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1.  Introduction
With the recent advancements in seismic sensor techniques and the rapid deployment of (dense) seismic arrays 
over the last decade, there has been a surge in the number of monitoring studies aiming to capture the dynamic 
evolution of the subsurface. Due to scattering, coda waves sample a large volume of the subsurface densely for 
long propagation times and are thus sensitive to weak changes of the medium. Consequently, coda waves may 
be more suitable to characterize temporal variations of the Earth’s crust than direct waves, which only sample 
a narrow volume along the ray path between the (virtual) source and detector. Poupinet et al. (1984) were first 
to demonstrate the feasibility of monitoring weak changes in apparent velocity caused by fault activity in Cal-
ifornia using coda waves. Poupinet et al. (1984) derived these global medium changes by measuring the phase 
shift between the coda of earthquake doublets. In numerical and lab experiments, the extreme sensitivity of the 

Abstract  Monitoring changes of seismic properties at depth can provide a first-order insight into Earth’s 
dynamic evolution. Coda wave interferometry is the primary tool for this purpose. This technique exploits small 
changes of waveforms in the seismic coda and relates them to temporal variations of attenuation or velocity 
at depth. While most existing studies assume statistically homogeneous scattering strength in the lithosphere, 
geological observations suggest that this hypothesis may not be fulfilled in active tectonic or volcanic areas. 
In a numerical study we explore the impact of a non-uniform distribution of scattering strength on the spatio-
temporal sensitivity of coda waves. Based on Monte Carlo simulation of the radiative transfer process, we 
calculate sensitivity kernels for three different observables, namely travel-time, decorrelation, and intensity. Our 
results demonstrate that laterally varying scattering properties can have a profound impact on the sensitivities 
of coda waves. Furthermore, we demonstrate that the knowledge of the mean intensity, specific intensity, and 
energy flux, governed by spatial variation of scattering strength, is key to understanding the decorrelation, 
travel-time, and scattering kernels, respectively. A number of previous works on coda wave sensitivity kernels 
neglect the directivity of energy fluxes by employing formulas extrapolated from the diffusion approximation. 
In this work, we demonstrate and visually illustrate the importance of the use of specific intensity for the travel-
time and scattering kernels, in the context of volcanic and fault zone setting models. Our results let us foresee 
new applications of coda wave monitoring in environments of high scattering contrast.

Plain Language Summary  To monitor the evolution of the dynamic Earth, seismologists use a 
part of the seismic record called “coda,” which is composed of waves that have bounced multiple times off 
heterogeneities of the crust. The coda is extremely sensitive to weak perturbations of propagation properties 
induced by Earth’s tectonic and volcanic activity. The correct physical modeling of coda waves is therefore key 
to unravel the rich information encoded in their waveforms. A limitation of current seismological monitoring 
techniques is the neglect of strong lateral variations of coda waves propagation properties documented by 
geological observations. Our work focuses specifically on this aspect. We provide a complete theoretical and 
numerical framework to model and understand the spatial and temporal sensitivity of coda waves to medium 
perturbations in complex geological settings. Using simple but realistic models of a fault zone and a volcano, 
we illustrate the profound impact of non-uniform scattering properties on the coda wave sensitivity, which in 
turn determines the ability of seismologists to correctly retrieve the magnitude and location of physical changes 
in the crust. Our results let us foresee new applications of coda wave monitoring in environments of high 
scattering contrast, such as volcanic and fault zone settings.
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seismic coda to temporal medium changes has also been demonstrated by Snieder et al. (2002). Later, detection 
of temporal medium changes has been successfully applied using the coda of earthquake records or the coda of 
ambient noise cross-correlations in numerous settings including but not limited to: volcanoes (e.g., Brenguier 
et al., 2016; Hirose et al., 2017; Mao et al., 2019; Mordret et al., 2010; Obermann, Planès, Larose, Sens-Schön-
felder, & Campillo,  2013; Sánchez-Pastor et  al.,  2018; Sens-Schönfelder & Wegler,  2006), fault zones (e.g., 
Brenguier et al., 2008; Chen et al., 2010; Peng & Ben-Zion, 2006; Rivet et al., 2014; Roux & Ben-Zion, 2014; 
Schaff & Beroza, 2004; Wu et al., 2009), and CO2 and geothermal reservoirs (Hillers et al., 2015, 2020; Ober-
mann et al., 2015).

Although measurements of temporal medium changes are interesting in their own right, knowledge about their 
spatial location is necessary to gain more insight into the processes that occur at depth. Regionalization of data 
can yield a first-order estimate on the spatial distribution, but a preferable approach is to perform a (linear) in-
version using so-called sensitivity kernels. In loose terms, these spatial weighting functions provide information 
on the parts of the medium that have preferentially been sampled by the waves in a probabilistic sense. The first 
travel-time sensitivity kernels for coda wave interferometry have been introduced by Pacheco and Snieder (2005) 
under the diffusion approximation. Shortly after, Pacheco and Snieder (2006) provided probabilistic kernels for 
the single scattering regime. Obermann, Planès, Larose, and Campillo  (2013) applied these kernels to invert 
for structural and temporal velocity changes around the Piton de la Fournaise volcano on Reunion Island. To 
detect and locate medium changes caused by the Mw 7.9, 2008 earthquake in Wenchuan in China, Obermann 
et al. (2019) used a 3D kernel combining the sensitivity of body and surface waves. Although the results of the 
authors were very promising, Margerin et al. (2016) raised questions about the formulas used to compute the 
sensitivity kernels, since the works rely on an extrapolation of a formula established in the diffusion regime. 
Margerin et al. (2016) demonstrated that knowledge of the angular distribution of the energy fluxes of coda waves 
is required for an accurate prediction of sensitivities, valid for an arbitrary distribution of heterogeneities and all 
propagation regimes. The authors obtained this result by using a radiative transfer approach, which directly pre-
dicts specific intensities. Snieder et al. (2019) derive different travel-time sensitivity kernels for acoustic and elas-
tic waves, where the one for the 2D acoustic case based on radiative transfer theory follows a similar derivation 
as Margerin et al. (2016). Additionally, the authors derived separate travel-time sensitivity kernels for diffusive 
acoustic waves and diffusive elastic waves. Building on the work of Snieder et al. (2019) and Duran et al. (2020) 
developed a numerical approach to derive elastic and acoustic decorrelation sensitivity kernels for statistically 
uniform media. Other developments on sensitivity kernels focus on the sensitivity as a function of depth. Ober-
mann et al. (2016) and Obermann, Planès, Larose, and Campillo (2013) showed that a linear combination of the 
2D surface wave and 3D body wave kernels are a decent proxy to describe the sensitivity as function of lapse-time 
and depth. A formal approach to couple body and surface waves is provided by Margerin et al. (2019), leading to 
a specific formulation of kernels (Barajas, 2021).

Most of these studies on sensitivity kernels provide a solution for statistically homogeneous scattering media, 
although the interest in extending the sensitivity kernels to non-uniform media is growing, which is especially in-
teresting for monitoring volcanic and fault zone settings. Wegler and Lühr (2001) derived attenuation parameters 
around the Merapi volcano in Indonesia. The authors found a scattering mean free path (ℓ) as low as 100 m for S 
waves in the frequency band of 4–20 Hz. They also reported that the scattering attenuation is at least one order of 
magnitude larger than the intrinsic attenuation around Merapi. Later, Yoshimoto et al. (2006) estimated scattering 
attenuation in the north-eastern part of Honshu in Japan. For this volcanic area the authors analyzed the coda of 
earthquake records and reported a scattering coefficient of 0.01 km−1 for the frequency of 10 Hz. Another study 
that analyzed the coda of seismograms in a volcanic setting in Japan found the scattering mean free path for P 
and S waves to be as short as 1 km for the 8–16 Hz frequency band (Yamamoto & Sato, 2010). Recently, Hirose 
et al. (2019) derived a scattering mean free path ∼2 km at Sakurajima volcano in Japan, which is much smaller 
than in the surrounding rock. In a recent study on the western part of the North Anatolian Fault Zone (NAFZ) van 
Dinther et al. (2021) also found a strong contrast in scattering (approximately factor of 15), with ℓ = 10 km inside 
the fault zone and ℓ in the order of 150 km outside the fault zone. Gaebler et al. (2019) found similarly small 
scattering mean free path values along the northern strand of the NAFZ analyzing the energy decay of earthquake 
records with a central frequency of 0.75 Hz.

The first works considering non-uniform media are by Kanu and Snieder (2015a, 2015b), in which the authors 
modeled the wavefield by finite difference simulations to compute the energy density from the waveforms in 
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order to numerically compute the kernels. Recently, Zhang et al. (2021) modeled sensitivity kernels for elastic 
body waves in 2D random heterogeneous scattering media based on radiative transfer theory using a Monte Carlo 
approach. The authors use a similar probabilistic approach as is used in current study, but a different computation 
method. Furthermore, the scattering contrasts considered in current study are larger.

