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Benoit Bonnett, Teddy Furon™, Patrick Bas'
TUniv. Rennes, Inria, CNRS, IRISA, Rennes, France
fCNRS, CRIStAL Lab., Ecole Centrale de Lille, UMR 9189, Lille France

Abstract—Many adversarial attacks produce floating-point
tensors which are no longer adversarial when converted to
raster or JPEG images due to rounding. This paper proposes
a method dedicated to quantize adversarial perturbations. This
”smart” quantization is conveniently implemented as versatile
post-processing. It can be used on top of any white-box attack
targeting any model. Its principle is tantamount to a constrained
optimization problem aiming to minimize the quantization error
while keeping the image adversarial after quantization. A La-
grangian formulation is proposed and an appropriate search of
the Lagrangian multiplier enables to increase the success rate.
We also add a control mechanism of the /. -distortion. Our
method operates in both spatial and JPEG domains with little
complexity. This study shows that forging adversarial images
is not a hard constraint: our quantization does not introduce
any extra distortion. Moreover, adversarial images quantized as
JPEG also challenge defenses relying on the robustness of neural
networks against JPEG compression.

I. INTRODUCTION

LEXNET handily won Imagenet challenge in 2012 [1].

This event is considered to be the turning point of
Artificial Intelligence in Computer Vision. Since then, new
and deeper neural networks relentlessly improve accuracy on
complex datasets with many classes. However accurate these
DNNs might be, they can still be surprisingly vulnerable to
attacks.

A. Adversarial Attacks

The recent field of adversarial attacks explores ways of
fooling DNNs since the work [2]. The goal of an attack is to
modify an image with little distortion so that its predicted label
differs from the ground truth. The perturbation is a priori both
classifier and image specific. The literature considers three
setups:

o White-Box: The attacker knows the classification model
architecture and parameters. Most attacks use the very
core strength of DNNs to fool them: gradient back-
propagation. The very first attacks were FGSM [3],
IFGSM [4] and DeepFool [5], later on improved by
PGD [6], CW [7], or BP [8].

o Black-Box: The attacker only queries the model and
observes its output. Attacks can not exploit the gradient.
They thus either locally estimate it (HopSkipJump [9]
or GeoDa [10]) or probe the class frontier such as
SurFree [11].

o Gray-Box: The attacker has partial knowledge of his/her
target, for instance, the classification model is public but
some front-end defense mechanisms are secret.

These attacks are associated with two possible goals:

o Targeted: The attacker determines which class should the
classifier predict over the adversarial sample.

o Untargeted: The attacker only needs the final predicted
class to differ from the ground-truth.

This article deals with targeted and untargeted attacks in the
white-box scenario.

Recent attacks aim at reducing the distortion (usually mea-
sured as {5 or /. norm), increasing the probability of success,
and speeding up the process. Even if some learning procedures
result in more robust classifiers [6] and some images are harder
to attack, recent white-box attacks craft perturbation invisible
to the human eye in most cases provided their complexity
budget is large enough.

Regardless their complexity, very few attacks consider the
specificity of the medium. A raster image is in its digital
form a 3-dimensional matrix of integers, such as the PNG
image format. JPEG images [12] are coded as integer matrices
representing DCT coefficients in different color spaces. To
forge an adversarial image rather than just a sample encoded
in a floating-point tensor, one needs to craft an integral
perturbation. Added to the original image, the result must
remain within the defined boundaries (i.e. [0,255]Y with N
the number of pixels in the spatial domain).

Attacks rarely address this constraint. It is sometimes argued
that the attack is performed inside the classifier in the white-
box setup and thus is not required to be integral. While
debatable, we consider this assumption to be very niche.
Ironically every attack still clips their samples within the
boundaries of a pre-processed image (i.e. [0,255]). The white-
box setup means that the attacker can replicate the model
in his/her garage to prepare an attack that will later on be
deployed against a remote classifier service analyzing integral
images.

The first idea that comes to mind is to round pixel-wise
the crafted perturbation to the nearest integer. This is not
working. Perturbations are so small that they are partially
erased (i.e. set to zero) by rounding. Table I gives a first
insight of this problem. This preliminary experiment is run
on 1,000 randomly selected images from ImageNet. The same
images are used throughout this article. The studied classifier
is EfficientNet-b0. Rounding an optimized attack significantly



increases the accuracy (i.e. decreases the success rate of the
attack). An alternative is to round after every step of an
iterative attack like PGDs. This requires significantly more
distortion at every iteration so that the perturbation is not
erased by rounding. This is displayed as PGDy round in
Table I: it succeeds in beating classification but generates
64% more distortion than our quantization. Figure 1 illustrates
further these results.

JPEG compression smoothes the image by cancelling high
frequencies, especially at low quality factor. This has little
effect on the accuracy of the classifier over natural images
while adversarial perturbations are very sensitive to it. Even
an attack with an increased distortion budget does not easily
fool a classifier after a JPEG compression especially at low-
quality factor. Table I shows that JPEG compressing images
forged by FGSM or PGD does not create adversarial examples.

This is the reason why some works propose JPEG as a
defense against adversarial attacks [13], [14]. Backward Pass
Differentiable Approximation (BPDA [15]) was developed to
beat this defense and can be used to create JPEG adversarial
images as well. BPDA approximates the JPEG compression
by a differentiable transformation. This approximation is less
accurate for low JPEG quality factors. BPDA then fails to
attack some images although it generates more distortion than
our quantization. Table I shows that our method JPEG quan-
tizes images which remain adversarial almost surely with a
distortion comparable to the compression itself (see section V).

