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Abstract

An erodible bed sheared by a fluid flow, gas or liquid, is generally unstable,

and bed forms grow. This review discusses the following issues, in light of the

recent literature: What are the relevant dynamical mechanisms controlling

the emergence of bed forms? Do they form by linear instability or nonlinear

processes such as pattern coarsening? What determines their timescales and

length scales, so different in air and water? What are the similarities and

differences between aeolian and subaqueous patterns? What is the influence

of the mode of transport: bed load, saltation, or suspension? Can bed forms

emerge under any hydrodynamical regime, laminar and turbulent? Guided

by these questions, we propose a unified description of bed-form growth and

saturation, emphasizing the hydrodynamical regime in the inner layer and

the relaxation phenomena associated with particle transport.
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Figure 1

Migration velocity c of dunes as a function of their height H for aeolian barchan dunes ( filled circles), dunes
propagating on the back of large aeolian dunes (open circles), and subaqueous barchan dunes (squares). The
solid line is Bagnold’s prediction. (Inset) Photographs of barchan (top) and transverse (bottom) dunes formed
under water (left) and air (right). Note the superimposed bed forms on the back of aeolian dunes.

Subaqueous ripple:
centimeter-scale
transverse bed form
created by steady
water flow over an
erodible bed

1. INTRODUCTION

Sand or granular patterns may emerge from an erodible bed sheared by a fluid flow in a wide variety

of environments, such as in water channels, rivers, and coastal areas (Best 2005), in deserts on Earth

(Bagnold 1941, Pye & Tsoar 1990), and under methane or CO2 atmospheres on other planets

(Bourke et al. 2010), and in hydraulic engineering and industrial pipe flows (Schaflinger et al. 1995,

Stevenson et al. 2001). Their size can range from the centimeter scale for subaqueous ripples to

100 m for large river megadunes, from 10 m for the smallest aeolian dunes to 1 km for the largest

ones. Mature, finite-height bed forms are typically asymmetric, with an avalanche slip face on their

lee side. More generally, the shape of bed forms depends on the symmetries of the fluid forcing

or the boundary conditions (Andreotti et al. 2009, Fryberger & Dean 1979). The dynamics of

these patterns results from the interaction between the fluid flow and the bed topography through

particle transport. For unidirectional flow (Figure 1), the fluid accelerates on the windward slope

and decelerates on the lee side. Grains are therefore eroded upstream of the crest and deposited

downstream. The resulting migrating velocity c is inversely proportional to the dune height H

(Figure 1), a simple result of great importance that arises from mass conservation (Bagnold 1941).

The wide occurrence of sand patterns has stimulated a large number of studies aiming to

increase our understanding. Since the pioneering book of Bagnold (1941), significant progress

has been achieved, which has been reviewed, notably, by Engelund & Fredsøe (1982) for ripples

and dunes, Blondeaux (2001) for coastal forms, and Seminara (2010) for fluvial sedimentary

patterns. Some important unresolved issues, still debated, include the following. What are the

relevant dynamical mechanisms controlling the emergence of bed forms? Do they form by linear



OSCILLATING RIPPLES

The oscillatory motion of a liquid above a granular bed leads to the formation of ripples, as under steady flow

(Rousseaux et al. 2004, Sleath 1976). The sand ripples one observes on a beach at low tide are an example: These

ripples were formed by the oscillations induced by the surface waves when the beach was covered with shallow water.

The mechanism of their formation, related to fluid inertia, is the same as that of ripples under steady flow, with

positive phase advance of the shear stress dragging the particles toward crests during each half-period (Blondeaux

1990, Charru & Hinch 2006b). The net particle flux toward crests can also be understood as the result of the mean

steady drift flow (steady streaming). Similar structures are also observed on the continental shelf at water depths

of 200–300 m, with a wavelength of the order of 1 m. These ripples play an important role in attenuating the wave

motion, essentially owing to dissipation in the oscillating boundary layer and vortex detachment from their peaks.

Aeolian ripple:
centimeter-scale bed
form created by the
impact on a sand bed
of saltating grains
entrained by the wind;
the formation of these
ripples, quite different
from that of
subaqueous ripples, is
out of the scope of the
present review

Oscillating ripples:
subaqueous ripples
created by oscillating
flow

instability or nonlinear processes such as pattern coarsening? What determines their timescales

and length scales, so different in air and water? What are the similarities and differences between

aeolian and subaqueous patterns? (Figure 1) What is the influence of the mode of transport:

bed load, saltation, or suspension? Can bed forms emerge under any hydrodynamical regime,

laminar and turbulent? The aim of the present review is to propose, based on the recent

literature, a unified description of bed-form growth and a hierarchy of the relevant parameters

and corresponding regimes. For this purpose, we focus on the canonical situation of transverse

bed forms under an unbounded, steady, unidirectional flow. The article is organized as follows.

In Section 2, we review the hydrodynamics above an undulated fixed bottom. In Section 3, we

discuss the dynamics of sediment transport. Section 4 is devoted to the linear stability analysis

of a flat bed and some nonlinear developments. Finally, finite-size effects are discussed in

Section 5. Ripples formed under oscillating flow are briefly discussed in the sidebar, Oscillating

Ripples.

2. FLUID DYNAMICS OVER A WAVY BOTTOM
IN THE UNBOUNDED LIMIT

2.1. Flow Over a Flat Bottom

We begin by considering the flow of a fluid with kinematic viscosity ν and density ρ f , exerting

on a flat bottom a shear stress τ0 = ρ f u2
∗, where u∗ is the friction velocity. x, y, and z denote

the streamwise and spanwise directions and the normal to the bottom, respectively. The bottom

comprises grains of characteristic diameter d, located at z = 0 (for a precise definition of this

location, see, e.g., Raupach et al. 1991). Far enough from the bed, the flow is generally turbulent

with logarithmic velocity profile

U (z) =
u∗

κ
ln

(

z

z0

)

, (1)

where κ ≈ 0.4 is the von Kármán constant. This “law of the wall” (Raupach et al. 1991) involves

a length z0, called the hydrodynamical roughness, which is picked up by the matching, which is

inherited from a surface layer. For small enough d, the surface layer corresponds to the viscous

sublayer, with a thickness that is approximately six times the viscous length δν = ν/u∗ and a linear

velocity profile

U (z) = (u∗/δν )z. (2)



Table 1 Typical flow conditions and length scales for a sand bed under oil (ν = 10−5 m2 s−1), water (ν = 10−6 m2 s−1), and

air (ν = 15 × 10−6 m2 s−1)

Fluid flow u∗ (m s−1) d (mm) d/δν λ (m) δi (mm) δi/δt kz0 × 103 2 Lsat/d

Oil 0.02 0.1 0.2 0.1 1 5 3 (TR) 0.25 ≈20?

Water 0.02 0.2 4 0.1 1.4 4 0.3 (TR) 0.12 ≈10?

