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Trajectory Optimization on Manifolds: A
Theoretically-Guaranteed Embedded Sequential

Convex Programming Approach
Riccardo Bonalli, Andrew Bylard, Abhishek Cauligi, Thomas Lew, Marco Pavone

Abstract—Sequential Convex Programming (SCP) has recently
gained popularity as a tool for trajectory optimization due to its
sound theoretical properties and practical performance. Yet, most
SCP-based methods for trajectory optimization are restricted to
Euclidean settings, which precludes their application to problem
instances where one must reason about manifold-type constraints
(that is, constraints, such as loop closure, which restrict the
motion of a system to a subset of the ambient space). The aim of
this paper is to fill this gap by extending SCP-based trajectory
optimization methods to a manifold setting. The key insight is
to leverage geometric embeddings to lift a manifold-constrained
trajectory optimization problem into an equivalent problem
defined over a space enjoying a Euclidean structure. This insight
allows one to extend existing SCP methods to a manifold setting
in a fairly natural way. In particular, we present a SCP algorithm
for manifold problems with refined theoretical guarantees that
resemble those derived for the Euclidean setting, and demonstrate
its practical performance via numerical experiments.

I. Introduction

Trajectory optimization is a key problem in robotics, and
it has thus been studied extensively through a variety of
mathematical frameworks. Examples include sampling-based
motion planning techniques [16, 18, 19, 21, 22], variational
approaches such as CHOMP and STOMP [33, 17], sum-of-
squares methods [27, 38], and sequential convex programming
(SCP) techniques such as TrajOpt and GuSTO [6, 26, 28, 36].
Most of these methods, however, are restricted to Euclidean
settings, which precludes their application (at least directly) to
problem instances where one needs to reason about manifold-
type constraints. For example, such constraints arise when the
motion of a robotic system is forced to evolve on subsets
of the ambient space (e.g., due to the presence of closed
kinematic chains giving rise to loop closure constraints [15]),
which are mathematically modeled as manifolds. Systems
having such constraints include quadrotors [2, 29], robots with
camera orientation constraints [37, 43], manipulator systems
[20, 31] and robotic spacecraft [30, 41], to name a few. For
such systems, trajectory optimization methods must ensure
that the computed trajectories lie on the relevant manifolds,
preventing the planning of infeasible motions. However, this
is in general challenging, as manifold-type constraints are often
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Fig. 1: The torus T2 is an embedded submanifold of R3.
The red trajectory, starting from x̄0 and finishing at x̄ f , is
characterized by dynamics with torus-type constraints and can
be seen as an embedded curve in R3 (Section II-B).

defined only locally (i.e., through local charts) or as implicit
constraints (i.e., constraints of the type E(x) = 0 where E is
a submersion and x is the state vector). As a pedagogical
example, consider a two-joint manipulator. Its motion is forced
to evolve on the torus T2 (see Figure 2), which represents a
two-dimensional submanifold of R3. Specifically, each joint
variable (θi , i = 1,2) evolves on the unitary circle S1, and thus
the combined evolution is on the Cartesian product S1 × S1,
which is diffeomorphic to T2 (as characterized by implicit and
nonlinear equality constraints).

Despite the ubiquitous presence of manifold constraints
in robotic applications, the set of trajectory optimization
tools that handle such constraints is relatively limited. The
most naïve technique consists of simply removing, without
principled justification, all manifold-type constraints, and then
solving a relaxed version of the original problem in the re-
sulting Euclidean space. Since this approach cannot guarantee
trajectory feasibility, one needs to resort to post-processing
before trajectory execution, often using a heuristic correction
step which may be unsuccessful. This has prompted the design
of optimization approaches that explicitly account for the
presence of manifold constraints, including sampling-based
techniques leveraging local chart analysis, [39, 15], methods
employing global chart-gluing procedures [43], and methods
exploiting properties of specific types of manifolds (in partic-
ular, Lie groups), such as invariant metrics [42] and projection
operators [34, 35]. These methods, while directly accounting
for the presence of manifold constraints, do not in general
enjoy theoretical guarantees, and they only consider a subset
of the typical constraints arising in robotic applications (e.g.,
control or goal region constraints are generally not addressed).
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Building on the recent success of SCP-based techniques for
trajectory optimization, the aim of this paper is to provide an
SCP-based framework for trajectory optimization on manifolds
that (1) enjoys theoretical guarantees in terms of conver-
gence, (2) is general, in that it accounts for a vast class of
constraints arising in robotic applications (possibly implicitly
defined), and (3) provides effective and reliable practical per-
formance. Specifically, SCP entails successively convexifying
the cost function and constraints of a nonconvex optimal
control problem, seeking a solution to the original problem
through a sequence of convex problems. Its attractiveness is
due to high computational speed [2, 36], broad applicability
[26, 41], and (continuous-time) theoretical guarantees [6, 28].
Extending SCP-based methods, primarily developed for Eu-
clidean settings, to manifold-constrained problems is, however,
challenging. In particular, when dealing with manifolds, it is
challenging to make linearizations (required by SCP schemes
that operate on dynamics) well-posed [8]. The key technical
idea of this paper is to leverage geometric embeddings –
that is, mappings that allow one to recover manifolds as
subsets of Euclidean spaces. Leveraging embeddings provides
four main advantages. First, it allows one to lift a manifold-
constrained problem into an equivalent problem defined over
a space enjoying Euclidean structure, where linearizations can
be easily computed. Second, embedded problems are often
easier to address than their counterparts in local coordinates
since, for example, linearity can be partially maintained.
Third, embeddings provide a pathway to address implicitly-
defined manifolds, as the equality constraints defining them are
automatically satisfied in the lifted Euclidean space without
the need for explicit enforcement. Fourth, and crucially, for
dynamical systems evolving on Lie groups (as it is the case
for virtually all robotic systems), there is always a “natural"
embedding that can, at least in principle, be leveraged. In-
deed, any mechanical system can always be identified with
a subgroup G ⊆ Rn×n of a Cartesian product of Lie groups
of matrices. Then, the first-order equation that governs the
dynamical evolution of the system is

Ûv(t) = Γ(v(t))+
m∑
i=1

ui(t) vlft(Fi)(v(t)), v ∈ TG, (1)

where Γ is the geodesic spray induced by the kinetic energy
and vlft(Fi) is the vertical lift of the generalized force Fi

[7]. This can be reinterpreted as a first-order, control-affine
equation with a drift term on the space G×g via the identifi-
cation TG � G×g [7], where g denotes the Lie algebra of G.
A natural embedding is then the inclusion G× g ⊆ R2n2 (we
provide explicit examples in the rest of the paper).

Statement of Contributions: In this paper, we leverage geo-
metric embeddings to extend SCP-based methods for trajectory
optimization to manifold-constrained problems. Specifically,
the contribution of this paper is fourfold. First, we introduce
the notion of embedded SCP, a trajectory optimization method
that exploits geometric embeddings to recast optimization on
manifolds as a sequence of convex optimal control prob-
lems within Euclidean spaces. Importantly, a large number
of trajectory optimization problems can be “naturally" (in the
sense above) embedded in Euclidean spaces, which makes
this step generally straightforward. Second, leveraging such

a reformulation and extending recent results on theoretical
guarantees for SCP-based methods in Euclidean spaces [6],
we provide convergence guarantees for embedded SCP in the
sense of the geometric Pontryagin Maximum Principle (PMP)
[32], i.e., in the sense of convergence of both the solution
and corresponding Lagrange multipliers to stationary points
satisfying necessary conditions for optimality and complying
with the structure of the manifold characterizing the problem.
In particular, a key aspect of our theoretical analysis entails
showing how one can avoid manifold-type constraints in the
optimization process, and yet can still guarantee that the
computed solution lies on the manifold – thus providing a
computationally efficient pathway to deal with implicit man-
ifold constraints. Third, by merging techniques from indirect
optimal control and differential geometry, we extend the the-
oretical results to a large variety of settings, e.g., goal region
constraints and pointwise state constraints arising in multitask
scenarios. Fourth, again inspired by analogue results in the
Euclidean setting [6], we harness the insights gained through
our theoretical analysis to develop a convergence acceleration
scheme for trajectory optimization on manifolds based on
shooting methods [3].

