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Learning-based Warm-Starting for Fast Sequential Convex Programming and Trajectory Optimization

Sequential convex programming (SCP) has recently emerged as an effective tool to quickly compute locally optimal trajectories for robotic and aerospace systems alike, even when initialized with an unfeasible trajectory. In this paper, by focusing on the Guaranteed Sequential Trajectory Optimization (GuSTO) algorithm, we propose a methodology to accelerate SCP-based algorithms through warm-starting. Specifically, leveraging a dataset of expert trajectories from GuSTO, we devise a neural-network-based approach to predict a locally optimal state and control trajectory, which is used to warmstart the SCP algorithm. This approach allows one to retain all the theoretical guarantees of GuSTO while simultaneously taking advantage of the fast execution of the neural network and reducing the time and number of iterations required for GuSTO to converge. The result is a faster and theoretically guaranteed trajectory optimization algorithm.

INTRODUCTION

In the field of robotics, an ubiquitous problem is the problem of trajectory optimization, which consists of finding a highquality strategy described as a sequence-in-time of states and controls that is dynamically feasible, obeys all state and control constraints, and minimizes a chosen cost function. Among other applications, this is a problem relevant to the control of the new generation of autonomous space robots, such as Astrobee [START_REF] Smith | Astrobee: A new platform for free-flying robotics on the International Space Station[END_REF]. The goal of these assistive free-flyers 978-1-7281-2734-7/20/$31.00 c 2020 IEEE on-board the International Space Station (ISS) is to assist humans in space and reduce the cost of operations, e.g. by performing tasks such as positioning of sensors, maintenance, and manipulation of payloads. However, to enable the safe operation of these robots, it is necessary to devise computationally fast algorithms to optimize their trajectories.

In the current literature, there are two broad approaches to tackle trajectory optimization. The first class of methods consists of deterministic planning algorithms, while the second one leverages methods from machine learning. A short review of those techniques is provided below.

Techniques in trajectory optimization can be divided into global search methods and local methods. Global search methods include motion planning techniques, such as sampling-based motion planning algorithms (e.g., RRT * , PRM * , and FMT * ) [START_REF] Lavalle | Rapidly-exploring random trees: Progress and prospects[END_REF], [START_REF] Kavraki | Probabilistic roadmaps for path planning in high-dimensional spaces[END_REF], [START_REF] Janson | Fast Marching Tree: a fast marching sampling-based method for optimal motion planning in many dimensions[END_REF]. Though these techniques require no initialization, they scale poorly to high-dimensional systems with kinodynamic constraints. For such reasons, they are thus instead used in practice to initialize other trajectory optimization algorithms. On the other hand, local methods are much faster and can find locally optimal solutions. However, they are often heuristic and can be very sensitive to the initial starting point [START_REF] Boyd | Convex optimization[END_REF]. Among the most promising local methods is Sequential Convex Programming (SCP) [START_REF] Liu | Solving nonconvex optimal control problems by convex optimization[END_REF], [START_REF] Mao | Successive convexification of non-convex optimal control problems and its convergence properties[END_REF], [START_REF] Mao | Successive Convexification of Non-Convex Optimal Control Problems with State Constraints[END_REF]. This technique consists of successively convexifying the underlying non-convex problem, allowing for the use of convex solvers, which usually benefit from fast convergence properties. One of the most recent examples of an SCP algorithm is Guaranteed Sequential Trajectory Optimization (GuSTO) [START_REF] Bonalli | GuSTO: guaranteed sequential trajectory optimization via sequential convex programming[END_REF], [START_REF] Bonalli | Trajectory optimization on manifolds: A theoretically-guaranteed embedded sequential convex 6 programming approach[END_REF]. This method enjoys theoretical guarantees on convergence, does not need a feasible initial guess, and is faster than many other optimization techniques. Despite such upsides, the convergence of GuSTO and computation time strongly depend on the quality of its initialization.

