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We study the influence of the shape of the plasma container on the dynamics of the
Reversed Field Pinch (RFP). The geometries we consider are periodic cylinders with el-
liptical and circular-shaped cross-sections. Numerical simulations of fully nonlinear visco-
resistive magnetohydrodynamics are carried out to illustrate how the plasma dynamics
are affected by shaping. It is shown that independent of the plasma shape, the quantity β,
comparing the hydrodynamic pressure to the magnetic pressure, decreases for increasing
values of the Lundquist number, but the pressure gradient fluctuations remain roughly
constant, when compared to the Lorentz force. Different elliptical shapes of the cross-
section of the domain lead to the excitation of different toroidal (or axial) magnetic and
dynamic modes. Furthermore, it is found that in a geometry with circular cross-section
a significant local poloidal angular momentum is observed, absent in the geometries
with elliptical cross-section. Since the confinement is dominantly determined by plasma
movement, and the dynamics of the velocity and magnetic field are modified by the
modification of the geometry, shaping can thus affect the performance of RFP-devices.

1. Introduction

Tokamaks and Reversed Field Pinches (RFPs) are toroidal fusion plasma devices with
a similar magnetic geometry. In both types of reactors the combination of an imposed
toroidal magnetic field combined with a poloidal magnetic field, associated with an
induced toroidal current, result in helical magnetic field lines, around the toroidal axis.
The difference between tokamaks and RFPs is the strength of the toroidal magnetic
field, which needs to be much larger than the poloidal field in tokamaks, whereas it
is of the same order of magnitude in RFPs. This requirement is due to threatening
magnetohydrodynamic (MHD) instabilities, or disruptions, in tokamaks (Biskamp 1993),
which lead to loss of confinement and possibly damage the reactor.
RFPs work in this unstable regime, but take advantage of the nonlinear saturation of

the instability, thereby bypassing the risk of disruptions and avoiding the need of a very
strong (and costly) toroidal magnetic field. Whereas in early research on the RFP the
unstable character was seen as a drawback for fusion, it has become increasingly clear
that the self-organization of the RFP is actually an asset to reach self-sustained fusion.
Indeed in the 2000s, quasi-single-helicity (QSH) states were detected within turbulent
flows in the RFX experiment (Escande et al. 2000; Martin et al. 2000, 2003). These states
are characterized by the appearance of a quiescent helical structure in the plasma core,
which improves the plasma confinement (Frassinetti et al. 2006; Terranova et al. 2007;
Wyman et al. 2008). Later studies showed that the persistence of these QSH states and
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the appearance of a Single-Helical Axis at high current regimes (Piovesan et al. 2009)
can be increased by applying helical magnetic perturbations (Piovesan et al. 2011, 2013).
These results motivated part of the fusion community to reconsider the RFP as a

serious candidate for nuclear fusion (Lorenzini et al. 2009). Even though the road to
ignition, i.e., self-sustained fusion is still long for RFPs, and they might not be the most
promising geometry to attain the eventual goal of fusion research, they constitute an
interesting example of plasma self-organization and their investigation can help to develop
ideas which might be useful for other reactor-geometries. Recently the RFP has therefore
received renewed attention, focusing on various aspects, such as fast ion transport
(Bonfiglo et al. 2019), ion-temperature-gradient modes (Li et al. 2019), sophisticated
three-dimensional equilibria (Qu et al. 2020) and reconnection (Momo et al. 2020). A
recent review, centered on the Madison Symmetric Torus experiment, can be found in
Sarff (2020).
Acting on the RFP magnetic field to improve its confinement properties is evidently