One must note that while geometric embeddings allow a
principled and systematic development of SCP methods for
manifold-constrained problems, they come with two key draw-
backs. First, embedding the manifold into an Euclidean space
requires solving an optimization problem on a space having a
higher dimension than the original manifold (albeit of simpler
structure). Nevertheless, SCP-based algorithms scale rather
well with problem dimensionality, and thus this drawback is
offset by the simplification in the problem structure. Second,
a straightforward and simple leveraging of embeddings is
possible only if globally defined dynamical equations are at
our disposal, i.e., it is easy to write

Ûx = f (x,u), x ∈ RN with the additional constraint x ∈ M (2)

for some N ∈N, where M is a n-dimensional manifold. Indeed,
though recovering the expression above is always theoretically
possible thanks to (1), it could be hard to practically describe
complex dynamics as in (2) (for example, for second-order
dynamics that are defined only by local coordinates). Still,
most of the systems commonly used in robotics are in the
form provided by (2), which makes possible to efficiently put
in practice the method developed in this paper.

Structure of the Paper: In Section II, we define the problem
of trajectory optimization on manifolds and introduce the tool
of embeddings that allows us to reformulate the problem
in a standard Euclidean space on which we can proceed
by linearization. In Section III, we introduce the embedding
trajectory optimization algorithm and the primary theoreti-
cal contributions that are geometrically consistent with the
structure of the manifold. Finally, Sections V and VI present
experiments, conclusions and future extensions for this work.

Notation: We denote by M an n-dimensional manifold with
tangent bundle T M and cotangent bundle T∗M (both manifolds
of dimension 2n). The tangent space of M at x ∈ M will be
denoted by TxM . Moreover, we recall that a smooth vector
field on M is a mapping f : M→ T M such that f (x) ∈ TxM ,
for every x ∈ M . The interested reader is referred to [24] for
related concepts in differential geometry.



II. Problem Formulation and
Sequential Convex Programming on Manifolds

We begin in Section II-A by formulating trajectory opti-
mization for dynamical systems as an optimal control problem
on manifolds. Then, in Section II-B, we introduce a procedure
for appropriately embedding the original problem on manifolds
into an Euclidean space. This allows us to exploit classical SCP
frameworks for trajectory optimization in Euclidean spaces to
solve the problem in Section II-C.

A. Trajectory Optimization on Generic Manifolds
In this paper we consider a continuous-time formulation

to ensure that the theoretical guarantees we derive are in-
dependent of the discretization scheme that is employed. A
discussion about the impact of discretization schemes on the
proposed methodology will be discussed in Section III-D.

Specifically, consider an initial point x̄0 ∈ M and smooth
mappings gi : M→ Rri , i = 1, . . ., `, which are submersions at
0. Here, gi represent pointwise state constraints that are used
to mathematically model multitask scenarios; in particular, g`
represents goal region constraints. Without loss of generality,
we require dist(x̄0, (g`)−1(0)) > 0, where dist is a point-set
distance evaluated w.r.t. some Riemannian metric on M . For
times 0 < t1 < · · · < t` , we model the dynamical evolution of
the system by the following drift control-affine system in M
Ûx(t) = f (x(t),u(t)) = f0(x(t))+

m∑
j=1

u j(t) fj(x(t))

x(0) = x̄0 , gi(x(ti)) = 0 , i = 1, . . ., `, t ∈ [0, t`],

(3)

where fj : M → T M , j = 0, . . .,m are C1 vector fields. The
pointwise state constraints gi(x(ti)) = 0 are useful in multitask
scenarios where one seeks to jointly optimize subtrajectories
connecting different waypoints. We emphasize that, as previ-
ously mentioned, the dynamics of every mechanical system
can be written as in Eq. (3) by substituting the manifold M
with its tangent bundle T M .

We pose trajectory optimization as an optimal control prob-
lem with penalized state constraints. Specifically, we define the
Optimal Control Problem (OCP) as minimizing the integral
cost

J(t`,x,u) =
∫ t`

0
f 0(x(t),u(t)) dt =∫ t`

0

(
‖u(t)‖2R +u(t) · f 0

u (x(t))+g(x(t))
)

dt
(4)

under dynamics and pointwise constraints (3), among all
control trajectories u ∈ L∞([0, t`], Rm) satisfying u(t) ∈ U al-
most everywhere in [0, t`], where the measurable set U ⊆ Rm
represents control constraints. Here, f 0

u : M→ Rm, g : M→ R
are C1, ‖ · ‖R is the weighted norm defined by a constant
positive-definite matrix R ∈ Rm×m, and times ti , i = 1, . . ., `
are fixed. We remark that hard enforcement of dynamical
and intermediate/final goal set constraints is naturally imposed
by (3). The function g = ga +ωgb accumulates contributions
from a purely state-dependant cost ga and state constraint
penalty function gb (e.g., stemming from collision-avoidance
constraints), weighted by ω ≥ 1. Penalizing state constraints

(e.g., collision avoidance) provides both theoretical and nu-
merical benefits: it allows us to obtain theoretical guarantees
in the sense of the Pontryagin Maximum Principle [32, 1, 10],
necessary conditions for optimality that are stronger than
standard Lagrange multiplier rules (see also Theorem 3 be-
low), and it provides numerical flexibility by often allowing
simple trajectories that violate constraints such as obstacle
avoidance to be exploited for initialization. Indeed, given
correct design of an SCP algorithm, we can still guarantee
that returned solutions satisfy state constraints up to a user-
defined tolerance.

A representative example (that will serve as running exam-
ple) of a trajectory optimization problem evolving on mani-
folds is the minimum-energy optimal control of a spacecraft
avoiding collisions in a microgravity environment, which can
be stated as (under the previous formalism, g provides state
constraints):

(Ex)



min
∫ t`

0

(
‖u1(t)‖2+ ‖u2(t)‖2+g(r(t),q(t))

)
dt

Ûr = v , Ûv = u1
m
, Ûq = 1

2
Ω(w)q , Ûw = J−1(u2−w× Jw)

(r,v,q,w)(0) = x̄0 , (r,v,q,w)(t`) = x̄` , (u1,u2) ∈ U

(r,v,q,w) ∈ R6× S3×R3 , S3 = {q ∈ R4 : ‖q‖ = 1}
where r is the position of the vehicle, v its tangential velocity,
q its orientation (expressed via quaternions), w its angular
velocity (Ω(w) is the usual skew-symmetric matrix depending
on w) and the manifold S3 ⊆ R4 characterizes quaternions.
Controls are represented by the thrust u1 and the torque u2.
A naïve way to approach our running example (Ex) would
entail removing, without principled justification, the constraint
q ∈ S3, and then solving the relaxed problem in the resulting
Euclidean space – this could result, however, in computation of
infeasible trajectories. Better justified approaches could exploit
local charts or Lie group properties, as mentioned in Section
I. However, in what follows, we demonstrate another method
to tackle the implicit manifold constraint q ∈ S3, that hinges
on embeddings and provides a way to lift SCP methods to
manifold-constrained problems.

B. Embedding the Problem into the Euclidean Space
We would like to solve (OCP) via SCP, i.e., by an iterative

procedure based on the linearization of all nonlinear mappings
around the solution at the previous iteration. This requires us
to compose a notion of linearized vector fields of M around
curves. In [40, 25, 8], the authors adapt such a definition
on manifolds by recasting differential equations as algebraic
equations of operators in T M . However, in many applications
concerning dynamical systems, M naturally appears as subset
of the Euclidean space, in which case the most intuitive lin-
earization is the one operating in the ambient Euclidean space.
This insight motivates our approach: to recast (OCP) into an
appropriate Euclidean space via geometric embeddings, i.e.,
mappings e : M→ RN for N ∈ N, and then to linearize in the
ambient space.

Following the previous discussion, we assume that M is a
closed submanifold of RN , for some N ∈ N. This means that
we fix a particular embedding, which is given by the canonical



inclusion e : M → RN : x 7→ x. This choice is made without
loss of generality because, due to Whitney-type theorems [24],
such a mapping always exists. Moreover, consistent with the
previous motivating discussion, we assume that the mappings
defining (OCP) naturally extend to RN , i.e., there exist C1

vector fields Fj : RN → TRN � RN , j = 1, . . .,m (with an
abuse of notation, see [24]), and C1 functions F0

u : RN → R,
G : RN → R and Gi : RN → R, i = 1, . . ., `, that are smooth
submersions at 0, such that Fj |M = fj , Gi |M = gi , F0

u |M = f 0
u

and G |M = g. This setup allows us to transform the dynamics
(3) into the following drift control-affine system in RN :
Ûx(t) = F(x(t),u(t)) = F0(x(t))+

m∑
j=1

u j(t)Fj(x(t))

x(0) = x̄0 ∈ M ⊆ RN , Gi(x(ti)) = 0 , i = 1, . . ., `.