A second class of methods is represented by algorithms that leverage machine learning techniques. For instance, a neural network architecture presented in [START_REF] Tamar | Value iteration networks[END_REF] is capable of imitating the value iteration algorithm to solve path planning problems. Alternatively, a conditional variational autoen-1 coder is developed in [START_REF] Ichter | Learning sampling distributions for robot motion planning[END_REF] to learn a sampling distribution to inform sampling-based motion planning algorithms. By leveraging a dataset of collision-free near-optimal paths using RRT*, [START_REF] Qureshi | Motion planning networks[END_REF] proposed a neural network architecture to predict optimal control actions from any state, as well as a method to accelerate sampling-based planners. These methods tend to be computationally very effective; however, they usually lack guarantees of local optimality or even feasibility.

Instead of opting for an approach based on either trajectory optimization or machine learning, we propose to combine the two approaches to exploit the advantages of each. Specifically, with the objective of improving the numerical convergence of theoretically guaranteed trajectory optimization algorithms, we propose to train a neural network to predict a strategy for initializing GuSTO. More precisely, this trajectory is used as a warm-start for the GuSTO SCP algorithm. The end result is a framework that features both fast convergence and theoretical guarantees of local optimality [START_REF] Bonalli | GuSTO: guaranteed sequential trajectory optimization via sequential convex programming[END_REF]. Recently, [START_REF] Jetchev | Fast motion planning from experience: trajectory prediction for speeding up movement generation[END_REF] presented a similar method to predict initializing trajectories, which are then used as an initial guess for a local planner. However, instead of using a neural network as in this work, their approach uses a nearest neighbors predictor with hand-crafted descriptors of the problem. Also, their local trajectory optimization algorithms such as iLQG do not enjoy theoretical guarantees of optimality as in GuSTO. Also, in [START_REF] Tang | Learning trajectories for real-time optimal control of quadrotors[END_REF], an initial trajectory predicted by a neural network is refined by solving a one step quadratic program. However, their approach does not include nonconvex inequality constraints (e.g., obstacle avoidance constraints), and does not guarantee dynamical feasibility or local optimality. Our approach is different, as our goal is to predict a warm-starting trajectory for an SCP algorithm, thus retaining all the theoretical guarantees of local optimality. In summary, this paper presents a method which uses a neural network to initialize an SCP algorithm such that it converges faster, while ensuring that the final solution retains all the theoretical guarantees provided by the original optimization algorithm. By leveraging GuSTO to provide expert trajectories and refine the predictions of the neural network, the proposed framework can handle general trajectory optimization problems with nonlinear dynamics and non-convex constraints. Specifically, we provide two main contributions:

• We combine the expressive power of machine learning tools and the robustness of trajectory optimization algorithms to design a faster algorithm whose output is a feasible solution of the original problem. Specifically, by training a neural network via supervised learning to warm-start an SCP algorithm (in particular, GuSTO), our framework not only provides a feasible strategy but also returns a locally optimal solution to the original non-convex optimal control problem.

• We demonstrate the proposed framework on a high dimensional nonlinear system with non-convex constraints. We verify the accuracy of the neural network and observe a significant speed improvement when using the neural network prediction to initialize the SCP algorithm compared to a naive initialization. Moreover, we show on specific examples that the framework performs well even on scenarios outside of the distribution of problems on which the neural network is trained, demonstrating the robustness of our hybrid learning and trajectory optimization approach.

The paper is organized as follows. In Section 2, we formulate the trajectory optimization problem. Then in Section 3, we present the framework combining a neural-network-based initialization scheme with SCP. Section 4 presents numerical results demonstrating the accuracy of the method, a reduction in computation time, and robustness properties. Finally, Section 5 provides conclusions and future research directions.

PROBLEM FORMULATION

We address the problem of trajectory optimization. Given an initial state x init , a final goal point x final , as well as a fixed final time t f , the objective consists of finding a strategy, i.e. a sequence of states x(t) and controls u(t) for all times t ∈ [0, t f ], such that a cost function (e.g. time or fuel consumption) J(x, u) is minimized, while simultaneously satisfying the dynamics of the system as well as all state and control constraints (including collision avoidance constraints). The safe subsets of the state and control space are denoted by X safe ⊆ R n and U ⊆ R m . This trajectory optimization problem can be expressed as the following Optimal Control Problem (OCP):