In this work we explore the impact of scattering distribution on coda wave sensitivity kernels for the acoustic 
scalar case. We show examples of sensitivity kernels for realistic settings, in which we consider large contrasts of 
scattering properties that are supported by seismic observations. Guided by the kernels obtained for volcanic and 
fault zone settings, we highlight the different sensitivities of three classical coda wave observables. In addition, 
the parametric part of this study (Section 4.2) aids in the understanding of the kernels.

2.  Coda-Wave Sensitivity Kernels
When monitoring the subsurface, one aims to invert observations to gain information about the perturbation of 
medium properties. As the name suggests, the sensitivity kernels quantify the spatial and temporal sensitivity of a 
specific observable to changes in the medium. The kernels facilitate the reconstruction in 2D or 3D of the spatial 
variation of a given physical parameter, such as the wave speed or scattering properties. Since different observa-
tions require the use of different kernels, we compute three types of sensitivity kernels: the travel time kernel Ktt, 
the scattering kernel Ksc, and the decorrelation kernel Kdc.

The travel-time kernel, Ktt, relates the observed travel-time delay (or phase shifts) between coda waves for dif-
ferent recording periods to perturbations in propagation velocities. In this study we use the kernel as defined by 
Margerin et al. (2016) and Mayor et al. (2014):

���(�′, �; �, �0) = ��
∫

�

0 ∫��

�(�′, �− �′, −�′; �)�(�′, �′, �′; �0)��′��′
�(�, �; �0)

� (1)

where a forward-backward formalism is employed in which the receiver is placed on an equal footing as the ac-
tual source. The intensity propagators I are based on the 2D radiative transfer equation (RTE; Paasschens, 1997; 
Sato, 1993), and depend on r0, r, and/or r′, which corresponds to the position vectors for the source of forward 
intensity, the source of backward intensity and the perturbation, respectively. n′ is an unit vector indicating the 
propagation direction and SD denotes the unit sphere in space dimension D, as well as its area. The intensity in the 
denominator of Equation 1 is a mean intensity, which is the angular average intensity, and can also be described 
as the energy density stored in a certain volume or surface. On the other hand, the numerator of Equation 1 is 
a convolution between specific intensities of two sources: one source of forward intensity and one of backward 
intensity. The specific intensity is a directionally dependent intensity, defined as the amount of energy flowing 
around direction n′, through a small surface element dS located at point r and at a certain time t within a defined 
frequency band (e.g., Margerin, 2005).

Note that the intensity, or energy density, has dimension [L]−D (Paasschens, 1997) so that the kernel has dimen-
sion [t][L]−D. The kernel is a time density equal to the time spent by the waves around a given point, per unit 
volume or surface. The kernel is valid for anisotropic scattering, although we consider only isotropic scattering 
in current work. Previously, Mayor et al. (2014) introduced a similar sensitivity kernel for the perturbation of 
intensity caused by a local change in absorption. In Margerin et al. (2016) this sensitivity kernel is reinterpreted 
probabilistically as the travel-time kernel.

Of a different nature are small structural changes in the subsurface, for example, the growth of a fault, resulting in 
a perturbation of scattering. An extra scatterer creates new propagation paths for the waves, which in turn slightly 
modifies the coda signal. As a consequence, one can observe a decorrelation of the waveform in the recordings 
for different periods of time (Planès et al., 2014). The decorrelation kernel, Kdc, relates this observation to the 
local change in scattering of the medium. The kernel takes into account the new propagation paths that have been 
created by the addition of scatterers, and is defined as follows (Margerin et al., 2016; Planès et al., 2014):

���(�′, �; �, �0) = ∫

�

0

�(�′, �− �′; �)�(�, �′; �0)��′
�(�, �; �0)

� (2)
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All the intensities in Equation 2 are mean intensities, therefore the decorrelation kernel is dependent on the mean 
energy densities only and not on the directivity of the intensities, implied by the absence of the directivity depend-
ence of the energy propagation (n′). Note that Equation 2 is valid stricto sensu in the case where the structural 
change behaves as an isotropic scatterer. In the scalar approximation employed in this work, this implies that they 
are small compared to the probing wavelength. We emphasize that the scattering properties of the reference medi-
um may be completely arbitrary. Another observation for the same medium change, that is, the scattering pertur-
bation, is a change in relative intensity δI/I. Since the observation is different than in the case of the decorrelation, 
one needs another sensitivity kernel. Physically, a perturbation in scattering located in a volume dV(r′) has two 
effects on the intensity. (a) An energy loss, which can be quantified by evaluating the extra-attenuation of seismic 
phonons that cross dV(r′). This contribution is effectively quantified by Ktt. (b) An increased probability of ener-
gy reaching the detector due to the additional paths created by the additional scatterer. This is effectively what Kdc 
provides us with. Therefore, the scattering sensitivity kernel Ksc, as derived by Mayor et al. (2014), is defined as:

���(�′, �; �, �0) = ���(�′, �; �, �0) −���(�′, �; �, �0)� (3)

Note that the scattering pattern of the new scatterers should be isotropic implying as above that they are small 
compared to the wavelength. A characteristic of this kernel is that the integral over all detection points r gives 
0, implied by the conservation of energy as demonstrated in the work of Mayor et al. (2014). We will also find 
in the results (e.g., Figure 1) that the scattering kernels have both positive and negative sensitivities to scattering 

Figure 1.  Sensitivity kernels for uniform scattering media at 100 s lapse-time. The columns show Ktt ((a), (d), (g)), Ksc ((b), (e), (h)) and Kdc ((c), (f), (i)), respectively. 
The scattering mean free path increases from top to bottom: ℓ1, 2 × ℓ1, 8 × ℓ1, with ℓ1 = 30 km. The inter-source distance is 32 km. The annotations r′1 − r′3 point to 
positive, negative, and positive sensitivity along the line connecting the sources, respectively. All kernels are normalized with respect to the maximum value. Note. That 
for Ksc the color bar is symmetric around zero, with red as negative and blue as positive sensitivities, respectively.
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perturbations. In other words, the spatial distribution of intensities is modified while the total intensities remain 
unchanged. For an extension of Equations 1–3 to coupled P and S waves (see Zhang et al., 2021)

3.  Computation of Sensitivity Kernels
In this section, we provide an overview of the different approaches that have been employed in the literature to 
compute the sensitivity kernels defined in Equations 1–3. We will begin by discussing techniques that are based 
on the direct computation of the convolution integrals. These methods require the global computation of the 
time-dependent intensity at every point of the target medium. A first way to get access to the spatio-temporal 
distribution of intensity in a scattering medium is to perform full wavefield simulations in a series of realizations 
of randomly perturbed media with prescribed statistics. An ensemble average can be subsequently performed to 
smooth out the fluctuations of the intensity. The advantage of the full wavefield approach is that the coupling 
between all types of waves, including surface waves, is incorporated in the modeling. Furthermore, spatial varia-
tions of propagation properties can be easily implemented. Kanu and Snieder (2015a) considered the effect of non 
uniform properties on the spatio-temporal dependence of sensitivity kernels. They performed finite difference 
simulations in complex 2-D acoustic media including spatial variations in both background velocities and corre-
lation function of the random medium. Their study provides a clear illustration of the impact of spatially varying 
scattering properties on the spatio-temporal dependence of sensitivity kernels. Duran et al. (2020) developed the 
theory of decorrelation kernels for coupled elastic waves. In their formulation the sensitivity is decomposed onto 
a P–S polarization basis. To compute the P and S intensities in a scattering medium, they apply the Helmholtz 
decomposition to full wavefield simulations in inhomogeneous media. Their theory is carefully validated through 
a series of numerical experiments where the effect of adding a single scatterer at different positions is investi-
gated. These authors report excellent agreement between theory and synthetic data. A hybrid method combining 
analytical and full wavefield approaches was adopted by Obermann, Planès, Larose, and Campillo (2013). These 
authors studied more particularly the relative contributions of surface and body waves in the coda. They proposed 
to express the traveltime sensitivity kernel of coda waves as a linear combination of surface and body waves 
kernels, that have been determined theoretically without coupling. To take into account the energy exchange be-
tween the two types of waves, the coefficients of the linear combination are allowed to depend on the lapse-time 
and are determined through numerical simulations in a heterogeneous 2-D elastic half-space. The approach of 
Obermann, Planès, Larose, and Campillo (2013) reproduces well the main features of the coda sensitivity seen 
in the numerical simulations. An extension to a 3-D elastic half-space was presented in Obermann et al. (2016). 
The examples cited above illustrate the great flexibility of full wavefield simulations. We note, however, that this 
approach suffers from an important drawback. Indeed, Equations 1 and 3 show that the specific intensity (and 
not its angular average) is required to compute the travel-time and scattering sensitivity kernel. This point has 
not been addressed in the full wavefield approach so far. It is only in the diffusion regime (i.e., after sufficiently 
many scattering events) and at sufficiently large distance from the source that it is appropriate to approximate the 
specific intensity by its angular average. But even so, such an approximation may lead to unphysical results. As 
an obvious example, if one replaces the specific intensity by its mean value in Equation 3, one arrives at the con-
clusion that the sensitivity of the intensity to a local change in scattering properties is 0, which is clearly incorrect.