(5)

Therefore, (OCP) can be embedded in RN by considering
the following Embedded Optimal Control Problem (EOCP),
which consists of minimizing the integral cost

J(t`,x,u) =
∫ t`

0
F0(x(t),u(t)) dt =∫ t`

0

(
‖u(t)‖2R +u(t) ·F0

u (x(t))+G(x(t))
)

dt
(6)

under dynamics (5), among all control trajectories u ∈
L∞([0, t`], Rm) satisfying u(t) ∈U almost everywhere in [0, t`].
At this step, it is worth noting that this embedding approach is
justified only if solving (EOCP) is equivalent to solve (OCP).
Fortunately, this is actually the case: every couple (x,u) is
optimal for (OCP) if and only if it is optimal for the embedded
problem (EOCP). The validity of the whole scheme hinges
on this crucial remark, which is summarized in the statement
below,
Lemma 1 (Embedding Lemma). A tuple (x,u) is optimal for
(EOCP) if and only if it is optimal for (OCP).

Proof: The proof makes use of standard tools in dif-
ferential geometry, whose definitions can be found in [24]
and are omitted here due to space limitations. We retrace the
main steps of the proof. Denote by e : M→ RN the canonical
inclusion. It follows that F is e-correlated to f , which implies
their flows satisfy ΦF (t, x)=ΦF (t, e(x))= e(Φ f (t, x))=Φ f (t, x)
for every (t, x) ∈ R×M for which the flow Φ f is defined. Since
x̄0 ∈M , we obtain that (x,u) satisfies the dynamics in (5) if and
only if it satisfies the embedded dynamics in (3). From this,
the optimality of (x,u) follows from the similarity between (4)
and (6).
Remark 1. Crucially, from Lemma 1, we see that the sat-
isfaction of implicit manifold-type constraints for (EOCP)
is induced by hard enforcement of dynamical constraints.
Therefore, any numerical strategy used to solve (EOCP)
must provide hard enforcement of dynamics – otherwise, the
solution trajectory is not guaranteed to lie on the manifold!

Let us show how this embedding framework applies to our
running example (Ex). It is sufficient to note that the only
components of the dynamics evolving on a manifold are given
by the mapping

S3×R3 ⊆R7→T(S3×R3) : (q,w) 7→
(1
2
Ω(w)q, J−1(u2−w× Jw)

)
,

and that this mapping is also defined when (q,w) ∈ R7.
In other words, the original dynamics is equivalent to(

1
2Ω(w)q, J−1(u2 −w × Jw)

)
restricted to the subset S3 ×R3.

Therefore, the embedded dynamics related to this mapping
are exactly the same but extended on R7, which shows that
the embedded version of our example problem coincides with
the original (OCP). Luckily, for many robotics applications
which include trajectory optimization on manifolds, (EOCP) is
equivalent to (OCP), which is also the case when formulation
(1) is met. This is among the main motivations for developing
such an embedded framework (see also our discussion at the
end of Section II-A).

C. Reformulating Problem (OCP) via SCP in Euclidean Space
Given that (EOCP) evolves in the Euclidean space, we

may solve it using SCP. Below, we describe a particular SCP
formulation that enjoys geometrically consistent theoretical
convergence guarantees.

Under the assumption that U is convex, we iteratively
linearize the nonlinear contributions of (EOCP) around local
solutions, thus recursively defining a sequence of simplified
problems. Specifically, at the end of iteration k, assume we
have some continuous curves xk : [0, t`]→RN and uk : [0, t`]→
Rm, continuously extended in the interval (0,+∞). Then, at
iteration k + 1, the Linearized Embedded Optimal Control
Problem (LEOCP)k+1 consists of minimizing the new cost

Jk+1(t`, x,u) =
∫ t`

0
F0
k+1(t, x(t),u(t)) dt =∫ t`

0

(
‖u(t)‖2R + hk(‖x(t)− xk(t)‖2−∆k)

)
dt

+

∫ t`

0
u(t) ·

(
F0
u (xk(t))+

∂F0
u

∂x
(xk(t)) · (x(t)− xk(t))

)
dt

+

∫ t`

0

(
Gk(xk(t))+

∂Gk

∂x
(xk(t)) · (x(t)− xk(t))

)
dt (7)

where, consistent with the notation of Section II-B, Gk =Ga+
ωkGb and hk(s) is any smooth approximation of max{0, s} [24,
Chapter 10]. Function hk provides trust-region guarantees on
the updates in the state trajectories and constraints via the
bounds 0 ≤ ∆k ≤ ∆0 and weights 1 ≤ ω0 ≤ ωk ≤ ωmax. The
dynamical constraint for (LEOCP)k+1 is

Ûx(t) = Fk+1(t, x(t),u(t)) =

©­«F0(xk(t))+
m∑
j=1

u j(t)Fj(xk(t))
ª®¬

+
©­«∂F0
∂x
(xk(t))+

m∑
j=1

u j
k
(t)
∂Fj

∂x
(xk(t))

ª®¬ · (x(t)− xk(t))

x(0) = x̄0 ∈ M , Gi
k+1(x(ti)) = Gi(xk(ti))+

∂Gi

∂x
(xk(ti)) · (x(ti)− xk(ti)) = 0 , i = 1, . . ., `,

(8)

obtained from the linearized expansion of all nonlinear map-
pings. We minimize among all controls u ∈ L∞([0, t`], Rm)
satisfying u(t) ∈U almost everywhere in [0, t`]. Inductively, the



curves xk+1 : [0, t`]→RN and uk+1 : [0, t`]→Rm are defined as
the optimal solution for problem (LEOCP)k+1, continuously
extended in the interval (0,+∞). Ideally, SCP algorithms may
vary ∆k and ωk at each iteration to smoothen the process
towards convergence, for example as in [6].

A convexified formulation similar to (7)-(8) has already
been introduced in [6]. However, we stress the fact that this
new formulation deals with the presence of the manifold M
and of pointwise state constraints. The introduction of these
two new features necessitates a considerable revision of the
proof of theoretical guarantees (see the Appendix).

The sequence of problems (LEOCP)k is well-posed if, for
each iteration k ≥ 1, an optimal solution for (LEOCP)k exists.
For this, we consider the following assumptions:
(A1) The set U is compact and convex. Moreover, the differ-

entials of mappings Gi , i = 1, . . ., `, are of full rank.
(A2) Mappings f 0, g, vector fields fj , j = 0, . . .,m and their

differentials have compact supports (and do F0, G, Fj).
(A3) At every iteration k ≥ 1, problem (LEOCP)k is feasible.

Under these assumptions, classical existence Filippov-type
arguments [12, 23] (applied to the reduced form of (LEOCP)k ,
see also the Appendix) show that, at each iteration k ≥ 1,
the problem (LEOCP)k has at least one optimal solution. We
remark that similar assumptions have been considered in [6];
in the present contribution, (A1)-(A3) gather the assumptions in
[6] and appropriately adapt them to the context of manifolds
and pointwise state constraints. Comments on their validity
for very general trajectory optimization problems are easily
adapted from [6, Section II.B].

Coming back to our running example problem (Ex), since
we have already proved that the embedded problem coincides
with (Ex), the linearization technique above applies directly to
(Ex) without any additional step. This is particularly useful and
happens every time the embedded problem is equivalent to the
original one, which is common in trajectory optimization as
highlighted previously. We remark that in nearly all scenarios
having natural control constraints U, Assumptions (A1)-(A3)
are easily satisfied by (Ex).

III. Algorithm Overview and Theoretical Guarantees
In Section III-A, we detail a general algorithm for the so-

lution of (OCP) which combines SCP-based procedures with
the embedded framework defined previously. Its convergence
guarantees, in the sense of the Pontryagin Maximum Principle
[32], are studied in Section III-B to III-D, where we show
that these respect the original structure of the manifold in
(OCP), despite solving a sequence of linearized versions of
the embedded problem. Notably, this procedure allows one
to solve (OCP) on manifolds defined implicitly via nonlinear
equalities without explicit representation.