min x,u J(x, u) subject to ẋ(t) = f (x(t), u(t)) ∀ t ∈ [0, t f ] x(t) ∈ X safe ∀ t ∈ [0, t f ] u(t) ∈ U ∀ t ∈ [0, t f ] x(0) = x init x(t f ) = x final .
The method proposed in this work applies to general instances of OCP. However, in this paper, for the sake of clarity, we describe the method by focusing on the dynamical model of the 13D free-flying spacecraft robot Astrobee [START_REF] Smith | Astrobee: A new platform for free-flying robotics on the International Space Station[END_REF]. For this system, the dynamics are as follows [START_REF] Aoudé | Two-stage path planning approach for designing multiple spacecraft reconfiguration maneuvers and applications to SPHERES onboard ISS[END_REF]. The state x = (r, v, q, ω) ∈ R 13 consists of position r ∈ R 3 , velocity v ∈ R 3 , the quaternion attitude representation for rotations q ∈ S 3 ⊂ R 4 , and angular velocity ω ∈ R 3 . The control input u = (f , τ ) ∈ R 6 consists of the input force f ∈ R 3 and the input torque τ ∈ R 3 .

Assuming a microgravity space environment, the translational dynamics are expressed as a double integrator as

ṙ(t) r(t) = 0 3×3 I 3×3 0 3×3 0 3×3 r(t) ṙ(t) + 0 3×3 I3×3 M f (t),
where M ∈ R is the mass of the Astrobee robot. The attitude dynamics are given as

q = 1 2 Ω(ω)q, J ω = τ -S(ω)J ω,
where J ∈ R 3×3 is the constant spacecraft inertia matrix and

S(ω):= 0 -ω z ω y ω z 0 -ω x -ω y ω x 0 , Ω(ω):=    0 -ω x -ω y -ω z ω x 0 ω z -ω y ω y -ω z 0 ω x ω z ω y -ω x 0    .
The state and control vectors are restricted to lie within specified bounds

x min ≤ x(t) ≤ x max u min ≤ u(t) ≤ u max ,
due to limits on the thrust of the Astrobee robot, safety limits on the speed, and position limits.

Non-convex obstacle avoidance constraints are imposed using signed distance fields. Specifically, given n O obstacles O i , we define the signed distance function d s (•) as

d s (r(t), O i ) = inf y∈Oi r(t) -y 2 -inf z / ∈Oi r(t) -z 2 ,
and impose non-convex obstacle avoidance constraints for each obstacle O i as

d s (r(t), O i ) ≥ d min ,
where d min > 0 is a safety margin such that a ball of radius d min centered at r(t) contains Astrobee. For the purpose of SCP, this constraint can be convexified using the procedure proposed in [START_REF] Virgili-Llop | Convex optimization for proximity maneuvering of a spacecraft with a robotic manipulator[END_REF].

As Astrobee operates in a fixed environment, namely the ISS, we assume all obstacles to be static. If this is not the case, fast replanning with this framework is capable of handling slowly moving objects and avoid any unforeseen collision.

For our numerical experiments, we consider a room with two polygonal obstacles. This scenario is similar to turning a corner on the ISS with an obstacle blocking the center of the corridor, as shown in Figure 1. Finally, the cost metric is the total control effort for Astrobee:

J = t f 0 u(t) 2 dt = t f 0 f (t) 2 + τ (t) 2 dt
More details of this system can be found in [START_REF]Astrobee robot software[END_REF].

An SCP method, such as Guaranteed Sequential Trajectory Optimization (GuSTO) [START_REF] Bonalli | GuSTO: guaranteed sequential trajectory optimization via sequential convex programming[END_REF], [START_REF] Bonalli | Trajectory optimization on manifolds: A theoretically-guaranteed embedded sequential convex 6 programming approach[END_REF], solves OCP by successively convexifying the dynamics and state constraints, yielding a sequence of convex programs which can be efficiently solved using any generic convex program solver. In this family of convex problems, the problem at iteration k +1 is obtained by linearizing dynamics and state constraints around the solution found at iteration k. Initially, all non-convex terms are linearized around an initial state and control strategy, denoted as x 0 and u 0 , respectively.

GuSTO is faster than many other SCP-based methods for complex scenarios [START_REF] Bonalli | GuSTO: guaranteed sequential trajectory optimization via sequential convex programming[END_REF], [START_REF] Bonalli | Trajectory optimization on manifolds: A theoretically-guaranteed embedded sequential convex 6 programming approach[END_REF]. It also does not need to be initialized with a feasible state and control strategy for the method to successfully converge. Importantly, when convergence is achieved, GuSTO is proven to provide a locally optimal solution of OCP.