B. Contributions

This article proposes a quantization dedicated to adversarial
perturbation so that samples can be saved as adversarial images
as shown in Fig.2. It is thus a post-process to be used on
top of any attack. This method however relies on gradients
available in the white-box setup. It is quick in the sense that
it typically needs fewer iterations than the attack per se. Our
intensive experimental study shows that forging real images,
be it in the raster or JPEG format, is not a hard constraint for
the attacker when quantization is properly managed. In other
words, our quantization adds little to no extra distortion.

This article is the journal version of the conference pa-
per [16] proposing many improvements. First, quantization is
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Fig. 1. Operating curves of EfficientNet-b0 against FGSM and PGD in best-
effort mode with floating point (plain) or quantized (dotted) pixel values.
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Fig. 2. Example of adversarial images quantized with our method. Attacked
network is EfficientNet-b0. The predicted label is displayed below.

now restricted to a desired range of values providing control
over {,.-distortion (see Sect. III). Second, we extend this
method to the JPEG domain (see Sect. IV). This proves to
be challenging since this compression erases high-frequencies
typical of an adversarial perturbation. Finally we also propose
best-effort mode for multiple attacks (see Sect. II-D). This
mode finds the best parameter setting for each original image
in order to reveal the intrinsic power of an attack. This allows
a fair comparison of the attacks.

Note that generating adversarial contents in the quantized
domain can also be used in another context. The Euclidean dis-
tortion can for example be replaced by a steganographic cost
to increase the undetectability of adversarial perturbation [17].
The attacker may also target a network which is not a classifier,
like a regression function evaluating the visual quality [18].

C. Outlines

Section II describes most popular white-box attacks as well
as our best-effort implementation for each of them. Our eval-
uation protocol based on operating curves is also explained.
Sections III and IV detail our improved post-processing in
both spatial and JPEG domains. Finally, section V presents
experimental results in various scenarios as well as a thorough
study of the impact of each parameter. This further motivates
our choice of default parameters. Example images are also
displayed throughout this section.

Our code is available at
adversarial-quantization

gitlab.inria.fr/bbonnet/

II. ATTACK MODEL

This section defines notations and attacks used throughout
the paper with an emphasis on the concept of best-effort mode.



TABLE I
ACCURACY (IN %) AND MEAN AVERAGE DISTORTION OF FGSM AND PGDy ATTACKS AGAINST EFFICIENTNET-BO IN best-¢ffort MODE (SEE
SECTION II-D) OVER 1,000 RANDOMLY SELECTED IMAGES FROM IMAGENET.

floats PNG JPEG90 JPEG75 JPEG60
Attack Acc. | Dist. | Acc. | Dist. | Acc. | Dist. | Acc. | Dist. | Acc. | Dist.
None 83.0 | 0.00 | 83.0 | 0.00 | 83.0 3.0 81.0 5.2 81.0 6.4
FGSM 11.6 | 033 | 66.4 | 0.41 83.0 3.0 81.2 5.2 814 6.4
PGD2 0.2 0.16 | 81.7 | 0.04 | 83.0 3.0 81.2 52 81.4 6.4

PGDs round 0.2 0.28 0.2 0.28 - - - - - -
PGD2 BPDA - - - - 0.6 3.9 6.6 5.8 12.5 6.8
PGDs ours 0.2 0.16 0.2 0.17 0.6 3.0 0.6 52 1.0 6.5

A. Model and Data Notation

Let x, be an original digital image in the domain
[0,255]" where N is the number of pixels and [0,255] :=
{0,1,...,255}. This image is preprocessed before feeding a
DNN. This stage is defined during the training phase of the
DNN to improve its learning capability over the data. After the
DNN was successfully trained, it expects data preprocessed in
the same fashion to make a prediction. This preprocessing is
usually done in two steps: range reduction from [0,255] to
[0, 1], and normalisation:

to — 1’0/255 - Mdata’ (1)
Odata
where figqtq and o044t are respectively the mean and standard
deviation computed over the training data. These constants
are sometimes channel specific (i.e. each channel has its own
normalisation), sometimes set to arbitrary values such as 0.5.
Values in tensor ¢, are encoded as floating-point variables
so that their domain is pseudo-continuous. Yet, Equation (1)
shows that there are only 256 different possible values for
a given entry of ¢,. White-box attacks modify ¢, into ¢, €
[0, 1] whose entries may not equal one of the 256 admissible
values. This means that by reversing the preprocessing (1), the
attacker gets x, € [0,255]" whose pixel values may not be
integers.
For readability, we integrate the preprocessing to our models
as the first layer. The sequel focuses on images z € [0,255]™
whereas original images are in [0, 255]".

B. Classifier Model

Let p : [0,255]" — [0, 1]¢ be a classifier mapping an image
to class probability vector p for C classes. The predicted class
is defined as:

m(z,) = arg m]ilka(l'(,). (2

The classifier makes a correct prediction if 7(z,) = c(z,),
where ¢(z,) denotes the ground-truth class of z,. An adver-
sarial attack forges an adversarial sample z, such that:

m(xq) # c(zo). 3)

The resulting class w(z,) is either chosen by the attacker
in a targeted scenario or any class that verifies (3) in an
untargeted scenario. An attack optimizes the perturbation
T, — &, according to a given metric, usually the ¢y, ¢ or

{o-norm. This gives the following optimization problem on a
generic /,,-norm:

*:= m l|Ta — Tol|m- 4

o= in
m(za)Fc(T0)

norm of the perturbation (quantized or not). This is common
practice in image processing: The PSNR gives the logarithmic
scale of the /5-norm. Indeed, for natural images (i.e. ImageNet,
but not MNIST), ¢5 reflects distortion perceived by humans
when comparing similar images with very low distortion.
Adversarial images pertain to this low distortion regime.