Because radiative transfer theory underpins the derivation of sensitivity kernels, this theory is a natural can-
didate for their computation. The key difficulty in the evaluation of the convolutions in Equations 1–3 is the 
calculation of global fundamental solutions (or Green’s functions) of the RTE. Standard quadrature schemes 
may subsequently be employed to carry out the integrations numerically. Mayor et  al.  (2014) employed ana-
lytical solutions developed by Paasschens (1997) for isotropic scattering of scalar waves in 2D. In applications 
to real data, the isotropy assumption can be limiting. To take non-isotropic scattering into account Margerin 
et al. (2016) introduced a spectral method based on a Fourier-Bessel series for the specific intensity. To cope with 
the strong anisotropy of the intensity in the vicinity of the source, these authors treated analytically the coherent 
and single-scattering intensity. The methods cited thus far are limited to statistically uniform media with constant 
background velocity. Zhang et al. (2021) extended the sensitivity kernel theory to the case of coupled elastic P 
and S waves in laterally varying media. In numerical applications, they considered the case of objects exhibiting 
a contrast of scattering/absorption properties w.r.t. a statistically uniform background in 2D elastic full-space. To 
evaluate the kernels, they employed Monte Carlo simulations to compute an angularly discretized version of the 
time-dependent P and S specific intensities on a grid of points covering the target medium. A similar approach 
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was employed by Sens-Schönfelder et al.  (2021) to compute the sensitivity of high-frequency scattered body 
wave phases to scattering perturbations located in the deep mantle. Their study highlights nicely the regions of 
the deep Earth contributing to the generation of precursors to the PKP phase. These recent results illustrate well 
the versatility of Monte-Carlo methods.

Independent of the mathematical derivation of sensitivity kernels, Monte-Carlo methods have been employed 
for a long time in for example, nuclear engineering to compute the sensitivity of observables to perturbations in 
scattering/absorption properties. In this approach, which is often referred to as “differential Monte-Carlo meth-
od” in the literature, the sensitivities are computed “on the fly” as the energy propagates from the source to the 
receiver (Lux & Koblinger, 1991). The differential Monte-Carlo method was introduced for elastic waves by 
Takeuchi  (2016) to compute the sensitivity of teleseismic waves and their coda to perturbations of scattering 
and absorption properties at depth in the Earth. In this example, the kernels are discretized onto layers where the 
scattering/absorption properties may be perturbed independently. The approach we adopt in the present work also 
belongs to the family of differential methods. The twist that differentiates it from previous works is the introduc-
tion of the method of delta (or null) collision in the Monte-Carlo algorithm to treat spatially variable scattering/
absorption properties. The technique is described in details in Appendix A but we summarize briefly its main 
features here. In effect, our method replaces a medium where attenuation varies spatially with a medium where 
attenuation is uniform by introducing fictitious scattering events that do not modify the direction of propagation 
of the waves (hence the names null or delta collision). As detailed in Appendix A, an important consequence of 
this approach is that it requires absolutely no particle tracking effort. This property considerably simplifies the 
algorithm and allows for a simple treatment of media with completely arbitrary spatial variations of scattering/
absorption properties. In this work, we will particularly focus on high-contrast geological objects such as volca-
noes or fault zones.

4.  Sensitivity Kernels for Non-Uniform Scattering Media
In this section we discuss the effect of the scattering distribution on the sensitivity kernels. Guided by the results 
obtained in a volcanic setting, we introduce the physical interpretation for each of the three different kernels. The 
second context for which we investigate the implications of non-uniform scattering strength on the sensitivities is 
for a model with two half-spaces. This case is illustrated with the aid of two parametric studies, which facilitate 
the interpretation of the kernels. We will finish this section with an application to a fault zone model.

To facilitate the discussion we compare the results for all three non-uniform models to the kernels for uniform me-
dia. The latter are shown in Figure 1 at a lapse-time of 100 s for increasing scattering strengths. The columns from 
left to right show Ktt, Ksc, and Kdc, respectively. The results obtained for a reference medium, with ℓ1 = 30 km, 
is shown at the top row. The scattering mean free path varies over orders of magnitude in the Earth, therefore we 
compare the reference medium with weaker scattering media. The middle and lower rows of Figure 1 show the 
results for increasing ℓ: 2 × ℓ1 and 8 × ℓ1, respectively. The epicentral distance is set to R = 32 km. The numerical 
results shown in Figure 1 will serve as guides to understand the more complex cases associated to non-uniform 
scattering properties.

4.1.  Volcanic Setting

Figure 2 shows the kernels for a source and detector that are 47 km apart, at 40 s (upper row) and 80 s (lower 
row) lapse-times, in the vicinity of a volcano. The volcano, characterized by strong scattering, has a scattering 
mean free path of 2 km and a radius of 6 km. These values are based on the findings of Hirose et al. (2019) at the 
Sakurajima volcano in Japan. The surrounding crust has a weaker scattering strength with ℓ = 150 km, and for 
simplicity the intrinsic absorption is considered uniform with Qi = 100.

A couple of observations stand out from Figure 2. First, the travel-time and decorrelation kernels are very dis-
similar. Second, the volcano appears to be a reflector for the intensities at early lapse-times. To explain these ob-
servations and improve the understanding of the kernels we will discuss all three kernels separately and compare 
them to the uniform model as reference, starting with the travel-time kernel, then the decorrelation kernel and 
finally the scattering kernel.
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As defined in Equation 1, Ktt is dependent on the dominant propagation direction of the waves. There are two 
specific intensities contributing to the travel-time kernel, coming from two different primary sources: (a) the 
forward intensity, Is, from the source toward the perturbation; and (b) the backward intensity, Id, from detector 
toward the perturbation. In the application part of this manuscript we refer to the first source as the “source of 
forward intensity” or “forward source,” while the latter will be referred to as the “source of backward intensity” 
or “backward source” from hereafter.

Where the forward and backward intensities are simultaneously high and propagating in opposite direction, the 
travel-time kernel shows high sensitivities, as dictated by the convolution of specific intensities in the numerator 
of Equation 1. In the uniform case, there are only two sources to be considered Is and Id. In the case of a localized 
perturbation with high scattering contrast, energy may be back-scattered by the heterogeneity, giving rise to a 
secondary and delayed intensity �Δ�

s,d  . An overview of the different intensities is presented in Table 1.

Figure 2.  Sensitivity kernels for volcanic setting, for lapse-time of 40 s ((a)–(c)) and 80 s ((d)–(f)). The columns show Ktt, Ksc, and Kdc, respectively. The volcano is 
depicted as a circle with radius 6 km and ℓv = 2 km, outside the volcano ℓ = 150 km. The inter-source distance is approximately 47 km. Note. That axis extent is not the 
same for 40 s (±100 km) and 80 s (±150 km). All kernels are normalized with respect to the maximum value. The color bar for Ksc is symmetric around zero.

