⃗s′ =w(1)T
⋅

[
w(2)T

⋅

(
⃖⃖⃗w◦ exp

(
−⃖⃗y(2)

)
[
1 + exp

(
−⃖⃗y(2)

)]2
)
◦

(
exp

(
−⃖⃗y(1)

)
[
1 + exp

(
−⃖⃗y(1)

)]2
)]

(17)

Depending on the number of hidden layers and the type of activa-
tion functions used, from Eqs. (14) to (17) and because of the pre and
post-processing of the quantities �, "p,

.
"p and T defined in Section 2.1.4

by Eqs. one can finally obtain the derivatives of the flow stress � with
respect to "p,

.
"p and T using the following expression:

⎧
⎪⎪⎨⎪⎪⎩

)�∕)"p = s′
1

[�]max−[�]min
["p]max−["

p]min

)�∕)
.
"p =

s′
2.
"p

[�]max−[�]min
[
.
"p]max−[

.
"p]min

)�∕)T = s′
3

[�]max−[�]min
[T ]max−[T ]min

(18)



.

It is important to note here, that whatever the method adopted to 
calculate the derivative of the output of the neural network with respect 
to the inputs (numerical method or formulation of the derivative of 
the network), the result obtained is an approximation of the deriva-
tive of the mathematical function represented by the network with 
respect to the inputs. Indeed, the neural network, by its construction, 
approximates a mathematical formulation, but, as shown by Nguyen 
et al. [31], a neural network can also approximate the derivatives of 
the mathematical function it reproduces. Thus, the derivative of the 
neural network with respect to its inputs is correlated to the derivative 
of the mapped mathematical function with respect to its parameters.

3. Training of the ANN and performance evaluation

In order to evaluate the performance of the proposed approach, 
we decided to reproduce the behavior of the Johnson–Cook [32] flow 
law with an Artificial Neural Network because it is one of the most 
widely used flow law for the simulation of high strain rate deformation 
processes. It is implemented in numerous Finite Element codes such as 
Abaqus. Reproducing the behavior of a Johnson–Cook law by a neural 
network is of course not an aim of this work, but only required in 
order to verify numerically that the neural network is able to take into 
account a non-linear behavior and to have a way to measure exactly 
the prediction errors of the neural network. The general formulation 
�y("p, "p, T ) is given by the following equation:

�y =
(
A + B"p

n
)[

1 + C ln

( .
"p
.
"0

)][
1 −

(
T − T0

Tm − T0

)m]
(19)

where
.
"0 is the reference strain rate, T0 and Tm are the reference tem-

perature and the melting temperature of the material respectively and
A, B, C, n and m are the five constitutive flow law parameters that we
usually have to determine using for example an inverse identification
procedure as the one proposed by Dalverny et al. [33] from Taylor
impact tests.

Analytical expressions of the three derivatives of the Johnson–Cook
flow stress �y with respect to "p,

.
"p and T are given by the three

following equations:

⎧⎪⎪⎨⎪⎪⎩

)�y∕)"p = nB"p
n−1

[
1 + C ln

( .
"p.
"0

)] [
1 −

(
T−T0
Tm−T0

)m]

)�y∕)
.
"p =

C.
"p

(
A + B"p

n) [
1 −

(
T−T0
Tm−T0

)m]

)�y∕)T =
−m

(
A+B"p

n
)

T−T0

[
1 + C ln

( .
"p.
"0

)](
T−T0
Tm−T0

)m

(20)

The usual approach to implement a new constitutive law in the
Abaqus FEM code, as proposed by Ming et al. [4], is to program in
a VUHARD FORTRAN subroutine the evaluation of the flow stress de-
fined by Eq. (19) and the derivatives of the flow stress given by Eq. (20).