Attacks in white-box setups are driven by the adversarial
loss to craft the perturbation:

Ladv(x) = p('(r,,)(x) _pa(‘r)v (5)

where pc(,,)(z) is the predicted probability of = belonging
to the ground truth class c¢(z,). The second term p,(z) is
the probability of the adversarial class: In a targeted scenario,
class a is a parameter of the attack. In an untargeted scenario,
it is the best prediction excluding the ground-truth of the
original:

o =arg max pi(). (6)
When L4, (x) < 0, the predicted class is not the ground-
truth label ¢(z,) and x is adversarial. Having access to the
model parameters allows to back-propagate differences from
the output predictions to the input and to compute the gradient
of the loss V Lygy ().

C. Usual White-box Attacks

Usual white-box attacks use the adversarial loss to point a
direction where to look for an adversarial sample and also as
a stopping criterion.

1) Fast Gradient Sign Method FGSM: FGSM [3] is the
first and most basic attack. It uses the sign of gradient at the
original image:

zq = clippg 955) (To — € X sign (V Laay(7,))) , @

where clip; is the clipping of the component within the interval
1. This attack is not iterative, it is a single step process relying
on only one parameter €. Note that the adversarial sample is
a quantized image only for an integer value of e.



2) Iterative Fast Gradient Sign Method iFGSM: iFGSM [4]
is an iterative version of FGSM.

x((ziﬂ) = clipg 255) (3’1(11) — € X sign <VLadV(x‘(j)))) - ®

This attack uses two parameters: the descent rate e previously
seen in FGSM and the number of iterations Nj;.

3) Projected Gradient Descent PGD: This attack is an
iterative attack whose updates are defined as follows in its
f5-norm version PGD», [6]:

) ) Laay (2)
3C¢(zl+1) = clipo 255) | Projq xt(zl) - GL@S?-)) :
’ IV Lagy (za”) |
)

PGDs, revolves around a projection on the ball centered on z,
of radius «. This projection is effective only if the £5-norm of
the perturbation exceeds o. PGD5 also uses an {5 normalized
gradient to have better control of the perturbation update. This
attack uses 3 parameters: the radius «, the descent rate €, and
the number of iterations Nj,.

4) Boundary Projection BP: BP [8] is a fast two step attack.
The first step quickly finds an adversarial sample while the
second step refines it by reducing its distortion. Stage 1 is
defined as follows:

i . i V Lagv mgi)
ffz ) = clipo,255) (xz(z) - EM

i =— ], 0
||VLadv<xé>>|>

where ; is an acceleration term ranging from a predetermined
Ymin at the first iteration to 1 at the final one. Stage 2 refines
the adversarial sample found through projection using the
same parameters and normalized gradient of L,g,.

5) Carlini & Wagner CW: This attack minimizes the
following Lagrangian formulation in its /{s-norm version
CW, [7]:

ey

where |z|1 = max(0,z) and m < 0 is a margin. The
minimum of this equation is found with ADAM optimizer
within an inner loop. The outer loop does a line search over
1. When both outer and inner loops are done, the adversarial
sample with least distortion is returned. This attack uses five
parameters: the numbers of iterations over both loops, the
margin m, and the learning rate and momentum for ADAM.

J(iUmM) = Hma - $OH2 + N|LadV($a) - m‘Jr

D. Benchmarking Attacks and the “Best-effort Mode”

The last subsection shows that an attack is indeed a family
of processes parametrized by one or more parameters. One
parameter setting may not be adequate from one classifier to
another, and for any image. This explains why experimental
results in this literature lack reproducibility.

We propose the concept of best-effort mode enabling a fair
comparison of attacks and classifiers. It consists of automat-
ically setting the attack to perform as well as possible on a
given iteration budget. It finds the parameters such that the
attack is successful and the ¢s-norm of the perturbation is
minimized. (The attack parameters are usually defined within
ranges and the optimization may fail providing adversarial).

The implementation of CW is already optimized and there-
fore needs no tweaking. Two parameters are still defined by
the user: boundaries of research and the number of iterations
for iterative attacks.

a) FGSM: This attack depends on one parameter €. Best-
effort simply means running a binary search to find the lowest
value that successfully crafts an adversarial perturbation.

b) iFGSM: This attack also depends on one parameter
€, for a given number of iterations. We perform the iterative
search in the same fashion as previously.

¢) PGD: Our best-effort mode runs a binary search on
the radius «. The iterations budget is equally distributed
between the number of iterations and the binary search (e.g. if
Niter = 100, 10 radii are tested with N,,, = 10 iterations each),
while € is set to 2a/Ny,. With this value of e, adversarial
samples are not projected back onto the ¢5-ball of radius
« at least within the first half of the V., iterations. Our
experiments confirm that this empirical choice is good.

d) BP: This attack leads to very good results when set up
correctly. It finds an adversarial sample (stage 1) that is then
refined (stage 2). For stability, we aim at finishing stage 1
within roughly the same number of iterations for each image.
Inspired by Deepfool [5], this is done through a first-order
approximation of the loss:

Ladv(xo + U) ~ Ladv(xo) + UTVLadv(‘To)~ (12)

Branching this linearisation with (10) gives the value of «
cancelling the loss within & iterations:

Lagy (xo)
IV Laav(0)][2 Z;Ll Vi
We set k = [0.2 X Ny | and experimentally observe that stage

1 is more or less completed when desired, leaving ~ 0.8 X Njer
iterations to stage 2.

o =

13)

E. Metrics

This paper presents results in two forms: graphs or table.
We call operating curve the graph showing the success-rate of
an attack (y-axis) at a given {»-distortion (x-axis) such as in
Fig. 3. Distortion is measured in the pixel domain [0, 255] as

d(l‘awTO) = ||55a - $0H2/\/N7

where IV is the number of pixels. This is easily interpretable: If
for any pixel ¢, z,; = 2, ;L€ (as in FGSM) then d(z,, z,) =
€. The operating curve sums up the impact of an attack against
a classifier over a set of test images Sy by the following
function:

(14)

Co est - arTo) <

Note that P(0) = 1 —n > 0, where 7 is the accuracy of
the classifier. This is the fraction of original images which are
misclassified, hence considered as already adversarial.