Air 0.4 0.2 5 50 500 50 0.03 (TU) 0.05 ≈104

Definitions: friction velocity u∗ , grain diameter d, particle Reynolds number d/δν , typical wavelength λ, inner layer thickness δi , scale separation δi /δt

(TR, transitional regime; TU, turbulent regime), kz0, Shields number θ , and Lsat/d .

The flow is said to be dynamically smooth, and the hydrodynamical roughness is given by z0 ≈
0.11 δν . A good estimate of the full velocity profile can be obtained from the momentum equation

u2
∗ = [ν + ℓ2U ′(z)]U ′(z) with an exponential damping of the Prandtl mixing length as the bed is

approached,

ℓ = κz[1 − exp(−z/αδν )], (3)

where α ≈ 25 is the van Driest number (Pope 2000). For d larger than, e.g., 10δν , the viscous

sublayer is no longer relevant, and the flow is said to be hydrodynamically rough. Measurements

then give, for fixed grains, z0 ≈ 0.03–0.1d (Andreotti 2004, Bagnold 1941, Kamphuis 1974).

A usual, yet phenomenological, description introduces the mixing length (Ayotte et al. 1994,

Colombini 2004, Fourrière et al. 2010, Richards 1980)

ℓ = κ(z + z0). (4)

The existence of a layer of moving grains at the bed surface may increase the roughness z0 (see

Section 3).

2.2. Linear Response of the Flow to a Wavy Wall

In this section, we discuss the linear response of the flow to a wavy wall, distinguishing the laminar,

intermediate, and turbulent regimes.

2.2.1. Structure of the flow disturbance and bottom shear stress. Now let us consider a dis-

turbed bottom in the simplest situation of small-amplitude two-dimensional waves, ζ = ζ0 cos kx.

Typical values of the parameters are given in Table 1. For small wave slope, typically kζ0 < 0.1

(2ζ0/λ < 0.03), the flow disturbance is sinusoidal and proportional to kζ0; i.e., the response is linear.

The measurements displayed in Figure 2 show such a linear response of the shear stress τb and the

presence of higher harmonics for larger slope. We note, in particular, the phase advance with re-

spect to the bottom. The linear stability problem amounts to the determination, for small slope, of

τb =
1

2
(τ̂eikx + τ̂ ∗e−ikx), τ̂ = τ0(A + iB) kζ0, (5)

where A and B are the components in phase and in quadrature with the bottom, respectively.

This subsection focuses on the unbounded limit, kD ≫ 1, where the vertical extent D of the flow

is larger than the penetration depth ≈ 2π/k of the flow disturbance, so that A and B depend on

the single parameter kz0.

Figure 3 shows measurements as well as theoretical predictions of A(kz0) and B(kz0). The

reference curve (Hanratty’s model) is based on the Reynolds-averaged Navier-Stokes (RANS)
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Figure 2

Bottom shear stress τ/τ0 on a smooth sinusodal bottom ( gray line). (a) Measurements for 2ζ0/λ = 0.0125 (red squares) and 0.05 (blue
squares) (Zilker et al. 1977) and the best fit with three harmonics (solid lines). (b) Measurements for 2ζ0/λ = 0.2 [circles; Buckles et al.
1984)] and large-eddy simulation for 2ζ0/λ = 0.0125 (dotted line), 0.1 (dashed line), and 0.2 (solid line) (Henn & Sykes 1999).

equations and the mixing length (Equation 3). For a given base flow, four hydrodynamical regimes

can be identified, controlled by kz0, which are detailed below.

2.2.2. Viscous and inertial laminar regimes. At large wave numbers, the flow disturbance is

confined within the viscous sublayer in which the velocity profile (Equation 2) is linear. The prob-

lem can therefore be solved by neglecting the turbulent fluctuations (Benjamin 1959, Charru &

Hinch 2000, Valance & Langlois 2005). Figure 3a,b shows that the correspondingA andB (yellow

curve) match, in effect, for kδν & 10−2, the calculation including the Reynolds stresses (red curve).

The flow disturbance has a two-layered structure (Figure 3c): an outer layer (green) dominated by

inertia and an inner layer (orange) dominated by viscosity, in which the flow is driven by the pres-

sure gradient inherited from the outer layer. The thickness δi of the inner layer can be defined from

the balance of longitudinal advection [∼k(u2
∗/ν)δi ] and transverse viscous diffusion (∼ν/δ2

i ), giving

δi ∼ (ν2/ku2
∗)1/3 = (δ2

ν/k)1/3. (6)

δi also represents the penetration depth of vorticity disturbances so that the flow disturbance in

the outer layer is potential. Asymptotic expressions of A and B have been derived in the viscous

and inertial regimes by Benjamin (1959) and Charru & Hinch (2000):

A + iB = 2 + i
1

2
(kδi )

−3 = 2 + i
1

2
(kδν )−2 (kδi ≫ 1), (7)

A + iB = γL(kδi )
−1 eiπ/6 = γL(kδν )−2/3 eiπ/6 (kδi ≪ 1), (8)

where γL ≈ 1.06. Figure 3 shows that these expressions (orange and green dashed lines) are close

to the exact calculation (yellow curve).

2.2.3. Turbulent regime. For small wave numbers, the flow disturbance extends far beyond

the surface layer so that Reynolds stresses cannot be neglected. Figure 3 shows that A and B

depend slowly on kz0, logarithmically, as expected. The asymptotic analysis was first tackled by

Jackson & Hunt (1975) and then improved in several ways, notably by Sykes (1980) (reviewed

in Belcher & Hunt 1998). This analysis assumes that the surface layer—which selects z0, viscous

or not—has a thickness much smaller than δi and is valid for both the hydrodynamically rough

and smooth regimes. In the long wave limit, kz0 ≪ 1, in which the inner layer thickness δi is

much smaller than the wavelength [i.e., when ln(δi/z0) ≫ 1], the two-layer structure is recovered

as illustrated in the far left of Figure 3c: an outer layer in which the disturbed flow is dominated

by inertia (green) and an inner layer dominated by Reynolds stresses (blue). From the balance of
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Figure 3

Shear-stress components (a) in-phase A and (b) in-quadrature B as a function of the wave number kz0. (Inset) Phase shift tan−1(B/A) in
degrees. The solid lines represent full calculations, and the dashed lines are asymptotic calculations: smooth closure (Equation 3) (solid
red line), Hanratty’s model (solid gray line), rough closure (Equation 4) (solid blue line), laminar Couette flow (solid yellow line), Equation
10 (dashed blue line), Equation 7 (dashed orange line), and Equation 8 (dashed green line). The green region is the transition between the
laminar and turbulent regimes (10−5 < kz0 < 10−3). Data are taken from electrochemical measurements ( green circles and squares)
(Frederick & Hanratty 1988 and Zilker et al. 1977, respectively), from velocity measurements on a 40-m-long protodune [blue triangle
(Claudin et al. 2012)], and from flumes [blue diamonds (Poggi et al. 2007) and blue circles (Finnigan et al. 1990)]. (c) Schematics of the
layered structure of the disturbed flow in the different regimes.