3.1. Generation of the training and test data

A 42CrMo4 steel, with material parameters proposed by Sattouf
et al. [34] and reported in Table 1 was selected as the material used
in this study. To train and validate the ANN, we have used a Python
program to generate, thanks to Eqs. (19)–(20) two distinct data sets:

• The first data set, the training one, contains 2 520 datapoints
defined by 70 equidistant values for "p ∈ [0, 1], 6 plastic strain
rates
.
"p ∈ [1, 10, 50, 500, 5 000, 50 000] and 6 temperatures T ∈

[20, 100, 200, 300, 400, 500].
• The second data set, the testing set, contains 5 000 datapoints
randomly generated within the ranges "p ∈ [0, 1],

.
"p ∈ [1, 50 000]

and T ∈ [20, 500]. This later is not used during the training phase,
but only during the validation presented in Section 3.3.

Table 1
Material properties of the 42CrMo4 steel [35].

E � A B C n m

(GPa) (MPa) (MPa)

206.9 0.29 806 614 0.0089 0.168 1.1

"̇0 T0 Tm � Cp � �

(s−1) ◦C ◦C kg∕m3 J∕kg◦C 10−6∕◦C

1 20 1540 7830 460 12.3 0.9

Table 2
Global performance analysis of the ANN during the training phase.

Model N ERMS �� �()�∕)"p) �()�∕)"̇p) �()�∕)T )

×10−7 % % % %

3-7-4-1-tanh 65 6.32 0.038 1.977 0.792 0.556
3-15-1-tanh 78 3.46 0.039 1.506 0.269 0.371
3-15-7-1-tanh 180 1.71 0.030 0.519 0.380 0.408
3-15-1-sig 78 2.00 0.030 0.686 0.521 0.675
3-7-4-1-sig 65 1.27 0.024 0.670 0.415 0.499
3-15-7-1-sig 180 0.68 0.011 0.247 0.199 0.256

Both data sets contains the values of the plastic strain "p, the plas-
tic strain rate

.
"p, the temperature T , the flow stress �y computed

from Eq. (19). The second data set contains also the values of the
three derivatives computed from Eq. (20). It is important to remember
that the neural network proposed must allow to replace the analytical
formulation of the behavior law in order to be able to carry out a
numerical simulation from experimental data resulting from thermo-
mechanical tests. During these tests, we acquire the temperature, the
strain, the strain rate and the stresses. But it is impossible to acquire
the derivatives of the stresses with respect to the quantities "p,

.
"p, T .

Therefore, in normal use, it is not possible to include the derivatives in
the objective function for training the neural network.

3.2. Training of the artificial neural network

Training the Artificial Neural Network is finding the best set of
values for all the training parameters w(k), ⃖⃗b(k), ⃖⃖⃗w and b defined in
Section 2.1 in order to reduce the error of the ANN in computing the
flow stress. The training set is used in this procedure and the ANN has
been implemented using the Tensorflow Python library [36]. Training
procedure is based on the use of the Adaptive Moment Estimation
(ADAM) [37] optimizer. We used the two activation functions pre-
sented earlier, the sig and the tanh functions, and one or two hidden
layers with a variable number of neurons in the hidden layers. All
models are named after their constitution, where 3-x-1-tanh refers to
a one hidden layer ANN with a tanh activation function and x neurons
in the hidden layer and 3-x-y-1-sig refers to a two hidden layers ANN
with a sig activation function in both layers and x neurons in layer 1
and y neurons in layer 2. All models have been trained for the same
number of iterations (50 000 iterations). Training times for all models
are more or less the same: around 1 hour on a Dell XPS 13 laptop.

3.3. Performance analysis of the artificial neural network

In order to illustrate the efficiency of the ANN, Fig. 2 and Table 2
reports some results obtained after training 6 different models (2 one
hidden layer models and 4 two hidden layers models).

A lot more results have been obtained in this study, but only those
6 models are presented here to illustrate the tendencies. Fig. 2 shows
an histogram of the average values of the ERMS defined by Eq. (12)
evaluated during the last 5% of the training process giving an idea
of the global convergence of the ADAM algorithm. In Table 2, N is
the number of internal parameters of the ANN. Values �□ are the so-
called Average Absolute Relative Error (EAAR) given by the following



expression:

�□ =
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N
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i
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where □e
i
is the analytical exact value obtained from Eqs. (19)–(20)

and □
p
i
is the ANN predicted value of the same quantity computed by

the neural network from Eqs. (11) and (18).
Reading the data in Table 2, the overall performance of the pro-

posed neural networks is very good since the error on the evaluation
of the flow stress is about 0.01% for the best performing network while
it does not exceed 0.04% for all the tested networks. The evaluation of
the derivatives is also very good since the error is about 0.2% for the
best performing network while it remains below 2.0% for the )�∕)"p

term, 0.8% for the )�∕)
.
"p term and 0.6% for the )�∕)T term. Without

too much surprise, we notice that globally, the error on the evaluation
of the flow stress is lower with a factor of 10 than the error on the
evaluation of the derivatives. This is easily explained by the fact that
the network has been trained to minimize the error on the flow stress
only. Nevertheless, without ever having been optimized for computing
the derivatives, we can see that the results obtained are also very good.

Fig. 3 shows the convergence of the 3-15-7-1-sig ANN model con-
cerning the evaluation of the flow stress and the 3 derivatives with the
number of iterations. From this later, one can see that the convergence
of the ANN on the evaluation of � is faster than convergence of the
derivatives. The previously mentioned factor of 10 between the stress
and the derivatives is clearly visible on this graph. If the error on the
calculation of the constraint does not evolve after 10 000 iterations of
the learning algorithm, the errors on the evaluation of the derivatives
require a much more significant number of iterations. It is therefore
necessary to continue training this type of model when the convergence
criterion of the flow constraint has already been satisfied in order to
allow the convergence of the derivatives. We can then be confronted
with a problem of over-learning, it is therefore necessary to dimension
the size of the neural network as accurately as possible with respect to
the application.

4. Implementation of the neural network in Abaqus Explicit

In this section, we now present the numerical implementation of the
proposed ANN constitutive flow law. Once the ANN network presented
in Section 2 has been trained as presented in Section 3, it is time
to use it for the flow stress and its three derivatives computing. The
implementation is done by programming a VUHARD subroutine for the
Abaqus Explicit finite element code similarly to the approach proposed
by Jansen van Rensburg et al. [2]. This VUHARD subroutine is used
inside of a Radial-Return algorithm, as illustrated in Fig. 4, to compute
the flow stress �y and its derivative d�y

d!
used in the expression of the

two quantities (! ) and  ′(! ), thanks to the following equation [4]:

d�y

d!
=

)�y

)"p
d"p
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.
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.
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where ! is the consistency parameter used in the Radial-Return al-
gorithm as defined by Simo et al. [38], �t is the time increment, �
is the Taylor–Quinney coefficient defining the amount of plastic work
converted into heat energy, Cp is the specific heat coefficient and � is
the density of the material. So that, the ANN is used to compute the
value of the flow stress �y and the three derivatives of the flow stress
with respect to "p,

.
"p and T involved in Eq. (22). This is illustrated in

Fig. 4 where the yellow block in the center of the flowchart is where
the ANN is used. Since this ANN is in the center of a CPU intensive
loop involved for all integration points of the FEM model, this has to
be optimized to reduce computing times as it will be presented further.
More details on the Radial-Return algorithm can be found in Simo
et al. [38] and more details concerning the implementation of this

Fig. 4. Flowchart of the Radial-Return Algorithm to compute the final stresses.

algorithm in Abaqus Explicit can be found in Ming et al. [4], where
the same approach was used, except the fact that in this paper the flow
stress and its derivatives were computed analytically.

Validation of the proposed implementation is done on several
benchmark tests by comparing the results obtained using the ANN to
native Johnson–Cook law (named Built-in hereafter) and the analytical
VUHARD implementations proposed previously by Ming et al. [4]
(named Analytical hereafter).

4.1. Numerical implementation of the neural network

The numerical implementation of the neural network is done using
a VUHARD subroutine for the Abaqus Explicit code. This is a straight-
forward approach to implement a new constitutive flow law in this
FEM code by just implementing a FORTRAN subroutine to compute
the flow stress of the material �y("p,

.
"p, T ) according to Eq. (11) and

its derivatives with respect to "p,
.
"p and T defined by Eq. (18). In this

approach, the main part of the Built-In constitutive law is used for time



Fig. 5. Partial VUHARD FORTRAN subroutine to compute the flow stress and its derivatives using the ANN for the 3-15-7-1-sig model.