Symbol Description

Is Intensity from the source: Forward intensity

Id Intensity from the detector: Backward intensity

𝐴𝐴 𝐴𝐴b
s,d Intensity along the ballistic path between source and detector

𝐴𝐴 𝐴𝐴Δ𝓁𝓁
s,d Secondary and delayed intensity induced by a strong scattering region

Js Energy flux from the source

Jd Energy flux from the detector

𝐴𝐴 𝐉𝐉bs,d Energy flux along the ballistic path between source and detector

𝐉𝐉Δ𝓁𝓁
s,d

Secondary and delayed energy flux induced by a strong scattering region

Table 1 
Overview of Intensities and Fluxes
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The key intensities for the volcanic setting are shown in Figure 3. As a re-
sult of the highly scattering volcano, specific intensities propagate from the 
forward source toward the volcano (Is, in light green), and scatter from the 
volcano to the source of backward intensity (𝐴𝐴 𝐴𝐴Δ𝓁𝓁

s,d  , in dark green). Similarly, 
intensities propagate from the source of backward intensity to the volcano 
(Id, in black) and from the volcano to the forward source (𝐴𝐴 𝐴𝐴Δ𝓁𝓁

s,d  , in dark green). 
For 40  s lapse-time, we can therefore explain the high sensitivities on the 
paths connecting the sources via the volcano, by the high specific intensi-
ties that are opposite in direction on those paths. For the uniform case we 
observe higher sensitivities around and between the sources, especially for 
strong scattering media the sensitivity on the direct path between the sources 
increases (Figure 1a). This direct path is less favorable in the volcanic setting, 
because the specific intensities are much higher on the paths that connect the 
sources of forward and backward intensity via the volcano. In other words, 
for early lapse-times the volcano acts as a secondary and delayed source 
of intensity and therefore promotes an additional path favorable to energy 
transport between the primary sources, which is not present in the uniform 
case. For later lapse-time (80 s; Figure 2d), Ktt resembles its equivalent for 
a uniform medium. Yet the imprint of the volcano remains as the strongly 
scattering zone prevents ballistic energy to travel through and causes a “shad-
ow” in the kernel for late lapse-times. The partly removed ballistic energies 
originating from both sources cause an “M”-shaped shadow to appear, which 
deforms and gradually disappears with lapse-time. At later lapse-times the 
effect of the volcano starts to disappear as the portion of multiply scattered 
energy increases, resulting in a probability increase for two specific intensi-
ties to propagate in opposite directions in these areas. Animations of the three 
different kernels with increasing lapse-time for the volcanic setting can be 
found in the Supporting Information, Movies S1–S3.

The decorrelation kernels appear rather different from their travel-time coun-
terparts. Indeed, Equation 2 shows that Kdc does not depend on the specific 

intensities, but on the mean intensities instead. The decorrelation kernel will thus be high where the mean inten-
sities emitted by the forward and backward sources are simultaneously high. This condition is far less stringent 
than the analogous one for the travel-time kernel. For this reason the travel-time and decorrelation kernel are 

dissimilar. The Kdc for the volcanic case at early lapse-time (40 s; Figure 2c) 
shows high sensitivity around the sources and on the single scattering el-
lipse. Additionally, high sensitivity can be observed in the halos surrounding 
the forward source and volcano, and the backward source and volcano, re-
spectively. Energy becomes rapidly diffuse when it enters into the volcano, 
therefore the high intensities inside the volcano are on the side that faces 
the sources; hence a bend in the single scattering ellipse can be observed 
(Figure 2c). For later lapse-times (80 s; Figure 2f), Kdc appears similar to the 
uniform Kdc (Figure 1i). Nevertheless, the imprint of the strongly scattering 
volcano remains, causing a shadow on the single-scattering ellipse of the 
decorrelation kernel.

The last kernel to be considered is the scattering kernel (Figures 2b and 2e). 
In order to understand its structure in the vicinity of a volcano, we will first 
discuss the pattern of Ksc for the uniform case (e.g., Figure 1e). As mentioned 
in Section 2, the scattering kernel has positive and negative sensitivities. To 
describe the pattern of the scattering kernel intuitively, we imagine plac-
ing additional scatterers at three locations in Figure 4. If an extra scatterer 
would have been placed left of the forward intensity source, the chances of 
additional energy reaching the backward intensity source would have been 
increased due to the possibility of back-scattering. Due to reciprocity, this 

Figure 3.  Depiction of the specific intensities controlling Ktt in a volcanic 
setting. The green star depicts the source and the black triangle the detector. 
The former and the latter are referred to as source of forward and source 
of backward intensity, respectively. The gray circle shows the location of 
the volcano. Specific intensity Is (Id) propagates from the source of forward 
intensity (source of backward intensity) to the volcano, respectively. 
Back-scattered energy is indicated as IΔℓ. It originates from one source and 
propagates via the volcano to the other source (and vice versa), but it also has 
an energy contribution coming from one source that scatters back to the same 
source. Both sources emit intensities into all directions, also on the direct path 
between them, as indicated by Is and Id.

Figure 4.  Graphical interpretation of the fluxes explaining the pattern of the 
scattering kernel for a uniform scattering medium. Energy from the source 
(green star) is emitted in all directions, indicated by the green circles. The 
green arrows depict the fluxes along the line connecting the source and 
detector. Similarly, energy from the detector (black triangle) is emitted in 
all directions, indicated by the gray circles. The black arrows depict fluxes 
from the detector in the source-detector line. In the space between source and 
detector the fluxes have opposite direction, resulting in negative sensitivity 
(red “−”). In the outside spaces, the fluxes from source and detector have 
similar directions, resulting in positive sensitivity to scattering (blue “+”). The 
nodal lines are depicted by the orange dashed line.
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same argument holds for an additional scatterer located right of the backward source. On the other hand, negative 
scattering sensitivity between the two sources indicates that if an additional scatterer would have been placed in 
the red area, the probability of energy coming from one source and reaching the other source would decrease.

In a more physical manner, the signs in the kernels can be understood in the following way. If we imagine point 
sources at the locations of the source and detector that inject energy into the medium at time t = 0. The energy 
transport gives rise to fluxes going from a source of forward intensity to a source of backward intensity (and vice 
versa). At late lapse-times, which is at several scattering mean free times τ (where τ = ℓ/c with c as wave veloci-
ty), the energy is diffuse. Previously, it has been shown in the literature that in the diffusion regime the scattering 
kernel is controlled by the scalar product of the energy flux vectors (J) for sources located at the position of the 
forward/backward intensity sources (e.g., Arridge, 1995; Mayor et al., 2014; Wilson & Adam, 1983):

lim
𝑡𝑡→+∞

𝐾𝐾sc(𝐫𝐫; 𝐫𝐫′; 𝐫𝐫0; 𝑡𝑡) = 𝐷𝐷(1 − 𝑔𝑔)∫

𝑡𝑡

0
𝐉𝐉𝐟𝐟𝐟𝐟𝐟𝐟(𝐫𝐫′; 𝐫𝐫; 𝑡𝑡 − 𝑡𝑡′) ⋅ 𝐉𝐉𝐛𝐛𝐛𝐛𝐛𝐛(𝐫𝐫′; 𝐫𝐫0; 𝑡𝑡′)d𝑡𝑡′� (4)

with g denoting the mean cosine of the scattering angle. Note that Equation 4 is not strictly valid quantitatively, 
although qualitatively it is correct. Hence, Equation 4 is rather an approximate than an exact formula, which in 
practice explains the pattern of the scattering kernel accurately. It contains the essential physics and therefore we 
employ this formulation heuristically to analyze our results. We would like to emphasize that Equation 4 is used 
to understand the signs and relative magnitude of the scattering kernel. No diffusion approximation has been used 
to derive the kernel Equations 1–3. Figure 4 shows a schematic diagram of the fluxes in the scattering kernel for a 
uniform medium. The energy flux flows away in all directions from the source and similarly for the detector. On 
the direct path between source and detector, these fluxes have opposite direction while on the outside the fluxes 
have similar directions. As a consequence of the scalar product in Equation 4, the fluxes in opposite direction lead 
to an area of negative sensitivity to scattering on the direct path. Here, the probability of energy reaching the other 
source is decreased. On the outer side of the direct path between the sources, there is a positive sensitivity due to 
the scalar product of the fluxes in similar direction. In these positive areas the probability of energy reaching the 
other detector is increased. The line that divides the positive and the negative sensitivities in the vicinity of the 
source/detector is referred to as the nodal line (Figure 4).

Now that we have discussed the positive and negative signs in Ksc for a uniform medium we continue the dis-
cussion about the volcanic case. Ksc will be high in absolute value where the actual energy fluxes are simultane-
ously large and aligned, either parallel or anti-parallel. Consequently, an additional energy transport channel in 
the scattering kernel for early lapse-times (40 s; Figure 2b) appears as strong negative sensitivities, connecting 
the two sources via the volcano. The negative sensitivity on the direct path between the sources is also present, 
albeit weaker than on the path via the volcano. Similarly as for Ktt, this is due to smaller energy current vectors 
on the direct path. Furthermore, we can observe similarities between the decorrelation and the scattering kernel, 
for both the early and late lapse-times. In particular, the single scattering ellipse and the halos of high sensitivity 
between either source or volcano, which are also present in Kdc, can be observed in Figures 2b and 2e). Although 
Ksc for the volcanic setting at late lapse-time (80 s) resembles its equivalent for a uniform model, the effect of the 
volcano remains.