longitudinal advection and the turbulent stresses as given by the Prandtl mixing-layer theory, the

thickness δi of the inner layer is given by the implicit relation

δi

λ/4
ln(δi/z0) = 2κ2. (9)

(Another expression has been proposed that involves the square of the logarithm and provides

smaller δi .) From the matching of the outer and inner flows, we find the shear-stress components

A and B to be

A + iB = 2
U 2(δm)

U 2(δi )

[

1 +
1 + 2 ln(π/2) + 4γE + iπ

ln(δi/z0)

]

, (10)

where U is the logarithmic velocity profile (Equation 1), γE ≃ 0.577 is Euler’s constant, and δm =
(λ/4z0) ln−1/2(λ/4z0) (Hunt et al. 1988, Kroy et al. 2002, Weng et al. 1991). Figure 3a,b shows that

these asymptotic expressions (curves from Equation 10, dashed blue lines) are valid for kz0 . 10−5.

The bottom shear stress has not been measured in the turbulent regime, so only indirect

determinations ofA andB can be obtained from velocity measurements in the inner layer, assuming

that the log velocity profile holds locally. As shown in Figure 3, they reasonably match the



predictions (blue symbols). Moreover, these velocity measurements confirm the linear increase

of the mixing length with the distance to the bottom (Poggi et al. 2007). As shown numerically

by Ayotte et al. (1994), the predictions for the inner layer (A and B, in particular) are robust to

changes in the turbulence closure scheme: mixing-length schemes (Colombini 2004, Fourrière

et al. 2010, Mason & King 1985), models with equations for the turbulent kinetic energy, and true

second-order closures (Finnigan et al. 1990, Weng et al. 1991). Because the timescale over which

turbulent fluctuations adapt to the shear rate scales as δi/u∗ in the inner layer, out-of-equilibrium

turbulence effects vanish as ln−1(δi/z0).

Conversely, in the outer layer, the flow disturbance depends significantly on the closure law,

especially Reynolds stresses. Second-order closures have revealed the influence of the lag between

the production and dissipation of turbulent fluctuations, related by Finnigan et al. (1990) to

streamline curvature effects. This results in a phase lag of the shear stress with respect to the

topography (van Boxel et al. 1999, Walker & Nickling 2003, Weng et al. 1991, Wiggs et al. 1996),

which contrasts with the phase advance in the inner layer. Another important effect in the outer

layer is the rapid distortion of turbulence by the mean shear, which results in Reynolds stress

anisotropy (Ayotte et al. 1994, Finnigan et al. 1990).

2.2.4. Transitional regime. Most of the measurements of A and B reported in Figure 3 were

obtained by Zilker et al. (1977) and Frederick & Hanratty (1988) (green points), and fall in

the range 10−5 < kz0 < 10−3 (green regions in all the figures). They clearly disagree with the

calculations performed with a simple mixing-length closure (red curve). For this range of kz0, the

perturbation partly penetrates the turbulent region so that neither viscosity effects nor turbulent

fluctuations can be neglected. On the upstream face of a bump at which the flow is accelerated, the

more negative streamwise pressure gradient tends to damp the turbulent fluctuations so that the

viscous sublayer thickens, whereas the opposite is true on the lee side. This results in a periodic

transition from the viscous to the turbulent inner layer (see Figure 3c). Following Abrams &

Hanratty (1985) and Frederick & Hanratty (1988), one can account for this effect by a dependence

of the van Driest number α in Equation 3 on the pressure gradient, with a space lag of the order of

α3δν (from the classical argument for the thickening of a boundary layer) (see the Supplemental

Appendix; follow the Supplemental Material link from the Annual Reviews home page at

http://www.annualreviews.org). The prediction of this model, Hanratty’s model, is shown in

Figure 3a,b (gray solid line) and nicely fits the measurements. The modulation effect is resonant

for wave numbers kδν ≈ 2π/α3 ≈ 10−3, hence the large effect on A and B in the vicinity of

this value. Although this model provides a convenient parameterization, a true understanding of

the interplay between a wavy bottom and the modulation of the viscous sublayer remains to be

achieved.

2.2.5. Physical mechanism of the phase lag between shear stress and topography. The

most important result of the above analyses is that both A and B are positive so that the shear-

stress maximum is generically located upstream of the crest. The physical mechanism of this

phase advance can be understood as follows. In the outer layer in which the flow perturbation is

essentially inviscid and potential (unlike the base state), the flow accelerates upstream of crests

and decelerates downstream, with opposite variation for the pressure (the Bernoulli effect). This

pressure also drives the flow in the inner layer, but there the bottom friction opposes the velocity

variations. Because of fluid inertia, the variation of the shear stress must drive that of the fluid

velocity, hence the positive phase advance. For a more quantitative discussion in the laminar

regime, readers are referred to Charru & Hinch (2000). As discussed in the following sections,

this phase advance is responsible for the instability of an erodible bed.



2.3. Beyond the Linear Response

For a sinusoidal bottom with slope kζ0 ≃ 0.1 (Kuzan et al. 1989), hydrodynamical nonlinear effects

are no longer negligible. Harmonics grow, and the phase advance of the shear stress decreases

(Figure 2) (Richards & Taylor 1981). Most numerical simulations (RANS, large-eddy simulations,

direct numerical simulations) and experiments in water have been performed in the transitional

regime (Buckles et al. 1984, Cherukat et al. 1998, de Angelis et al. 1997, Frederick & Hanratty

1988, Henn & Sykes 1999, Zilker & Hanratty 1979), for which the linear regime itself is not well

understood, as discussed above. In the simpler turbulent regime, the qualitative aspects of the

nonlinear hydrodynamical response have been elucidated from field observations, wind-tunnel

experiments, and numerical simulations over both the sinusoidal bottom and isolated bumps

(Buckles et al. 1984, Finnigan et al. 1990, Gong & Ibbetson 1989, Gong et al. 1996, Salvetti et al.

2001, Taylor et al. 1987, Yue et al. 2006, Zilker & Hanratty 1979). The linear asymptotic theory of

Hunt et al. (1988) still predicts the dominant features of the flow (Belcher & Hunt 1998). On the

upstream side of bumps, vertical profiles of the speedup remain correctly described. In contrast,

on the lee side, the Prandtl mixing-length model fails to describe the flow, and more elaborate

closures schemes are necessary there (Ross et al. 2004, van Boxel et al. 1999).

On erodible beds, the initial sinusoidal topography also deforms and becomes asymmetric,

whereas the height-to-length ratio tends toward approximately 1/15 for mature subaqueous ripples

and aeolian dunes (Baddock et al. 2007, Parteli et al. 2006). An avalanche slip face develops on the

lee side, from which the mean flow separates and a recirculation bubble forms. From the coupling

between hydrodynamics and erosion deposition, the instability saturates, and the sand flux and

elevation profiles vary in phase.