However, as mentioned in the introduction, GuSTO is not as fast as machine learning approaches, which can compute solutions rapidly, although without any guarantee of feasibility nor optimality. Additionally, GuSTO's performance, like that of any other SCP-based method, is tied to the quality of the initial state and control strategies, x 0 and u 0 . Generally, the closer the initial guess is to the locally optimal solution, the faster and the more likely is that the SCP procedure converges.

To accelerate GuSTO while retaining all its theoretical guarantees, this paper proposes a method that leverages machine learning to compute a state trajectory x 0 = {x(t), t ∈ [0, t f ]} and a control trajectory u 0 = {u(t), t ∈ [0, t f ]} that efficiently initialize the algorithm.

TECHNICAL APPROACH

The proposed approach consists of training a neural network which, for an environment with a predefined set of obstacles, and given an initial state x init and a final state x final , provides a state and control trajectory (x 0 , u 0 ) which is a good initial guess for GuSTO. To do so, a dataset of expert trajectories from the SCP algorithm is generated and used for supervised learning. As mentioned previously, only static obstacles are accounted for during the training of the neural network (e.g., walls and corridors of the ISS). Additional obstacles that are not in the training dataset (e.g., smaller floating objects entering the field of operation of Astrobee) can be accounted for via high frequency recomputations, critically enabled by the speed-ups achieved via warm-starting.

In our approach, the neural network predicts a continuous time trajectory parameterized as a p th order polynomial, which implies that the neural network only needs to predict p + 1 polynomial coefficients for each dimension. For the dynamics of Astrobee and the obstacle field considered in this work, a polynomial of degree p = 4 provides accurate trajectories. Other parameterizations such as Bezier curves [START_REF] Simba | Real-time smooth trajectory generation for nonholonomic mobile robots using bézier curves[END_REF], B-splines [START_REF] Wang | B-splines joint trajectory planning[END_REF], [START_REF] Chen | Solving robot trajectory planning problems with uniform cubic B-splines[END_REF] or higher degree polynomials could also be used for different scenarios and the approach proposed in this work can be easily adapted to such parameterizations.

As shown in Table 1, the inputs to the neural network are the desired initial and final states of the problem, that is x init and x final . The output is a prediction of both the locally optimal state and control trajectories, with each dimension represented as a p th degree polynomial in time. Denoting the i th components of the state x as x i , the state trajectory at time t is expressed as

x i (t) = p k=0 α i,k t k ;
the control trajectory u(t) has an analogous parameterization.

As shown in Figure 2, the neural network has a feedforward architecture with 3 fully connected hidden layers with 256, 512 and 256 units, respectively. All weights are initialized uniformly and ReLU activation functions are chosen for Table 1: Neural network inputs and outputs. The inputs are the desired initial and final states of the problem. The output is a prediction of the locally optimal state and control trajectories, represented as fourth order polynomials in time.

Input Description Size

x init Initial state (r, v, q, ω) 13 x final Final state (r, v, q, ω) 13

Total 26

Output Description Size The training dataset consists of the solutions to 11,297 instances of OCP computed by GuSTO2 in an environment with two polygonal obstacles represented in Figure 1. To generate different scenarios, the initial and final states are uniformly sampled throughout the 13-dimensional space, while respecting the state constraints of the problem. IPOPT [START_REF] Wachter | On the implementation of an interior-point filter line-search algorithm for largescale nonlinear programming[END_REF] is used to solve the convex subproblems defined by GuSTO and generate the optimal trajectories for OCP. Then, the resulting sequence of locally optimal states and control inputs are fitted via polynomial regression to obtain the polynomial coefficients α i,k describing the continuous time trajectories x(t) and u(t) to be predicted by the neural network. As discussed previously, a polynomial representation of degree 4 is accurate enough for the class of trajectories considered in this work.

Using the Keras API for Tensorflow [START_REF] Chollet | Keras[END_REF], the neural network is trained for 30 epochs using an 2 loss on the predicted and fitted (true) polynomial coefficients α i,k . Of the 11,297 problems in the dataset, 10% (1130 problems) are set aside and reserved for validation, to never be used in training.