4.2.  Two Half-Spaces Setting

In the northeastern region of Honshu, Japan, Yoshimoto et al. (2006) estimated the spatial distribution of attenu-
ation. These authors found that the contrast of properties between the front-arc and the back-arc is approximately 
equal to two for both absorption and scattering. With this in mind, we explore the effect of non-uniform scat-
tering properties on the coda wave sensitivities, in a medium composed of two half-spaces. A tectonic setting 
with a strike-slip fault that caused two different materials on each side of the fault to be in contact may also be 
considered in this context. For all half-space models, ℓ1 is the smallest scattering mean free path we consider, 
it is kept constant at 30 km and consistently on the left side of the model. The right half-space has weaker scat-
tering (ℓ1 < ℓ2), where ℓ2 is chosen to differ by a factor of 2, 3, or 8 from ℓ1. The interface delimiting the two 
half-spaces coincides exactly with the boundary between two pixels. d represents the distance from the forward 
intensity source to this interface.
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The sensitivity kernels with sources in opposite half-spaces are shown in Figure 5, for t = 100 s. From the top to 
the bottom row, we show the results for increasing scattering contrast between ℓ1 (the reference half-space, on the 
left) and ℓ2 (the right half space): ℓ2 = 2 × ℓ1 (upper), ℓ2 = 3 × ℓ1 (middle), and ℓ2 = 8 × ℓ1(lower). The dashed 
line, placed at 6 km from the source of forward intensity, depicts the boundary between the two half-spaces. 
The inter-source distance is the same as for the uniform cases, R = 32 km. We can observe that all three kernels 
for all degrees of scattering contrast are asymmetric, with the asymmetry intensifying as the contrast between 
ℓ1 and ℓ2 increases. In the travel-time kernel there is a strong effect of back-scattering, especially for the case 
where 𝐴𝐴 𝓁𝓁2

𝓁𝓁1
  = 8 (Figure 5g). The sensitivities appear higher in the strong scattering half-space. For the decorrelation 

kernels we can observe the increased difference between dominant transport regimes for increasing scattering 
contrasts. For example, in Figure 5i the dominant regime of wave propagation in the left half-space is diffusion. 
Therefore, the mean intensity and thus the sensitivity is spread over a larger area around the source. However, in 
the right half-space the propagation regime is essentially ballistic, consequently, strong sensitivities can be ob-
served on the single scattering ellipse. The most striking observation from Figure 5 is the “flipped” pattern in the 
scattering kernels (w.r.t. the pattern for the uniform case), for 𝐴𝐴 𝓁𝓁2

𝓁𝓁1
≥ 3 (Figures 5e and 5h). In the strong scattering 

half-space (with ℓ1), the sensitivity to an additional scatterer left of the source is negative (r′1 in Figure 5h), while 
it was positive for the uniform case (Figure 1e). On the other side of the source (r′2) it is positive, while for the 
uniform case it was negative. The sensitivity to an additional scatterer in the weaker scattering half-space (with 

Figure 5.  Sensitivity kernels for two half-spaces at 100 s lapse-time. The columns show Ktt ((a), (d), (g)), Ksc ((b), (e), (h)), and Kdc ((c), (f), (i)), respectively. The 
left half-space has a fixed scattering mean free path ℓ1. The scattering mean free path in the right half-space increases from top to bottom: 2 × ℓ1, 3 × ℓ1, and 8 × ℓ1, 
with ℓ1 = 30 km. The source-detector distance R0 is set to 32 km. The annotations r′1r′4 point to negative, positive, negative, and positive sensitivity along the line 
connecting source and detector, respectively. All kernels are normalized with respect to the maximum value. Note. That for Ksc the color bar is symmetric around zero, 
with red as negative and blue as positive sensitivities, respectively.
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ℓ2) appears similar to that for the uniform case in the vicinity of the source, 
with negative sensitivity at r′3 and positive at r′4, regardless of the scattering 
strength or contrast.

Figure 5 shows that for a certain scattering contrast, the pattern of the scat-
tering kernel changes significantly w.r.t. the uniform kernel. As explained for 
the volcanic setting, this is due to the active fluxes: from the forward source, 
Js, and the backward source, Jd, but also the flux governed by the contrast 
in scattering 𝐉𝐉Δ𝓁𝓁

s,d . In order to improve our understanding of the “flipped” 
scattering kernel for models with two half-spaces and to gain more insight 
into the factors that affect the active fluxes we start by analyzing all fluxes 
separately (Figure 6), followed by two additional sets of simulations. In one 
set we take four models in which the scattering distribution of the medium is 
fixed, but the location of one of the sources rotates (Figure 7). In another set 
of simulations we investigate the effect of several parameters on the magni-
tude and directivity of each flux (Figure 8).

If we denote the part of Js (Jd) flowing in the direction of the backward 
source (forward source), respectively, as the direct flux 𝐉𝐉bs,d . Then the flux at 
the sources is a combination of 𝐉𝐉bs,d and 𝐉𝐉Δ𝓁𝓁

s,d , as illustrated in Figure 6. For the 
situation in Figure 6, the magnitude of 𝐉𝐉Δ𝓁𝓁

s,d depends on the contrast of scatter-
ing between both half-spaces. The orientation of 𝐉𝐉Δ𝓁𝓁

s,d is perpendicular to the 
boundary of scattering and is directed from the stronger scattering half-space 
toward the weaker scattering half-space. The orientation of 𝐉𝐉bs,d depends on 
the positions of the sources, while its magnitude depends on the inter-source 
distance and lapse-time.

Figure 7 demonstrates how the direct flux and the flux induced by the scatter-
ing contrast contribute to the pattern of the scattering kernel. In all four pan-
els the scattering contrast is fixed, with 𝐴𝐴 𝓁𝓁2

𝓁𝓁1
  = 8, and the orientation of 𝐉𝐉Δ𝓁𝓁

s,d is 
perpendicular to the scattering boundary. From Figure 7a–7d the location of 
the upper source changes, but its distance to the lower source is kept constant 
at R = 64 km (2 × R0). We rotate the line connecting the two sources from 
parallel to the boundary (Figure 7a) to perpendicular to the boundary (Fig-
ure 7d). This causes the orientation of 𝐉𝐉bs,d to rotate and therefore the kernel 
pattern to change from a “twisted” version of the uniform kernel (Figures 6 

and 7a) to a kernel with completely opposite sensitivity in the stronger scattering half-space (w.r.t. the uniform 
kernel), as we have already seen in Figure 5h.

There are multiple parameters that affect either direction or amplitude of 𝐉𝐉bs,d , 𝐉𝐉Δ𝓁𝓁
s,d , and/or the relative contribution 

of both fluxes and therefore the kernels; a selection is shown in Figure 8. The effect of scattering contrast, and as a 
consequence on 𝐉𝐉Δ𝓁𝓁

s,d , can be seen when comparing Figure 8a where ℓ2 = 2 × ℓ1 with Figure 8b where ℓ2 = 8 × ℓ1. 
If ℓ2 in the right half-space increases from 2ℓ1 (Figure 8a ) to 8ℓ1 (Figure 8a) the kernel looks more asymmetric. 
Not only is the sensitivity partly focused on the single-scattering ellipse for the weaker scattering half-space, but 
also in the vicinity of both sources we observe a deformation of the kernel w.r.t. the uniform case. The angle γ, 
between the half-space boundary and the nodal line, decreases. Note that the nodal line is always perpendicular 
to the resulting flux at the source, as show in Figures 4 and 6. The change in γ is due to the larger 𝐉𝐉Δ𝓁𝓁

s,d , which is 
induced by the increasing scattering contrast. This alters the magnitude and direction of the flux, despite the un-
changed orientation of the individual fluxes 𝐉𝐉Δ𝓁𝓁

s,d and 𝐉𝐉bs,d . Another parameter that affects the pattern of Ksc is the 
inter-source distance, which directly affects the contribution of 𝐉𝐉bs,d to the flux. For a larger R the angle γ increases 
as can be observed when comparing the kernel for R = R0 (panel b) to R = 3 × R0 (Figure 8c).

Additionally, when comparing Figures 8b–8d we observe that the distance of the sources to the boundary of 
scattering contrast, d, also plays an important role in the pattern of the kernel. The kernel for larger d (Figure 8d) 
appears more similar to the kernel for uniform scattering (e.g., Figure 1) than the kernel for smaller d (Figure 8b). 
Thus the effect of the non-uniformity decreases with increasing d. The lack of sensitivity on the single-scattering 

Figure 6.  Graphical representation of the active fluxes and Ksc in case of a 
medium with two half-spaces. The fluxes shown in green are from the source 
of forward intensity. The flux 𝐉𝐉bs,d in green (black) is the part of the energy 
from the forward source (backward source) in the direction of the backward 
source (forward source), respectively. The resulting flux at the forward source, 
Js shown in green, (backward source, Jd shown in black) has contributions 
from 𝐉𝐉bs,d and 𝐉𝐉Δ𝓁𝓁

s,d , respectively. 𝐉𝐉Δ𝓁𝓁
s,d is the flux induced by the contrast in 

scattering. The nodal line, depicted in orange, separates positive and negative 
sensitivity to scattering and is perpendicular to the resulting energy flux.
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ellipse (Figure 8d) is a consequence of the energy being already diffuse before reaching the weaker scattering 
half-space. The two tests discussed above show that we can improve our interpretation of the scattering kernels 
by understanding the actual fluxes.