From a theoretical point of view, the main difficulty is the quantitative description of flow sep-

aration, which, for a sinusoidal bottom, occurs for kζ0 & 0.3 (Buckles et al. 1984, Finnigan et al.

1990, Henn & Sykes 1999, Zilker & Hanratty 1979). Aside from studies based on the triple-deck

theory (Lagrée 2003), heuristic linear calculations have been proposed of the turbulent flow above a

fictive obstacle comprising the true obstacle prolonged by the separation streamline (Finnigan et al.

1990, Jensen & Zeman 1985). However, separation is associated with the development of complex

turbulent structures. An inflection point appears in the mean velocity profile, corresponding to the

formation a free shear layer. Spanwise vortices develop because of Kelvin-Helmholtz instability,

which vortices then impinge on the bottom near the reattachment point. Downstream of this

point, very large velocity gradients take place close to the wall, associated with large shear stress

(Figure 2b) and followed by the formation of longitudinal streaks and hairpin vortices. When the

reattachment length is larger than the wavelength, the free shear layer spreads and rises, and a new

free shear layer is created downstream of the next crest, resulting in large production of turbulence

and strong mixing of momentum. Large-scale streamwise vortices emerge with spanwise wave-

length scaling on the streamwise wavelength of the bottom (Hudson et al. 1996, Kruse et al. 2003).

A complete description of the nonlinear response is definitely beyond the present review and

remains a major challenging issue. A promising direction is weakly nonlinear analysis, following

studies in the laminar regime (Bordner 1978, Caponi et al. 1982, Valance 2011) and turbulent

regime (Andreotti et al. 2009, Colombini & Stocchino 2008) (the coupling with the neutral mode

k = 0, arising from Equation 11, has not been included in the analysis yet). Another possible

direction is the development of the triple-deck theory for turbulent flow.

3. THE SCALES OF PARTICLE TRANSPORT

The observed modes of transport can be associated with the different forces acting on the particles.

When the hydrodynamic forces exceed some threshold value related to the bed disorder at the



Saturation length:
distance needed for
nonequilibrium
particle flux to relax
toward its saturated
value

particle scale [a fraction of the immersed weight (ρp − ρ f )gd 3], the particles at the bed surface are

set into motion. When the particles and the fluid have comparable densities (typically sand grains

in water), the moving particles roll and slide on each other within a thin layer, of a few diameters

thick, and this mode of transport is called bed load. Lubrication forces are responsible for the dis-

sipation. Conversely, for large ratio ρp/ρ f (typically sand grains in air), the grains experience large

jumps, and the transport mode is called saltation. Dissipation mainly results from the collisions

of the moving particles with the bed. Finally, when the fluid velocity fluctuations, of magnitude

u∗, become comparable with the settling velocity V fall, of the order of
√

(ρp/ρ f − 1)gd , grains

are dispersed throughout the whole fluid layer, and this mode of transport is called suspension.

3.1. What Is the Hydrodynamic Parameter Controlling Transport?

The spatiotemporal evolution of the bed profile ζ (x, t), which is our primary interest, is related

to the particle flux per unit width, q(x, t), through the mass conservation equation

φb
∂ζ

∂t
= −

∂q

∂x
, (11)

where φb ≈ 0.6 is the volume fraction of the bed. Transport models aim at relating the flux q to

the fluid flow. They are usually calibrated in homogeneous and steady situations controlled by a

single hydrodynamic parameter: the bed shear stress τ , or equivalently the shear velocity u∗. The

resulting particle transport is characterized by the so-called saturated flux qsat(τ ). Because of the

trapping of the particles by gravity, qsat vanishes below a threshold value τth = ρ f u2
th ∼ (ρp −ρ f )gd ,

which is sensitive to the geometrical disorder of the granular bed (Charru et al. 2004). Introducing

the Shields number 2 = τ/[(ρp − ρ f )gd ], dimensional analysis gives the general form of the

transport law as

qsat = us d Q(2), (12)

where us is a characteristic velocity. The usual choice for us is the characteristic settling velocity
√

(ρp/ρ f − 1)gd , but models based on the balance of horizontal momentum rather bring us = uth.

The dimensionless function Q depends, in addition to 2, on the density ratio ρp/ρ f , which

controls, in particular, the transition from bed load to saltation, and on the settling Reynolds

number Re s = V falld/ν (or equivalently the threshold Reynolds number Re th = uthd/ν), which

controls the hydrodynamical regime at the grain scale.

When the bed topography is modulated by bed forms, the shear stress and particle flux are

no longer uniform. This raises two issues. First, does the saturated transport law still hold? Early

investigations have assumed local saturation of the sediment transport, with the local flux q =
qsat(τ ) controlled by the local shear stress τ . However, there is experimental evidence that transport

does not adapt instantaneously to a spatial change of the shear stress (Anderson & Haff 1988). As

an illustration, Figure 4a displays the spatial relaxation of the flux toward saturation downstream

of the transition between a nonerodible bottom (x < 0) and an erodible bed (x > 0), in the

aeolian case, whereas Figure 4b displays similar results for suspension. However, over bed forms,

the transport is never far from its saturated state, so it can be described by a first-order linear

relaxation in space and time:

T sat
∂q

∂t
+ Lsat

∂q

∂x
= qsat − q , (13)

where Lsat and T sat are the saturation length and times (Andreotti et al. 2002, Charru 2006, Claudin

et al. 2011, Narteau et al. 2009, Parker 1975, Sauermann et al. 2001). Regarding ripples and dunes,

the first term of this equation can be safely neglected, as T sat is usually much smaller (∼1 s) than



0 2 4 6 8
0

1

2

3

41.0

0

0.5

1086420

a b

q

qsat

q

qsat

x

d
ρp

ρf

Lsat

x

H
U

Vfall

0.1

1

10

43210 u*
uth

Lsat

d
ρp

ρf

Figure 4

Relaxation of the sediment flux q toward qsat: (a) aeolian transport and (b) suspension. (a) The wind erodes a sand patch starting at
x/Ldrag = 0 with drag length Ldrag = ρp

ρ f
d : u∗/uth ≃ 1.8 (triangles), u∗/uth ≃ 1.5 (squares), and u∗/uth ≃ 1.2 (circles). The red lines

represent the best exponential fits q/qsat = 1 − exp(−x/Lsat) (Andreotti et al. 2010). (Inset) Lsat/Ldrag as a function of u∗/uth, showing
( gray symbols) direct measurements from wind-tunnel experiments and (red symbols) indirect estimates from an analysis of initial dune
wavelengths (field data). The dotted line represents Lsat = 2(ρp/ρ f )d ≈ 0.8 m. (b) Similar measurements for particles transported in
suspension, with the distance x rescaled by the deposition length Ldep = (U /V fall)D, for net erosion [green circles (van Rijn 1986) and
gray circles (Ashida & Okabe 1982)] and net deposition [blue squares (Ashida & Okabe 1982)], along with exponential fits (solid and dotted
lines).