an important path to investigate. For instance, applying helical magnetic perturbations
seem a promising way to affect the self-organized state in an RFP (Bonfiglio et al. 2013).
Such perturbations were shown to be able to influence the shape of the plasma by
imposing their helical pitch to the plasma (Veranda et al. 2017). Another obvious way
to affect the dynamics would be to change directly the global shape of the plasma.
The optimization of the confinement quality for toroidal fusion plasmas by changing
the plasma shape has been the subject of many studies, in particular for tokamaks.
For instance, it has been shown that shaping has a beneficial effect on the β limits
of tokamaks (Troyon et al. 1984), and increases the total plasma current I in the case
of elliptic cross-sections, yielding thus a better confinement. Furthermore, shaping of
a tokamak cross-section can lead to qualitative differences in the plasma flow-patterns
(Morales et al. 2012; Oueslati & Firpo 2020). Investigations on the influence of shaping
on the confinement properties of RFPs are, however, relatively scarce. The literature
on RFPs contains some rare examples of experimental observations(Almagri et al. 1987;
Oomens et al. 1990), and numerical investigations where two-dimensional equilibrium
studies were carried out in order to investigate the shaping effect on RFP plasmas
(Paccagnella et al. 1991; Guo et al. 2013). Their work led to the conclusion that shaping
does not bring an advantage to the plasma dynamics in RFPs and is even destabilizing
in the case in which the poloidal cross-section is elongated. These studies focused on the
linear stability properties of RFPs, but did not consider the fully developed nonlinear
dynamics.
Here we proceed one step further in the investigation of the effect of changing the

shape of the cross-section of RFPs by considering the fully nonlinear dynamics within a
resistive fluid description. More precisely, we investigate the effect of elongation of the
poloidal cross-section on plasmas in driven incompressible MHD in cylindrical geometry.
We thereto perform direct numerical simulations using a three-dimensional pseudo-
spectral solver (Morales et al. 2014b). We consider the simplified case where the torus
is modeled by a straight periodic cylinder. The choice of this simplification is justified
as follows. In Morales et al. (2014a), we compared the straight-cylinder approach to
fully toroidal simulations. We showed that most of the qualitative features remained
unchanged. The most significant change was the appearance of a toroidally invariant
mode, the influence of which we do therefore necessarily neglect in the present work.
It is true that considering the effect of curvature on the dynamics of RFPs could be
interesting, but we aim at the understanding of the two effects (curvature and shape of
the cross-section) independently in order to pinpoint the most important physical effects,
before considering their possible interplay. Furthermore, in Paccagnella et al. (1991) the
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influence of curvature was considered with respect to the stability properties of RFPs
and its effect was shown to be minor.
In the present work it is shown that elongation of the cross-section has a significant

effect on the pressure-statistics in the plasma and on the turbulence properties in general.
In particular, assessing the value of the β-parameter, and its recent generalization to take
into account the turbulent pressure-gradients, illustrates how the dynamics are influenced
by the shaping of the geometry. We also reveal the presence of non-negligible local poloidal
angular momentum, when the cross-section is circular.
The remainder of this article is organized as follows. Sec. 2 presents the governing

equations, recalls briefly the numerics and the relevant physical parameters. Numerical
results on the influence of shaping on the reversal-properties, pressure-statistics, spectral
characteristics and local angular momentum are investigated in Sec. 3. Sec. 4 concludes
the investigation.

2. Equations, numerical methods and parameters

2.1. Visco-resistive MHD equations and geometry

In the present work, we consider a plasma characterized by constant, and uniform
permeability µ, permittivity ǫ and conductivity σ. The more complicated case of non-
uniform conductivity, was considered in Futatani et al. (2015). In the magnetohydrody-
namic (MHD) description that we consider, the governing equations are the incompress-
ible Navier-Stokes equations including the Lorentz force, and the induction equation.
Normalizing these equations by the Alfvén velocity CA = B0/

√
ρµ, a reference magnetic

field B0 and a conveniently chosen lengthscale L leads to the following expressions for
the evolution of the velocity u and magnetic field B,

∂u

∂t
+ u · ∇u = −∇P + j ×B +

Pm

S
∇2u, (2.1)

and
∂B

∂t
= ∇× (u×B) +

1

S
∇2B, (2.2)

where Pm is the magnetic Prandtl number Pm = νµσ, ν the viscosity, S the Lundquist
number (defined below) and ρ = 1 the density. The current density is given by

j = ∇×B. (2.3)

