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BOLTZMANN'S REPLY TO THE LOSCHMIDT PARADOX: 

 

A COMMENTED TRANSLATION 

 

 

 

[This is an early draft of a paper published in EPJH :  The European physical journal 

H (2021), https://doi.org/10.1140/epjh/s13129-021-00029-2 

 Please use only the published version for citation,] 

 

 

Abstract  

 

Boltzmann's reply to Loschmidt's reversibility paradox (1877) has baffled many readers, 

owing to imprecise language and unproven assumptions. Based on a new translation and 

detailed commentary, it will be shown that this text nevertheless contains the essentials of 

a correct, insightful interpretation of thermodynamic irreversibility in statistico-

mechanical context.  

 

Keywords: reversibility paradox, Loschmidt, Boltzmann, thermodynamic irreversibility, 

entropy and probability. 

 

 

 

 

 

In 1876, Ludwig Boltzmann's old friend Joseph Loschmidt published his version of the 

reversibility paradox, which opposes the reversibility of the equations of molecular 

dynamics to the irreversibility of thermodynamic evolution. Boltzmann published his 

reaction to this argument a few months later, as the second section of a larger memoir 

that covered several topics in the kinetic-molecular theory (see Fig. 1). In retrospect this 

text contains the essentials of Boltzmann's probabilistic analysis of thermodynamic 

irreversibility. There are, however, a few obstacles to penetrating Boltzmann's ingenious 

considerations. The first is the lack of precise terminology for basic concepts: for 

instance, Boltzmann's "states" sometimes refer to microstates, sometimes to macrostates, 

although the distinction between the two kinds of states is needed for a proper definition 

https://doi.org/10.1140/epjh/s13129-021-00029-2


of thermodynamic probability. Secondly, the relevant concept of probability is not 

precisely defined; it is only hinted at. Thirdly, Boltzmann mixes intuitions, assumptions, 

and theorems without making the categorical difference clear. Lastly, Boltzmann 

sometimes writes in a convolute style, at least from a non-native German reader's 

perspective.1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: The first page of Boltzmann's reply to Loschmidt 

in the Wiener Berichte. 

 

 
1 Loschmidt 1876; Boltzmann 1877a, pp. 116–122. 



  The purport of this article is to make Boltzmann's important text understandable 

to a variety of readers through a line-by-line commentary. Section 1 recalls the context of 

Boltzmann's intervention, with a full citation of Loschmidt's argument. Section 2 offers a 

new translation of Boltzmann's text. Section 3 is a detailed commentary, sentence by 

sentence. Section 4 is a condensed, clarified version of Boltzmann's main points. Section 

5 is a criticism mostly inspired by Boltzmann's later writings on the same topic.2 

 The proposed translation is as literal at the difference between English and 

German grammar permits (I have sometimes divided long sentences into smaller ones). 

Significant departures from Brush's old translation are explained in footnotes. My 

commentary is based on internal textual evidence and on knowledge of Boltzmann's 

contemporary writings. One would otherwise run the risk of retrospective 

overinterpretation and could not establish the extent to which Boltzmann then anticipated 

the views he more clearly expounded in the 1890s. That said, my commentary employs 

vocabulary ('microstates', 'macrostates', 'Liouville's theorem', 'microcanonical 

distribution'...) that Boltzmann did not use, and it sometimes explicates things that 

Boltzmann left implicit (for instance how to define the number of states of the kinetic-

molecular model compatible with a given macroscopic appearance of the system). This 

will ease understanding by modern readers, and this can be done, I believe, without 

making Boltzmann tell more than he intended. 

 A frequently debated historical question regarding Boltzmann's reply to 

Loschmidt is how much he thereby departed from his earlier understanding of the role of 

 
2 There already are a nearly complete French translation (Dugas 1959, pp. 188–191) and two complete 

English translations: Brush 1976, pp. 188–193; Gallavotti 2014, pp. 171–174. Translated extracts and 

critical comments are found in Klein 1973, pp. 71–74; Brush 1976, pp. 239, 605–607; Sklar 1993, p. 39; 

von Plato 1994, pp. 87–89; Cercignani 1998, §5.2; Uffink 2007, §4.3; Badino 2011, pp. 373–374.  



probabilities in the kinetic molecular theory.3 The present article does not address this 

question, its focus being on the contents of Boltzmann's text of 1877. However, Section 5 

briefly describes the arguments through which Boltzmann later clarified and modified his 

reasoning of 1877.  