Finally, Figure 9 shows the effect of non-uniform scattering strength on the decorrelation, travel-time and scat-
tering kernels for a model with sources far away from a boundary of scattering contrast. The sources are placed 
at a large distance (58 and 90 km) from the contrast of scattering inside the weaker scattering half-space, where 
ℓ1 = 30 km and ℓ2 = ℓ1 × 8 km. In the travel-time kernel (Figure 9a) the strong backscattering effect, caused by 
the contrast in scattering, results in a larger sensitivity toward the strong scattering half-space. This is due to the 
overlap of intensities from the sources, which go toward the left, with the reflected intensity from the half-space 
that goes to the right. This travel-time kernel is rather different from the travel-time kernel for the uniform case 
(Figure 1), where the sensitivity would have solely been around the two sources. The decorrelation kernel shows 
concentrated sensitivities on the single scattering ellipse, as we have seen in the uniform weakly scattering me-
dium. The sensitivity on the single-scattering ellipse in the left half-space is lower due to the stronger diffusion 
of energy in this region. Furthermore, higher sensitivities between the boundary of scattering on the one hand 
and both sources on the other hand, can be explained by the increase of mean intensities in those areas. Figure 9b 
shows that the impact on the scattering kernel is also significant. The contribution of the specific intensities, as 
in the travel-time kernel, is clearly visible and results in strong negative sensitivities toward the stronger scatter-
ing half-space. Furthermore, we can observe the single scattering ellipse, as we have seen in the decorrelation 
kernels.

The results in Figure 9 thus show that even at large distance from a boundary of scattering contrast the effect of 
non-uniform scattering properties on the sensitivity kernels can be significant. It is therefore important to have 
knowledge about the distribution of scattering for a large area around one’s area of interest, in order to locate 
changes of the subsurface correctly.

Figure 7.  Sensitivity kernels for a half-space setting at 100 s lapse-time. The scattering mean free path for the left (right) 
half-space is fixed for all panels at ℓ1 (8 × ℓ1), respectively. The orientation of the line connecting the sources changes 
gradually from parallel to the boundary to perpendicular to the boundary, from (a) to (d), respectively. To enhance visibility 
of the kernel pattern the inter-source distance is larger, with R = 2 × R0. The distance of the leftmost source from the 
boundary is fixed at 6 km.



Journal of Geophysical Research: Solid Earth

DINTHER ET AL.

10.1029/2021JB022554

13 of 21

4.3.  Fault Zone Setting

The last application we consider is a fault zone setting. The parameters are based on findings for the North 
Anatolian Fault (van Dinther et al., 2021). We consider a narrow fault zone of width = 6.25 km, with ℓ = 10 km 
inside and ℓ = 150 km outside. Figure 10 shows the resulting kernels for 65 s (upper) and 100 s (lower) lapse-
times, respectively. Note that due to the inter-source distance of ∼93 km in combination with a seismic velocity of 
2.1 km s−1, the earliest lapse-times for which the kernels are evaluated are around 45 s. The travel-time and scat-
tering kernels may appear more complex than kernels shown for the other non-uniform media. In the travel-time 
kernel we observe two additional two-legged transport paths that connect the source and the detector. They are 

Figure 8.  Sensitivity kernels for a half-space setting at 100 s lapse-time. Scattering mean free path of left half-space for 
all panels is ℓ1 = 30 km. Source and detector are placed parallel to half-space boundary. (a) ℓ of right half-space is 2 × ℓ1, 
R = R0 = 32 km and distance to half-space boundary d = 6 km. (b) ℓ of right half-space is 8 × ℓ1, R = R0, and d = 6 km. (c) 
ℓ of right half-space is 8 × ℓ1, R = 3 × R0, and d = 6 km. (d) ℓ of right half-space is 8 × ℓ1, R = R0, and d = 42 km. γ denotes 
the angle between the nodal line (orange dashed line) and the half-space boundary. Note. That the color bar is symmetric 
around zero.

Figure 9.  Sensitivity kernels for a model with two half-spaces at 100 s lapse-time, for a setting where the sources are far away from the boundary of scattering contrast 
(58 and 90 km, respectively). The scattering mean free path in the right half-space is 8 × ℓ1, where ℓ1 = 30 km. (a) shows Ktt, (b) Ksc, and (c) Kdc. All kernels are 
normalized with respect to the maximum value. The color bar for Ksc is symmetric around zero.
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actually generated at the intersections of the single scattering ellipse with the fault zone where the strong scatter-
ing acts as secondary sources. For each of these paths, the backward and forward intensities are in exactly oppo-
site directions. As explained for the Ktt of other models, the overlap of the specific intensities of either primary 
and/or secondary sources (in opposite direction) causes high sensitivities in the travel-time kernels. For the fault 
zone setting, this results in multiple pathways that are favorable for energy transport between the two primary 
sources (Figures 10a and 10d). For early lapse-time (65 s) we can observe a spot with even higher concentrated 
sensitivity, at the intersection of the energy transport paths. Furthermore, the geometry of these additional paths 
between the primary sources changes with lapse-time, as can be more clearly observed in the animations in the 
Supporting Information (Movie S4).

Figures 10b and 10e shows similar observations for the scattering kernel, where the simultaneously large and 
aligned energy fluxes create additional energy transport paths between the primary sources in the scattering 
kernel. The contribution of the high mean intensities is also visible in Ksc, which is similar to the halos of high 
sensitivities that are formed around the sources in the decorrelation kernel. Again Kdc does not resemble Ktt, and 
shows that the highly diffusive fault zone acts as a barrier for energy passing through. Hence, the mean intensity 
is low on the right side of the fault zone in Figure 10f. In the supporting information, additional animations for 
Ksc (Movie S5) and Kdc (Movie S6) with lapse-time for the fault zone setting can be found.

5.  Concluding Remarks
For monitoring the temporal evolution of the subsurface we need coda wave sensitivity kernels that linearly 
relate observed changes in recordings to physical medium changes. Here, we compute travel-time, scattering, 
and decorrelation kernels based on a flexible Monte Carlo method, which enables us to include non-uniformly 
distributed scattering properties. In this work we have shown that non-uniform scattering properties can have a 
profound and non-intuitive effect on coda wave sensitivity kernels. Hence, it could be misleading to overlook the 
distribution of scattering properties in monitoring applications. The actual impact on the kernels depends on a 
combination of lapse-time and mean free time, it is therefore important to have knowledge about the geology and 

Figure 10.  Sensitivity kernels for fault zone setting with both sources on one side of the fault (dashed lines), for lapse-times of 65 s (upper) and 100 s (lower). The 
columns show Ktt ((a)), (d)), Ksc ((b), (e)), and Kdc ((c), (f)), respectively. The width of the fault zone is 6.25 km. The scattering mean free path in and outside the fault 
zone are ℓFZ = 10 km and ℓ = 150 km, respectively. The distance between the two sources is ∼93 km. All kernels are normalized with respect to the maximum value. 
The color bar for Ksc is symmetric around zero.
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an estimate on the scattering mean free path in the wider region that is targeted to be monitored. Lack of a good 
a priori scattering model may lead to a mislocation of the medium changes.

As previously put forward in theoretical studies (Margerin et al., 2016; Snieder et al., 2019; Zhang et al., 2021), 
there are two unique energy sources to be considered in the kernel computation for either uniform or non-uniform 
cases: the actual (physical) source of energy as well as the detector. Following the terminology of the adjoint 
formalism, they are referred to as the source of forward intensity and backward intensity, respectively. We have 
shown that due to non-uniform scattering properties additional energy transport channels can appear between the 
two sources, which do not exist in the case of a uniform scattering medium. Therefore, the sensitivity kernels 
for non-uniform scattering media can appear rather complex. A physical interpretation of three different kernels 
has been proposed: (a) the decorrelation kernel is the most straightforward to interpret and has high sensitivities 
where the mean intensities are high; (b) the travel-time kernel shows high sensitivity where the forward and back-
ward specific intensities are simultaneously large and in opposite direction; (c) the (intensity) scattering kernel 
combines the properties of both the decorrelation and travel-time kernel and has high absolute sensitivities where 
the energy fluxes are simultaneously large and parallel or anti-parallel. Furthermore, the pattern of positive and 
negative sensitivities in the scattering kernel is controlled by the scalar product of the energy current vectors from 
the forward and backward sources.