A. SCP-based Trajectory Optimization on Manifolds
The first two steps in the algorithm above consist of trans-

forming (OCP) into the optimal control problem (EOCP)
on the Euclidean space via embedding procedures and suc-
cessively linearizing it as detailed in Section II-B. In the
third step, one finally applies some SCP scheme on Euclidean
spaces. It is important to remark that E-SCP provides the user
with the freedom to choose any sequential convex procedure
to solve the sequence of problems (LEOCP)k . However, we

Algorithm 1 Embedded SCP (E-SCP)
1: Input: Trajectory x0 and control u0 defined in (0,∞).
2: Output: Solution for (LEOCP)k at iteration k.
3: Data: Parameters for the used SCP procedure.
4: Transform (OCP) into problem (EOCP) in the Euclidean

space, as in Section II-B;
5: Linearize (EOCP) by defining a sequence of convex

problems (LEOCP)k (an example of such linearization
is given in Section II-C);

6: Select a SCP procedure on Euclidean spaces to solve the
sequence of problems (LEOCP)k for (xk,uk);

7: return (xk,uk) at the last iteration.

show in Section III-B that specific choices of SCP (e.g. using
hard enforcement of dynamical constraints) provide theoretical
guarantees for E-SCP which are also consistent with the
presence of the manifold within the original problem (OCP).
Problem (LEOCP)1 is linearized around an initial curve

tuple (x0,u0), where these initialization curves should be
as close as possible to a feasible or even optimal curve
for (LEOCP)1, although we do not require that (x0,u0) is
feasible for the embedded problem (EOCP). This allows one
to initialize E-SCP with simple, even infeasible, guesses for
solutions of (EOCP), such as a straight line in the manifold,
as detailed in [6, Section III.A].

B. Necessary Conditions for Optimality
Although the strategy for solving problems (LEOCP)k in

E-SCP is up to the user, we show that specific choices of
solvers allow one to recover important theoretical guarantees
for the convergence of E-SCP to critical points for the original
problem (OCP) on manifolds. Specifically, we can show the
convergence of E-SCP towards a trajectory satisfying first-
order necessary conditions for optimality under the Pontryagin
Maximum Principle [32] when the sequence of problems
(LEOCP)k is chosen as in Section II-C. However, we must
adapt the proof for the classical Euclidean setting to take
into account the presence of both manifold and pointwise
state constraints. This will be done by leveraging fundamental
results from differential geometry and optimal control, i.e.,
Hamiltonian systems and the Pontryagin Maximum Principle
with pointwise state constraints. For self-containtment, we
summarize some of these results in the following discussion
(see, e.g., [24, 1, 10] for an extended treatment).

For consistency with the existing presentation of these re-
sults, denote f 0 as a time-varying function, i.e., f 0 = f 0(t, x,u),
and fix some measurable control time-series u : R → Rm.
Thanks to Assumptions (A1), (A2), for every t0 ∈ R, the
trajectories arising for the augmented system{

Ûx0(t) = f 0(t, x(t),u(t)), Ûx(t) = f (t, x(t),u(t))

(x0, x)(t0) = (0, y0), (x0, x)(t) ∈ R×M
(9)

exist in R for every y0 ∈ M . Notice that x0(t) is simply the
accumulated cost at time t. Therefore, the flow of system
(9) is defined for every (t0, y0) ∈ R×M and we denote it by
exp( f 0

u , fu )(·; ·, ·) : R2 ×M → R×M , such that exp( f 0
u , fu )(·; t0, y0)

represents the trajectory of (9) starting from (0, y0) at t0.



By standard identifications, we denote (p0, p) ∈ T∗(R×M)
and we define the Hamiltonian function related to (9) as

H : R×T∗(R×M)×Rm→ R
(t, p0, p,u) 7→ 〈p, f (t, π(p),u)〉+ p0 f 0(t, π(p),u) (10)

where π : T∗M → M is the canonical projection and 〈·, ·〉
denotes the duality in T∗M . As a classical result on Hamil-
tonian systems [1, 24], for every (t,u) ∈ Rm+1, one can
uniquely associate to (10) the so-called Hamiltonian vec-
tor field

→
H(t, ·, ·,u) : T∗(R×M) → T(T∗(R×M)) by the rule

σ(p0,p)(·,
→
H(t, ·, ·,u)) = d(p0,p)H(t, ·, ·,u), σ being the canonical

symplectic form of T∗(R×M) (see, e.g., [1]). Combining the
classical geometric Pontryagin Maximum Principle [1] with
the reduction scheme for pointwise state constraints developed
in [10] yields the following extended geometric Pontryagin
Maximum Principle (see Appendix for a proof sketch).
Theorem 2 (Geometric Pontryagin Maximum Principle with
Pointwise State Constraints). Let x be an optimal trajectory
for (OCP), associated with the control u in [0, t`] and with
fixed interior and final times ti , i = 1, . . ., `. There exists a
nonpositive constant scalar p0 and a piecewise absolutely
continuous function p : [0, t`]→T∗M , called the adjoint vector,
satisfying p(t) ∈ T∗

x(t)M , with (p0, p) , 0, such that, almost
everywhere in [0, t`], the following relations hold:
• Adjoint Equations

d(p0, p)
dt

(t) =
→
H(t, p0, p(t),u(t)) (11)

• Maximality Condition

H(t, p0, p(t),u(t)) =max
u∈U

H(t, p0, p(t),u) (12)

• Transversality Conditions
For each i = 1, . . ., `−1, the adjoint vector satisfies

p(t−i )− p(t+i ) ⊥ ker
∂gi

∂x
(x(ti)) , p(t`) ⊥ ker

∂g`

∂x
(x(t`)).

(13)
The tuple (p0, p,u) is a (Pontryagin) extremal. We say that
(p0, p,u) is normal if p0 , 0, and abnormal otherwise.

It is important to recall that the statement of optimality
in Theorem 2 supersedes the classical Euclidean case as
it additionally addresses pointwise state constraints (which
consequently imply discontinuity of the adjoint vector), in
context of nonlinear manifolds. These features considerably
complexify the proof (cf. Appendix).

C. Convergence with Geometric Consistency
The convergence of E-SCP can be inferred by leveraging one

further commonly adopted regularity assumption concerning
optimal controls:
(A4) At every iteration k ≥ 1, the optimal control uk of

(LEOCP)k is piecewise continuous in every subinterval
[0, t1] and [ti−1, ti] for i = 2, . . ., `.

The key convergence result is stated next:
Theorem 3 (Convergence Theorem). Suppose that (A1)-(A4)
hold. Given any sequence of trust region radii and weights
((∆k,ωk))k∈N ⊆ [0,∆0] × [ω0,ωmax], let ((xk,uk))k∈N be any

Fig. 2: (EOCP) uses hard enforcement of dynamical con-
straints to guarantee convergence to trajectories which lie on
the manifold of the system, without explicitly enforcing or
penalizing manifold constraints.

sequence such that, for every k ≥ 1, (xk,uk) is optimal for
(LEOCP)k in [0, t`], where problems (LEOCP)k are built as
detailed in Section II-C. Up to some subsequence:
• xk→ x̃ ∈C0([0, t`],M), for the strong topology of C0, and
• uk → ũ ∈ L∞([0, t`],U), for the weak topology of L2,

where (x̃, ũ) is feasible for the original problem (OCP).
Moreover, there exists a nonpositive constant scalar p̃0 and
a piecewise absolutely continuous function γ̃ : [0, t`] → RN ,
with (p̃0, γ̃) , 0, such that the tuple ((p̃0, p̃) = Pr(p̃0, x̃, γ̃), ũ),
where Pr is the orthogonal projection of T∗RN+1 |R×M onto
T∗(R×M) (cf. Appendix), represents a geometric Pontryagin
extremal (in the sense of Theorem 2) for the original problem
(OCP) on M . In particular, as k tends to infinity, up to some
subsequence:
• p0

k
→ p̃0, and

• γk |[ti,ti+1) → γ̃ |[ti,ti+1) ∈ C0([ti, ti+1),RN ), i = 1, . . ., ` − 1,
and γk |[t`−1,t` ] → γ̃ |[t`−1,t` ] ∈ C0([t`−1, t`],RN ) for the
strong topology of C0,

where (p0
k
, xk, γk,uk) is a Pontryagin extremal of (LEOCP)k .

Due to space limitations, we present the proof of Theorem 3
in the Appendix. In short, Theorem 3 asserts that there exists a
sequence of solutions for problems (LEOCP)k that converges
(under appropriate topologies) to a critical point for (OCP),
in the (strong) sense of Theorem 2. Importantly, the limiting
trajectory lies on M , despite solving the linearized, embedded
versions (LEOCP)k (see Figure 2). The termination properties
of Algorithm E-SCP are stated next:
Corollary 1 (E-SCP Termination). Assume (i) (A1)-(A4) hold,
(ii) problems (LEOCP)k are built as detailed in Section II-C,
(iii) the SCP procedure adopted for E-SCP (line 6 of Algorithm
1) enforces hard dynamical constraints (as opposed to a
penalized implementation – see Remark 1), (iv) ∆k ∈ [0,∆0] for
all k and ωk < ωmax are chosen such that for every iteration
k ≥ 1, an output (xk,uk) is always provided, and (v) the
algorithm is terminated if ωk > ωmax. Then, in solving (OCP)
by E-SCP only three mutually exclusive situations arise:

1) There exists an iteration k ≥ 1 for which ωk > ωmax.
Then, E-SCP terminates, providing a solution for
(LEOCP)k satisfying only soft state constraints.