Saturated flux:
volume of particles
transported per unit
time and width, in
equilibrium with the
shear stress exerted by
the fluid flow

the bed-form growth time (∼102 s for subaqueous ripples and ∼105 s for aeolian dunes). This

separation justifies the simplifying assumption that the fluid flow can be computed as if the bed

were fixed. The physical significance of Lsat is discussed below.

Second, at which vertical location should the shear stress be evaluated? As discussed in the

previous section, τ can exhibit large vertical gradients in the outer layer, so the question deserves

attention. The usual approach uses τ [z = ζ (x, t)], which is a rigorous approximation when the

transport layer, of thickness δt , is much thinner than the inner layer (typically, δt ≈ d ≈ 10−1δi in

water close to threshold and δt ≈ ρp

ρ f
d ≈ 10−2δi in air). Colombini (2004) proposed an alternative

approach, which evaluates the shear stress at the distance z = ζ (x, t) + δt . Although appealing,

this approach considers that the transport layer behaves as a pure fluid, which is clearly not the

case. Further investigation is needed, accounting for the two-phase nature of the transport layer

and the shear-stress gradient, in which the latter is embedded.

3.2. Linear Response of the Saturated Flux

Equation 13 describes the linear response of the flux q to a change of the saturated flux qsat. To

complete the description of transport on bed forms, one needs the linear response of qsat to a small

change δτ of the shear stress τ and to a small change s = ∂xζ of the local bed slope from the

horizontal direction. The response to δτ can be written (φb Q/τ )δτ , where Q is the susceptibility

with respect to the shear stress:

Q =
τ

φb

∂qsat

∂τ

∣

∣

∣

∣

τ

. (14)



As gravity tends to entrain particles downward, a slope induces an additional contribution to the

flux −SQs , where S is the susceptibility with respect to the slope:

S = −
1

Q

∂qsat

∂s

∣

∣

∣

∣

s =0

. (15)

For q ∝ (τ − τth)n and with the assumption that the slope effect can be embedded in the change

of the transport threshold, δτth/τth = s /µ, where µ is an effective friction coefficient, one obtains

S = 1
µ
τth/τ . Experiments give µ ≃ tan 37◦ in tilted wind tunnels (Iversen & Rasmussen 1999), and

for bed load in water, µ ≃ tan 35◦ (Dey 2003, Fernandez Luque & van Beek 1976) or µ ≃ tan 65◦

(Loiseleux et al. 2005), which are values consistent with the avalanche angle. Finally, S typically

decreases from ≈1.6 at the transport threshold to zero at large flow velocity.

3.3. What Are the Dynamical Mechanisms Controlling Sediment Transport?

The scaling laws followed by qsat, Lsat, and z0 depend on the dynamical mechanisms controlling

transport. We briefly review the results obtained for the three modes of transport.

3.3.1. Bed load in water. The physical explanation proposed by Bagnold (1956) for the equilib-

rium bed-load transport in the turbulent case is as follows. The moving particles are confined within

a thin transport layer of thickness δt ≃ d and have a mean velocity u p ∝ u∗ − βuth, where β < 1

characterizes the effective bed friction. Across the transport layer, the fluid transmits momentum

to the particles in proportion to the number n of mobile grains per unit surface. The equilibrium

transport corresponds to the fluid shear stress being reduced to the threshold at the fixed bed,

which leads to n ∝ u2
∗ − u2

th. As the flux is q = nu p , one obtains Q ∼ (2 − 2th)(
√

2 − β
√

2th).

The scaling of the sediment flux with the third power of the shear velocity, for large 2/2th,

has been recovered in most experiments (Bagnold 1956). For viscous bed load, similar arguments

give Q ∝ 23 (Bagnold 1956, Charru & Mouilleron-Arnould 2002, Leighton & Acrivos 1986,

Mouilleron et al. 2009, Ouriemi et al. 2009), whereas erosion-deposition models for a monolayer

of particles, close to threshold, lead to Q ∝ 22 (Charru & Hinch 2006a).

The saturation transient may be controlled by two mechanisms: the erosion or deposition of

particles (related to the relaxation of n) and particle inertia (relaxation of u p ). For bed load, Charru

& Hinch (2006a) proposed that erosion and deposition are the limiting processes, which leads to

the saturation length

Lsat ∝
U

V fall
d , (16)

where U is the fluid velocity at the particle scale, and d/V fall is the typical time needed for one

particle to settle. Therefore, Lsat scales on a deposition length (Lajeunesse et al. 2010). However,

Lsat has not been measured directly for bed load, unlike for saltation and suspension.

As mentioned in the previous section, bed-load transport may change the hydrodynamical

roughness z0 seen from the inner layer. The measurements collected by van Rijn (1982) show

z0 = 1 − 10d , which is significantly larger than for a fixed bed; Richards (1980) used the empirical

result that z0/d increases linearly with 2. A thorough assessment of these laws remains to be

performed. Moreover, in the transitional regime, transport may affect the modulation of the

viscous sublayer.

3.3.2. Saltation in air. The stress balance still holds for saltation, and the scaling of n is the

same as above (Owen 1964). However, the particle motion takes place over a much thicker layer,

δt ≃ (ρp/ρ f )d ≫ d , in which, contrary to bed load, the wind velocity is strongly reduced because



of the large particle inertia (Andreotti 2004, Ungar & Haff 1987). The entrainment of new grains

mostly results from collisions. The balance between erosion and deposition implies that the mean

grain velocity u p is a constant, scaling with uth. The resulting scaling law Q ∼ (2 − 2th) is in

agreement with wind-tunnel experiments (Creyssels et al. 2009, Iversen & Rasmussen 1999) but

contrasts with the initial proposition of Bagnold (1941).

The saturation transient is limited by particle inertia, so the saturation length Lsat scales with

the length needed for one grain to be accelerated up to the wind velocity (Andreotti et al. 2010,

Hersen et al. 2002):

Lsat ∝
ρp

ρ f

d . (17)

Lsat is therefore independent of u∗ and is of the order of 1 m, as confirmed by direct measurements

(Figure 4a). Note that the initial exponential increase of the sand flux seen in the figure for

q ≪ qsat results from erosion and takes place over a distance decreasing as u−2
∗ (Sauermann et al.

2001).

Experiments (Iversen & Rasmussen 1999) and models (Andreotti 2004, Durán et al. 2011) agree

on the large increase of the hydrodynamical roughness z0 with the density of mobile grains, and

therefore with u∗ . It provides a direct proof of the strong negative feedback, inside the transport

layer, of the particles on the fluid velocity.