The interpretation of the scattering kernel, whose pattern can be strongly affected by non-uniform scattering 
properties, is more intuitive when considering the dominant contributions to the energy fluxes. In particular, we 
have carefully considered the vicinity of the sources, where the sensitivity is high. In this case, there are two types 
of contributions to the resulting fluxes: (a) the direct flux between the forward and backward sources and (b) the 
flux induced by the non-uniformity of scattering strength. The direction and magnitude of these two fluxes in turn 
depend on several parameters including distance from the boundary of scattering contrast, inter-source distance, 
orientation of the sources w.r.t. each otherb and the scattering contrast. As demonstrated in this work, knowledge 
of these actual fluxes is required in order to fully understand the scattering kernels.

Finally, this study visually demonstrates the strong difference between travel-time and decorrelation kernels, 
particularly in the case of non-uniform media with high contrast of scattering properties.

Appendix A:  Calculation of Sensitivity Kernels: A Monte Carlo Simulation Approach
To compute the sensitivity kernels (see Equations A1–A3) we perform Monte Carlo simulations based on the 2D 
RTE with isotropic scattering. We recall that in a Monte Carlo approach (e.g., Margerin et al., 2000), the transport 
of energy is represented by random walks of discrete seismic “phonons” (Shearer & Earle, 2004) that undergo a 
sequence of collisions in a scattering and absorbing medium. In practice, the medium is often discretized onto el-
ementary volumes where the number of phonons is monitored as a function of time to estimate the energy density. 
But it is also possible to compute the energy density detected at a specific point of the medium by evaluating the 
probability for the phonon to return to the detector at each scattering event (see, e.g., Hoshiba, 1991, for a detailed 
treatment). In the present work, we adopt the latter approach.

A1.  Differential Monte Carlo Approach

The central idea of the differential Monte Carlo method is best explained with an example (see Lux & Ko-
blinger,  1991, for a detailed treatment). Consider for instance the impact of a perturbation of the scattering 
coefficient on the energy density. Suppose that a seismic phonon has just been scattered at point r′ in a reference 
medium with scattering coefficient g. The probability density function (pdf) of the position r of the next collision 
point may be written as:

𝑃𝑃 (𝐱𝐱; 𝐱𝐱′|𝑔𝑔) = 𝑔𝑔(𝐱𝐱)𝑒𝑒− ∫ 𝐱𝐱
𝐱𝐱′ 𝑔𝑔(𝐱𝐱

′′)𝑑𝑑𝑑𝑑′′� (A1)

where the integral is carried on the ray connecting the point x′ to the point x. Note that we allow the scattering 
coefficient to vary spatially in the reference medium. The distribution of path length in the perturbed medium is 
obtained by the substitution g → g + δg in Equation A1. In the differential Monte Carlo method, the envelopes 
in the reference and perturbed medium are calculated simultaneously via a biasing scheme for the latter (Lux & 
Koblinger, 1991). To picture the idea, one may imagine a “true” phonon propagating in the reference medium and 
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a “virtual” mate following exactly the same trajectory as the “true” phonon albeit in the perturbed medium. As 
the phonon propagates in the reference medium, the statistical weight of its virtual mate is updated to compen-
sate exactly for the genuine frequency of occurrence of the path in the perturbed medium. As an example, let us 
consider the change of weight occurring after the phonon has left the collision point x′ until it is scattered again 
at point x. Denoting by w the correction factor, we find:

�(𝐱𝐱; 𝐱𝐱′) = � (𝐱𝐱; 𝐱𝐱′|� + ��)
� (𝐱𝐱; 𝐱𝐱′|�)

=
(�(𝐱𝐱) + ��(𝐱𝐱))�− ∫ 𝐱𝐱

𝐱𝐱′ ��(𝐱𝐱
′′)��′′

�(𝐱𝐱)

�

An obvious condition of applicability is that g(x) > 0, implying that a collision is indeed possible at the point x in 
the reference medium. We also remark that there is no assumption on the “smallness” of δg in the derivation of 
Equation A2. For the computation of sensitivity kernels, we thus further require δg/g ≪ 1 and perform a Taylor 
expansion to obtain (Ogiso, 2019; Takeuchi, 2016):

𝑤𝑤(𝐱𝐱; 𝐱𝐱′) = 1 +
𝛿𝛿𝛿𝛿(𝐱𝐱)
𝑔𝑔(𝐱𝐱)

− ∫

𝐱𝐱

𝐱𝐱′
𝛿𝛿𝛿𝛿(𝐱𝐱′′)𝑑𝑑𝑑𝑑′′� (A2)

The interpretation of the above formula is as follows: as the virtual phonon propagates between the two collision 
points x′ and x, its weight decreases progressively following the integral term; at the collision point x, its weight 
undergoes a positive jump δg(x)/g(x). These two contributions may respectively be related to the loss and gain 
terms in Equation 3.

There are two difficulties in the practical application of Equation A2. The first one becomes apparent when one 
discretizes the kernel onto a grid of pixels (in 2D, or voxels in 3D): the path of the particle inside each pixel has 
to be carefully monitored to calculate the integral in Equation A2. Such particle tracking can be at the origin 
of significant computational overhead. The other difficulty is inherent to the spatial variation of the scattering 
coefficient. Generating the exact path length distribution for the pdf (Equation A1) involves the computation of 
the line integral of g which may be very time consuming. In what follows, we propose a method that solves both 
of these issues by transferring all the sensitivity computation to collision points. A strength of the method is that 
particle tracking is minimal. Furthermore, a completely arbitrary distribution of scattering properties -including 
discontinuities of the scattering coefficient-may be implemented transparently and in an “exact” fashion. The 
main drawback of the approach is that the introduction of statistical weights may result in an increase of the var-
iance of the results. For the applications at hand, we did not find this issue to be limiting.

A2.  The Method of Null or Delta Collisions

We begin by recalling a simple and very efficient method to simulate the transport of energy in an arbitrarily 
scattering and absorbing medium, referred to as the method of null or delta collisions (Lux & Koblinger, 1991). 
The starting point is the RTE:

(�� + �� ⋅∇+ �(�)−1 + ��(�)−1)�(�, �,�) = �(�)−1 ∫ �(�,�′)�(�, �,�′)��′� (A3)

where c, τ, ta, and p(k, k′) refer to the energy velocity, the scattering mean free time, the absorption time, and the 
scattering pattern, respectively. The energy density flowing in direction k (vector on the unit circle) at time t and 
position x is denoted by e(t, x, k). The integral on the right-hand side is carried over all the directions of propaga-
tion. We remark that Equation A3 is equivalent to the following modified transport equation:

(�� + �� ⋅ ∇ + �(�)−1+ ��(�)−1 + ��(�)−1)�(�, �,�) =

�(�)−1 ∫ �(�, �′)�(�, �, �′)��′ + ��(�)−1 ∫ �(�, �′)�(�, �, �′)��′

� (A4)
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which features a new scattering process with pattern δ(k, k′) (the delta function on the unit sphere) and mean 
free time τδ(x). This new process is characterized by the property that it leaves the propagation direction un-
changed. It is worth emphasizing that such delta-collisions or null-collisions do not modify the statistics of true 
physical scattering events. Because the scattering coefficient of delta-collisions is entirely arbitrary, we may 
always adjust it in a way such that 𝐴𝐴 𝐴𝐴𝛿𝛿(𝐱𝐱)−1 + 𝜏𝜏(𝐱𝐱)−1 + 𝑡𝑡𝑎𝑎(𝐱𝐱)−1 = 𝜏𝜏−1𝑒𝑒  , where the extinction time τe is fixed. By 
adding the new scattering process, we have in effect turned a possibly complicated medium into a much simpler 
one where the extinction length is constant. This method has been implemented by van Dinther et al. (2021) to 
model the scattering of seismic waves across the North Anatolian fault zone. The price to be paid is that one 
has to simulate more scattering events than in the original problem. However, in the perspective of computing 
sensitivities, this is not necessarily a drawback. Indeed, as shown below, all the contributions to the sensitivity 
come exclusively from collision points in the modified numerical scheme. Figure A1 shows a graphical rep-
resentation of this method.

