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Introduction and general purpose

Identification of constitutive laws from experiments

Figure 1: Gleeble 3500 thermomechanical simulator

Realization of the experimental tests

Mathematical formulation of a flow law

Non-linear behavior depending on εp,
.
εp, T

Identification of the parameters of the flow law

Numerical implementation of the flow law in a FEM code

Validation by reproducing numerically the experiments

Key idea : Use an Artificial Neural Network to replace

the mathematical formulation and perform simulations

directly from experiments

Figure 2: Specimen under compression at high temperature

Figure 3: Flow stress data from experiments σ(εp ,
.
εp , T)
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Introduction and general purpose

Usual approach to define a new flow law in Abaqus/Explicit

Abaqus Explicit allows to define user behavior laws through FORTRAN subroutines VUMAT or VUHARD.

Both approaches require the definition of the flow stress depending on the plastic strain εp
, the plastic strain rate

.
εp

and the

temperature T :

σ(εp,
.
εp, T), (1)

and the definition of the 3 derivatives of the flow stress : ∂σ/∂εp
, ∂σ/∂

.
εp

and ∂σ/∂T

Proposal of using an Artificial Neural Network for defining the flow law in Abaqus/Explicit

Set-up an Artificial Neural Network for computing the flow stress σ from εp,
.
εp, T .

Use the experimental data performed on the Gleeble thermomechanical simulator to train the Artificial Neural Network.

Data is composed of the measured plastic strain εp
, plastic strain rate

.
εp

, temperature T and stress σ.

Implement an optimized ANN written in FORTRAN language as a VUHARD subroutine for Abaqus/Explicit software.

Use the Artificial Neural Network to compute the flow stress σ(εp,
.
εp, T).

Use the same Artificial Neural Network to compute the flow stress derivatives : ∂σ/∂εp
, ∂σ/∂

.
εp

and ∂σ/∂T .
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Artificial Neural Network set-up

General structure of the proposed Artificial Neural Network

Figure 4: General structure of a multi-layer perceptron

3 inputs : plastic strain εp
, plastic strain rate

.
εp

, temperature T .

1 output : the von Mises flow stress σ.

1 or 2 hidden layers in the proposed Artificial Neural Network.

Activation functions (tanh or sig) only for the neurons in the hidden layers.
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Artificial Neural Network set-up

Artificial Neural Network governing equations

The output of all hidden layer neurons is given by:

#»

ŷ
(k) = f

(k)
(

w(k)
·

#»
x + #»

b
(k)

)

(2)

where

f
(k)(x) = sig(x) =

1

1 + exp (−x)
, sig′(x) =

exp (x)

(1 + exp (x))2
(3)

or

f
(k)(x) = tanh(x) =

exp (x)− exp (−x)

exp (x) + exp (−x)
, tanh′(x) = 1 − tanh2(x) (4)

The output of the Artificial Neural Network is given by:

s = #»
w

T
·

#»

ŷ
(l) + b (5)

where l is the last hidden layer of the Artificial Neural Network.
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Artificial Neural Network set-up

Pre and post-processing of data

The Artificial Neural Network are set up to treat values with a limited amplitude.

We need pre-process and post-process the values of εp
,

.
εp

, T and σ in the range [0, 1].

We also apply a special treatment to
.
εp

because of its logarithmic variation.

#»
x =















x1 =
εp
−[εp ]min

[εp ]max−[εp ]min

x2 =
ln(

.
εp /

.
ε0)−[ln(

.
εp /

.
ε0)]min

[ln(
.
εp /

.
ε0)]max−[ln(

.
εp /

.
ε0)]min

x3 =
T−[T ]min

[T ]max−[T ]min

(6)

where [ ]min and [ ]max are the boundaries of the range of the corresponding field.

Concerning the flow stress, we apply:

σ = ([σ]max − [σ]min) s + [σ]min (7)
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Artificial Neural Network set-up

Derivatives computation by the Artificial Neural Network

Chain rule can be used to compute the derivative of the output s network with respect to the input
#»
x .

Derivative expression depends on the activation function used and the number of hidden layer.

For 2 hidden layers and a sig activation function for both layers we obtain:

#»
s
′ = w(1)T

·



w(2)T

·





#»
w ◦ exp

(

−
#»
y
(2)

)

[

1 + exp
(

−
#»
y (2)

)]2



 ◦





exp
(

−
#»
y
(1)

)

[

1 + exp
(

−
#»
y (1)

)]2







 (8)

So the derivatives of the flow stress are given by:















∂σ/∂εp = s
′

1

[σ]max−[σ]min

[εp ]max−[εp ]min

∂σ/∂
.
εp = s

′
2.

