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Rational solutions to the modified Korteweg-de Vries (mKdV) equation are given in terms of a quotient of determinants involving certain particular polynomials. This gives a very efficient method to construct solutions. We construct very easily explicit expressions of these rational solutions for the first orders n = 1 until 10.

Introduction

We consider the modified Korteweg-de Vries (mKdV) equation in the following normalization 4u t + 6u 2 u xu xxx = 0, [START_REF] Leblond | Models for supercontinuum generation beyond the slowly-varying-envelope approximation[END_REF] with as usual the subscript meaning the partial derivatives.

The mKdV equation has many applications in various fields as in nonlinear optics for example to model supercontinuum generation in optical fibres [START_REF] Leblond | Models for supercontinuum generation beyond the slowly-varying-envelope approximation[END_REF] or to describe pulses consisting of a few optical cycles [START_REF] Leblond | Few-optical-cycle solitons: Modified Kortewegde Vries sine-Gordon equation versus other non-slowly-varying-envelopeapproximation models[END_REF].

A lot of methods have been used to construct solutions to the mKdV equation. We can recall some works about this topic. In 1972, Hirota [START_REF] Hirota | Exact envelope-soliton solutions of a nonlinear wave equation[END_REF] constructed the exact soliton for the mKdV equation. Tanaka [START_REF] Tanaka | Modified Korteweg. de Vries Equation and Scattering Theory[END_REF] was the first to solve the mKdV equation by using the inverse scattering technique. In 1976, Ono constructed rational solutions to the mKdV equation [START_REF] Ono | Algebraic Soliton of the Modified Korteweg-de Vries Equation[END_REF] by using Bäcklund transformation. Tanaka constructed rational solutions to this equation using recurrence relations 1 in [START_REF] Kametaka | On Rational Similarity Solutions o[ KdV and m.KdV Equations[END_REF].

In 2012, solutions to the mKdV equation has been constructed via bilinear Bäcklund transformation in [START_REF] Sun | Rational Solutions with non-zero asymptotics of the modified Korteweg-de Vries Equation[END_REF] and rational solutions in terms of wronskians were obtained. Periodic solutions and rational solution of first and second order were presented in [START_REF] Chowdury | Periodic and rational solutions of modified Korteweg-de Vries equation[END_REF] in 2016, by using a Darboux transformation.

Here, we construct rational solutions by using particular types of polynomials. To prove the results, we use the bilinear Hirota method. The solution can be expressed as the derivative in x of the logarithm of the quotient of two determinants. So rational solutions as a quotient of polynomials in x and t are given and we construct explicit rational solutions in the simplest cases n = 1 until 10.

Rational solutions to the mKdV equation

We consider the following polynomials p n (x, t) defined by

             p n (x, t) = n l=0 x k k! t   n -k 3   n -k 3 ! 1 - 1 2 (n -k + 1 -3 n -k 3 , k ≥ 0, p n (x, t) = 0, n < 0, (2) 
with [x] denoting the largest integer less or equal to x. We denote A n (x, t) the determinant defined by

A n (x, t) = det(p n+1-2i+j (x, t)) {1≤i≤n, 1≤j≤n} (3) 
With these notations we have the following result Theorem 2.1 The function v n (x, t) defined by

v n (x, t) = ∂ x ln A n+1 (x, t) A n (x, t) (4) 
is a rational to the mKdV equation (1)

4u t + 6u 2 u x -u xxx = 0. Proof : We know that v n (x, t) = ∂ x ln f (x, t) g(x, t)
is a solution to the mKdV equation if f and g check the following equations

(D 3 x -4D t )f • g = 0, ( 5 
) (D 2 x )f • g = 0, ( 6 
)
where D is the bilinear differential operator.