A3.  Sensitivity Computations

We begin by noting that in the numerical simulations, absorption is treated as a phonon capture event, which puts 
it on the same footing as a scattering event. Indeed, it is important to keep in mind that the extinction time incor-
porates the three possible types of interactions: physical scattering, delta scattering and absorption. Rather than 
terminating the phonon history after an absorption event, we assign a weight w to the particle. At each collision 
w is multiplied by a factor equal to the local “survival” probability of the phonon 𝐴𝐴 1 − 𝑡𝑡𝑎𝑎(𝐱𝐱)−1∕𝜏𝜏−1𝑒𝑒  . That this proce-
dure correctly models the exponential decay of the intensity along its path may be demonstrated heuristically as 
follows. Consider two neighboring points on the ray path of a seismic phonon and denote by s a spatial coordinate 
on the ray. If the path length δs is sufficiently small, we may neglect multiple collision events. In this scenario, 
either the phonon propagates freely over δs, or it suffers from an additional collision upon which its weight is 
updated. Hence we have on average:

�(�+ ��) = �(�)
(

1 − ��
���

)

+�(�)
(

1 − ��(�)−1

�−1�

)

��
���� (A5)

Figure A1.  Graphical representation of the flexible Monte Carlo simulation employed in this study. A “true” phonon is 
propagating through a reference medium from the source (yellow star) to the detector (black triangle). The propagation path 
of the true phonon is depicted as a solid line. A “virtual” phonon is propagating in a perturbed medium and follows the 
exact same trajectory, depicted by the dashed line. Between source and detector, the phonons experience delta and physical 
scattering events (or collisions), indicated by the open and black hexagonals, respectively. This implies that we simulate 
more collisions than there are physical collisions. At every collision we (a) update the weights of the phonons, taking into 
account the non-uniformity and (b) compute the sensitivities. The red color highlights the last part of the trajectory toward the 
detector; in the shown example after three scattering events. The regular grid is indicated by the horizontal and vertical black 
lines. The simulation can take into account laterally varying scattering properties, represented by the darker pixels. For the 
simulations this only implies that the phonon weights at the collisions are updated differently.
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where we approximate the scattering probability by 𝐴𝐴 (𝑐𝑐𝑐𝑐𝑒𝑒)−1𝛿𝛿𝛿𝛿 . Using a Taylor expansion of the left-hand side, 
simplifying and rearranging terms we obtain:

𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑑𝑑𝑑𝑑

= −
𝑤𝑤(𝑠𝑠)
𝑐𝑐𝑐𝑐𝑎𝑎(𝑠𝑠)

� (A6)

which proves the statement. The same line of reasoning will be used below to calculate the contribution of the 
path from the last scattering event to the detector.

Thanks to these preliminaries, it is now straightforward to apply the differential Monte Carlo method to our prob-
lem. As an illustration, let us consider the impact of a scattering perturbation δτ(x)−1. Again it is conceptually 
convenient to consider two phonons: a real phonon propagating in the reference medium and an imaginary phon-
on propagating in the perturbed medium. We shall also require that the perturbed and unperturbed media have the 
same extinction time τe. Since this parameter can be arbitrarily chosen, this condition can always be fulfilled. By 
imposing the equality of the extinction time in the reference and perturbed medium, we remove any change of the 
weight of the virtual phonon in between two collisions. Furthermore, our choice imposes that the rate of delta col-
lisions in the perturbed medium be given by 𝐴𝐴 𝐴𝐴−1𝛿𝛿 − 𝛿𝛿𝛿𝛿(𝐱𝐱)−1 . As a consequence, both delta collisions and physical 
scattering events contribute to the sensitivity to a scattering perturbation. Following the same reasoning as in the 
derivation of Equation A2, the weight of the virtual phonon after a delta collision at point xc is updated as follows:

�(𝐱𝐱�) → �(𝐱𝐱�) ×
��(𝐱𝐱�)−1 − ��(𝐱𝐱�)−1

�−1�
× �−1�

��(𝐱𝐱�)−1

→ �(𝐱𝐱�)
(

1 − ��(𝐱𝐱�)−1

��(𝐱𝐱�)−1

)� (A7)

This last equation highlights that the rate of imaginary collisions must always be strictly positive. The same rea-
soning applied to a physical scattering event yields:

𝑤𝑤(𝐱𝐱𝑐𝑐) → 𝑤𝑤(𝐱𝐱𝑐𝑐)(1 + 𝛿𝛿𝛿𝛿(𝐱𝐱𝑐𝑐)−1∕𝜏𝜏(𝐱𝐱𝑐𝑐)−1)� (A8)

Comparing Equation A2 with Equations A7 and A8, it is clear that what our method does in effect is to calculate 
the line integral in Equation A2 by a Monte Carlo approach, where the imaginary collisions serve as sample 
points for the quadrature. It is however worth noting that we did not make any smallness assumption in the der-
ivation of Equations A7 and A8. The case of a perturbation of absorption may be treated exactly along the same 
lines. We find that at imaginary collisions, Equation A7 applies with the substitution 𝐴𝐴 𝐴𝐴𝐴𝐴(𝐱𝐱𝑐𝑐)−1 → 𝛿𝛿𝛿𝛿𝑎𝑎(𝐱𝐱𝑐𝑐)−1 .

The last point to be discussed concerns the treatment of the return probability of the phonon from the last scat-
tering event at xl to the detector at r in the method of partial summations of Hoshiba (1991). The score (or con-
tribution) of the phonon involves the factor 𝐴𝐴 𝐴𝐴− ∫ 𝐫𝐫𝐱𝐱𝑙𝑙 (𝑡𝑡𝑎𝑎(𝐱𝐱)

−1+𝜏𝜏(𝐱𝐱)−1)𝑐𝑐−1𝑑𝑑𝑑𝑑 which represents the probability for the phonon 
to propagate from xl to r (or beyond) without absorption or physical collisions. It is clear that any perturbation 
of attenuation properties affect the line integral. We could of course compute this contribution by evaluating nu-
merically the integral but we would then lose the benefits of the transfer of the sensitivity to collision points. To 
remedy the difficulty, we replace the numerical quadrature by the following Monte-Carlo procedure:

1.	 �Starting from position xl, randomly select the distance L to a new collision point on the ray connecting the last 
scattering point to the detector. Recall that the pdf of L is simply given by 𝐴𝐴 (𝜏𝜏𝑒𝑒𝑐𝑐)−1exp(−(𝜏𝜏𝑒𝑒𝑐𝑐)−1𝐿𝐿) .

2.	 �At the collision point xc, modify the weight of the phonon by the factor 𝐴𝐴 𝐴𝐴𝛿𝛿(𝐱𝐱𝑐𝑐)−1∕𝜏𝜏−1𝑒𝑒  .
3.	 �Compute the factors affecting the sensitivities to scattering (or absorption) following Equation A7.
4.	 �Repeat (1) until the phonon has traveled beyond r.

Steps 1 and 2 simulate the propagation of the phonon from xl to r in a way such that only delta collisions can 
occur. The process is enforced by decreasing the weight of the particle by the factor 𝐴𝐴 𝐴𝐴𝛿𝛿(𝐱𝐱𝑐𝑐)−1∕𝜏𝜏−1𝑒𝑒  at each collision. 
That the weight of the particle decreases on average as desired can be easily established by following the same 
heuristic argument as in the derivation of Equation A5. In step 3, we assume again that the total attenuation is the 
same in the reference and perturbed medium. Equation A7 is therefore directly applicable to the computation of 
the sensitivity to scattering (or absorption) perturbation on the path connecting xl to r.
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In numerical applications, the kernels are discretized onto pixels whose dimensions fix the lower bound for the 
spatial resolution that may be achieved in an inversion. In practice, the kernel is stored as a matrix representing 
the grid and the scattering properties may be perturbed independently in each pixel. Every time a collision occurs, 
the corresponding element of the matrix is incremented with the weight perturbation of the particle, following 
Equation A7 and A8. This procedure allows us to monitor how each pixel influences the observable at hand. 
As a consequence of the discretization, the numerical kernels introduce both spatial and temporal averaging as 
compared to their analytical counterparts (Mayor et al., 2014). A positive consequence is that all singularities 
are automatically regularized, which allows for a more straightforward application of the kernels. Furthermore, 
whereas analytical kernels are attached to the uniform reference medium, the Monte-Carlo approach lends itself 
naturally to an iterative linearized inversion procedure. From a numerical perspective, the most important feature 
of our method is the high degree of flexibility, which allows one to very simply model arbitrary non-uniform 
scattering and absorbing medium, including the presence of discontinuities in the model parameters. We believe 
that this simplicity largely balances the slowdown entailed by the simulation of artificial scattering events.

For the simulations shown in this manuscript we use a grid of 76 × 76 pixels, where each of the pixels has a di-
mension of 4 km × 4 km. The kernel is evaluated every second, up to a maximum lapse-time of 120 s. The final 
temporal resolution, however, is 5 s, due to the application of a 5 s moving window to average the kernels and 
reduce the statistical fluctuations. The total number of phonons simulated for each model is 4 × 109. The distance 
between the sources, R, equals 32 km for most models (uniform and half-space case), with the placement of the 
sources at the center of the pixels. For all simulations the full grid space has a uniform value for the intrinsic qual-
ity factor 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢𝑢𝑢

𝑖𝑖 = 100, based on values recently derived for a normal crustal setting in Turkey, in the vicinity of the 
Izmit rupture zone (e.g., van Dinther et al., 2021). The scattering mean free path varies depending on the model.

Data Availability Statement
The code used for the numerical simulations is publicly available at https://zenodo.org/; Margerin & van 
Dinther, 2021.
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