2) There exists an iteration k ≥ 0 for which (xk+1,uk+1) =
(xk,uk). Then, E-SCP terminates, providing a stationary
point, in the sense of the Pontryagin Maximum Principle,
for the original problem (OCP).



3) We have (xk+1,uk+1) , (xk,uk), for every iteration k ≥
0. Then, E-SCP builds a sequence of optimal solutions
for (LEOCP)k that has a subsequence converging (with
respect to appropriate topologies) to a stationary point,
in the sense of the Pontryagin Maximum Principle, for
the original problem (OCP).
Proof: The assumptions on the internal SCP procedure

for E-SCP imply that only these three cases may happen and
that they are mutually exclusive. Moreover, case 3) is a direct
consequence of Theorem 3 and, for case 2), it is sufficient to
apply Theorem 3 to the sequence of solutions(
(x0,u0), (x1,u1), . . ., (xk−1,uk−1), (xk,uk), (xk,uk), (xk,uk), . . .

)
because it clearly converges to (x̃, ũ) = (xk,uk).

In case 1), SCP fails because no feasible strategies can be
computed, which also occurs in other state-of-the-art trajectory
optimization solvers such as TrajOpt [36]. Since the conver-
gence of numerical methods usually leverages a termination
threshold, case 3) is the most common outcome. Fortunately,
Theorem 3 ensures that we are converging to a stationary point
that satisfies strong necessary conditions for optimality in the
sense of Theorem 2 and manifold-type constraints.

D. Geometric Consistency and Discrete-Time Convergence
Despite the fact that E-SCP entails solving a sequence of

linearized problems for the embedded reformulation (EOCP),
i.e., without explicit representation of the manifold, Lemma 1
and Corollary 1 ensure that the numerical solution converges to
trajectories that satisfy the manifold constraints and also ensure
that the limiting solution satisfies strong first-order necessary
conditions for optimality that respect the geometric structure
of the original manifold.

The additional advantage of working within a continuous-
time setting is that the validity of the theoretical guarantees
is independent of the time-discretization scheme used to solve
the ODEs. For instance, choosing schemes such as Euler or
Simpson’s rule lead to well well-posed convex optimization
problems when the dynamics are linearized within each SCP
step. With a sufficiently small time-step, one can ensure that
the discrete solution provided by SCP stays close to the
solution of the continuous-time problem (EOCP). Finally,
Corollary 1 further implies that this discretized solution stays
close to the solution for the original continuous-time (OCP).

IV. Convergence Acceleration via
Differential Shooting Method

An important result provided by Theorem 3 is the con-
vergence of Pontryagin extremals related to the sequence
of solutions for problem (LEOCP)k in the Euclidean space
towards a Pontryagin extremal related to the solution for
(OCP) in the manifold, found by E-SCP. As a consequence,
we can extend the acceleration procedure proposed in [6] to
the manifold and pointwise state constraint case, i.e., warm-
starting shooting methods [3] with E-SCP.

The key idea is that since the convergence of the adjoint
vectors is provided in RN , one can leverage them to re-state a
shooting method on the manifold within RN . However, unlike
the framework proposed in [6], the main difficulty concerns
the pointwise state constraints that introduce discontinuities for

the multipliers. Fortunately, we can still use this hybrid method
by leveraging the knowledge of adjoint vectors at intermediate
times. Assuming SCP is converging, the Lagrange multipliers
λi
k
related to the pointwise condition Gi

k
(x(ti))= 0 for the finite

dimensional discretization of problems (LEOCP)k approxi-
mate the values γk(ti) of the adjoint vectors related to the
continuous-time (LEOCP)k (see [13] and the problem reduc-
tion provided in the Appendix). Then, up to some subsequence,
for every small δ > 0, there exists an iteration kδ ≥ 1 for which,
for every iteration k ≥ kδ , one has ‖γ̃(ti)−λik ‖ < δ, i = 1, . . ., `,
where γ̃ is an adjoint vector related to the solution of (OCP)
found by SCP (see Theorem 3). This means that, starting
from some iteration k ≥ kδ , we can run a shooting method
to solve (OCP), initializing using λi

k
, i = 1, . . ., `. At each

iteration of SCP, we use the values λi
k
provided by the solver

to initialize the shooting method until convergence is achieved.
This provides a theoretically guaranteed method to accelerate
convergence for SCP towards a more accurate solution.

V. Numerical Experiments and Discussion
In this section, we provide implementation details and exam-

ples to demonstrate various facets of our approach. We focus
on three important aspects: (1) providing comparisons between
E-SCP and standard SCP on Euclidean spaces, (2) providing
comparisons between E-SCP and state-of-the-art algorithms
for trajectory optimization, and (3) analyzing convergence
acceleration for E-SCP via shooting methods.

Simulations are provided by considering two problems:
our running example (Ex), defined in Section II-A, and a
trajectory optimization problem for a 7 degree-of-freedom
manipulator in a cluttered environment. Consistent with our
embedding framework, rather than describing the manipulator
via joint angle variables (i.e., local variables), the states are
characterized by tuples (xi, yi) ∈ S1, i = 1, . . .,7 (one for each
joint), so that the system evolves in the 7-dimensional torus,
i.e., (x1, y1, . . ., x7, y7) ∈ T7, which is naturally embedded in
R14. The dynamics are given by the kinematic equations of
a manipulator, that is, each joint i satisfies:

fi : T1×R→ TT1 : (xi, yi,ui) 7→ (−yiui, xiui) (14)

where each ui ∈ R is a control variable. As for our running
example (Ex), (14) naturally represents a dynamical system in
R2, so that, problem (EOCP) coincides with (OCP).
The examples and algorithms presented in this work were

implemented in the Julia programming language [4] using
the GuSTO.jl package located at https://github.com/
StanfordASL/GuSTO.jl, with optimization problems solved
using Gurobi [14]. We chose GuSTO [6] as the SCP procedure
for E-SCP (line 4 of Algorithm 1), so that Corollary 1
held. For each compared SCP method, the continuous-time
optimal control problem was discretized using a trapezoidal
approximation of the dynamics, assuming a zero-order hold
for the control, and the discrete-time cost considered for each
problem was the energy

∑d−1
k=1 | |uk | |22∆t, where d is the number

of discretization points for the trajectory. Additionally, obstacle
avoidance constraints served as our non-convex state con-
straints. For each set of simulations presented, we report results
for 50 experiments with different start and goal configurations.
A SCP trial is marked as successful if the algorithm converged
and the resulting solution was collision-free. We used the

https://github.com/StanfordASL/GuSTO.jl
https://github.com/StanfordASL/GuSTO.jl


Bullet Physics engine to calculate signed distances for obstacle
avoidance constraints or penalties [9, 11]. For each experiment,
the variables were initialized using straight-line initializations
on the manifold.

A. Comparison with State-of-the-Art
In this section, we demonstrate the benefits obtained when

using E-SCP to solve trajectory optimization problems on
manifolds, rather than standard SCP approaches. More specif-
ically, the main advantage of E-SCP is that, when considering
hard enforcement of dynamical constraints, the limiting nu-
merical solution is guaranteed to lie on the manifold, even if
such a constraint is not explicitly enforced. This approach is
in contrast to enforcing the nonlinear manifold-type equality
constraints that appear when using standard Euclidean-based
SCP approaches. Since added equality constraints increase the
complexity of the problem and may adversely affect efficiency,
removing manifold-type constraints in SCP provides greater
flexibility in solving the sequential problems, given that these
constraints are implicitly satisfied.

For this comparison, we considered the 7-DoF manipulator
using 120 discretization points over a trajectory time of 30
seconds [22]. The achieved results are shown in Table I. Here,
comparisons are given between E-SCP with GuSTO as the
internal solver, TrajOpt [36] without any enforced manifold-
type constraints, and versions of GuSTO and TrajOpt where
the manifold-type constraints are penalized (denoted by SCP
and TrajOpt-P, respectively, in Table I).

E-SCP has the best performance in reduction of dynamical
constraint error (even if negligible). As can be expected, the
methods that explicitly penalize the presence of the manifold
achieve the highest precision for manifold-constraint satisfac-
tion (even if also negligible). However, a keen analysis of Table
I shows that this comes with the tradeoff that the additional
state-constraint penalties produce a greater tendency to fall
into high-cost local minima, since the penalization affects
the way the internal convex optimization algorithm reduces
the cost. Consequently, the resulting true cost of the non-
penalizing algorithms is on average lower than their penalizing
counterparts. In other words, E-SCP provides better optimal
solutions than state-of-the-art penalization approaches.