The velocity field u and the magnetic field B are both divergence free,

∇ · u = 0, (2.4)

∇ ·B = 0. (2.5)

The incompressibility condition (2.4) allows obtaining the pressure P from the velocity
field by taking the divergence of equation (2.1) and solving the resulting Poisson-equation.
The pressure plays thereby in this system the role of a Lagrange multiplier, enforcing
incompressibility of the velocity field. We think it is important to retain this feature
(incompressibility) in the dynamics unlike in a number of previous investigations of RFPs
(e.g. Cappello & Biskamp (1996); Cappello & Escande (2000); Richardson et al. (2010);
Veranda et al. (2017); Futch et al. (2018)), where the pressure was entirely neglected
invoking low-β dynamics. Indeed, in some recent RFP-investigations the pressure is
retained (Mizuguchi et al. 2012), and recently we focused on the importance of the
pressure dynamics (Chahine & Bos 2018). In particular we illustrated in MHD simu-
lations in cylindrical geometry that, in order to understand the dynamics of the plasma,
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Figure 1. Sketch of the cylindrical geometry and imposed magnetic field and current density.

the important quantity to monitor is not the pressure, but its gradient. We therefore
introduced a quantity β∇, which compares the influence of the pressure gradient to the
magnetic effects (j×B) acting on the momentum balance. The definition of this quantity
and its interpretation will be given in section 3.2.
In the present work we thus take into account the influence of pressure on the dynamics,

but we neglect all compressibility effects. Note that imposing incompressibility was shown
to diminish the reversal of the magnetic field (Finn et al. 1992), and this will thus
necessarily be the case in the present investigation. We note here that the resistivity
profile can also influence the reversal (Bonfiglio et al. 2016). The combined influence
of shaping, compressibility and non-uniform resistivity would constitute an interesting
perspective, but would complicate disentangling the different effects.
In Fig. 1 we illustrate the considered geometry and we indicate the direction of the

imposed current density and magnetic field. Initially, in the plasma a uniform current
density j0 in the z-direction and an axial magnetic field Bz0 are imposed, resulting in a
helically shaped magnetic field. The current density j0 will induce an elliptical poloidal
magnetic field Bp0 parallel to the elliptic boundaries. At later times the magnetic field
will reorganize through an interplay with the velocity field, and the total magnetic field
will then consist of Bz0 and Bp0 plus the self-induced contributions. At the boundaries
the velocity is imposed to be zero and the magnetic field is parallel to the boundaries.
The value of the poloidal parallel magnetic field at the boundary is fixed and its value is
determined by j0. The expression of Bp0 in cylindrical coordinates reads,

Br = −1

2
j0rc sin(2θ) (2.6)

Bθ =
1

2
j0r(1 − c cos(2θ)) (2.7)

with c the ellipticity which can be expressed as a function of the ellipse’s major semi-axis
a and minor semi-axis b, i.e.,

c =
a2 − b2

a2 + b2
. (2.8)

Note that the coordinates we use are cylindrical and not elliptical coordinates so that
only in the case of the circle the radial vector er is everywhere perpendicular to the
boundary.
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2.2. Numerical methods

Equations (2.1) and (2.2) are solved using a pseudo-spectral method in a periodic
domain of size π×π× 8π with 64× 64× 512 grid points. The aspect ratio of the physical
domain containing the plasma is Lz/2πb = 4. Spatial derivatives are evaluated in Fourier
space and multiplications are computed in physical space. To avoid aliasing errors, i.e.,
the production of small scales due to nonlinear terms which are not resolved on the
grid, the velocity and magnetic fields are dealiased at each time step by truncating its
Fourier coefficients using the 2/3 rule (Canuto et al. 1987). Using the incompressibility
condition of the fluid, the pressure term can be eliminated by solving a Poisson equa-
tion. A semi-implicit time-advancing scheme of Adams-Bashforth type is used to solve
the equations, with exact integration of the dissipative and magnetic diffusion terms.
Boundary conditions are imposed using a volume penalization method in order to build
the cylindrical domain. Detailed description and validation of the method can be found in
Morales et al. (2014b), and an application of the method to investigate RFPs in toroidal
domains is reported in previous work (Morales et al. 2014a; Futatani et al. 2015). We
have verified by assessing the high-wavenumber range of the kinetic and magnetic energy
spectra that the resolution for all simulations was sufficient to resolve all down to the
smallest dynamical flow scales.
Simulations are started from random initial conditions and the dynamics are observed