Fig. 6. Numerical model for the necking of a circular bar.

Fig. 7. Von Mises stress � contourplot for the necking of a circular bar for an elongation of 7 mm (top side is the Built-in flow law and bottom side is the ANN 3-15-7-1-sig flow
law).

integration of the stress, for a given time increment, and the provided

user subroutine is called to compute the hardening flow law.

A Python’s program has been developed to extract the internal

parameters of the trained neural network (the network architecture,

the weights and bias values w and ⃖⃗b of all layers, . . . ) and write

automatically the FORTRAN subroutine. In the following paragraph, we

detail the implementation of a 2 hidden layers neural network with a sig

activation function, so that, one of the most complex model presented

in this paper.



Fig. 8. Equivalent plastic strain "
p vs. displacement for the necking of a circular bar.

Fig. 9. Von Mises stress � vs. displacement for the necking of a circular bar.

Fig. 10. Numerical model for the Taylor impact test.

As presented in Section 2 the neural network is based on two main

parts defined in Sections 2.1 and 2.2 corresponding to the computation

of the von Mises equivalent stress � and the 3 derivatives )�∕)"p,

)�∕)
.
"p and )�∕)T respectively. If we want to implement a 2 hidden

layers ANN with a sig activation function containing m neurons in layer

1 and n neurons in layer 2, we must use Eq. (5) for the computation



Fig. 11. Equivalent plastic strain "
p contourplot for the Taylor impact test (upper side is the Built-in model and bottom side is the ANN 3-15-7-1-sig model).

of the stress and Eq. (17) for the derivatives. In order to optimize the
numerical implementation a bit, and, as the computation of the flow
stress and its derivatives share some common terms that will be stored
during the computation for later use, the computation of Eqs. (5) and
(17) is split into several sub-terms ⃖⃗za to ⃖⃗zf . So, starting from , defining
the values of ⃖⃗x, one can write:

za
i
= exp
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−
∑
j

(
wij

(1)xj
)
− bi

(1)

)
i ∈ [1, m], j ∈ [1, 3]
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i
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i
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zc
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= exp

(
−
∑
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(
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(2)∕zb
j
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)
i ∈ [1, n], j ∈ [1, m]

(23)

where za
i
, zc

i
and zc

i
are three terms present in Eq. (17) corresponding

to exp
(
−⃖⃗y(1)

)
, 1 + exp

(
−⃖⃗y(1)

)
and exp

(
−⃖⃗y(2)

)
respectively. Then for the

computation of the derivatives, we combine the values za
i
, zb

i
and zc

i
to

compute the whole equation (17) using:
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From those definitions, one can then write the output of the neural
network using the following expression:

s =
∑
i

(
wi∕(1 + zci )

)
+ b i ∈ [1, n] (25)

And, the three derivatives s′
i
are obtained from:

s′i =
∑
j

(
w

(1)
ji
z
f
j

)
i ∈ [1, 3], j ∈ [1, m] (26)

Finally, Eqs. (11) and (18) are used to compute the von Mises
equivalent stress � and the 3 derivatives )�∕)"p, )�∕)

.
"p and )�∕)T

of the neural network from s and ⃖⃗s′ computed from Eqs. (25) and
(26). As it is a straightforward implementation from Eq. (23) to (26)
the Python interface uses loops to explicitly write all the matrices
products in a FORTRAN subroutine as illustrated in Fig. 5. This later
only reports a small part of the whole FORTRAN code to illustrate
how it is implemented. The reader interested in the details of this
implementation can refer to the Software Heritage archive website [39]
giving access to the source code of this work.

The VUHARD subroutine is compiled using the GNU gfortran 9.3.0
and linked to the main Abaqus Explicit executable. All benchmarks tests
have been solved using Abaqus Explicit 2021 on a Dell XPS 13 laptop
running Ubuntu 20.04 64 bits with 16 GiB of Ram and one 4 core i7-
10510U Intel Processor. All computations have been done using the

double precision option of Abaqus, with parallel threads execution on
two cores. In order to reduce the number of models presented hereafter,
only the two last models presented in Table 2 are selected for the
subsequent benchmark simulations.