εp

[σ]max−[σ]min

[
.
εp ]max−[

.
εp ]min

∂σ/∂T = s
′

3

[σ]max−[σ]min

[T ]max−[T ]min

(9)
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Training of the Artificial Neural Network and performance evaluation

Training of the Artificial Neural Network with the Johnson-Cook model

The general formulation σy (εp,
.
εp, T) is given by the following equation:

σy =
(

A + Bεp
n
)

[

1 + C ln

( .
εp

.
ε0

)] [

1 −

(

T − T0

Tm − T0

)m]

(10)

Selected material for training the Artificial Neural Network is a 42CrMo4 steel.

E ν A B C n m
.
ε0 T0 Tm

(GPa) (MPa) (MPa) (s
−1) ◦

C
◦

C

206.9 0.29 806 614 0.0089 0.168 1.1 1 20 1540

Table 1: Material properties of the 42CrMo4 steel

Training dataset contains 2 520 datapoints defined by:

70 equidistant plastic strain values : εp
∈ [0, 1]

6 plastic strain rates :
.
εp

∈ [1, 10, 50, 500, 5 000, 50 000]
6 temperatures : T ∈ [20, 100, 200, 300, 400, 500]

Test dataset contains 5 000 datapoints randomly generated within the ranges:

εp
∈ [0, 1]

.
εp

∈ [1, 50 000]
T ∈ [20, 500]
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Training of the Artificial Neural Network and performance evaluation

Global results analysis

Models trained using the Python Tensorflow library

Adaptive Moment Estimation (ADAM)

Fixed number of 50 000 epochs

CPU time is 1 hour on a Dell XPS 13 laptop

ERMS =

√

1

N

N

∑
i=1

(σi − σy

i )2 (11)

∆� =
1

N

N

∑
i=1

∣

∣

∣

∣

�
e
i −�

p

i

�e
i

∣

∣

∣

∣

(12)

Figure 5: Convergence of parameters

Model N
ERMS ∆σ ∆(∂σ/∂εp) ∆(∂σ/∂

.
εp) ∆(∂σ/∂T )

×10
−7 % % % %

3-7-4-1-tanh 65 6.32 0.038 1.977 0.792 0.556

3-15-1-tanh 78 3.46 0.039 1.506 0.269 0.371

3-15-7-1-tanh 180 1.71 0.030 0.519 0.380 0.408

3-15-1-sig 78 2.00 0.030 0.686 0.521 0.675

3-7-4-1-sig 65 1.27 0.024 0.670 0.415 0.499

3-15-7-1-sig 180 0.68 0.011 0.247 0.199 0.256

Table 2: Global performance analysis of the ANN during the training phase
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Training of the Artificial Neural Network and performance evaluation

Precision of the 3-7-4-1 tanh Artificial Neural Network

Figure 6: Convergence of parameters

σ R = 0.99999342

∂σ/∂εp
R = 0.99888560

∂σ/∂
.
εp

R = 0.99994476

∂σ/∂T R = 0.99708604

Figure 7: Map error of σ

Figure 8: Map error of ∂σ/∂εp

Figure 9: Map error of ∂σ/∂
.
εp

Figure 10: Map error of ∂σ/∂T
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Training of the Artificial Neural Network and performance evaluation

Precision of the 3-15-7-1 sig Artificial Neural Network

Figure 11: Convergence of parameters

σ R = 0.99999955

∂σ/∂εp
R = 0.99994377

∂σ/∂
.
εp

R = 0.99999799

∂σ/∂T R = 0.99918579

Figure 12: Map error of σ

Figure 13: Map error of ∂σ/∂εp

Figure 14: Map error of ∂σ/∂
.
εp

Figure 15: Map error of ∂σ/∂T
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Implementation of the Artificial Neural Network within Abaqus Explicit

Numerical implementation of the Artificial Neural Network in Abaqus/Explicit

Numerical implementation is done using a VUHARD subroutine for the Abaqus Explicit code.

We implement a FORTRAN subroutine to compute the yield stress of the material and its derivatives.

A Python program extracts the internal parameters of the trained network and creates the FORTRAN subroutine.

Depending on the network structure we optimize the code i.e. 2 hidden layers and sig function:

z
a
i = exp

(

−∑
j

(

w
(1)
ij xj

)

− b
(1)
i

)

i ∈ [1,m], j ∈ [1, 3]

z
b
i = 1 + z

a
i i ∈ [1,m]

z
c
i = exp

(

−∑
j

(

w
(2)
ij /z

b
j

)

− b
(2)
i

)

i ∈ [1, n], j ∈ [1,m]

z
d
i = wi z

c
i /(1 + z

c
i )

2
i ∈ [1, n]

z
e
i = z

a
i /z

b
i i ∈ [1,m]

z
f
i = ∑

j

(

w
(2)
ji z

d
j

)

z
e
i i ∈ [1,m], j ∈ [1, n]

(13)