 

 

1. The Loschmidt paradox 

 

Joseph Loschmidt, whom Boltzmann had befriended in his early years at the Physics 

Institute in Vienna, was an ardent defender of the kinetic-molecular theory of heat and he 

was among those who believed that this theory might save us from the "heat death" 

implied by the second law of thermodynamics. In particular, he believed gravity could be 

used to counteract the temperature uniformity implied by the second law: intuitively, the 

kinetic energy of the molecules of a gas should be lower at higher elevation in 

compensation for the higher potential energy. Fig. 2 represents one of the devices 

imagined by Loschmidt: at time zero, all molecules are at rest in the container ABCD. All 

molecules except one, m1, are on the bottom of the container. This molecule is released 

from the top of the container, and gradually communicates kinetic energy to all the other 

molecules through a succession of collisions. In the end the gas reaches a stationary state 

 
3 The chief protagonists of this debate are René Dugas, Martin Klein, and Jos Uffink (in favor of radical 

departure); Jan von Plato, Michel Janssen, and Massimo Badino (in favor of continuity). For references and 

further discussion, see Darrigol 2018, pp. 542–544. 



in which all molecules are moving, with a kinetic energy depending on their height (so 

thinks Loschmidt).4  

 

 

 

 

 

 

Fig. 2: Loschmidt's device for producing 

a vertical temperature gradient in a gas 

in equilibrium. From Loschmidt 1876, p. 

137. 

  

 

 

 

 At this point, Loschmidt makes the following remark: 

One should be careful with the following assertion: in a system that has evolved 

from a given initial state to the so-called stationary state, the latter average state 

will persist for all times. One can predict so much with sufficient confidence only 

for a short time, I believe. 

Indeed, if in the above-given case, after a time  sufficiently long for the stationary 

state to obtain, we suddenly reversed the velocities of all atoms, we would thus be 

at the beginning of a state that would look like the stationary state. This would 

hold for some time, but the stationary state would deteriorate in the long run and 

after the time we would inevitably return to the initial state, namely, a single atom

1m would have absorbed the total live force of the system and would have 

converted it into potential energy while all other atoms would have returned to 

their static position at the bottom of the container. 

Evidently, in full generality in any system one can revert the entire course of 

events by suddenly inverting the velocities of all the elements of the system. 

To the egregious problem of undoing what has happened this does not give a 

solution but a simple formulation, which consists in the following simple 

 
4 Loschmidt 1876. Cf. Dugas 1959, pp. 158–184; Darrigol 2018, pp. 181–188. William Thomson 

anticipated the Loschmidt paradox in 1871 (in private) and in 1874 (in print): see Klein 1970, p. 93; 

Garber, Brush, and Everitt 1995, pp. 178, 187–188, 192–193, 205. 



stipulation: to suddenly revert the instantaneous velocities of all atoms of the 

universe. 

 

 

This argument is twofold. Firstly, it involves a simple mechanical theorem, according to 

which (for the class of mechanical systems usually considered in the kinetic theory of 

gases) the motion from time −  to time 0 under given conditions and the motion from 

time 0 to time after sudden reversal of all velocities at time 0 are the exact reverse of 

each other. Secondly, it exhibits initial states of the kinetic-molecular model for which 

the usual tendency toward uniformity does not apply: one just has to take a state that has 

evolved from a non-uniform state to a uniform state from time −  to time 0, and then 

suddenly inverse all velocities (this operation obviously preserves the uniformity of the 

initial state).5  

 Loschmidt does not regard the latter result as a paradox. On the contrary, he 

welcomes this additional blow to the alleged universality of the second law of 

thermodynamics. More broadly he remarks that in the light of his theorem, the undoing of 

history becomes conceivable though still not practically feasible.6 

 

 

 

 

2. "On the relation between a general mechanical theorem and the second principle 

of the theory of heat" 

 

 

 
5 Loschmidt 1876, p. 139. 
6 Today's physicists know that for some systems the Loschmidt return (better: return to the initial 

microstate after a double velocity-reversal) can be concretely achieve in some systems. See Hahn 1950; 

Waugh, Rhim, and Pines 1972. 