4.2. Necking of a circular bar benchmark test

The necking of a circular bar test, already presented by Ponthot
et al. [40], is useful to evaluate the performance of non-linear consti-
tutive laws. An axisymmetric quarter model of the specimen, already
presented in Ming et al. [4], is used, where dimensions of the specimen
are reported in Fig. 6. We imposed a total displacement of 7 mm along
the ⃖⃗z axis on the left side of the specimen while the radial displacement
of the same edge is supposed to remain zero. On the opposite side,
the axial displacement is restrained while the radial displacement is
free. The mesh consists of 400 CAX4RT elements (4-node bilinear dis-
placement and temperature, reduced integration with hourglass control
element) with a refined zone of 200 elements on the right side on 1∕3 of
the total length. The FEM model is a coupled temperature–displacement
explicit model (this is a coupled thermal-stress analysis where the heat
transfer and mechanical solutions are obtained simultaneously by an
explicit coupling), and the total simulation time is set to t = 0.01 s.

Fig. 7 shows the von Mises stress contourplot � of the deformed bar
for two different models: the Built-In model (top side) and the ANN 3-
15-7-1-sig model (bottom side). There is a very little difference between
both models in terms of spatial distribution of stress and maximum
value. The maximum stress is located into the center of the bar, so we
have chosen to plot in Figs. 8 and 9 the evolution of the equivalent
plastic strain "

p and the von Mises stress � for the central element of
the specimen (the red element in the bottom right corner in Fig. 6). As
reported in Figs. 8 and 9, the Built-In model, the Analytical model and
both versions of the ANN model give almost the same results, except
when the elongation is greater than 6 mm where the von Mises stress
differs between the ANN models and the Built-in and Analytical ones
as we will see further.

This is also confirmed in Table 3 reporting a comparison of the
four models for two values of the displacement (3.5 mm and 7 mm,
named mid and end respectively). From this later, we can see that the
equivalent plastic strain "

p, the von Mises stress � and the temperature
T obtained with both ANN models are very close to the ones obtained
by the Built-in and the Analytical models for mid displacement, while
they differ a little for end displacement. This allows us to validate the
proposed approach.



Table 3
Comparison of results for the necking of a circular bar benchmark for a displacement 
of 3.5 mm (mid) and 7 mm (end).

Model Incr. Time "
p

mid
�mid Tmid "

p

end
�end Tend

(s) (MPa) (◦C) (MPa) (◦C)

3-7-4-1-sig 191 768 29.98 0.51 1293.81 182.01 2.16 1064.43 587.78
3-15-7-1-sig 194 432 38.54 0.51 1293.97 181.52 2.03 1060.50 587.29
Analytical 200 145 35.50 0.51 1293.59 182.47 2.16 1045.75 585.85
Built-In 199 474 28.71 0.51 1293.76 180.36 2.14 1043.19 587.66

One interesting result concerns the values of the equivalent plastic
strain "

p and the temperatures T reported in Table 3 for end displace-
ment. It can be seen that, for end displacement, the values of the plastic
strain reported in Table 3 are around 2.1 while the range of plastic
strain used for training the model is [0, 1]. Furthermore, the maximum
value of the temperature is around 587◦C while the training range is
[20, 500]. The proposed model is therefore able to extrapolate with a
good accuracy some data out of the training range. It is obvious from
Table 3 and Figs. 8 and 9 that all models give very closed results
when parameters are within the training range, while the ANN models
differ a little when parameters are far out of the training range (here,
with an elongation greater than 6 mm so that "p > 1.7). This shows
that our ANN model is able, to a certain extent, and with the usual
precautions insofar as neural networks are generally relatively faithful
for interpolation but less so for extrapolation, to generalize a behavior
out of the training range. If we want to reduce the gap between
predicted and real values out of the training range, we have to enlarge
the training ranges of the input variables if data is available.