The output of the neural network is given by:

s = ∑
i

(wi /(1 + z
c
i )) + b i ∈ [1, n] (14)

and, the three derivatives s
′

i are obtained from:

s
′

i = ∑
j

(

w
(1)
ji z

f
j

)

i ∈ [1, 3], j ∈ [1,m] (15)
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Implementation of the Artificial Neural Network within Abaqus Explicit

Example of a generated optimized FORTRAN VUHARD code

1 subrou t ine vuhard (

2 + nblock , nElement , n In tP t , nLayer , nSecPt , lAnneal , stepTime ,

3 + to ta lT ime , dt , cmname, nstatev , n f i e l d v , nprops , props ,

4 + tempOld , tempNew , f i e l d O l d , f ie ldNew , stateOld , eqps , eqpsRate ,

5 + y ie ld , dyieldDtemp , dyieldDeqps , stateNew )

6 i nc lude ’ vaba_param . inc ’

7 dimension nElement ( nblock ) , props ( nprops ) , tempOld ( nblock ) ,

8 + f i e l d O l d ( nblock , n f i e l d v ) , s ta teOld ( nblock , ns ta tev ) ,

9 + tempNew( nblock ) , f ie ldNew ( nblock , n f i e l d v ) , eqps ( nblock ) ,

10 + eqpsRate ( nblock ) , y i e l d ( nblock ) , dyieldDtemp ( nblock ) ,

11 + dyieldDeqps ( nblock , 2 ) , stateNew ( nblock , ns ta tev )

12 charac te r *80 cmname

13

14 do k = 1 , nblock

15 xepsp = eqps ( k )

16 xdepsp = log ( eqpsRate ( k ) ) / 10.819778284410

17 xtemp = ( tempNew( k ) - 20 .0) / 480.0

18 za0 = exp(0.171193018556*xepsp + 0.498235881329*xdepsp -

19 + 1.572309255600*xtemp + 0.549710810184)

20

21 . . . FORTRAN code of the ANN generated by the Python t r a n s l a t o r sof tware . . .

22

23 Yie ld ( k ) = 977.555715042962*y + 579.184642915415

24 dyieldDeqps ( k , 1 ) = 977.555715042962 * yd0

25 dyieldDeqps ( k , 2 ) = 90.348959964501 * yd1 / eqpsRate ( k )

26 dyieldDtemp ( k ) = 2.036574406340 * yd2

27 end do

28 r e t u r n

29 end

17 / 28



General Outline of the Presentation

1 Introduction and general purpose

2 Artificial Neural Network set-up

3 Training of the Artificial Neural Network and performance evaluation

4 Implementation of the Artificial Neural Network within Abaqus Explicit

5 Numerical results

6 Conclusions and perspectives

18 / 28



Numerical results

Conditions of compilation and execution of the generated FORTRAN code

The VUHARD subroutine is compiled using the GNU gfortran 9.3.0 (recommended is Intel Fortran).

All benchmarks tests have been solved using Abaqus Explicit 2021.

Computer used is a Dell XPS 13 laptop with 16 GiB of Ram and one 4 core i7-10510U Intel CPU running Ubuntu 20.04.

All computations have been done using the double precision option of Abaqus, with parallel threads execution on two cores.
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Numerical results

Necking of a circular bar benchmark test

Figure 16: Meshing for the necking of a circular bar test

Mesh consists of 400 CAX4RT elements (coupled temperature displacement)

Total displacement is set to d = 7 mm

Total simulation time is set to t = 0.01 s

Model Incr.
Time

εp

mid

σmid Tmid εp

end

σend Tend

(s) (MPa) (
◦

C) (MPa) (
◦

C)

3-7-4-1-sig 191 768 29.98 0.51 1293.81 182.01 2.16 1064.43 587.78

3-15-7-1-sig 194 432 38.54 0.51 1293.97 181.52 2.03 1060.50 587.29

Analytical 200 145 35.50 0.51 1293.59 182.47 2.16 1045.75 585.85

Built-In 199 474 28.71 0.51 1293.76 180.36 2.14 1043.19 587.66

Table 3: Comparison of results for the necking of a circular bar benchmark for a displacement of 3.5 mm (mid) and 7 mm (end)

Both Temperature T and plastic strain εp
are out of training ranges.
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Numerical results

Necking of a circular bar benchmark test

(Avg: 75%)
S, Mises

+4.026e+01
+1.272e+02
+2.142e+02
+3.012e+02
+3.882e+02
+4.752e+02
+5.621e+02
+6.491e+02
+7.361e+02
+8.231e+02
+9.101e+02
+9.970e+02
+1.084e+03

(Avg: 75%)
S, Mises

+3.372e+01
+1.205e+02
+2.073e+02
+2.941e+02
+3.808e+02
+4.676e+02
+5.544e+02
+6.412e+02
+7.280e+02
+8.148e+02
+9.015e+02
+9.883e+02
+1.075e+03