This is a translation of Boltzmann's text. The notes labelled by letters are Boltzmann's. 

The numbered notes are mine, and they give extracts of Brush's translation whenever it 

notably departs from mine. 

 

In his memoir on the state of equilibrium of a system of bodies under gravity, Loschmidt 

enunciated a theorem [Satz] involving a reservation [Bedenken] about the possibility of a 

purely mechanical derivation of the second principle. This reservation7 is devised in an 

extremely astute manner and I think it is highly significant for the correct understanding 

of the second principle. However, in the given reference it appears in a rather 

philosophical form that could make it difficult to grasp for many physicists. This is why I 

will first try to restate it in different words. Suppose we want to prove, in a purely 

mechanical way, that all natural processes always satisfy  

0
dQ

T
 . 

For this purpose, we conceive8 the implied bodies as aggregates of material points. We 

assume the forces acting between these points to be functions of their relative positions. 

If these functions were known, we would say that the law of force [Wirkungsgesetz der 

Kräfte] is known. In order to compute the actual motion of the material points and the 

resulting changes in the states of the bodies, we would still have to know the initial 

positions and the initial velocities of all the material points. That is to say, the initial 

conditions should be given. When one wants to prove the second principle by mechanics, 

he always seeks to derive it from the nature of the force law without any reference to the 

 
7 Brush: this theorem. 
8 Brush: we must conceive. 



initial conditions, about which we know nothing. Thus, he tries to prove that―whatever 

be the initial conditions―the states of the bodies evolve in accordance with   

0
dQ

T
 . 

Now suppose certain bodies9 to be given as collections of certain material points. The 

initial conditions at time zero are assumed to be such that the bodies change their state in 

conformity with  

0
dQ

T
 . 

We will show that with the same law of force, one can always find other initial conditions 

for which conversely 

0
dQ

T
 . 

Indeed, consider the positions and the velocities of all the material points after the 

arbitrary time 1t  has elapsed. In place of the former initial conditions, we now take the 

following ones: at the initial time, that is, at time zero, all the material pointsa have the 

same positions as the ones they reached at time 1t  under the former initial conditions, and 

they have equal and opposite velocities. For brevity, we will henceforth call this state the 

state opposite [entgegengesetzt] to the state that formerly occurred at time 1t .  

 Clearly, the material points will now pass in reverse order [in der verkehrten 

Weise] the states through which they passed in direct order under the former initial 

 
9 Brush: a certain body. 
a We thereby include all material points of all bodies that interact with the bodies under consideration, 

directly or indirectly. Strictly speaking, all bodies of the universe ought to be included, because we cannot 

build a complex of bodies that has strictly no relation to the other bodies of the universe, we can only 

imagine it. 



conditions.b The initial state that they formerly had at time zero, is now reached only after 

the time 1t  has elapsed. Consequently, whereas we formerly had  

0
dQ

T
 , 

this integral now is 0 . That is to say, the sign of this integral cannot be inferred from 

the law of force;10 it can be inferred only from the initial conditions. That this integral, as 

experience teaches us, is always 0  for processes in the world in which we live, is not 

founded on the interaction law for the implied forces but only on the initial conditions. If 

at time zero the state of all the material points of the universe were exactly the state 

opposite to the one it otherwise reaches at the much later time 1t , then the course of all 

events between the times 1t  and zero would be exactly the reverse course, and thus would 

always be such that 

0
dQ

T
 . 

Any attempt to deduce  

0
dQ

T
  

from the nature of the bodies and from the law for the forces acting among them, without 

invoking the initial conditions, must therefore be in vain. We see that this conclusion has 

much to entice us and that we should rightly11call it an interesting sophism. In order to 

 
b Needless to say, for a picture [Anschauung] of the mode of action of natural forces in which this [reversal] 

is not true (as could happen for instance in a dynamic picture), the following considerations would also fail 

to apply. [The reference to this footnote is missing in the original WB publication; Hasenöhrl reintroduced 

it in BWA, at a location different from the one assumed in this translation.] [By "dynamic picture," 

Boltzmann probably means a view, such as Lesage's, in which the forces between atoms are traced to 

motion of intermediate matter.] 
10 Brush: the sign of this integral … does not depend on the force law. 
11 Brush omits "rightly" (geradezu). 



track down the error in the former reasoning, we will now imagine a system made of a 

finite number of material points that have strictly no interaction with the rest of the 

universe. 