3.3.3. Suspension. In the suspension regime (u∗ & V fall), particles diffuse over the whole water

depth D, and the particle flux results from the balance between the upward diffusion and sedimen-

tation. Experiments (Ashida & Okabe 1982, Jobson & Sayre 1970, van Rijn 1986) and theoretical

analysis (Claudin et al. 2011) have shown that the saturation length then scales as

Lsat ∝
U

V fall
D, (18)

i.e., on a deposition length based on the depth-averaged flow velocity U and the settling time

D/V fall (Figure 4b). This law is the same as for bed load, except that the length over which the

grains settle now scales with the flow depth D rather than the grain diameter. As D/d ≫ 1, Lsat

can be very large: several meters in flume experiments and hundreds of meters in natural rivers.

4. STABILITY ANALYSIS OF A FLAT ERODIBLE BED

We now address the question of the instability of an erodible bottom by combining the previous

analyses of the fluid flow (Section 2) and particle transport (Section 3). The instability mechanism is

shown to arise from the hydrodynamics, for both subaqueous ripples and aeolian dunes, whereas

gravity and sediment transport are stabilizing. Unbounded flow is still considered here as the

reference case.

4.1. Dispersion Relation

As clearly recognized by Kennedy (1963, 1969), a crucial feature at the origin of the growth of

a sinusoidal disturbance of an erodible bed is the phase lead of the perturbation τb of the bed

shear stress, as given by Equation 5. We let ζ (x, t) = ζ0eσ t cos(kx − ωt) be the slowly varying

bed disturbance. The component of τb in quadrature with ζ (x, t) (proportional to B > 0) drags

the particles from troughs to crests, amplifying the initial bed disturbance (positive growth rate

σ ), whereas the in-phase component (proportional to A > 0) is responsible for the downstream
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(a) Growth rate σ as a function of wave number kz0 from Hanratty’s model for Lsat = 0 and S = 0 (dotted
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smooth closure (Equation 3) (solid red line), Hanratty’s model (solid gray line), rough closure (Equation 4)
(solid blue line), and Equation 10 (dashed blue line). The green region is the transition between the laminar and
turbulent regimes (10−5 < kz0 < 10−3).

migration of the disturbance, with a phase velocity c = ω/k. We discuss here the dispersion

relation, i.e., the dependence of σ and c on the wave number k.

4.1.1. Stabilizing effects ignored. We first ignore the stabilizing slope effect (S = 0) and

consider that the particle transport q is at local equilibrium with the shear stress (Lsat = 0).

Then, as q = qsat(τ ), the amplitude of the flux disturbance is q̂ = φb Q(A + iB)kζ , with Q de-

fined by Equation 14. The bed evolution is governed by the particle mass conservation equation

(Equation 11), and the dispersion relation follows as

σ = B(kz0)Q k2, c = A(kz0)Q k. (19)

Because fluid inertia imposes B > 0 for any wave number (Figure 3b), all wave numbers are

amplified (Figure 5a). Some stabilizing processes must be at work to get some most amplified

wave numbers.

4.1.2. Slope effect. With the introduction of the slope effect, q̂sat becomes

q̂sat = φb Q{A(kz0) + i[B(kz0) − S]}kζ. (20)

The additional S term does not provide any new length scale but reduces the growth rate from

QB k2 to Q(B − S) k2. As Bk2 tends to the constant value 1
2
δ−2
ν at large k (Section 2), the

slope effect stabilizes short waves: Instability is suppressed beyond some cutoff wave number

(Figure 5a) (Fredsøe 1974). The slope effect is expected to be significant close to the transport

threshold 2th and become negligible further away as S decreases with increasing shear stress

(Section 3).



4.1.3. Transport relaxation. For spatially varying shear stress, the adjustment of the particle

flux is not instantaneous but takes place over some relaxation length Lsat (Section 3). According

to Equation 13, the amplitudes of the actual and saturated flux disturbances, q̂ and q̂sat, are then

related by (1 + ikLsat)q̂ = q̂sat so that the growth rate and wave velocity become

σ = Qk2 (B − S) − AkLsat

1 + (kLsat)2
, c = Qk

A + (B − S)kLsat

1 + (kLsat)2
. (21)

We see that transport relaxation brings a stabilizing term to the growth rate when A > 0, which

dominates at large wave numbers (Figure 5a). Thus transport relaxation stabilizes short waves,

like the slope effect.

4.2. Linear Wavelength Selection

The most unstable mode is expected to correspond to the observed wavelength emerging from

an initially flat bed, at least for short times when nonlinear effects are still negligible. We discuss

here the competition of the mechanisms at work for the selection of this mode, which involves a

hydrodynamical length scale (the inner layer thickness δi or the roughness length z0), the transport

relaxation length Lsat, and the dimensionless slope parameter S.

4.2.1. Zero Lsat. We first ignore the transport relaxation so that only the slope effect may coun-

teract the destabilizing fluid inertia. The most unstable wave number is nearly proportional to the

cutoff wave number kc , which is the solution of B(kc z0) = S according to Equation 21 and can be

obtained graphically from Figure 3. Using the asymptotic expression (Equation 8) for B (laminar

inertial regime), one can obtain a good estimate of the most amplified wavelength as (Charru &

Mouilleron-Arnould 2002)

λ = 2π
3S

γL

δi or λ = 2π

(

3S

γL

)3/2

δν . (22)

The full calculation in the smooth hydrodynamical regime (Figure 3b) confirms this scaling with

the hydrodynamical length δν (Sumer & Bakioglu 1984).

Using measured values ofS (Section 3), one finds that the predicted wavelength in water is much

smaller, by one order of magnitude at least, than the measured wavelengths (Figure 5a). Large val-

ues of S, likely unrealistic, are necessary to reduce the discrepancy [e.g., S = 2.8 used by Richards

(1980)]. For aeolian dunes, the mismatch reaches three orders of magnitude. Hence, although

some uncertainties remain on the values of S, the slope effect alone is not stabilizing enough.

4.2.2. Nonzero Lsat. Figure 5b displays the most unstable wavelength λ/Lsat as a function of

Lsat/z0, calculated from Equation 21 for the three hydrodynamical models discussed in Section 2.

When the saturation length is small compared to the hydrodynamical length, e.g., Lsat < 10 z0,

it appears that the selected wavelength is essentially controlled by the hydrodynamics, which is in

the laminar regime. In particular, for nonzero S, the scaling in Equation 22 is recovered.

For large Lsat/z0 and S = 0, Figure 5b shows that λ/Lsat is nearly constant and in the range

15–30, which means that λ scales approximately on Lsat. In the hydrodynamically rough regime

(blue solid line), this result can be understood from the fact that for kz0 ≪ 1, A and B depend

weakly—logarithmically—on kz0 and can be considered as constants and evaluated at z0/Lsat.

Then the most amplified wave number is expected to scale on the cutoff wave number kc defined

by B(kc z0) = A(kc z0)kc Lsat, i.e., the balance of destabilizing fluid inertia and stabilizing particle



relaxation. This analysis finally gives (Andreotti et al. 2002)

λ ∝
A(z0/Lsat)

B(z0/Lsat)
Lsat. (23)

In the hydrodynamically smooth regime (curves for the smooth closure and Hanratty’s model in

Figure 5b, red and gray lines), the above scaling is recovered but at larger Lsat/z0 (>104), i.e.,

in the turbulent regime. For smaller Lsat/z0 in the range 101–104, i.e., in the more complicated

transitional regime (green area), the selected wavelength depends on both z0 and Lsat.