Built-in Johnson-Cook
Flow law

3-15-7-1-sig ANN
Flow law

Figure 17: Von Mises equivalent stress contourplot σ

(Avg: 75%)
TEMP

+3.022e+01
+7.776e+01
+1.253e+02
+1.728e+02
+2.204e+02
+2.679e+02
+3.155e+02
+3.630e+02
+4.105e+02
+4.581e+02
+5.056e+02
+5.532e+02
+6.007e+02

(Avg: 75%)
TEMP

+3.055e+01
+7.795e+01
+1.254e+02
+1.728e+02
+2.202e+02
+2.676e+02
+3.150e+02
+3.624e+02
+4.098e+02
+4.572e+02
+5.046e+02
+5.520e+02
+5.994e+02

Built-in Johnson-Cook
Flow law

3-15-7-1-sig ANN
Flow law

Figure 18: Temperature contourplot T
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Numerical results

Necking of a circular bar benchmark test

Figure 19: Equivalent plastic strain εp
Figure 20: Equivalent von Mises stress σ
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Numerical results

Taylor impact benchmark test

3.2

32.4

Figure 21: Meshing used for the Taylor impact test

Mesh consists of 250 CAX4RT elements (coupled temperature displacement)

Impact velocity Vc = 287 m/s

Total simulation time is set to t = 80 µs.

Model Incr.
Time Lf Rf T εp

(s) (mm) (mm) (◦C)

3-7-4-1-sig 3 798 2.23 26.54 5.55 556.9 1.804

3-15-7-1-sig 3 820 2.35 26.54 5.55 558.0 1.799

Analytical 3 841 2.20 26.55 5.55 559.2 1.806

Built-In 4 142 2.05 26.57 5.57 562.9 1.800

Table 4: Comparison of results for the Taylor impact test

Both Temperature T and plastic strain εp
are out of training ranges.
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Numerical results

Taylor impact benchmark test

(Avg: 75%)
S, Mises

+2.516e+01
+1.014e+02
+1.775e+02
+2.537e+02
+3.299e+02
+4.061e+02
+4.823e+02
+5.585e+02
+6.347e+02
+7.109e+02
+7.871e+02
+8.633e+02
+9.395e+02

(Avg: 75%)
S, Mises

+2.136e+01
+9.865e+01
+1.759e+02
+2.532e+02
+3.305e+02
+4.078e+02
+4.851e+02
+5.624e+02
+6.397e+02
+7.169e+02
+7.942e+02
+8.715e+02
+9.488e+02

Built-in Johnson-Cook
Flow law

3-15-7-1-sig ANN
Flow law

Figure 22: Von Mises equivalent stress contourplot σ

(Avg: 75%)
PEEQ

+0.000e+00
+1.500e-01
+3.001e-01
+4.501e-01
+6.001e-01
+7.502e-01
+9.002e-01
+1.050e+00
+1.200e+00
+1.350e+00
+1.500e+00
+1.650e+00
+1.800e+00

(Avg: 75%)
PEEQ

+0.000e+00
+1.500e-01
+2.999e-01
+4.499e-01
+5.998e-01
+7.498e-01
+8.997e-01
+1.050e+00
+1.200e+00
+1.350e+00
+1.500e+00
+1.649e+00
+1.799e+00

Built-in Johnson-Cook
Flow law

3-15-7-1-sig ANN
Flow law

Figure 23: Equivalent plastic strain contourplot εp
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Numerical results

Taylor impact benchmark test

Figure 24: Total height Hf Figure 25: Radius Rf
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Numerical results

Taylor impact benchmark test

Figure 26: Temperature T Figure 27: Equivalent von Mises stress σ

26 / 28



General Outline of the Presentation

1 Introduction and general purpose

2 Artificial Neural Network set-up

3 Training of the Artificial Neural Network and performance evaluation

4 Implementation of the Artificial Neural Network within Abaqus Explicit

5 Numerical results

6 Conclusions and perspectives

27 / 28



Conclusions and perspectives

Conclusions and future work

An Artificial Neural Network based framework has been proposed to model the non-linear flow law σy (εp,
.
εp, T)

Its application to a 42CrMo4 steel and a constitutive behavior of type Johnson-Cook has been presented.

The accuracy of the evaluation of the derivatives has been presented.

The results obtained showed an excellent ability to evaluate the flow stress and a very good ability to evaluate the

derivatives by the neural network.

After numerical implementation of the neural network in the Abaqus code, the test cases used showed the good behavior of

the proposed approach in the context of the numerical simulation of the necking of a circular bar and a Taylor impact test.

Future work concerns the application to a real case from experiments on a Gleeble 3500.

Validation of the results with regard to experimental tests.
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