 Let a large though not infinite number of absolutely elastic balls move in a closed 

container whose walls are strictly immobile and likewise absolutely elastic. No external 

force is allowed to act on the balls. Suppose that at time zero the distribution of the balls 

in the container is non-uniform. For instance, the density of the balls could be much 

higher on the right side than on the left side of the container, or12 they could move faster 

on the upper part than on the lower part, or anything of the sort. The sophism now reads: 

without bringing in the initial conditions one cannot prove that the balls will mix 

uniformly in the long run. Under the originally assumed initial conditions, the balls might 

for instance be almost uniformly mixed at time 1t . Now we may replace these initial 

conditions with the state-distribution [Zustandsvertheilung] that is the exact opposite of 

the state-distribution that would have occurred after time 1t  under the originally assumed 

initial conditions. Then the elastic balls will sort themselves out more and more in the 

course of time. In the end at time 1t  there will be a highly non-uniform distribution, even 

though the initial distribution was nearly uniform. The following remark is in order: a 

proof that after a sufficient time 1t  has elapsed the mixture of spheres will become 

uniform with absolute necessity whatever be the state-distribution at the beginning of 

time, cannot be delivered. This we already know from probability calculus: a non-

uniform state-distribution (no matter how much it departs from uniformity) is not 

absolutely impossible, although it is extremely improbable. Indeed, it is clear that every 

 
12 Brush: and. 



individual state-distribution that arises from a given initial state after a given time has 

elapsed, is just as improbable as any individual state-distribution of arbitrarily high non-

uniformity, just as in the game of lotto every individual sequence of five numbers 

[Quinterne] is equally improbable as the sequence 1, 2, 3, 4, 5. It is only because there 

are many more uniform than non-uniform state-distributions that the state-distribution is 

more likely13 to become uniform in the course of time. One therefore cannot prove that 

for every initial value of the positions and velocities of the balls the distribution will 

always be uniform after a very long time.14 What one can prove is that after a given long 

time there are infinitely many more initial states leading to a uniform state-distribution 

than there are initial states leading to a non-uniform state-distribution; and that even in 

the latter case the distribution will again become uniform after an even longer time has 

elapsed.15 So, Loschmidt's theorem teaches only how to identify initial states that truly 

lead to a highly non-uniform state-distribution, but it does not give a proof that there are 

not infinitely many more initial states that would lead to a uniform state-distribution after 

the same time 1t  has elapsed. On the contrary, this [the dominance of the initial states 

leading to uniformity] follows from the theorem itself, because, as there are infinitely 

many more uniform state-distributions than non-uniform ones, the number of states that 

ensue from uniform states after a given time 1t  has elapsed is much larger than the 

number of states that ensue from non-uniform states, and the latter states are those which 

 
13 Brush omits the "more likely": will become uniform.  
14 Brush: a long time. 
15 Brush omits this last sentence (after the semicolon). 



according to Loschmidt should be taken as initial conditions in order that a non-uniform 

state-distribution occurs after the time 1t .16  

 One could even compute the probability of the various state-distributions from 

their relative numbers, which might perhaps lead to an interesting method for calculating 

thermal equilibrium. Things are quite analogous for the second principle. In a few special 

cases at least,17 it has been possible to prove that when a system goes over from a non-

uniform to a uniform state-distribution, then /dQ T will be negative for this system, and 

positive in the reverse case. Now, as there are infinitely many more uniform than non-

uniform state-distributions, the latter case is extremely improbable and in practice it can 

be regarded as impossible: just as we can regard it as impossible that oxygen and nitrogen 

be initially mixed in such a manner that18 a month later the oxygen be found chemically 

pure in the lower half of the container and the nitrogen in the upper half, which is 

extremely improbable but not impossible according to probability calculus. Nevertheless, 