The slope effect parameterized by S induces a further stabilizing effect, which results in larger

wavelengths (dashed lines in Figure 5b). When S > B(kz0) for all wave numbers, the flat bed is

stable (at the right of the dots ending the dashed lines). This situation is more likely to happen

close to the transport threshold at which the slope effect is stronger, and in the turbulent regime

in which B decreases below S = 1.6. Further from threshold, S decreases and long waves become

unstable.

4.2.3. Aeolian dunes. The best understood situation is that of aeolian dunes, for which wind-

tunnel experiments have provided measurements of qsat, Lsat, S, and z0 (e.g., Andreotti et al. 2010,

Creyssels et al. 2009, Ho et al. 2011, Iversen & Rasmussen 1999). Aeolian transport takes place in

the turbulent regime for which hydrodynamical calculations are robust with respect to turbulent

closures and lead to nearly constant A and B (Figure 3). Moreover, the different lengths of the

problem are well separated (Table 1). Figure 6c displays the development of dunes on the flank

of large barchans (Elbelrhiti et al. 2005). In this situation, Lsat is the relevant length scale, and

Equation 23 holds. With the slope effect, Equation 23 becomes λ ∝ A
B−S

Lsat, which predicts

an increase of λ close to the transport threshold, in agreement with observations (Figure 6d )

(Andreotti et al. 2010).

One may assess the proportionality of the saturation length with the drag length (ρp/ρ f )d

(Figure 4b) by comparing dune sizes in different environments. In particular, the proportionality

explains why on Mars, where the atmosphere is significantly lighter than on Earth, dunes have

wavelengths ten times larger than those on Earth (Claudin & Andreotti 2006). Conversely, aeolian

features that emerge under high-pressure CO2 are on the decimeter scale (Greeley et al. 1984).

As for the growth rate σ ∼ L2
sat/Q, its dependence on L2

sat may explain the apparent large-scale

inactivity of Martian dunes, as it predicts a very large growth time, typically centuries, in contrast

to days on Earth. Recent observations of the propagation of small ripples confirm that Mars is

active (Silvestro et al. 2010).

4.2.4. Subaqueous ripples. The situation in liquids is less definite than in air for the fol-

lowing reasons: (a) The separation of the length scales, δt , Lsat, z0, and δi , is less pronounced

(Table 1); (b) no direct measurement of Lsat is available yet; and (c) the observed ripples lie at the

transition between the laminar and turbulent regimes, which is more sensitive to flow modeling

(Figure 6b). Numerous experiments have been performed with various particles, with a free sur-

face or an upper wall, but a rather limited range of the parameters has been explored (e.g., the

grain Reynolds number d/δν and the distance to threshold u∗/uth). Moreover, the focus is often

on mature ripples rather than on the first stages of the instability.

Initial ripple wavelengths are typically in the range 100–800d both in water (Baas 1994, 1999;

Betat et al. 1999; Coleman & Melville 1996; Fourrière et al. 2010; Langlois & Valance 2007)

and in viscous fluids (Charru & Mouilleron-Arnould 2002, Kuru et al. 1995). Figure 5a displays

measured growth rates and a fit with Equation 21 including both the slope effect and a (somewhat

large) saturation length. Figure 6b displays measured wavelengths from the above references
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(a) Time evolution of the amplitude H ( yellow squares) and wavelength λ ( gray circles) of ripples in a natural river in Gascogne from a flat
sand bed. (Inset) Bed profiles at t = 25 s and t = 150 s. (b) Measured initial wavelengths λ/d as a function of d/z0 for u∗/uth in the range
1.8 ± 0.2. The solid lines are predictions for the most unstable wavelength, with S = 0.5 and Lsat/d = 2.5 U (d )/V fall (rough case) and
12 U (d )/V fall (smooth case). The lines are color coded as follows: smooth closure (Equation 3) (solid red line), Hanratty’s model (solid
gray line), and rough closure (Equation 4) (solid blue line). The green region is the transition between the laminar and turbulent regimes
(10−5 < kz0 < 10−3). (c) Profile δh of dunes on the flank of a large barchan and corresponding sand flux perturbation δq . (d ) The
measured initial wavelength of aeolian dunes as a function of the rescaled wind velocity. The yellow region represents the uncertainty
on the value of Lsat in the range 0.5–0.9 m.

together with the most amplified mode computed from the three hydrodynamical models. It

can be seen that subaqueous ripples form in the transitional regime in which the most amplified

wavelength involves both Lsat and δν . The general trend that emerges is the decrease of λ/d with

d/δν . Only Hanratty’s model reproduces the correct trend, with the saturation length fitted to

Lsat ≃ 12 U
V fall

d , consistent with measurements of the deposition length by Lajeunesse et al. (2010).

The existence of an instability threshold larger than the transport threshold is consistent with

the observation a lower-plane regime reported in bed-form stability diagrams (Southard 1991).

An upper-plane regime in which the bed forms flatten and disappear is also reported in these

diagrams, which generally corresponds to large particle Reynolds number, typically d/δν > 25.

Sumer & Bakioglu (1984) account for this observation with a shift of the mixing length depending
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on the roughness. Another explanation could be that for large grains, the flow depth is relatively

smaller, or that the transport layer thickens and the saturation length becomes larger, whose

effects are stabilizing (Section 5).

4.3. Nonlinear Coarsening

We now turn to nonlinear aspects, restricting the discussion to subaqueous ripples. Once the quasi-

sinusoidal ripples have emerged from the flat bed, their height H = 2ζ0 first grows exponentially

with time (Figure 7a) (Betat et al. 1999, Fourrière et al. 2010). Then nonlinear effects quickly arise:

The profile becomes asymmetrical (inset in Figure 7a), and after a couple of minutes the ripple

height saturates, while the wavelength remains unchanged. Then, on a much longer timescale

(hours), the small velocity differences related to small height differences (c ∝ 1/H ; Section 1)

lead to collisions and merging between adjacent ripples (see the spatiotemporal diagram in the

inset of Figure 7b) (Betat et al. 2002, Coleman & Melville 1994). This results in coarsening of the

pattern and an increase of the averaged wavelength (Figure 7a). Eventually, λ saturates because

of finite-size effects (see Section 5).

5. FINITE-SIZE EFFECTS

We now consider bounded flow, i.e., kD . 1, for which the upper boundary, either a rigid wall

(closed channels) or a free surface (open channels, rivers, stratified atmosphere), is expected to
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affect the bottom shear stress. Several new patterns arise, such as subaqueous dunes, antidunes,

chevrons, and alternate bars (Figure 8a).