to evolve towards an initial-condition independent statistically stationary state. To obtain
the results presented in Sec. 3, the equations are integrated for 104τA Alfvén times, with
τA = L/CA. The results present presented in the following are all obtained during the
statistically stationary state.

2.3. Shaping parameters

In the present investigation we focus on the influence of the shape of the cross-section
on the confinement properties of the plasma. The parameters should be carefully chosen
to disentangle the effect of changing the geometry from the effect of changing other
control parameters. Considering a periodic cylinder instead of a torus is motivated by
this attempt to reduce the number of control parameters to a strict minimum. Even in
this simplified geometry, the way in which the parameters are varied is not unique. For
instance, if the same toroidal current-density Jz is chosen for two geometries, the mean
current Iz will be the same, only if the surface A of the cross-section is kept constant,
a condition which we will impose. This will also lead to equal values of the toroidal
magnetic flux ψ = BzA, for a given imposed toroidal magnetic field Bz.
The poloidal magnetic Bp field is computed from the current density. Its reference value
is evaluated as an average over the circular, or elliptic boundary. Necessarily, keeping the
surface A, Jz and Bz fixed, the average value Bp varies when changing the shape of the
cross-section (the bar indicates a boundary average). Therefore, the pinch-ratio, defined
as

Θ =
Bp

〈Bz〉
, (2.9)

where the brackets denote a volume average, depends on the value of the ellipticity c.
An important parameter in non-ideal MHD is the Lundquist number, which is defined

as

S =
2CAb

λ
, (2.10)

where the Alfvén velocity is based on the poloidal field strength, CA = Bp/
√
ρµ and with

the magnetic diffusivity λ = (µσ)−1 and the (minor) diameter 2b as reference quantities.
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Figure 2. Field reversal parameter F as a function of the pinch parameter Θ for cylinders with
circular and elliptic cross-section. Also shown is Taylor’s prediction (Taylor 1974) for reference.

We have chosen b, rather than a, since the smallest minor radius which will probably
determine the confinement quality. Imposing the same value of S for different values of
the ellipticity allows determining the value of λ. In all our simulations the value of the
magnetic Prandtl number is chosen unity.

3. Results

3.1. F-Θ dependence

The imposed magnetic field in RFPs is unstable for large values of Θ and S, and it will
form a dynamic helical structure with a certain amount of chaotic or turbulent motion
superimposed.
The modification of the magnetic field can be quantified by the field reversal parameter
F , representing the normalized toroidal field at the boundary,

F =
Bz

〈Bz〉
. (3.1)

As the current increases, the kink instability increases, leading to the decrease of the
toroidal magnetic field at the boundary, so that F decreases as a function of Θ. This
behavior can be qualitatively predicted by Taylor’s theory (Taylor 1974) and more
sophisticated theories allow to improve this agreement (Reiman 1980, 1981; Taylor
1986). In studies Paccagnella et al. (1991); Guo et al. (2013) based on two-dimensional
equilibrium equations, it was shown that shaping does not alter the F -Θ curve.
In order to be able to systematically assess the F -Θ dependence, we carry out prelim-