Loschmidt's theorem seems highly important to me, for it shows how intimately the 

second principle is connected to probability calculus, whereas the first principle is 

completely independent from this calculus. In all cases where /dQ T can be negative, 

there still are particular, extremely improbable initial conditions19 for which it is positive; 

and the proof that it will be almost always negative can be carried out only through 

probability calculus. It seems to me that for closed trajectories of the atoms20 /dQ T  

 
16 Brush gives a completely different translation of this sentence. In particular, he renders folgen auf as 

"result in" instead of "ensue from." So does Dugas, in French. 
17 Brush: It is only in special cases that… 
18 Brush: if one starts with oxygen and hydrogen mixed in a container… 
19 Brush: there is also an individual very improbably initial condition… 
20 Brush: atom. 



must always be zero, which can thus be proved independently of probability calculus. In 

contrast, for unclosed trajectories this quantity can also be negative. I will still mention a 

peculiar consequence of Loschmidt's theorem: whether we follow the states of the 

universe into an infinitely remote past or into the remotest future, we have fundamentally 

equal reasons to regard it as very probable that we will reach a state in which all 

temperature differences have vanished. This is analogous to the following case: if we 

know that in a gas at a certain time there is a non-uniform state-distribution and that the 

gas has been present in the same container for a very long time without any external 

influence, we ought to conclude that much earlier the state-distribution was uniform and 

that the rare case has occurred in which the distribution gradually becomes non-uniform. 

In other words: any non-uniform state-distribution leads after a long time 1t  to a nearly 

uniform distribution. The distribution opposite to the latter distribution leads after the 

same time 1t  back to the initial non-uniform distribution (more exactly to the opposite of 

this distribution). However, the distribution opposite to the initial distribution would, 

when chosen as initial condition, likewise lead to a nearly21 uniform distribution after the 

time 1t . 

 However, this transfer [Verweisung] of the second principle to the domain of 

probability calculus may perhaps raise strong doubts about applying this principle to the 

entire universe, no matter how certainly the laws of probability calculus will be 

confirmed in laboratory experiments.22 

 

 
21 Brush omits "nearly". 
22 Brush: If perhaps this reduction of the second law to the realm of probability makes its application to the 

entire universe appear dubious, yet the laws of probability theory are confirmed by all experiments carried 

out in the laboratory. 



 

3. Comments 

 

Boltzmann's successive assertions are given in italics, my comments are sandwiched in 

Roman. 

 

In his memoir on the state of equilibrium of a system of bodies under gravity, Loschmidt 

enunciated a theorem involving a reservation about the possibility of a purely mechanical 

derivation of the second principle.  

 

As will appear in a moment, what Boltzmann calls "Loschmidt's theorem" is the 

possibility of reversing the evolution of a purely mechanical system to a given state by 

inverting the velocities of all the material points of the system in this state. The 

"reservation" refers to Loschmidt's remark that, as a consequence of this theorem, it is 

possible to choose the initial positions and velocities of the molecules of the gas so that 

the distribution of the molecules is initially uniform and yet evolves toward a non-

uniform distribution. This contradicts the second law of thermodynamics. Therefore, it 

should not be possible to derive this law by purely mechanical considerations. 

  Boltzmann had earlier asserted this impossibility for different reasons. In 1866, 

he gave a purely mechanical expression of the entropy for periodic systems but later 

convinced himself of the impossibility of generalizing this result to non-periodic systems. 

In 1871, he obtained the canonical entropy formula 

ln dS k   = −  , 



in which d is the standard measure in phase space and e H −  is the canonical 

distribution of the phases of the global system. He interpreted this distribution as a 

temporal probability, namely: he defined d  as the fraction of time that the phase of the 

system spends in the element d of phase-space in the long run. He then insisted that the 

derivation of an entropy for the kinetic-molecular model "required the consideration of 

this probability."23  

 

[Loschmidt's] reservation is devised in an extremely astute manner and I think it is highly 

significant for the correct understanding of the second principle. However, in the given 

reference it appears in a rather philosophical form that could make it difficult to grasp 

for many physicists. This is why I will first try to restate it in different words.  