We have to check [START_REF] Tanaka | Modified Korteweg. de Vries Equation and Scattering Theory[END_REF] for f = det(p n+2-2i+j (x, t)) {1≤i≤n+1, 1≤j≤n+1} and g = det(p n+1-2i+j (x, t)) {1≤i≤n, 1≤j≤n} . We denote C j the column j of A n+1 , 1 ≤ j ≤ n + 1 and Cj the column j of A n , 1 ≤ j ≤ n:

C j =      p n+j p n-2+j . . . p -n+j      . Cj =      p n-1+j p n-3+j . . . p -n+1+j      . ( 7 
)
With these notations, A n+1 (x, t) and A n (x, t) can be written as :

A n+1 (x, t) = |C 1 , . . . , C n+1 |, A n (x, t) = | C1 , . . . , Cn |. We denote H the expression H = (D 3 x -4D x D t )f • g. We have to evaluate H. The polynomials p k verify ∂ x (p k ) = p k-1 and ∂ t (p k ) = p k-3 .
So H can be written as a sum of 16 terms

H = [|C -2 , C 2 , C 3 , . . . , C n+1 | + 2|C -1 , C 1 , C 3 , . . . , C n+1 | + |C 0 , C 1 , C 2 , C 4 , . . . , C n+1 |] × | C1 , C2 , . . . , Cn | -3[|C -1 , C 2 , . . . , C n+1 | + |C 0 , C 1 , C 3 , . . . , C n+1 |] × | C0 , C2 , C3 , . . . , Cn | + 3[| C-1 , C2 , . . . , Cn | + | C0 , C1 , C3 , . . . , Cn |] × |C 0 , C 2 , . . . , C n+1 | -[| C-2 , C2 , . . . , Cn |+2| C-1 , C1 , C3 , . . . , Cn |+| C0 , C1 , C2 , C4 , . . . , C n |]×|C 1 , C 2 , . . . , C n+1 | -4[|C -2 , C 2 , . . . , C n+1 | + |C 1 , C -1 , C 3 , . . . , C n+1 | + |C 1 , C 2 , C 0 , C 4 , . . . , C n+1 |] × | C1 , C2 , . . . , Cn | +4[| C-2 , C2 , . . . , Cn |+| C1 , C-1 , C3 , . . . , Cn |+| C1 , C2 , C0 , C4 , . . . , C n |]×|C 1 , C 2 , . . . , C n+1 | H 2 = -|C -2 , C 2 , C 3 , . . . , C n+1 | × | C1 , C2 , . . . , Cn | + |C 1 , C 2 , . . . , C n+1 | × | C1 , C-1 , C3 , . . . , Cn | + |C 0 , C 2 , C 3 , . . . , C n+1 | × | C-1 , C2 , C3 , . . . , Cn |.
The last expressions H 1 and H 2 can be rewritten as the following determinants of order 2n + 1

H 1 = C 1 C 2 C 3 C 4 . . . . . . C n+1 C -1 0 . . . . . . . . . . . . 0 C0 C1 0 0 . . . . . . 0 C-2 C2 C3 C4 C5 . . . Cn (8) 
and

H 2 = C -2 C 2 C 3 C 4 . . . . . . C n+1 C 0 C 1 . . . . . . . . . . . . 0 C-1 0 0 0 . . . . . . 0 C1 C2 C3 C4 C5 . . . Cn (9) 
We consider the determinant H 1 . It can be rewritten as four blocks

H 1 = p n+1 p n+2 p n+3 p n+4 . . . p 2n+1 p n-1 0 0 . . . 0 p n-1 p n p n+1 p n+2 . . . p 2n-1 p n-3 0 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p -n+1 p -n+2 p -n+3 p -n+4 . . . p 1 p -n-1 0 0 . . . 0 p n-1 p n 0 0 . . . 0 p n-3 p n+1 p n+2 . . . p 2n-1 p n-3 p n-2 0 0 . . . 0 p n-5 p n-1 p n . . . p 2n-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p -n+1 p -n+2 0 0 . . . 0 p -n-1 p -n+3 p -n+4 . . . p 1 (10) 
We denote by L the rows and by C the columns of this determinant of order 2n + 1.

We combine the rows of the previous determinant in the following way : we replace L n+1+j by L n+1+j -L j+1 for 1 ≤ j ≤ n, then we obtain the following determinant 

H 1 = p n+1 p n+2 p n+3 p n+4 . . . p 2n+1 p n-1 0 0 . . . 0 p n
This last determinant is clearly equal to 0.