The remaining 90% are further split into 75% training (to be used to fit the neural network model) and 25% test (to tune hyperparameters during training).

NUMERICAL RESULTS

In this section, the accuracy of the predictions of the neural network are evaluated on the validation set, i.e. on the 1130 problems which were never used for training. Then, the predicted trajectories are used to warm-start GuSTO. We compare the results generated with: 1) GuSTO with a naive straight-line initialization, 2) the neural network prediction, and 3) GuSTO with a warm-start from the neural network.

Prediction Accuracy

To assess the accuracy of the predictions of the neural network, the relative trajectory prediction error is computed for each of the 1130 problems in the validation dataset for each of the dimensions of the state and control trajectories as Traj. pred. error for i th dim :=

t f t=0 x pred i (t) -x true i (t) dt t f t=0 x true i (t) dt
, where x pred is the trajectory predicted by the neural network, and x true is the locally optimal trajectory obtained from GuSTO and fitted to a polynomial of degree 4, as described in Section 3. The same error metric is used to evaluate the prediction accuracy of the control input trajectory. All results are reported in Table 2, showing an average error under 15%.

Although the accuracy of the neural network is not perfect, these results are sufficient to provide a speed improvement for GuSTO, as shown in the following section. Further, we evaluate the prediction accuracy of the neural network on a challenging problem shown in Figure 3. For this specific scenario, the trajectory predicted by the neural network is close to the locally optimal trajectory computed by GuSTO. Moreover, as expected, this result also shows that the solution of GuSTO warm-started using the prediction from the neural network is identical to the solution of GuSTO initialized with a straight-line trajectory.

Acceleration through Warm-Starting

In this section, we show that using the predictions of the neural network as a warm-start accelerates the convergence of GuSTO, sometimes significantly. In Table 3, the number of SCP iterations until convergence are reported for all 1130 scenarios of the validation dataset. On average, we observe a reduction of 17% in the number of iterations. Also, the cost of the final trajectory computed using warm-starting remains similar to that of a traditional straight-line initialization, as expected. Moreover, all constraints (including non-convex dynamics and obstacle avoidance constraints) are satisfied in all problems, demonstrating the robustness of the proposed framework.

Table 3: Number of SCP iterations and optimal cost of solution for all 1130 problems in the validation set, comparing the results using a straight-line initialization and the prediction of the neural network as a warm-start. Next, we focus our study on challenging scenarios where GuSTO requires at least 10 iterations to converge using a naive straight-line initialization. In such cases, we observe an improvement of approximately 57% fewer iterations when leveraging the predictions of the neural network as a warmstart, as reported in Table 4. This demonstrates that using a neural network to warm-start GuSTO can greatly reduce the number of SCP iterations required to converge to a locally optimal solution. For the purpose of visualization, four of the problems from the validation dataset are presented in Figure 4. For each scenario, we compare the computed trajectories obtained from the neural network, from GuSTO using a straightline initialization, and using the warm-start provided by the neural network. First, we observe that the trajectories after convergence of GuSTO are nearly identical, as reflected in Table 4. Moreover, we observe that although the prediction of the neural network is not a feasible solution to OCP, it still leads to a reduction in the number of required SCP iterations for GuSTO, as reported in Table 4. Note that in all four of these cases, a speed improvement due to warm-starting is observed. Although the prediction is often infeasible, the neural network can still be used to warm-start GuSTO, reducing computation time and leading to a feasible solution for OCP.

Cold-start Warm-start

Number of iterations

These preliminary results show promise that using a neural network with partial knowledge of the environment still enables robust warm-starting of trajectory optimization algorithms. The infeasibility of the solution predicted by the neural network does not appear to be an issue, as GuSTO is capable of refining this initial guess to compute a feasible and locally optimal trajectory.

CONCLUSIONS

This work presented a framework which combines GuSTO, an efficient sequential convex programming technique for trajectory optimization, with a neural network, enabling fast and robust trajectory optimization with theoretical guarantees. Using the output of the trained model to warm-start the nonlinear solver, the proposed approach reduces computation time, while obtaining feasible and locally optimal solutions to the trajectory optimization problem. Furthermore, we showed that even in the presence of obstacles which are not accounted for in the training of the neural network, its output can still be used as a warm-start to improve the speed of GuSTO, while retaining local optimality and feasibility.