Figure 3 shows operating curves of several attacks against
two well-known classifiers. We choose a complexity budget
allowing an attack to perform at its best capacity under the
best effort mode: FGSM runs on Nj,, = 30 iterations, BP on

5)
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Fig. 3. Operating curves of EfficientNet-bO (top) and ResNet-50 (bottom)
against four attacks in best-effort mode and without quantization.

Niter = 50, IFGSM, PGD5 on Njer = 10 x 10, and CW5 on
10 x 100 iterations (i.e. outer loop x inner loop). We formulate
three remarks:

o CW, requires even more iterations to successfully attack
all images against ResNet-50.

o BP achieves by far the best trade-off between complexity,
distortion, and success rate.

o These attacks yield adversarial images with unquantized
pixel values, and the average distortion is lower than 0.5
for most images. Rounding these values to [0, 255] erases
the adversarial perturbation in most pixel positions so that
the result is no longer an adversarial image [16].

The next section shows how to modify any white-box attack
in order to be robust to quantization in the spatial domain.

III. SMART QUANTIZATION IN THE SPATIAL DOMAIN

Assume that an attack has forged the adversarial sample
z, € [0,255]", which is not quantized, i.e. pixel values are
a priori not in [0, 255]. This section presents our mechanism
carefully quantizing the pixel values to keep adversarial im-
ages adversarial.

A. Problem Statement

Our mechanism casts z, € [0,255]" to z, € [0,255]". Its
goal is to solve the optimization problem defined in (4) with
the additional integral constraint: x, is eventually replaced
by z, € [0,255]". Since we are working in a white-box
environment, our method can rely on the following quantities:

« the original image z, € [0, 255]%,
« the unquantized adversarial image x, € [0,255]",
o the adversarial loss L., (x) and its gradient V L,g, ().

We introduce the following weak signals:
U = X,

(16)
a7

— To,
Tq — Tq.

The quantization noise ¢ plays the central role in our approach.

We redefine the distortion and the loss functions w.r.t. this

variable:

(18)

19)

g — 2ol* = ||lu + q||?
L(q) = Ladv('rq) = Ladv('ra + q)

There is obviously a trade-off between these two quantities.
For instance, the choice

¢" = argmin D(q) = —u (20)

cancels the perturbation and makes x, = x, not adversarial.
Finding the adversarial image x, minimizing distortion
D(q) can be expressed as:

min ~ D(

21
q€Q,L(q)<0 @D

where Q is the set of admissible solutions. Remark that x, —
T, = q+u € Z" since it is the difference of two integer
vectors. This implies that ¢ € Q C ZV — w, i.e. the grid ZV
shifted by translation —u. For instance, quantizing by rounding
the perturbation gives

q=[ra] = Ta = [To +u] — (2, +u) = [u] —u, (22)

where [u] is the closest integer value of u component-wise.
We add the other constraint of ¢ being of limited amplitude.

We introduce a new parameter d € N,, so-called degree of

freedom which reflects the number of choices per component:

[ug] ifd=0
4y = LUZJ or |—UZ-| ifd=1
BTUZN 1w = 1w, or fui] +1 ifd=2

The case d = 0 amounts to rounding the perturbation and there
is no freedom to choose another integer. This implies that the
{-norm of the quantization noise is bounded by ||¢||cc < 1/2.
In the general case, this norm is bounded by ||¢||co < (d+1)/2.
The case d = oo means that the perturbation is quantized to
integers but there is no control on the norm ||g||-

In the end, the set of admissible quantization noises is
defined by the product space Q = ® ,Q; with

0, {fu) — 4, ] + 2} — u if d is even,
{lwi] — 2,0 Tug ] + =52 —w;  if d s odd.
(23)
Note that the number of admissible solutions is exponential
with N: |Q| = (d + 1)V
We now assume that Vg € Q, ¢ is small enough to make a
first order approximation of the loss:

L(q) := Laav(zq) = Laav(za) + 4" g, 24)



where g := V Ly, (z,). For instance, the choice

- {min(@»

if sign(g;) >0
&= max(Q;)

if sign(g;) <0 )
minimizes the first order approximation of L(q). For d large
enough, this certainly ensures that L(q) < 0 and z, is adver-
sarial but the distortion is large. The solution to problem (21)
can consequently be seen as a compromise between (20)
minimizing the distortion and (25) minimizing the loss.

B. Solution

The solution of (21) is given by a Lagrangian formulation.
Define the following functional:

Ja(q) :== D(q) + AL(q), (26)
where A € R, is the Lagrangian multiplier balancing ad-
versariality and distortion quantities. Suppose we know how
to efficiently minimize that functional by ¢ := ming Jx(g),

VX € R,. The expected behavior along X is for L(g}) to
decrease while D(q%) increases (see Fig. 4). For instance,

1) When A = 0, all importance is given to D(q). This
results in a distortion-based quantization ¢! erasing the
perturbation u as seen in (20).