For the expression H 2 , we use the same strategy : we write as a determinant of order 2n+1 and we prove by combining rows and columns that it is equal to 0. 

H 2 = p n-
Then we replace Cn+1+j by Cn+j+1 + Cj-1 for 3 ≤ j ≤ n and we obtain using that p -n-2 = 0, p -n = 0 and p -n+1 = 0 for n ≥ 0 

H 2 =
It can be easily seen that this last determinant is clearly equal to 0. This proves that

H = (D 3 x -4D x D t )f • . 2.
The same arguments can be used to prove the second relation (6) D 2

x f •g = 0. We denote G the expression G = D 2

x f • g. We evaluate G. G = G 1 + G 2 can be written as a sum of 6 terms where

G 1 = |C 0 , C 1 , C 3 , . . . , C n+1 | × | C1 , C2 , . . . , Cn | + |C 1 , C 2 , C 3 , . . . , C n+1 | × | C-1 , C2 , C3 , . . . , Cn | -|C 0 , C 2 , . . . , C n+1 |] × | C0 , C2 , C3 , . . . , Cn | and G 2 = |C -1 , C 2 , C 3 , . . . , C n+1 | × | C1 , C2 , . . . , Cn | + |C 1 , C 2 , C 3 , . . . , C n+1 | × | C0 , C1 , C3 , . . . , Cn | -|C 0 , C 2 , . . . , C n+1 |] × | C0 , C2 , C3 , . . . , Cn |
The idea of the proof of this second part is the same that this used in the first part. We write G 1 and G 2 as the determinants of order 2n + 1

G 1 = C 1 C 2 C 3 C 4 . . . . . . C n+1 C 0 0 . . . . . . . . . . . . 0 C0 C1 0 0 . . . . . . 0 C-1 C2 C3 C4 C5 . . . Cn (16) 
and

G 2 = C -1 C 2 C 3 C 4 . . . . . . C n+1 C 0 C 1 . . . . . . . . . . . . 0 C0 0 0 0 . . . . . . 0 C1 C2 C3 C4 C5 . . . Cn (17) 
G 1 can be rewritten as 

G 1 = p n+1 p n+2 p n+3 p n+4 . . .
It is clear that this last determinant is clearly equal to 0.

For the expression G 2 , we prove by combining rows and columns that it is equal to 0.

3 Explicit rational solutions to the mKdV equation for the first orders

In the following, we will call

v k (x, t) = ∂ x (ln A k+1 (x, t) A k (x, t) )
a rational solution to the mKdV equation of order k.

In this section we will give some explicit examples of rational solutions to the mKdV equation.

3.1

Rational solutions of order 1 to the mKdV equation

Example 3.1 The function v k (x, t) defined by v k (x, t) = -(2 x 3 + 3 t)x (-x 3 + 3 t)x 2 (24) 
is a rational to the KdV equation.

3.2

Rational solutions of order 2 to the mKdV equation

Example 3.2 The function v k (x, t) defined by v k (x, t) = 3 (x 6 -6 tx 3 + 90 t 2 )(-x 3 + 3 t)x 2 (-x 3 + 3 t) 2 (-x 6 + 15 tx 3 + 45 t 2 ) ( 25 
)
is a rational to the mKdV equation.

3.3

Rational solutions of order 3 to the mKdV equation is a rational to the mKdV equation.

Rational solutions of order 4 to the mKdV equation

Example 3.4 The function v k (x, t) defined by v k (x, t) = n(x, t) d(x, t) (27) 
with n(x, t) = -5 (x 24 -114 tx 21 +4410 t 2 x 18 -15120 t 3 x 15 +2182950 t 4 x 12 -50604750 t 5 x 9 + 250047000 t 6 x 6 + 1875352500 t 7 x 3 + 1406514375 t 8 )(-x 9 + 45 tx 6 + 4725 t 3 )x

We could go on and present more explicit rational solutions, but they become very complicated. For example, in the case of order 10 the numerator includes 59 terms and the denominator 59 terms with big coefficients. It will be relevant to study in detail the structure of these polynomials.