 

Clearly, Boltzmann does not treat Loschmidt's remark as an obvious point, and he 

promptly acknowledges its importance, even though he was already somehow convinced 

that probabilities should play an important role in deducing entropy form a mechanical 

(kinetic-molecular) model. His perception of Loschmidt's phrasing as "philosophical" 

may refer to Loschmidt's brief allusion to the "problem of undoing what has happened" 

and more broadly to Loschmidt's concern with the heat death of the universe. As we are 

about to see, the main originality of Boltzmann's rephrasing is its recourse to Clausius's 

entropy and its reliance on a generic model of interacting material points.  

 

 
23 Boltzmann 1866; 1871, p. 295. Cf. Darrigol 2018, pp. 70–79; 128–133. 



Suppose we want to prove, in a purely mechanical way, that all natural processes always 

satisfy  

0
dQ

T
 . 

 

Here and below, Boltzmann uses this inequality as a symbolic expression for the entropy 

increase of a closed system when left to evolve by itself. He had already done so in 1872 

while discussing the H theorem.24 This is of course improper, since for a closed system 

there is no exchanged heat. Clausius's inequality concerns the evolution of a system 

exchanging the heat dQ with sources at the temperature T.  It implies entropy increase for 

the global, closed system comprehending the former system and the surrounding sources. 

Boltzmann knew all of that, but he was also aware of his contemporaries' difficulties with 

the abstract concept of entropy, and he preferred a loose expression involving the familiar 

notions of heat and temperature. 

 

For this purpose, we conceive the implied bodies as aggregates of material points. We 

assume the forces acting between these points to be functions of their relative positions. If 

these functions were known, we would say that the law of force is known. 

 

For instance, we may assume that all forces derive from a potential V that depends only 

on the differences i j−r r between the positions of two material points. In modern terms, 

the resulting equations of motion, i i im V= −r , are invariant under time reversal. 

  

 
24 Boltzmann 1872, pp. 345–346.  



In order to compute the actual motion of the material points and the resulting changes in 

the states of the bodies, we would still have to know the initial positions and the initial 

velocities of all the material points. That is to say, the initial conditions should be given.  

 

This follows immediately from the fact that the equations of motion are of second 

differential order. 

 

When one wants to prove the second principle by mechanics, he seeks to derive it from 

the nature of the force law without any reference to the initial conditions, about which we 

know nothing. Thus, he tries to prove that―whatever be the initial conditions―the states 

of the bodies evolve in accordance with   

0
dQ

T
 . 

 

That we know nothing about the initial conditions is an exaggeration: we know that the 

initial microstates should be compatible with the initial macrostate. But since this is the 

only information we have, it seems natural to expect that the entropy law should hold as a 

consequence of the laws of motion, for any choice of the initial microstate compatible 

with this information. 

 

Now suppose the bodies to be given as collections of material points. The initial 

conditions at time zero are assumed to be such that the bodies change their state in 

conformity with  



0
dQ

T
 . 

 

No one would deny the existence of initial microstates for which the entropy increases, 

since in nature we constantly witness entropy-increasing processes. 

 

We will show that for the same law of force, one can always find other initial conditions 

for which 

0
dQ

T
 . 

Consider the positions and the velocities of all material points after the arbitrary time 1t  

has elapsed. In place of the former initial conditions, we now take the following ones: at 

the initial time, that is, at time zero, all the material points have the same positions as the 

ones they reached at time 1t  under the former initial conditions, and they have equal and 

opposite velocities. For the sake of concision, we will henceforth call this state the one 

opposite to the state that formerly occurred at time 1t . 

 

In symbols, the original motion ( )i tr  has the initial conditions 
0(0)i i=r r , 

0(0)i i=r v , 

under which 
1

1( )i it =r r , 
1

1( )i it =r v . The new motion ( )i tr  has the initial conditions 

1(0)i i=r r , 
1(0)i i= −r v . 

 



Clearly, the material points will now pass in reverse order the states through 

which they passed in direct order under the former initial conditions. The initial state 

that they formerly had at time zero, is now reached only after the time 1t  has elapsed.  

 

In symbols, we have 1( ) ( )i it t t= −r r  and 1( ) ( )i it t t= − −r r . Strictly speaking (as 

Boltzmann will note in a moment), the state reached by the new motion at time 1t  is the 

velocity-reverse of the state it formerly had at time zero. 