inary simulations for cylinders of small aspect ratio Lz/2πb ∼ 2, an ellipticity a = 1.6
and moderate Lundquist number S ∼ 4200. We compare with Taylor’s prediction (Taylor
1974) and simulations with circular cross-section. Figure 2 shows the results of the field
reversal parameter F versus Θ, which are in reasonable agreement with the two previous
studies (Paccagnella et al. 1991; Guo et al. 2013). In these references it was shown that
shaping had a small destabilizing effect for large curvature, but the F − Θ curve was
unaffected. Indeed, the two geometries yield roughly the same behavior.
These moderate-Lundquist simulations allow a parametric investigation of the F -Θ

dependence for two different ellipticities. Carrying this out for higher values of S would
require substantially more computational resources. In the remainder of this investigation
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Figure 3. Instantaneous visualizations of the pressure field for S ≈ 2 · 104 in cross-sections
through the cylinders for the three different ellipticities. From left to right, a = 1, a = 1.2,
a = 1.4.

we will consider, at a higher value of the Lundquist number, three different ellipticities,
but focusing on only one F -Θ value for each geometry. We have thereto performed
simulations for values of the Lundquist number ranging up to S ≈ 2 · 104 and a larger
aspect ratio Lz/2πb = 4. These higher values of the Lundquist number are still several
orders of magnitude smaller than those in experimental RFPs, which are currently out of
reach using precise numerical schemes. We consider three shapes, i.e. cylindrical devices
with different cross sections: a circle with radius a = 1, an ellipse with a = 1.2 b = 0.83
and an ellipse with a = 1.4 and b = 0.714. In the statistically steady states considered at
this higher Lundquist number, both the F and Θ parameter fluctuate around their steady
value, which is also plotted in Fig. 2. It is observed that these results are in the F − Θ
plane situated closer to Taylor’s prediction, which is obtained using statistical mechanics
of ideal MHD (Taylor 1974). We do not know whether higher values of S will allow to
approach this theoretical prediction even closer. The fluctuations are for Θ inferior to
0.5%. The absolute value of the fluctuations of the F -parameter are of order 0.01 (for
instance fluctuating between F = −0.07 and F = −0.082 for the circular geometry).
We observe thus that the effect of shaping is small on the global behavior of the

magnetic field, as characterized by F and Θ. The present results indicate that the
influence of the Lundquist number is significantly larger than that of shaping in the
considered range of parameters. The reversal parameter is a global parameter and
does not give insight into the fine structure of the dynamics. It is this fine structure,
constituted by the nonlinear interplay of a large number of modes which will determine
the confinement quality of a reactor. The modification of the fine structure is in the
following assessed by evaluating pressure gradients and the modal behavior of the flow.

3.2. The role of the pressure: β and gradient-β.

Clearly, in fusion-research the plasma pressure plays a major role. In the present
investigation, we do not focus on the confinement quality of the system, but rather
on the dynamics and the velocity field. Therefore we will assess the influence of shaping
on the pressure and its influence on the dynamics. In Fig. 3, we show visualizations of the
pressure fluctuations in cross-sections of the domains at the highest considered Lundquist
number. Spatial fluctuations of the pressure are observed in all geometries. In particular
in the elliptic cases the strongest values of the absolute pressure are situated in the center
of the domain and lower pressure values are observed close to the wall. In the circular
case the value of the pressure is smaller than for the elliptic cases. We will now focus on
different measures of the influence of pressure on the dynamics.
Classically in order to assess the influence of the pressure on the plasma dynamics, the
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Figure 4. Lundquist-number dependence of three alternative definitions of β in cylinders with
ellipticity (a) a = 1, (b) a = 1.2, (c) a = 1.4. Whereas the pressure based β is strongly decreasing
with S, the gradient based value β′

∇ is roughly constant.
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Figure 5. Flux-lines in a cross-section through the differently shaped geometries. From left to
right the cross-sections are a circle with radius a = 1, an ellipse with major semi-axis a = 1.2
and one with a = 1.4, for S ≈ 2 · 104. Visualized is the induced field, i.e., the magnetic field
without the imposed contribution.

quantity β is evaluated, which measures the importance of the plasma pressure compared
to the magnetic pressure