In addition, we note that although unit-norm constraints like
x ∈ Tn can be easily formulated as penalty expressions and sat-
isfied through penalization, more complex manifold constraints
(e.g., those associated with SO(3), closed-kinematic chains,
etc.) are more difficult to formulate and satisfy in this way, and
would be better handled using E-SCP. Indeed, from Theorem
3 we see that manifold constraint error in E-SCP scales with
the dynamical constraint error, which in turn depends only
on the discretization scheme. Thus, we expect the negligible
manifold constraint error for E-SCP in the previous example
to carry over to more complex manifolds.

B. Convergence Acceleration via Shooting Methods
In this section, we provide numerical simulations that high-

light convergence benefits that are obtained when E-SCP is
combined with shooting methods. In particular, we consider
trajectory optimization of a spacecraft having the dynamics
and embedding given in (Ex) and navigating through a highly

E-SCP SCP TrajOpt TrajOpt-P

constraint error
Dynamical 1.9×10−3 5.8×10−3 8.5×10−3 4.8×10−3

constraint error
T7 manifold 3.9×10−2 3.6×10−6 1.6×10−2 3.1×10−6

cost
True 0.105 1.0 0.215 0.792

time
Computation 0.466 0.129 0.321 1.0

TABLE I: Averaged results of manipulator arm experiments,
with normalized cost, computation times and non-normalized
values for constraint errors.

cluttered environment, using 100 discretization points over 50-
second trajectories. As shown in Table II, the results are very
promising: on average, the shooting method cuts significantly
the number of SCP iterations required to converge to a
trajectory, resulting in an overall 59.4% increase in speed. The
difference in performance is made more stark by the fact that
the shooting method can occasionally converge in cases where
SCP is unable to converge at all due to the use of naive in-
collision straight-line initialization. Indeed, it is also interesting
to note that in cases where the shooting method provides the
final convergence, the final trajectory cost is always lower (if
sometimes only slightly) than the cost returned by SCP alone,
as the shooting method relies on the Newton method and thus
tends to achieve a much higher proximity to the optimal on
convergence than SCP.

Only
E-SCP

Shooting
E-SCP +

SCP Iterations 32 13
Reported Cost 0.221 0.176

TABLE II: Averaged results of experiments using a shooting
method to accelerate the convergence of E-SCP, while result-
ing in lower trajectory cost than using E-SCP alone.

VI. Conclusions

In this paper we provided an SCP-based method for trajec-
tory optimization with manifold constraints. Our key insight
was to leverage geometric embeddings to lift a manifold-
constrained trajectory optimization problem into an equivalent
problem defined over a space enjoying Euclidean structure,
where SCP can be readily applied. We derived sound theoret-
ical guarantees and validated the proposed methodology via
numerical experiments. Among other benefits, our method can
easily accommodate implicitly-defined manifold constraints.

This work opens the field to many future avenues of
research. First, we plan to study the setting with free final
times ti , i = 1, . . ., `, both from a theoretical and numerical
standpoint. Second, related to the previous direction, it is of
interest to design accurate numerical schemes that can handle
multi-shooting methods and free final time settings. Third, we
would like to leverage techniques from Lie group theory to
improve performance when applying E-SCP to such specific
class of submanifolds. Finally, we plan to evaluate our method
on hardware platforms, such as robotic manipulators and test
beds for free-flying robotic spacecraft.
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Appendix
A. Proof of Theorem 3
The proof consists of two main steps. First, we apply

the reduction scheme in [10] to each linearized problems
(LEOCP)k : every convexified optimal control problem with
pointwise state constraints is converted into an optimal control
problems without such constraints but with higher dimension.
We apply the SCP convergence result provided by [6, Theorem
III.1] to this class of problems, recovering an extremal for the
embedded problem (EOCP). Then, we project the obtained
adjoint vector getting a geometric extremal for the original
optimal control problem (OCP).
Remark 2. Considering Darboux coordinates (y, ξ) for T∗(R×
M), equations (11) locally take the common form [1]

Ûy(t) = ∂H
∂ξ
(t, p0, y(t), ξ(t),u(t))

Ûξ(t) = −∂H
∂y
(t, p0, y(t), ξ(t),u(t)) .

(15)

In particular, when M = RN , the adjoint equations (15) are
globally equivalent to the adjoint equations (11). Moreover,
the constancy of p0 arises from (15) and the fact that the
Hamiltonian (10) does not depend on the variable x0. This
facts will be used in what follows.

B. Reduction of (LEOCP)k to Classical Optimal Control
Problems and Analysis for the Convergence of Extremals

We first reduce the linearized problems (LEOCP)k to
optimal control problems without pointwise state constraints.

For sake of concision and without loss of generality, from
now on we assume that ` = 2, i.e. we have two times t1, t2.
Considering the general case goes similarly (see also [? ]).

Let ((xk+1,uk+1))k∈N be the sequence of optimal solutions
for (LEOCP)k+1 in [0, t2] given in Theorem 3. We chop each
(xk+1,uk+1) by defining, for every s ∈ [0,1] and every k ∈ N,

ak+1(s) = xk+1(t1s) , bk+1(s) = xk+1((t2− t1)s+ t1)
vk+1(s) = uk+1(t1s) , wk+1(s) = uk+1((t2− t1)s+ t1).

(16)

For every iteration k, consider the Reduced Linearized Em-
bedded Optimal Control Problem (RLEOCP)k+1 in RN



min
∫ 1

0

(
t1F0

k+1(t1s,a(s),v(s))

(t2− t1)F0
k+1((t2− t1)s+ t1,b(s),w(s))

)
ds

a′(s) = t1Fk+1(t1s,a(s),v(s)) , s ∈ [0,1]

b′(s) = (t2− t1)Fk+1((t2− t1)s+ t1,b(s),w(s))

a(0) = x̄0 , G1
k+1(a(1)) = 0 , G2

k+1(b(1)) = 0

a(1)− b(0) = 0 , v(s) , w(s) ∈ U , s ∈ [0,1]

where the condition a(1)−b(0) = 0 translates into the continu-
ity of admissible trajectories for (LEOCP)k+1 at t1. Therefore,
by relations (16) and the definition of problems (LEOCP)k+1,
each tuple (ak+1,bk+1,vk+1,wk+1) is an optimal solution for
problem (RLEOCP)k+1. Applying the classical Pontryagin
Maximum Principle with transversality conditions [32] to each
problem (RLEOCP)k+1 provides the existence of nontrivial
tuples (p0

k+1, ζk+1, ηk+1), where p0
k+1 are nonpositive constant

and ζk+1, ηk+1 are absolutely continuous functions in [0,1],
satisfying, a.e. in [0,1],

ζ ′k+1(s) = −t1

(
ζ>k+1(s)

∂Fk+1
∂x
(t1s,ak+1(s),vk+1(s))

+ p0
k+1

∂F0
k+1
∂x
(t1s,ak+1(s),vk+1(s))

)
(17)

η′k+1(s) = −(t2− t1)
(

η>k+1(s)
∂Fk+1
∂x
((t2− t1)s+ t1,bk+1(s),wk+1(s))

+ p0
k+1

∂F0
k+1
∂x
((t2− t1)s+ t1,bk+1(s),wk+1(s))

)
(18)



t1
(
ζk+1(s) ·Fk+1(t1s,ak+1(s),vk+1(s))

+ p0
k+1F0

k+1(t1s,ak+1(s),vk+1(s))
)

+ (t2− t1)
(
ηk+1(s) ·Fk+1((t2− t1)s+ t1,bk+1(s),wk+1(s))

+ p0
k+1F0

k+1((t2− t1)s+ t1,bk+1(s),wk+1(s))
)

= max
(v,w)∈U2

(
t1

(
ζk+1(s) ·Fk+1(t1s,ak+1(s),v)

+ p0
k+1F0

k+1(t1s,ak+1(s),v)
)

+ (t2− t1)
(
ηk+1(s) ·Fk+1((t2− t1)s+ t1,bk+1(s),w)

+ p0
k+1F0

k+1((t2− t1)s+ t1,bk+1(s),w)
))

(19)

ζk+1(1)−ηk+1(0) ⊥ ker
∂G1

k+1
∂x
(ak+1(1))

ηk+1(1) ⊥ ker
∂G2

k+1
∂x
(bk+1(1))

(20)

which represent adjoint equations, maximality condition and
transversality conditions on the adjoint vectors, respectively.