Conclusion

Rational solutions to the modified Korteweg de Vries equation have been given in terms of determinants involving particular polynomials. This gives a very efficient method to construct rational solutions of this equation. We have constructed some examples of these rational solutions for the first orders. We can mention some other recent works about this equation. For example, in [START_REF] Chowdury | Periodic and rational solutions of mKdV equation[END_REF], first and second-order rational solutions are given as limiting cases of periodic solutions. Explicit periodic and rational solutions of first and second order are given in [START_REF] Wang | Conservation laws periodic and rational solutions for an extended mKdV equation[END_REF]. The first four exact rational solutions of the set of rational solutions of the mKdV equation are presented in [START_REF] Ankiewicz | Rogue wave-type solutions of the mKdV equation and their relation to known NLSE rogue wave solutions[END_REF]. Multiple periodic solutions of the mKdV equation are given in [START_REF] Zhaquilao | Nonsingular complexiton and rational solutions for the mKdV equation and KdV equation[END_REF] and in particular first to thirdorder rational solutions. The solutions presented in this work are different from these given in [START_REF] Gaillard | The mKdV equation and multi-parameters rational solutions[END_REF] to It would be relevant to better understand the structure of polynomials defining the rational solutions of this equation.
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	p n+1 p n-1 . . . denoting L G 1 = p -n+1 p -n+2 p -n+3 p n+2 p n+3 p n p n+1 . . . . . . 0 0 -p n+1	p n+4 p n+3 . . . p -n+1 . . . . . . p 2n+1 . . . p 2n-1 p n-2 p n . . . . . . . . . p 1 p -n -p n+3 . . . -p 2n-1 0	0 0 . . . 0 p n+1	0 0 . . . 0 p n+2 . . . p 2n-1 . . . 0 . . . 0 . . . . . . . . . 0	(19)
		0 . . .	0 . . .	-p n-1 . . .	-p n+1 . . . -p 2n-3 . . . . . . . . .	0 . . .	p n-1 . . .	p n . . .	. . . p 2n-3 . . . . . .
		0	0	-p -n+3 -p -n+1 . . .	-p 1	0	p -n+3 p -n+4 . . .	p 1
	Then replacing C j by C j + C n+j for 3 ≤ j ≤ n, when we obtain the following
	determinant							
		p n+1	p n+2	p n+3	p n+4 . . . p 2n+1	p n	0	0 . . .	0
		p n-1 . . .	p n . . .	p n+1 . . .	p n+3 . . . p 2n-1 p n-1 . . . . . . . . . . . .	0 . . .	0 . . . . . . . . .	0 . . .
	G 1 =	p -n+1 p -n+2 p -n+3 p -n+1 . . . 0 0 0 0 . . .	p 1 0	p -n 0	0 p n+1	0 . . . 0 . . . p 2n-1 0
		0 . . .	0 . . .	0 . . .	0 . . .	. . . . . .	0 . . .	0 . . .	p n-1 . . .	0 . . . p 2n-3 . . . . . . . . .
		0	0	0	0	. . .	0	0	p -n+3 . . . . . .	p 1

  15 -150 tx 12 + 2250 t 2 x 9 + 37800 t 3 x 6 -141750 t 4 x 3 + 212625 t 5 )(-x 6 + 15 tx 3 + 45 t 2 ) (-x 6 + 15 tx 3 + 45 t 2 ) 2 (-x 9 + 45 tx 6 + 4725 t 3 )x (26)

Example 3.3 

The function v k (x, t) defined by

v k (x, t) = (4 x

Then we replace Cn+1+j by Cn+j+1 + Cj-1 for 3 ≤ j ≤ n and we obtain using that p -n-2 = 0, p -n = 0 and p -n+1 = 0 for n ≥ 0 

It is also clear that this last determinant is equal to 0.

So we get the result,

) is a solution to the mKdV equation. 2 is a rational to the mKdV equation.

3.9 Rational solutions of order 9 to the mKdV equation Example 3.9 The function v k (x, t) defined by is a rational to the mKdV equation.