β = 2
〈P 〉
〈B2〉 , (3.2)

where the brackets indicate a volume average over the plasma volume of interest. Other
definitions are also used (Wesson & Campbell 2011) based on the value ofB at the wall of
the plasma for instance. Clearly β is an important parameter since the plasma pressure is
a key-parameter in the analysis of the confinement quality. However, if we are interested
in the turbulence properties and the velocity field in general, it is the pressure-gradients
which are important. It is known from turbulence-reasearch that estimating simply the
order of magnitude of pressure gradients by O(∇P ) ∼ P/L, with L a macroscopic
lengthscale can seriously underestimate their magnitude since the pressure gradients
are in general dominated by small-scale contributions l ≪ L. Therefore we recently
introduced the alternative, gradient-based βs (Chahine & Bos 2018),

β∇ ≡ 2
〈‖∇P‖〉
〈‖∇B2‖〉 and β′

∇ ≡ 〈‖∇P‖〉
〈‖J ×B‖〉 . (3.3)

It is only when β′

∇
is small compared to unity that the influence of the pressure term

might be negligible in the dynamics, compared to the influence of the other terms in the
velocity equation. This is not necessarily the case when β is small.
In Fig. 4 we show the behavior of the different versions of β. The size of the temporal

fluctuations of the different quantities around the time-averaged value are indicated by
error-bars. In agreement with the results in Chahine & Bos (2018) the value of β is
decreasing for increasing values of the Lundquist number. We see that for the highest
values of S, β has dropped most importantly in the circular geometry. This is not
inconsistent with Fig. 3, which shows that the normalized pressure is weaker in this
geometry than in the other two. Indeed, focusing only on this observation one might
be tempted to extrapolate and assume that the pressure plays no dominant role in the
dynamics at high values of S. However, the gradient based β′

∇
remains approximately

constant when the Lundquist number is increased. This shows that the influence of the
pressure-gradients does not become less important for larger S.
These observations are quite robust, qualitatively independent on the shape of

the cylinder. What changes however, is the S-dependence of β∇. This indicates that
〈‖∇B2‖〉/〈‖J × B‖〉 is influenced by the ellipticity of the cylinder cross section. From
the vector identity J ×B = −∇B2/2 +B · ∇B this shows that the different behaviour
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Figure 6. Poloidal cross-sections of the cylinder, illustrating the axial magnetic fluctuations at
t = 9.8.103τA for S ≈ 2 · 104. The geometries are a circle with radius a = 1, an ellipse with
major semi-axis a = 1.2 and one with a = 1.4.

is associated with the curvature term B ·∇B which seems to be affected by the shaping.
Shaping does therefore change the magnetic structure of the flow. We will further
investigate this below, considering spectral considerations. Before that we will visualize
the magnetic structure of the simulated plasmas.

3.3. Characterization of the velocity and magnetic field

In Fig. 5 we show magnetic flux lines in cross-sections through the three cylindrical
geometries. The lines correspond to iso-values of the axial component of the magnetic
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vector potential. This potential is computed from the induced field, i.e., the imposed field
is subtracted from the total magnetic field.
The most dramatic difference is observed for the a = 1.4 geometry. Indeed, for the

circular cross-section the iso-lines are mostly concentric. Changing the shape, for a = 1.2
a separatrix appears at the edges of the ellipse and for a = 1.4 the central flux surfaces
are destroyed and magnetic islands appear. Clearly, the shape of the magnetic field is
dramatically altered by the shaping in this latter geometry, compared to the circular
cross-section.
In Fig. 6 axial magnetic fluctuations are shown in various poloidal cross-sections. The

fluctuations of the axial magnetic field are obtained by showing the magnetic field without
the axially invariant (kz = 0) magnetic contribution. Only in a few sections a clear
poloidal mode structure is observed. From these observations it seems relatively clear
that no single-helicity state is present in our simulations. A large number of modes seems
to be evolving simultaneously and instantaneous local visualizations are not the best tool
to illustrate this.
To analyze the presence of different modes we visualize now the effect of shaping on