5.1. Hydrodynamics

For a rigid upper boundary, the only new parameter is kD. As this parameter decreases, the inner

layer progressively invades the whole flow. The sole effect of the confinement is to lower inertia so

that the in-quadrature shear-stress component B decreases for both laminar and turbulent flows

(Charru & Mouilleron-Arnould 2002, Engelund 1970, Fourrière et al. 2010, Richards 1980).

For a free surface flow with surface velocity U, an additional parameter enters the analysis: the

Froude number Fr = U /
√

g D, which measures the relative magnitude of inertia and gravity.

The situation can be summarized as follows. For subcritical flow (Fr < 1), the confinement is



Chevrons:
subaqueous inclined
(nontransverse) bed
forms emerging in
shallow flows

Alternate bars:
nontransverse features
forming in rivers and
flumes, with a size
much larger than the
flow depth

still stabilizing: The in-phase shear-stress component A increases, whereas B decreases and even

becomes negative for kD ≪ 1. The Saint-Venant equations, for instance, produce a negative B

(Gradowczyk 1968, Luchini & Charru 2010). For the more general case of three-dimensional

flow over a wavy bottom ζ = ζ0 cos(kx x) cos(ky y), only the component Bx parallel to the main flow

becomes negative, whereas the transverse component By is enhanced (Andreotti et al. 2012). For

supercritical flow (Fr > 1), the free surface is crucial when the surface waves resonate with the

undulations of the bottom, which occurs in a narrow window in the diagram (Fr, kD) (Engelund

1970). The resonance induces a sharp decrease of B and also strongly affects A, which can become

negative.

5.2. Linear Instability and Pattern Formation

Linear stability analysis can be performed as above, withA andB now encoding the finite-D effect.

Sediment transport remains unchanged and essentially imposes the length scale Lsat. Different

regimes are found, depending on the dimensionless ratio Lsat/D (Andreotti et al. 2012). For

small Lsat/D and Fr < 1, the most unstable wavelength is not influenced by the free surface and

remains as in the unbounded case (ripples). In particular, there is no secondary maximum to be

associated with dunes. Experimental evidence (see Figure 7) strongly suggests that dunes emerge

from the pattern coarsening of ripples (Coleman & Melville 1994, Fourrière et al. 2010, Raudkivi

2006, Raudkivi & Witte 1990) rather than by linear instability (Colombini 2004, McLean 1990,

Richards 1980). The increase of the mean wavelength is stopped by the stabilizing role of the free

surface at small kD, and λ eventually scales with D. In the aeolian case, the stratified structure of the

atmosphere above deserts is qualitatively analogous to a river surrounded by air: The equivalent of

the flow depth is the thickness of the convective boundary layer, capped by the thin inversion layer,

which plays the role of the free surface. This stratification, with thickness varying by a factor of

up to 5 from coastal to continental deserts, bounds the size of giant aeolian dunes (Andreotti et al.

2009).

For Lsat/D & 0.1 and still subcritical flow, oblique bed forms with angle α with the flow

direction are more unstable than transverse ones (α = 0). This explains the generation, in shallow

water, of rhomboid beach patterns or chevrons (the combination of two plane waves with angles α

and −α) (Daerr et al. 2003, Devauchelle et al. 2010, Morton 1978, Venditti et al. 2005). This also

explains the oblique or alternate bars observed in flumes with coarse grains (Lanzoni 2000, Lisle

et al. 1991). Large values of Lsat/D are also reached when suspension is the dominant mode of

transport (Section 3). Some alternate bars observed in flume experiments are in this regime (Chang

et al. 1971), as well as the bars formed in rivers during floods, in which most of the sediment is

suspended. In rivers and flumes, the depth-to-width ratio D/W is a new control parameter, with

the transverse wave number of bed forms being selected by the finite width. The braiding patterns

observed for small D/W can be interpreted as high-order modes.

For supercritical Froude number (Fr > 1), the free surface now has a destabilizing effect

associated with the change of sign of A at the resonance. The growth rate of modes with kD ≃ 1

dominates that of ripples when Lsat & D. This situation corresponds to large deformations of

the free surface and antidunes propagating upstream (Kennedy 1969, Parker 1975). The range

of unstable wave numbers kD is so closely related to the resonance, and thus so narrow, that

the most unstable mode is selected by the hydrodynamics, λ ∝ D. Moreover, antidunes hardly

experience pattern coarsening.

Measured wavelengths corresponding to the patterns described above are displayed in the

(Fr, kD) diagram of Figure 8. They gather in different groups. Antidunes nicely follow the resonant

curve (red solid line), whereas dunes (and megadunes) lie in the subcritical unstable region.



SUMMARY POINTS

1. The formation of subaqueous ripples and aeolian dunes in unbounded flow (bed-form

wavelength smaller than the flow depth) results from the destabilizing action of fluid

inertia, which induces a phase advance of the shear stress relative to the bed disturbance.

2. The most relevant hydrodynamical length is the thickness δi of the inner layer above

which the dynamics of the flow disturbance is essentially inviscid and potential.

3. The destabilizing inertia is balanced by the stabilizing lag of the particle flux with respect

with shear stress. The saturation length Lsat associated with this relaxation effect is an

essential feature for our understanding of the instability. A second stabilizing effect is the

bed-form slope, which drags the particles toward troughs.

4. For aeolian dunes, the scales of the problem are well separated; the initial dune wavelength

is, as a first approximation, proportional to the saturation length times the hydrodynami-

cal factor B/A encoding the phase advance of the bed shear stress. The saturation length

results from grain inertia and is proportional to the drag length (ρp/ρ f )d . Weaker effects

arise from the dependence of λ/Lsat to Lsat/z0 and the slope parameter S.

5. For subaqueous ripples, the conclusion is less clear-cut. Most experimental and field data

lie in the transition between the laminar and turbulent regimes, in which the bed shear

stress is more sensitive to turbulence modeling. However, there is direct evidence that

ripples form by the linear instability of a flat bed, and their initial wavelength, in the

range 100–800d, is consistent with Lsat in the range 10–30d. The rapid coarsening of the

pattern makes the interpretation of many data from the literature difficult.

FUTURE ISSUES

1. The laminar-turbulent transitional regime, in which most of the subaqueous ripples

lie, remains to be understood. The effect on the bed shear stress of turbulent coherent

structures in the near-bed region, notably longitudinal streaks, is largely unknown.

2. The nonlinear description of the hydrodynamical response to a complex relief remains

to be completed, in particular, the secondary flows behind star dunes and other three-

dimensional dunes.

3. The saturation length Lsat for bed load has to be measured and understood, as well as its

large increase at the transition from bed load to suspension.

4. A quantitative nonlinear description of the asymmetry and saturated amplitude of dunes is

open, as well as the description of dune interactions, collisions, coalescence, and splitting,

in one-dimensional channels and two-dimensional fields.

5. Finally, the effects of grain polydispersity and segregation have to be understood.
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