2) When A — +o0, all importance is given to L(g). This
results in a gradient-based quantization ¢* of (25).

Since the distortion strictly increases with A, the optimal
solution of problem (21) is then ¢}. where A* = min{\ :
L(qy) < 0}. We practically compute this optimal solution in
a two step approach.

1) Minimizing the functional: Finding the minimum of J)
is difficult, except if we rely on approximation (24), then we
can write that

Ia(g) ~ [lu+ gl + AL(za) + g g 27)
is convex and thus is minimized when VJx(¢) = 0. This
happens for ¢ = ¢, where

A

i=—5g9—u.

5 (28)

Yet this solution is not admissible because it does not belong
to Q a priori. We rewrite the approximation (27) as

. A2 N
Ia(a) =~ g —an|* + ZIIQII2 + Mg Gn + L(za)) (29

to outline that the minimizer on Q is just its closest element
to Gx. This amounts to first quantize § onto Z" —u and then
clip:

qi,i = Clip[min((@i),max((@i)] ([=Agi/2] — ;). (30)

2) Finding the optimal \*: The relaxation of the integral
constraint and the linearisation of the loss provides a first
approximation of \*. Inserting (28) in (24) yields:

2(Lagy(¥a) — ' g)

g1l

We find the value of A\* by looking around A.. Similarly
to our previous work [16], we run a line search in the
interval [0.01\., 100).]. For every value tested, we compute
the optimal perturbation (30), add it to x,, and submit this
to the classifier. If it is adversarial, then the value of )\
is decreased. It is increased otherwise. In other words, the
computation of the best quantization noise g} given A relies
on the linear approximation (24), but the finding of A\* implies
to evaluate the classifier.

Ae i= 31

IV. SMART QUANTIZATION IN THE JPEG DOMAIN

The JPEG file format represents an image as a 3-
dimensional tensor of scaled DCT coefficients quantized to
integers. Extending our quantization to the DCT domain
enables us to craft JPEG adversarial images.

A. JPEG Compression

The JPEG compression is schematically done in four stages
(excluding entropic source coding). A RGB image (Red,
Green, Blue) is linearly converted to Y CyC, (Luminance,
blue-Chroma, red-Chroma). This linear transform ensures that
all values lie in the range [0,255]. Then each channel un-
dergoes the 8 x 8 block DCT-transform. The resulting DCT
coefficients are finally divided by quantization steps which
depend on their frequency bin and the quality factor. A lower
quality factor increases the quantization steps s.t. the following
quantization loses more information.

This pipeline is linear and thus can be summarized by X =
Jx + C, where X € RY stores the scaled DCT coefficients
and C' is a constant vector encoding the shift in the conversion
RGB to YC,Cr. We have supposed here that N = 3LC
where the numbers of columns C' and lines L are multiple
of 8. The matrix J € R¥*N encodes the color conversion,
the block DCT, and the division by the quantization steps. It
is cumbersome to express it due to the flattening of images
in N dimensional vectors. The main properties are that J is
invertible and that it is not an isometry, i.e. ||Jz| # ||| in
general. This is due to the scaling with the quantization steps
but also to the color domain conversion [19].

Vectors in this JPEG domain are denoted with capital letters:
Xo, Xa, Xg, U, and @ with:

U = X,—Xo=J(xs—20) = Ju,
Q = X,—X,=J(z,

The scenario is the following: As in the previous section, an
attack forges x, and we have to craft its JPEG version. This
amounts to convert it in the JPEG domain, X, = Jz, +
C, and to quantize these coefficients with care so that the
image remains adversarial. Note that X, = Jz, + C is a
priori not an element of Z%, unless the original image was
already quantized in the JPEG domain.

(32)

- xa) = Jq (33)



B. Quantization

We write the problem by focusing on the quantization
noise @ in the JPEG domain. Since z, = J (X, — O),
Equation (24) is written as:
Ladv(zq) = Ladv(Jil(Xa +Q - C)) = Ladv(xa + JﬁlQ)
Luv(za) + (J7'Q) Ty, (34)

where g is the gradient of the loss function in the pixel domain.
As for the Euclidean distortion, we have

Q

g — zoll* = lu+ql* = lu+J7'QI%.  (35)

Finally, the Lagrangian functional defined in (26) becomes:
D(J7'Q) + AL(J'Q). (36)

Following the same reasoning as in the spatial domain, the
minimum of this functional when relaxing the quantization
constraint amounts to set J~'Q to ¢y given in (28). Equiva-
lently:

. A

Yet, this time the rounding is done with respect to X, since
we need X, + @ to be an integral vector:

(37

QY = —%Jg—U+Xa - Xa- (38)
Like in the spatial domain, this value is clipped to belong to
the set Q, defined in (23) replacing u by U. Note that if the
original image is in JPEG format with the same quality factor
so that X, is an integer vector, then Q% = [5*Jg] — U, and
we recover a quantization similar to (30).

V. EXPERIMENTAL WORK
A. Implementation Details and Setup

We make the following implementation choices.

One can either implement the transformation J~! as a
preprocessing layer like previously discussed in Sect. II-A.
This allows to directly feed the classifier with JPEG images.
Attacks also naturally adapt to this new object as the gradient
back-propagates through the transformation layer. Yet, this
approach makes the attack domain-specific. Our choice of
design is to implement our quantization separately on top of
any attack. Our method forges JPEG images from a spatial
adversarial sample z, resulting from an attack on z,.