these helical modes by evaluating the axially Fourier-transformedmagnetic field. In Fig. 7
we observe that all considered cases show strong fluctuations, illustrating that we are in
a highly nonlinear regime, far away from quasi-static equilibria.
Fig. 7 shows the predominance of a magnetic mode with toroidal mode number n = 7 in

the circular case, which is consistent with what has been observed in the RFX-mod device
(Lorenzini et al. 2009; Martin et al. 2009). In the elliptical case (a = 1.2) a tendency for
mode n = 14 to dominate is observed, while the magnetic modes n = 3 and n = 4 contain
most of the magnetic energy for a = 1.4. This last case seems to be closer to a multiple-
helicity state, where it is not a single mode which contains most of the energy. Similar
spectral differences are observed in the kinetic spectra, where n = 0 and n = 1 are the
dominating kinetic modes in the circular case, n = 14 in the a = 1.2 elliptical case, and
n = 8 in the a = 1.4 elliptical case. A different representation of the modal dynamics
is shown in the appendix where the modal spectra are plotted using double-logarithmic
scale for the different cases.
We have not carried out a detailed poloidal mode composition, which is in particular

less convenient in the elliptical geometries, and we have therefore no further interpretation
of the possible underlying instabilities which could be external tearing modes, or other
MHD instabilities. We think that a linear instability analysis of the present system could
allow further insights in the origin of the magnetic structures. However, since the modal
spectra indicate the large range of active modes, the outcome of such an analysis is of
limited use in the here considered fully turbulent state.
It is clear from these observations that shaping significantly influences the topology

of the velocity and magnetic fields, both qualitatively and quantitatively. All three
geometries do however show the presence of a large range of active scales.

3.4. Poloidal angular momentum

The presented results show a clear influence of the shape of the cross-section on the
dynamics. It would be enlightening if we could understand these differences in the light
of a clear, large scale dynamical feature which changes through the shaping. We have
identified one such feature which behaves quite differently in the differently shaped
geometries. This quantity is the poloidal angular momentum, a quantity which received
considerable attention in two-dimensional flows.
In fact, an interesting difference between two-dimensional flows in circular or elliptical

domains is the change in dynamics associated with a form of symmetry breaking of
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Figure 7. Axial spectra of kinetic (a) and magnetic (b) energy, normalized respectively by the
total kinetic and magnetic energy. Three shapes are considered, respectively from top to bottom,
a circle with radius a = 1, an ellipse with major semi-axis a = 1.2 and one with a = 1.4, for
S ≈ 2 · 104.
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the large scale flow patterns. Indeed in 2D turbulence, changing the flow-geometry from
circular to elliptical, leads to the generation of angular momentum (Keetels et al. 2008).
This effect was shown to persist in 2D MHD turbulence (Bos et al. 2008, 2010) and
its investigation is considered interesting in the context of confinement studies, since
large scale poloidal motion could enhance radial transport barriers and stabilize MHD
instabilities (Shan & Montgomery 1994).

An analysis of a similar possibility in the present geometry is shown in Fig. 8 where for
a given time-instant the angular momentum associated with the poloidal flow is computed
for each cross-section. Its definition is

Lu(z) =

∫
A

ez · (r × u)dA, (3.4)

where r is the radial vector, pointing from the center-line of the geometry outwards
and A is the surface of the poloidal cross-section. In a periodic cylinder with circular
cross-section, global angular momentum can only be created by viscous effects. However,
locally, at a given axial position the angular momentum can be strong. This is exactly
what is observed for the case the circular geometry, where locally large values of the
poloidal angular momentum exist. Through the associated rotating motion, confinement
could be improved, since rotation suppresses instabilities (Shan & Montgomery 1994).
Note that this is one particular time-instant, but qualitatively the same effect is observed
at different time-instants, with local fluctuations of Lu, which are largest in amplitude in
the circular geometry. Possibly, this structure is associated with the n = 1 velocity mode
observed in the temporal spectrum of the kinetic energy in Fig. 7(a).