Table 3 reports also the computing times and total number of
increments computed after running the same model 10 times. One can
see that computation time of the 3-7-4-1-sig model is equivalent to the
one of the Built-in model and lower to the one of the Analytical model
while there is an increase for the most complex ANN model. In the
proposed approach, the ANN is used to compute the flow stress of the
material within a Radial Return algorithm. It replaces the evaluation
of the flow stress and its derivatives based on some analytical expres-
sions. VUHARD implementation breaks the Built-in natural optimized
algorithm used to compute the stresses by some FORTRAN subroutine
call, data transfer, . . . leading to increase of CPU time (see comparison
between Built-in and Analytical CPU times). This is why we cannot have
a reduction of computational time with regard to the Built-in model.
We therefore have to compare CPU performance of ANN models with
the Analytical one. Since the Johnson–Cook analytical behavior law is
quite simple, the most complex ANN model is slower than the analytical
one. But, in case of more complex behavior law, such as some Modified
Johnson–Cook laws proposed by Zhou et al. [41], this tendency will be
reversed since the analytical evaluation of the derivatives needed for
the radial return algorithm to work becomes quite CPU intensive. We
can also conclude from the results presented in Table 3 that the 3-7-
4-1-sig model is sufficient to obtain valuable results with comparable
CPU times with regard to the Built-in constitutive law.

4.3. Taylor impact benchmark test

The performance of the proposed ANN subroutine will now be
validated under high deformation rate with the simulation of the Taylor
impact test [42] where a cylindrical specimen is launched to impact
a rigid target with a prescribed initial velocity Vc = 287 m/s. The
height of the cylinder is 32.4 mm and the radius is 3.2 mm as reported
in Fig. 10. The axial displacement is restrained on the left side of
the specimen while the radial displacement is free (to figure a perfect
contact without friction of the projectile onto the target). A 3D quarter
model of the Taylor cylindrical specimen is meshed with 4 455 C3D8T
elements (8-node trilinear displacement and temperature). The total
simulation time for the Taylor impact test is t = 80�s.

Table 4
Comparison of results for the 3D Taylor impact test.

Model Incr. Time Lf Df T "
p

(s) (mm) (mm) (◦C)

3-7-4-1-sig 6 344 63.08 26.52 11.18 584.28 1.83
3-15-7-1-sig 6 239 90.32 26.52 11.17 584.47 1.83
Analytical 6 419 71.71 26.53 11.19 585.64 1.84
Built-In 6 570 52.82 26.54 11.21 588.66 1.84

Fig. 11 shows the equivalent plastic strain contourplot of the de-
formed rod for two models: the Built-In model (upper side of the
specimen) and the ANN-3-15-7-1-sig model (bottom side of the spec-
imen). The distributions of the equivalent plastic strain are almost the
same for both models. The maximum equivalent plastic strain "

p is
located into the center element of the model (the red element in Fig. 10)
and the models give quite the same value as reported in Table 4 for "p,
T and the final dimensions of the specimen Lf (final length) and Df

(final diameter of the impacting face). Concerning the simulation times
reported in Table 4, the same trends as those presented in Section 4.2
are noticeable in this test case. Again, the comparison of the numerical
results validates the proposed approach and shows a very good level of
correlation of the results.

5. Summary and conclusions

In this paper, an Artificial Neural Network based framework has
been proposed to model the non-linear flow law �y("p,

.
"p, T ) with its

application to a 42CrMo4 steel and a constitutive behavior of type
Johnson–Cook. The general architecture of the multilayer perceptron
neural network was presented with a focus on the evaluation of the
derivatives of the flow stress with respect to the plastic strain, the plas-
tic strain rate and the temperature necessary to implement a VUHARD
user routine in the finite element code Abaqus Explicit, without these
quantities having been learned by the network according to the classi-
cal supervised training scheme. The evaluation of these derivatives for 1
or 2 hidden layers and 2 types of activation function has been presented
in detail as well as the comparison of the accuracy of this evaluation
with a reference solution based on the use of the Johnson–Cook flow
law. The results obtained showed an excellent ability to evaluate the
flow stress and a very good ability to evaluate the derivatives by the
neural network. After numerical implementation of the neural network
in the Abaqus code, the test cases used showed the good behavior of
the proposed approach in the context of the numerical simulation of
the necking of a circular bar and a Taylor impact test.
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