Our implementation builds on the Python library Pillow
to be as close as possible to the official JPEG standard. Two
differences remain: JPEG may apply a sub-sampling on the C},
and C,. channels. Taking into account sub-sampling is straight-
forward with back-propagation and auto-differentiation. For
the sake of simplicity, we work on JPEG images without sub-
sampling and the color channels have all the same size. JPEG
may apply clipping when converting from one color domain to
another. These border effects produce small information losses.
We do not apply this lossy step to keep the transformation
linear.

The experiments use 1,000 PNG versions of images from
the validation set of Imagenet ILSVR 2012 [20]. Unless

stated otherwise, the attacked classifier is EfficientNet-b0 [21].
EfficientNet in its bO configuration is a recent and lightweight
classifier that achieves high accuracy on ImageNet. Our pre-
vious work [16] shows that distortion created by quantization
is proportional to the distortion created by the attack. We thus
choose BP to be the default attack. It performs well with few
iterations in its best-effort setup as seen in Fig. 3. The research
on the optimal value of A is done by default over 10 iterations.
Finally, both spatial and JPEG quantization are run by default
with degree of freedom d = 1 unless specified otherwise.
The protocol is the following. For the spatial domain, z, =
x, if the original image is already misclassified, otherwise
BP produces z, that our method quantizes to x,. For the
JPEG domain, z, is first converted in the JPEG format. If
this triggers a misclassification, then this JPEG version of z,
is the adversarial image X,. Otherwise, BP produces x, from
the JPEG original that our method quantizes to X.
Operating curves in both domains are displayed as follow:

« Distortion is calculated w.r.t. the original spatial image.
o Misclassified original images in each domain are consid-
ered as already adversarial at null distortion.

Note that compressed JPEG images do not have a null distor-
tion since they differ from the original spatial image. For the
sake of clarity, we however consider they do. This choice is
further motivated in Section V-C.

B. Investigations on the Search of \*

Figure 4 shows the behavior of the adversarial loss and the
distortion as functions of A, for one image in the spatial and
the JPEG domains. To plot these curves we use the quantized
(30) (resp. (37) for JPEG) and unquantized solution (38) (resp.
(28)). The same behavior is observed on other images through
other classifiers up to a change of ranges of values.

Without quantization, the distortion is the same in both
domains and it strictly increases w.r.t. A as predicted by (28)
or (37). With quantization and clipping (with d = 1), the
distortion increases much more in the JPEG domain because
of the coarser quantization steps in the high-frequency bins.
It also does not start at O but at the distortion induced by the
regular JPEG compression of the original image.

In the spatial domain, the adversarial losses (with or without
quantization and/or clipping) are well-approximated by (24)
for small perturbation, i.e. when A is small. In particular, they
converge to L,gy(z,) when A — 0. The linear approximation
is useful for predicting when the loss cancels. Adding quan-
tization and clipping constrains the problem and we observe
that \* > A.. This implies a stronger distortion. Of course,
the linear approximation is very wrong when predicting losses
below —1.

The picture is less clear in the JPEG domain. The approxi-
mation holds true in the beginning and until L,q4,(X,) reaches
0. The approximation A, remains extremely relevant. However
L,qy sometimes becomes non-monotonic as A — oo because
of the strong distortion.

For this reason, our search of \* slightly differs. It starts
from A, given in (31). This is the same value for both spatial
and JPEG domains. In the spatial domain, a line search within
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Fig. 4. Comparing the approximated loss (24) (resp. (34)) with the loss
without rounding: L(gy) in (28) (resp. L(J~1Qy) in (37)) and the loss with
quantization L(qy) in (30) (resp. L(J *IQK) in (38)) as a function of \ in
the (top) spatial domain, resp. (bottom) JPEG90. Distortion is also displayed
with scale on the right.

[0.01 - A;, 100 - A;] works well because the loss is almost
monotonically decreasing. In the JPEG domain, the loss is less
predictable and we instead sample n values in this interval:

it = A0 10%, 39)
) n—20 40)

o; = 2
n

The lowest value tested that verifies L,q, < 0 is necessarily
the best since distortion strictly increases with .

It is expected that the line search in the spatial domain
is more efficient than the uniform sampling in the JPEG
domain. This is indeed illustrated by Fig. 5. Quantization in
the spatial domain converges faster thanks to the line search.
However, for both approaches, searching for \* with n = 10
steps is sufficient. Note that each step only makes a forward
pass through the classifier network. In comparison running
BP makes Ny = 50 forward and backward passes. Our
quantization is thus faster than the attack. It gets slowed down
by the DCT transform in JPEG domain however.

C. Impact of Quality Factor in JPEG Domain

The quality factor of JPEG determines the values of the
quantization steps applied on the DCT coefficients. A lower
quality factor leads to a bigger loss in information and degra-
dation of the image. This is especially true for high frequencies
of the image which are coarsely quantized. The gradients
computed during attacks look like noisy patterns and the
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Fig. 5. The impact of the number of tested values of A on the operating
curve. EfficientNet, BP, d = 1, spatial (top) and JPEG90 (bottom).

resulting adversarial perturbation is thus in the high-frequency
range. Its distortion needs to be amplified to preserve the
adversarial property of the perturbation at a lower quality
factor.

Figure 7 shows operating curves for adversarial images
crafted for different JPEG quality factors (plain curves) which
confirm this last statement. For the sake of comparison, the
distortion of the JPEG compression on the original images is
also displayed as a cumulative sum over all the 1,000 images
(dashed curves). We observe that our adversarial quantization
returns a distortion very close to regular JPEG compression.

BP+JPEG60 quant. BP+JPEG60 quant.

d(J_l(Xq),xo) =5.71
900 ‘water tower’
727 ‘planetarium’

d(J7H(X,), o) = 5.93
650 ‘microphone’
813 ‘spatula’

Fig. 6. Visible artifacts on images quantized as JPEG60. Predicted class is
displayed in red, ground-truth in blue.