 

Consequently, whereas we formerly had  

0
dQ

T
 , 

this integral now is 0 . That is to say, the sign of this integral cannot be inferred from 

the law of force; it can be inferred only from the initial conditions. That this integral, as 

experience teaches us, is always 0  for processes in the world in which we live, is not 

founded on the interaction law for the implied forces but only on the initial conditions.  

 

For any given law of force, there are initial conditions for which the entropy of the 

system is decreasing. Then it seems obvious that the systematic entropy increase 

observed in actual experiments (on closed systems) cannot be a consequence of the force 

law by itself and should be traced to the choice of initial conditions. Boltzmann will soon 

denounce the latter assertion as a sophism.  

 



If at time zero the state of all the material points of the universe was exactly the state 

opposite to the one it otherwise reaches at the much later time 1t , then the course of all 

events between the times 1t  and zero would be exactly the reverse course, and thus would 

always be such that 

0
dQ

T
 . 

Any attempt to deduce  

0
dQ

T
  

from the nature of the bodies and from the law for the forces acting among them, without 

invoking the initial conditions, must therefore be in vain.  

 

This is just a repeat of what has been just said for a closed system, now applied to the 

entire universe regarded as a closed system (as Boltzmann mentions in a footnote, the 

universe might be the only strictly closed system). 

 

We see that this conclusion has much to entice us and that we should rightly call it an 

interesting sophism. In order to track down the error in the former reasoning, we will 

now imagine a system made of a finite number of material points that have strictly no 

interaction with the rest of the universe. 

 

What Boltzmann calls a sophism is not Loschmidt's theorem, which is a mere 

consequence of the laws of mechanics. Nor is it the assertion that we can imagine choices 



of the microscopic initial conditions for which the entropy decreases.25 Nor else is it the 

assertion that the laws of mechanics are by themselves insufficient to derive the observed 

entropy increase in natural processes. It is the assertion that the sign of the observed 

entropy variation is purely contingent on the choice of the initial conditions, or that for 

some reason the only initial conditions realized in nature are those for which entropy 

increases. 

 In order to identify the source of this sophism, Boltzmann returns to a closed 

system of material points. The number of these points is finite, and in the following they 

are concretely represented as the centers of spherical balls that bounce on each other or 

on the walls of the container in a perfectly elastic manner. 

 

 Let a large though not infinite number of absolutely elastic balls move in a closed 

container whose walls are strictly immobile and likewise absolutely elastic. No external 

force is allowed to act on the balls. Suppose that at time zero the distribution of the balls 

in the container is non-uniform. For instance, the density of the balls could be much 

higher on the right side than on the left side of the container, or they could move faster 

on the upper part than on the lower part, or anything of the sort. The sophism now reads: 

without bringing in the initial conditions one cannot prove that the balls will in the long 

run mix uniformly. Under the originally assumed initial conditions, the balls might for 

instance be almost uniformly mixed at time 1t . Now we may replace these initial 

conditions with the state-distribution that is the exact opposite of the state-distribution 

 
25 Jos Uffink (2007, § 4.3.1, Point 1) gives this interpretation of the "sophism" and therefore sees a 

contradiction with Boltzmann's subsequent admission of initial states for which the entropy law is violated. 

Without using the word sophism, Lawrence Sklar (1993, p. 39) correctly remarks that in Boltzmann's 

opinion, Loschmidt's argument does not force us "to posit the existence of specific initial conditions" and 

that we can instead "take the statistical viewpoint." 



that would have occurred after time 1t  under the originally assumed initial conditions. 

Then the elastic balls will be more and more unequally distributed. At time 1t  there will 

be a highly non-uniform distribution, even though the initial distribution was nearly 

uniform.  

 

This is just the concrete illustration of Loschmidt's theorem, in the same spirit as the gas 

model used by Loschmidt himself, and without explicit recourse to the entropy. 

 

The following remark is in order: a proof that after a given time 1t  the mixture of spheres 

will become uniform with absolute necessity whatever be the state-distribution at the 

beginning of time, cannot be delivered. 