We now analyze convergences properties for extremals
(p0

k+1,ak+1,bk+1, ζk+1, ηk+1,vk+1,wk+1) related to problems
(RLEOCP)k+1. For this, we make use [6, Theorem III.1].

A slight modification to the proof of [6, Theorem III.1]1
ensures the existence of an extremal (p̃0, ã, b̃, ζ̃, η̃, ṽ, w̃) for the
Reduced Embedded Optimal Control Problem (REOCP)

min
∫ 1

0

(
t1F0(a(s),v(s))+ (t2− t1)F0(b(s),w(s))

)
ds

a′(s) = t1F(a(s),v(s)) , s ∈ [0,1]

b′(s) = (t2− t1)F(b(s),w(s))

a(0) = x̄0 , G1(a(1)) = 0 , G2(b(1)) = 0

a(1)− b(0) = 0 , v(s) , w(s) ∈ U , s ∈ [0,1]
therefore satisfying the following, adjoint equations, maximal-
ity condition and transversality conditions, respectively,

ζ̃ ′(s) = −t1

(
ζ̃>(s)∂F

∂x
(ã(s), ṽ(s))+ p̃0 ∂F0

∂x
(ã(s), ṽ(s))

)
(21)

η̃′(s) = −(t2− t1)
(
η̃>(s)∂F

∂x
(b̃(s), w̃(s))

+ p̃0 ∂F0

∂x
(b̃(s), w̃(s))

)
(22)

1As a matter of fact, one needs to adapt the proof to take into account
initial conditions of type x(0) ∈ M0, where M0 is a submanifold of M , the
fact that initial and final goal sets are linearized and the fact that F0

k+1, Fk+1
are now evaluated at s1t, (t2− t1)s+ t1. Modifications arise only for [6, Lemma
V.2], and straightforward computations show that the convergence of variation
vectors still hold. Remark that, since the reduced problems (RLEOCP)k+1,
(RLEOCP) have fixed final time, we just need that M0, M f be closed, which
is the case for problems (RLEOCP)k+1.

t1
(
ζ̃(s) ·F(ã(s), ṽ(s))+ p̃0F0(ã(s), ṽ(s))

)
+ (t2− t1)

(
η̃(s) ·F(b̃(s), w̃(s))+ p̃0F0(b̃(s), w̃(s))

)
= max
(v,w)∈U2

(
t1

(
ζ̃(s) ·F(ã(s),v)+ p̃0F0(ã(s),v)

)
+ (t2− t1)

(
η̃(s) ·F(b̃(s),w)+ p̃0F0(b̃(s),w)

))
(23)

ζ̃(1) − η̃(0) ⊥ ker
∂G1

∂x
(ã(1)) , η̃(1) ⊥ ker

∂G2

∂x
(b̃(1)). (24)

Moreover, up to some subsequence,
• p0

k
→ p̃0

• (ak,bk) → (ã, b̃) , for the strong topology of C0

• (ζk, ηk) → (ζ̃, η̃) , for the strong topology of C0

• (vk,wk) → (ṽ, w̃) , for the weak topology of L2.

(25)

Remark 3. Let e : M → RN be the canonical immersion.
By definition, (G1)−1(0), (G2)−1(0) are submanifolds of RN

of dimension N − r1, N − r2, respectively, while (g1)−1(0) =
e−1((G1)−1(0)), (g2)−1(0)= e−1((G2)−1(0)) are submanifolds of
M of dimension n− r1, n− r2, respectively. In particular,

(G1)−1(0)∩M = g−1
1 (0) , (G

2)−1(0)∩M = g−1
2 (0). (26)

By transversality arguments2, for x1 ∈ g−1
1 (0), x2 ∈ g−1

2 (0),

Txi (Gi)−1(0)∩Txi M = Txig
−1
i (0) , i = 1,2 (27)

which, thanks to Grassmann formula, gives

RN = Txi (Gi)−1(0)+Txi M , i = 1,2. (28)

The next step consists of taking advantage of relations (21)-
(24) to recover an extremal for problem (EOCP). This goes by
properly gluing the coordinates of the tuple (p̃0, ã, b̃, ζ̃, η̃, ṽ, w̃)
as follows. For every t ∈ [0, t2], define

x̃(t) =
{

ã(t/t1) 0 ≤ t < t1
b̃((t − t1)/(t2− t1)) t1 ≤ t ≤ t2

γ̃(t) =
{

ζ̃(t/t1) 0 ≤ t < t1
η̃((t − t1)/(t2− t1)) t1 ≤ t ≤ t2.

ũ(t) =
{

ṽ(t/t1) 0 ≤ t < t1
w̃((t − t1)/(t2− t1)) t1 ≤ t ≤ t2

Thanks to the structure of (REOCP), one sees that (x̃, ũ) is
feasible for (EOCP). Therefore, the tuple (p̃0, λ̃ = (x̃, γ̃), ũ),
where (p̃0, γ̃) is not trivial, is an extremal for problem
(EOCP), i.e., it satisfies Theorem 2 in the case M = RN .
Indeed, Remark 2 ensures that (21)-(22) are equivalent to the
adjoint equations (11) in the variable λ̃ in [0, t2], while, the
independence of variables (u,v) ∈ U2 and (23) leads to the
maximality condition (12). Finally, since g−1

i (0) ⊆ (Gi)−1(0),

2As a matter of fact, let ϕ be a chart of xi in RN , adapted to M .
In these coordinates, one has dxiG

i (∂ j
xi
) = dxi gi (∂

j
xi
), for j = 1, . . ., n.

If v =
∑n

j=1 vj∂
j
xi
∈ Txi M such that dxiG

i (v) = 0, we have dxi gi (v) =∑n
j=1 vjdxi gi (∂

j
xi
) = ∑n

j=1 vjdxiG
i (∂ j

xi
) = dxiG

i (v) = 0. The conclusion
then follows.



relations (24), (27) gives the transversality condition (13).

By defining

γk(t) =
{

ζk(t/t1) 0 ≤ t < t1
ηk((t − t1)/(t2− t1)) t1 ≤ t ≤ t2,

we remark that relations (17)-(20) show that the tuple (p0
k
, λk =

(xk, γk),uk), where (p0
k
, γk) is not trivial, represents an extremal

for problem (LEOCP)k and that (25) leads to
• xk → x̃ , for the strong topology of C0

• γk |[0,t1)→ γ̃ |[0,t1) , for the strong topology of C0

• γk |[t1,t2]→ γ̃ |[t1,t2] , for the strong topology of C0

• uk → ũ , for the weak topology of L2

giving the convergence statement provided in Theorem 3.

C. Projection onto a Geometric Extremal for (OCP)
The main objective of this section is to prove that the

piecewise absolutely continuous curve λ̃ can be conveniently
projected onto T∗M , providing then the sought geometric
extremal (p̃0, p̃, ũ) for the original problem (OCP).

We first introduce a useful projection operator. Consider the
usual cotangent bundles T∗M and T∗RN , and define

T∗RN |M =
⋃
q∈M

{q} ×T∗qR
N .

Equipped with the structure of pullback bundle, the projection
πM : T∗RN |M→M is a vector bundle of rank N . In particular,
T∗M is identified to a subbundle of T∗RN |M . We build a
projection operator from cotangent spaces by considering the
usual orthogonal projection. For this, let q ∈ M and (V, ϕ)
be a local chart of q in RN adapted to M , i.e., ϕ(V ∩M) =
ϕ(V)∩Rn×{0}N−n. Then, {dx j(·)}j=1,...,N is a local basis for
T∗RN |M and {dx j(·)}j=1,...,n is a local basis for T∗M around
q. Consider the cometric 〈·, ·〉(·) in T∗RN |M induced by the
Euclidean scalar product of RN . The Gram-Schmidt process on
{dx j(·)}j=1,...,N provides an orthonormal frame {Ej(·)}j=1,...,N
for T∗RN |M in V , satisfying

span〈E1(·), . . .,Ej(·)〉|V∩M = span〈dx1(·), . . .,dx j(·)〉 (29)

for every 1 ≤ j ≤ n. From the previous results, when restricted
to V ∩M , the orthogonal projection operator

Pr : T∗RN+1 |(R×M)→ T∗(R×M)

(p0, x, γ) 7→
(
p0,

n∑
j=1
〈γ,Ej(x)〉x Ej(x)

)
(30)

is well-defined and smooth. Finally, since the change of frame
mapping between two orthonormal frames is orthogonal,
thanks to (29), it is easy to see that the expression (30) is
globally well-defined and smooth.