This leads to the interesting result that some adversarial images
quantized in JPEG often have the same distortion (or even
less in few cases) than just the original image compressed.
Figure 14 illustrates this result with JPEG75. On three of the
four examples displayed, distortion of the adversarial image is
equal or very close to the distortion of the compressed image.
In other words, a perturbation being compliant to JPEG is not
a strong constraint for the attacker as it is almost distortion-
free.

The price to pay is a small extra complexity thanks to our
method. This is necessary as the JPEG compression alone is
not working as an attack. Table ?? indicates that only 17.0%
(JPEGY90 and JPEG100) or 19.0% (JPEG75 and JPEG60) of
compressed original images are misclassified. We plot the
same operating curve as previously considering JPEG com-
pression as an attack on Fig. 7 (dash plots). Its discloses which
images were naturally adversarial after JPEG compression
and which ones needed to be attacked and quantized by our
method. There is no correlation between the distortion due to
JPEG and the chance that it succeeds as an attack. Indeed,
most of these images are already misclassified in PNG and
still adversarial once in JPEG.

Figure 8 shows the operating curve w.r.t. to the Euclidean
distance from the original image compressed to JPEG format.
These curves start at a success rate of 17.0% (resp. 19.0%)
since a null distortion corresponds to misclassified original
JPEG images. Except for these specific images, our method
forges an attacked JPEG image different than its original JPEG
version although both of them are equivalently far away from
the original PNG image.

Distortion is mostly imperceptible when the quality factor
is high. It does start to be noticeable with JPEG75. Fig. 14
displays for example at the last row some little artifacts at
the bottom of the lighter which are not typical from a JPEG
compression. On JPEG60, quantization artifacts are more
frequent and important. Figure 6 displays two examples. These
patterns are especially visible on smooth image regions usually
not affected by JPEG compression. Quantized attacks remain
imperceptible when the image is highly textured.
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Fig. 7. The operating curve of Efficientnet-b0 against BP + JPEG quantization
with d = 1 (plain) and against JPEG compression alone (dot). For the sake
of comparison, the cumulative distribution function of the distortion due to
JPEG compression is also displayed (dashed). Distortion is measured from
the original spatial image z,.
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Fig. 8. The operating curve of Efficientnet-b0 against BP + JPEG quantization

(d = 1). Distortion is calculated w.r.t. to the original image compressed in
JPEG domain X,.
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Fig. 9. The operating curve of Efficientnet-b0 against BP + JPEG quantization
(d = 1). Distortion is measured from the original spatial image x,. Images
that are already adversarial after compression are considered to have null
distortion for readability.

We conclude this section by the following remarks.

o The classifier is very robust to JPEG compression alone.

o For any tested quality factor, almost all images are
successfully attacked and quantized. A few images were
unsuccessful at low quality factors (1% for JPEG60).

« Little distortion is added to the inherent distortion of the
JPEG compression.

o Yet, at low quality factor, the adversarial perturbation is
not typical from JPEG compression artefact.

Figure 9 summarizes the results but this time assuming that
misclassified images have null distortion. We consider this pro-
cedure to carry out the main information about the efficiency
of the attack and we use this setup to display the following
results.

D. Impact of the Degree of Freedom

Our previous work [16] considers only quantization in the
spatial domain with d = 1. The method here is more general
with higher degrees of freedom. Is that useful?

When d = 0, quantization is equivalent to rounding the
perturbation samples to the nearest integer. Figures 13 shows
that this mostly leads to unsuccessful attack. Indeed, the
perturbation is a weak signal partially destroyed by rounding.
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d(J7HX,), ) = 2.81 d(J71(Xy,), ) = 2.89
130 ‘flamingo’ 130 ‘flamingo’
ground-truth: 129 ‘spoonbill’
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432 ‘tank suit’

d(J‘l(Xq),xo) =5.92
432 ‘tank suit’
ground-truth: 776 ‘sax, saxophone’
d(J_l(Xq’dzl),d(J_l(Xq,d:OO)) =0.46

Fig. 10. Visual artefacts for two adversarial images on JPEG90 (top) and
JPEG60 (bottom) with and without clipping.

The success rate converges to approximately 20% for the
different JPEG quality factors, close to the proportion of
misclassified original images (see Fig. 7). This demonstrates
the robustness of the classifier against JPEG.

When attacking EfficientNet-bO, d = 1 seems enough to
quantize almost every image in both domains and the benefit
of increasing d seems rather low. A higher value of d is
not necessarily a better choice. This is particularly visible in
Fig. 13 with the quality factor 100.

The reason lies in the metrics used. The distortion (14)
is proportional to the f5-norm, i.e. the square root of the
squared-difference, summed over all pixels. Adding +2 on
one coefficient thus costs 2 whereas adding +1 on two
coefficients costs v/2. The degree of freedom constrains the
{~ norm of the total perturbation v + ¢ (or U 4+ @ in the
JPEG domain). This clipping increases the spreading of the
perturbation over all the coefficients: since the coefficients with
large gradient amplitude can not host a large perturbation, A
increases to compensate this clipping on the other components.
This more uniform distribution of the perturbation energy
over the coefficients yields a lower Euclidean distortion but
also a lower perceptual impact. Figure 10 shows two images
quantized with two different quality factors each quantized
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with d = 1 and d = oo. Their Euclidean distortion w.r.t. the
original image is similar but the artefact are more visible for
d = oo (quantization but no clipping). We notice that this
holds for any image.