This observation is somewhat the opposite of what is observed in investigations of
spontaneous spin-up in 2D systems. There it is seen that the generation of angular
moment is absent in circular 2D domains and becomes more important in elliptical
domains (Keetels et al. 2008).

The important amount of circular movement characterized here by the poloidal angular
momentum is perhaps simply due to the fact that a circular shape is more compatible
with circular movement, compared to non-circular shaped cross-sections. However, such
a poloidal flow could be beneficial for confinement, which shows here that with respect to
that effect, circular domains might be favorable for good confinement. This is also what
was concluded, for different reasons, in Guo et al. (2013). This observation is clearly
of speculative nature and further research is required to investigate the link between
poloidal angular momentum, shaping and the turbulent dynamics of the RFP.

4. Conclusion

Direct numerical simulations of viscoresistive MHD show that in periodic cylindrical
geometry in the RFP regime the shape of the cross-section significantly changes the
nonlinear dynamics. Moreover, different helical states can be observed and different
toroidal modes are excited in different geometries. Modifying the elliptical elongation
leads to different modal behaviors.

We quantified first the influence of shaping on the F − Θ characteristics and showed
that the influence of shaping on these global quantities is less important than a change in
the Lundquist number. For other quantities, which do not concern the global properties,
the picture is different. Indeed, shaping modified in our simulations significantly the
magnetic flux-lines in a cross-section. It was observed that, for circular and moderately
elliptical cross-section, the contours of the magnetic flux surfaces were roughly concentric.



14 R. Chahine, K. Schneider and W.J.T. Bos

0 100 200 300 400 500
z-axis

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

L
u
(z

)

10-5

r=1
a=1.2
a=1.4

Figure 8. The z-dependence of the instantaneous poloidal angular momentum for the three
geometries at t = 11× 103τA.

However, when the domain becomes elliptical enough (a = 1.4 in our simulations), the
contours started to show two magnetic islands.
Perhaps most flagrant in our simulations is the generation of local poloidal angular

momentum in the circular geometry, absent in the more elliptical shapes. The presence
of such local, but large-scale poloidal structures could possibly stabilize the plasma
dynamics. It seems, with respect to this feature, that circular cross-sections are better
candidates to improve confinement. However, the addition of toroidal curvature to the
system might alter this feature. As a matter of fact, in toroidal geometry a quasi-
single helicity state was observed to be more persistent than in a cylindrical geometry
Morales et al. (2014a). How poloidal flow-structures containing angular momentum and
helical modes are related, and how they interact, deserves further attention.
The most important outcome of this work is therefore not the determination of a

certain value of the elongation, most efficient to obtain an optimal confinement, but the
mere fact that elongation radically changes the dynamics of RFPs. We would therefore
encourage experimentalists to consider the poloidal shape of the confining magnetic field
as an important control parameter for RFP design and operation, since different modes
are triggered when the shape of the cross-section is modified. If an experiment allows
for a simple modification of the plasma shape, it might give more freedom to obtain a
competitive fusion plasma.

Data availability

The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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Appendix

Temporal evolution of modal spectra

To complete the modal analysis carried out in Sec. 3.3, we show in Fig. 9 the modal
spectra in double-logarithmic representation. For each spectrum four time-instants are
shown during the statistically steady state. The most striking observation is the large
number of active modes. In this representation we cannot clearly identify a dominant
mode in the system. Quasi-single helicity states might be attainable, but this is certainly
not observed in the present results.
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Figure 9. Axial mode spectra of kinetic energy fluctuations (top row) and magnetic fluctuations
(bottom row) in cylinders with ellipticity (a,d) a = 1, (b,e) a = 1.2, (c,f) a = 1.4. Spectra are
shown at four different time-instants during the statistically steady state. The Lundquist number
is S ≈ 2 · 104.
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