At this step, recall that any admissible trajectory for (EOCP)
is also admissible for (OCP) (see Lemma 1). Therefore, it
holds x̃([0, t2]) ⊆ M . By using the previous projection operator,

this allows one to define the following piecewise absolutely
continuous covector curve

p̃ : [0, t2] → T∗M : t 7→ π2 ◦Pr(p̃0, λ̃)
where π2 : T∗(R×M)→T∗M : (p0, p) 7→ p. As a standard result
for Hamiltonian systems, the curve p̃ satisfies the adjoint equa-
tions (11) in M related to the Hamiltonian (10). This derives
by combining Remark 2 (compare with the local system (15))
with the following lemma, whose proof is reported here for
sake of completeness (see [5] for a more general statement).
Lemma 4. For almost every t ∈ [0, t2], choose a local chart
(U, φ) of (x̃0, x̃)(t) in RN+1 (see system (9)) adapted to R×M .
For every i = 0, . . .,n, it holds

d
dt

(
Pr

(
(exp(F0

ũ,Fũ )(t2; t, ·))∗(x̃0, x̃)(t2)·

(p̃0, λ̃(t2))
) ( ∂

∂xi

����
(x̃0, x̃)(t)

))
(t) =

−
n∑
j=0

∂( f 0, f )j
∂xi

(x̃(t), ũ(t))
(
Pr

(
(exp(F0

ũ,Fũ )(t2; t, ·))∗(x̃0, x̃)(t2)·

(p̃0, λ̃(t2))
) ( ∂

∂x j

����
(x̃0, x̃)(t)

))
where (·)∗ is the pullback operator for 1-forms.

Proof: For every i = 0, . . .,n, denote ai(t) =
Pr

(
(exp(F0

ũ,Fũ )(t2; t, ·))∗(x̃0, x̃)(t2)
· (p̃0, λ̃(t2))

) (
∂
∂xi

��
(x̃0, x̃)(t)

)
and

let (V, ϕ) be an adapted local chart of (x̃0, x̃)(t2). Since, for
appropriate coefficients bi(t), the following relation holds

(exp(F0
ũ,Fũ )(t2; t, ·))∗(x̃0, x̃)(t2) · (p̃

0, λ̃(t2)) =
N∑
j=0

bj(t)dx j |(x̃0, x̃)(t) ∈ T∗RN+1 |R×M (31)

from the span relation (29), we obtain

Pr
(
(exp(F0

ũ,Fũ )(t2; t, ·))∗(x̃0, x̃)(t2) · (p̃
0, λ̃(t2))

)
=

n∑
j=0

bj(t)dx j |(x̃0, x̃)(t) =⇒ aj(t) = bj(t) , j = 0, . . .,n.

By inverting expression (31), one then has

(p̃0, λ̃(t2)) =
n∑
j=0

aj(t)(exp(F0
ũ,Fũ )(t; t2, ·))∗(x̃0, x̃)(t) · dx j |(x̃0, x̃)(t)

+

N∑
j=n+1

bj(t)(exp(F0
ũ,Fũ )(t; t2, ·))∗(x̃0, x̃)(t) · dx j |(x̃0, x̃)(t).

However, since the trajectory (x̃0, x̃)(t) = exp(F0
ũ,Fũ )(t; t2, x̃(t2))

lies entirely in R×M and the chart (U, φ) is adapted to R×M ,
one sees that, for every i = 0, . . .,n and j ≥ n+1, it holds

(exp(F0
ũ,Fũ )(t; t2, ·))∗(x̃0, x̃)(t) · dx j |(x̃0, x̃)(t)

(
∂

∂xi

����
(x̃0, x̃)(t2)

)
=

∂

∂xi
(x j ◦ exp(F0

ũ,Fũ )(t; t2, ·) ◦ϕ−1)(ϕ((x̃0, x̃)(t2))) = 0.
(32)



Therefore, for every i = 0, . . .,n, we have

(p̃0, λ̃(t2))
(
∂

∂xi

����
(x̃0, x̃)(t2)

)
=

n∑
j=0

aj(t)
∂

∂xi
(x j ◦ exp(F0

ũ,Fũ )(t; t2, ·) ◦ϕ−1)(ϕ((x̃0, x̃)(t2))).

The term on the left of the previous expression does not
depend on t, and then, by differentiating it w.r.t. t3,

n∑
j=0

[
Ûaj(t)

(
(exp(F0

ũ,Fũ )(t; t2, ·))∗(x̃0, x̃)(t)·

dx j |(x̃0, x̃)(t)

(
∂

∂xi

����
(x̃0, x̃)(t2)

))
+

n∑̀
=0

aj(t)
∂(F0,F)j
∂x`

(x̃(t), ũ(t))
(
(exp(F0

ũ,Fũ )(t; t2, ·))∗(x̃0, x̃)(t)·

dx` |(x̃0, x̃)(t)

(
∂

∂xi

����
(x̃0, x̃)(t2)

))]
= 0 . (33)

and this must hold for every i = 0, . . .,n. At this step, for

the evaluation of
∂(F0,F)j
∂x`

(x̃(t), ũ(t)), we notice that, in the
case ` = 0, . . .,n, any variation point φ−1(y0, . . ., y` +h, . . ., yN ),
where φ−1(y0, . . ., y`, . . ., yN ) ∈ R×M , belongs to R×M be-
cause φ is adapted to R×M , and then, from the construction of

(F0,F), we obtain
∂(F0,F)j
∂x`

(x̃(t), ũ(t)) =
∂( f 0, f )j
∂x`

(x̃(t), ũ(t)).
Moreover, by using (32), one has

(exp(F0
ũ,Fũ )(t; t2, ·))∗(x̃0, x̃)(t) · span

(
dxn+1 |(x̃0, x̃)(t), . . .,dxN |(x̃0, x̃)(t)

)
⊆ span

(
dxn+1 |(x̃0, x̃)(t2), . . .,dxN |(x̃0, x̃)(t2)

)
3Remark that, as soon as 0 6 i 6 n, quantities in (33) evolve in M .

Therefore, indices grater than n do not explicitly appear in computations.

and, since (exp(F0
ũ,Fũ )(t; t2, ·))∗(x̃0, x̃)(t) is an isomorphism,

(exp(F0
ũ,Fũ )(t; t2, ·))∗(x̃0, x̃)(t) · span

(
dx0 |(x̃0, x̃)(t), . . .,dxn |(x̃0, x̃)(t)

)
⊆ span

(
dx0 |(x̃0, x̃)(t2), . . .,dxn |(x̃0, x̃)(t2)

)
. (34)

Combining (34) with (33) gives
n∑
j=0

[
Ûaj(t)dx j |(x̃0, x̃)(t)

+

n∑̀
=0

aj(t)
∂( f 0, f )j
∂x`

(x̃(t), ũ(t))dx` |(x̃0, x̃)(t)

]
= 0.

and the desired result follows straightforwardly.

As last steps, we need to verify the maximality condition
(12), the transversality conditions (13) and the fact that the
couple (p̃0, p̃) is not trivial. The first two facts follow by simple
computations on relations (23), (24), respectively4.
By contradiction, assume that (p̃0, p̃) = 0. In

particular, p̃(t−1 ) − p̃(t+1 ) = 0 and p̃(t2) = 0. On the
other hand, the transversality conditions (24) read
λ̃(t−1 ) − λ̃(t

+
1 ) ⊥ Tx̃(t1)(G1)−1(0) and λ̃(t2) ⊥ Tx̃(t2)(G2)−1(0).

Therefore, relations (28) provide that λ̃(t−1 ) − λ̃(t
+
1 ) = 0 and

λ̃(t2) = 0, which imply that γ̃ : [0, t2] → RN is a continuous
curve which is zero at t2 and satisfies a linear ODE. By
uniqueness, we have (p̃0, γ̃) = 0, which is a contradiction.

Theorem 3 is proved.

4As a matter of fact, the transversality condition on the adjoint vector
(13) can be checked to hold for p̃ as follows. For every orthonormal frame
{E1, . . .,EN } in T ∗

x̃(ti )
RN such that {E1, . . .,En } spans T ∗x̃(ti )M , the dual

frames {E∗1, . . .,E
∗
N } and {E∗1, . . .,E

∗
n } span T ∗∗

x̃(ti )
RN � Tx̃(ti )R

N and
T ∗∗
x̃(ti )

M � Tx̃(ti )M , respectively. Then, for v ∈ Tx̃(ti )g
−1
i (0) ⊆ Tx̃(ti )M and

λ ∈ T ∗
x̃(ti )
RN , using these orthonormal basis and relations (24) one verifies

straightforwardly that λ(v) = (π2 ◦Pr)(p̃0, λ)(v), from which the sought result
follows. The previous equality is also used in what follows.
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