E. Quantization on Different Classifiers and Attacks

This study considers four recent classifiers: EfficientNet-
b0 [21] and its adversarially trained counterpart EfficientNet-
b0-advprop [22]; RegNetX-032 [23], and the older
ResNet50 [24].

Figure 12 shows two images misclassified by two different
classifiers. It is interesting to note that both neural networks
misclassified the right image as the same class (828: tray)
whereas the left image is misclassified with different labels
yet semantically very close. These classification errors are also
understandable from a human point of view. As a final com-
ment on classifiers: all images misclassified by EfficientNet-
b0 (170 total) are misclassified by RegNetX-032 as well, and
RegNetX-032 misclassified 6 more images (176 total).

Figure 11 shows the operating curves of all four classifiers.
They are attacked with BP or PGD> and quantized in both
spatial and JPEG90 domains. Gradients from one classifier to
another vary with the number and nature of hidden layers.
This affects how an attack behaves. The hierarchy between
unquantized attacks however remains the same from one
classifier to another as seen in Fig. 3. This order remains after
quantization in the spatial domain: BP outperforms PGDs.

Nevertheless, the differences between classifiers and attacks
are barely noticeable in the JPEG domain. Distortion added
by JPEG compression takes over as Sec. V-C explains and
imposes the common shape of the operating curve. This shows
the adaptability of our quantization w.r.t. which neural network
is attacked.

F. Transferability

Our quantization method aims at creating an adversarial
image with minimum distortion. The image therefore lies just
behind the frontier of correct classification for the targeted
classifier. Therefore, no transferability to other deep neural
networks is guaranteed. We consider the scenario where the
attacker knows that the deployed classifier belongs to an
ensemble but she/he does not know which one exactly. The
goal is to forge images adversarial for all the classifiers in
the ensemble. Our strategy is to aggregate the losses of the
classifiers with the maximum operator so that we focus on the
most robust element of the ensemble and to aggregate their
gradients with the average operator like in Expectation over
Transformation (EoT [15], [25]). Figure 11 shows that beating
all the classifiers in the ensemble does not amount to beat the
most robust one (i.e. EfficientbQ advprop). More distortion
is required instead in spatial domain. In JPEG domain we
observe that the slope of the ensemble curve is similar to
the curve of any single model. The distortion created by the
quantization is still on par with compression alone. We do
note however that quantizing for several classifiers is a more
difficult task in JPEG. The final accuracy is 6.7% in JPEG,
0% in spatial domain.
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Fig. 11. The operating curves of several classifiers against BP (plain)
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Fig. 12. Misclassification of two images from our dataset through two
classifiers: EfficientNet-b0 and RegNetX-032.

G. JPEG Compression as a Defense

As mentioned several times throughout the paper, JPEG
compression usually erases adversarial perturbations while not
spoiling the accuracy of the classifier over natural images. For
this reason, JPEG compression has been studied as a means
of defense against adversarial samples [13], [14]. It acts as
a low-pass filter reforming the input image. Table II shows
this is indeed true for our spatially quantized images. While
a quality factor of 90 reforms 42% of our adversarial PNG
images, a quality factor of 60 reforms ~ 70%. This proves to

TABLE 11
ACCURACY (IN %) OF EFFICIENTNET-BO EQUIPPED WITH A JPEG
COMPRESSION AS A DEFENCE FRONT-END REFORMER AGAINST OUR
QUANTIZED best-effort BP.

Defense
Atttack None | JPEG100 | JPEG90 | JPEG75 | JPEG60
Spatial 0.1 4.0 42.1 63.0 70.4
JPEG100 0.6 1.0 39.8 71.4 76.6
JPEG90 0.6 0.7 0.6 60.0 69.8
JPEG75 0.6 0.7 2.4 0.6 14.7
JPEG60 1.0 1.0 1.3 6.4 1.1

be a very effective defense against adversarial samples.

However, our adversarial images quantized in the JPEG
domain are naturally more robust to JPEG compression. The
results show interesting properties:

o The performance of the attack is maximized when the
quality factor matches the one used at the defense.

o Compressing at the same quality factor does however
reform few images (< 1% in all three cases) because
JPEG is not idempotent.

o Quantized adversarials at a given quality factor are robust
to defenses with a higher quality factor.

VI. CONCLUSION

We have proposed a method (improved from [16]) to
effectively quantize adversarial samples in order to craft ad-
versarial images in spatial or JPEG domains. This quantization
guarantees that generated images remain adversarial while
minimizing the distortion. It runs within few forward calls
to the network making it faster than simple attacks and it
conveniently operates on top of any white box attacks for
broader usability.

When dealing with JPEG compression, the distortion in-
duced by the attack is a very small fraction of the distortion
induced by sole compression, and crafting adversarial images
in JPEG at low-quality factors also provides robustness to
countermeasures based on JPEG compression.

The presented methodology is moreover ubiquitous and it
could be transferred to other domains such as JPEG2000 [26]
or HEIF [27], and the optimization setup can also be used
for other metrics than classification (for example regression
as proposed in [18]) and on other distances such as stegano-
graphic costs [17] in order to generate adversarial images that
are less prone to be statistically detected.
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d(xq,x,) = 0.0 d(xq,x,) = 0.17 d(JHX,), o) = 3.63 d(JHX,), o) = 3.65

626 ‘lighter, light’ 470 ‘candle, taper’ 626 ‘lighter, light’ 470 ‘candle, taper’
d(zg,x,) = 0.0 d(zg,x,) =0.21 d(JHX,),x,) = 3.72 d(JH(X,),x,) = 3.79

Fig. 14. Examples of attacked images with spatial and JPEG75 quantizations. JPEG75 compression of the original image is also displayed in the third column.
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