An interesting future research direction consists of training a neural network to predict the Lagrange multipliers corresponding to the initial state constraint. Indeed, these multipliers were shown to converge to the Pontryagin extremal associated with the optimal control problem evaluated at time zero [START_REF] Bonalli | GuSTO: guaranteed sequential trajectory optimization via sequential convex programming[END_REF], which can be used to initialize a shooting method and efficiently compute an optimal solution to the trajectory optimization problem. Second, different initialization strategies could be used to generate the training dataset of the neural network. For instance, smoothing solutions from sampling-based planners by using SCP would ensure that the training dataset consists of globally, near-optimal solutions, similarly as in [START_REF] Baldini | Fast motion planning for agile space systems with multiple obstacles[END_REF]. Finally, providing the network with a representation of the environment, as in [START_REF] Ichter | Learning sampling distributions for robot motion planning[END_REF], [START_REF] Jetchev | Fast motion planning from experience: trajectory prediction for speeding up movement generation[END_REF], [START_REF] Salzmann | Trajectron++: Multi-agent generative trajectory forecasting with heterogeneous data for control[END_REF], would help generalize to different obstacle fields. This could improve the robustness of the solution in changing environments.

Ibrahim Abdulaziz Alomar has a bachelor of science in Mechanical engineering from King Saud University and he currently works with the Center of Excellence for Aeronautics and Astronautics (CEAA) at KACST. His main research interest are modeling and control of mechanical and aerospace systems. 

Figure 1 :

 1 Figure 1: 3D representation of the environment used for numerical experiments, with Astrobee navigating along a collision-free trajectory.

α i, k

 k Polynomial coefficients k = 0:4 for the i th dimension of the state or control, i = 1:19 5x19 Total 95 each layer. The architecture was chosen by comparing the test error across different models, and choosing the smallest architecture yielding good generalization over the different scenarios in the test set.

Figure 2 :

 2 Figure 2: Architecture of the neural network predicting an initializing strategy for GuSTO. ReLU activation functions are used for each neuron.

Figure 3 :

 3 Figure 3: Locally optimal trajectory computed by (1) GuSTO initialized with a straight line, (2) direct inference from the neural network, and (3) GuSTO warm-started with the neural network prediction. The two solutions obtained after convergence of GuSTO are nearly identical, and the neural network is able to predict a trajectory very close to the locally optimal trajectory.

Figure 4 :

 4 Figure 4: Four scenarios comparing the trajectories obtained from (1) GuSTO initialized with a straight line, (2) direct inference from the neural network, and (3) GuSTO warm-started with the neural network prediction. Robustness in the Presence of Unmodeled Obstacles Finally, we demonstrate that the prediction of the neural network can also be used to warm-start GuSTO in the presence of obstacles which are not present in the training set, e.g. a

Figure 5 :

 5 Figure 5: Trajectory optimization results in presence of obstacles which are not in the training set of the neural network. Although the prediction is often infeasible, the neural network can still be used to warm-start GuSTO, reducing computation time and leading to a feasible solution for OCP.
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Table 2 :

 2 Trajectory prediction errors evaluated on the 1130 scenarios from the validation dataset.

		Trajectory prediction error
		Mean	Std Dev
	Position (r)	3.66%	4.55%
	Velocity (v)	13.13%	16.96%
	Quaternion attitude (q)	1.19%	6.63%
	Angular velocity (ω)	2.34%	9.21%
	Input force (f )	13.96%	17.62%
	Input torque (τ )	3.24%	9.40%

Table 4 :

 4 Number of SCP iterations and optimal cost of solution for complex problems from the validation set, where GuSTO requires at least 10 iterations to converge using a straight-line initialization.

			Cold-start Warm-start
		Average	16.59	7.20
	Number of iterations	Std dev	8.36	5.71
		Worst case	52	34
		Average	0.020	0.019
	Total cost of solution	Std dev	0.017	0.016
		Worst case	0.050	0.050

The code is available at https://github.com/StanfordASL/ nnGuSTO.
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