 

The words "mixture" and "state-distribution" call for some explanation. Boltzmann's talk 

of uniform mixing (Mischung) is easily understood if he has in mind the uniformity of 

temperature or of chemical composition of the gas (when assumed to be made of two 

kinds of molecules) rather than uniformity of density. From the context, "state-

distribution" (Zustandsvertheilung) clearly refers to what we would now call a 

microstate: the list of the positions and velocities of all the balls.26 Then Boltzmann's 

"remark" is just a consequence of Loschmidt's theorem: even when the spheres are 

uniformly distributed in the container at time zero, there are choices of their initial 

positions and velocities such that their distribution at time 1t  will be non-uniform. Yet, 

 
26 This is properly noted in Uffink 2007, §4.3.1, Point 2. 



Boltzmann is about to give another justification of possible anti-thermodynamic 

evolutions: 

 

This we already know from probability calculus: a non-uniform state-distribution (no 

matter how much it departs from uniformity) is not absolutely impossible, though it is 

extremely improbable. 

 

At first glance, this assertion looks strange because it seems to concern only the relative 

probability of different kinds of states of the system at a given time, and not the evolution 

of the system. From the preceding and succeeding sentences, we can guess Boltzmann's 

true meaning: for a randomly chosen initial microstate, the final microstate has a non-

zero probability of being non-uniform. But there is another difficulty: what it the intended 

meaning of probability in the latter assertion? Boltzmann's gives us a clue in his next 

sentence: 

 

Indeed it is clear that every individual state-distribution that arises from a given initial 

state after a given time has elapsed, is exactly as improbable as any individual state-

distribution of arbitrarily high non-uniformity, just as in the game of lotto every 

individual sequence of five numbers is equally improbable as the sequence 1, 2, 3, 4, 5. It 

is only because there are many more uniform than non-uniform state-distributions that 

the state-distribution is more likely to become uniform in the course of time.  

 



This analogy indicates that Boltzmann has a discrete model in mind, in which the system 

can have only a finite number of discrete microstates. The evolution from time zero to 

time 1t  is reversible, and there is a one-to-one correspondence between initial and final 

microstates. Consequently, if the initial microstate is chosen randomly, any microstate 

can be reached at time 1t , including those compatible with a non-uniform macroscopic 

appearance (I will call them non-uniform microstates). If, in addition, the number of non-

uniform microstates is much smaller than the number of uniform ones, then there is a 

very small probability to reach non-uniformity at time 1t . Boltzmann does not explain 

why the uniform microstates are so much more numerous than the non-uniform one. This 

is easily seen on a simple discrete model, for instance by evaluating the probability of a 

given proportion of heads and tails after flipping a coin many times. Evidently, the 

probability of a proportion close to one (meaning uniformity) is very close to certainty. 

 

One therefore cannot prove that for every initial value of the positions and velocities of 

the balls the distribution will always be uniform after a very long time. What one can 

prove is that after a given long time there are infinitely many more initial states leading 

to a uniform state-distribution than there are initial states leading to a non-uniform state-

distribution; and that even in the latter case the distribution will again become uniform 

after an even longer time has elapsed. 

 

This is in part a fuller statement of what has been announced before, with a discrete 

model in mind: for a randomly chosen initial microstate, the system almost certainly 



reaches a uniform state after a given time. Here and elsewhere, Boltzmann's "infinitely 

many more" should be read as "vastly many more."  

 But there is a first novelty: Boltzmann now writes "after a given long time" 

instead of "after a given time." Presumably, he has in mind not only the Loschmidt case 

in which the initial distribution is uniform and is most likely to remain uniform after any 

given time, but also a different case in which the initial distribution is non-uniform and 

most likely leads to uniformity after a sufficiently long time. In the latter case, the 

explanation would be that most of the microstates compatible with the initial non-uniform 

macro-distribution of the balls lead to a uniform distribution. This is far less obvious than 

the former statement regarding the improbability of a fluctuation out of equilibrium.  

 A second, interesting novelty is the remark that in the rare event in which the end 

state is non-uniform, the system if extremely likely to return to uniformity after some 

time. Again, this is not as obvious as the improbability of a Loschmidt fluctuation, 

because the more we restrict the initial microstates (here to the ones that lead to a non-

uniform state at 1t ), the less we can be sure that the end state will be uniform. Boltzmann 

implicitly relies on an additional principle, according to which the uniformity of the state 

of the system is always extremely likely to increase over a given fixed time, no matter 

what the previous (macro-) history may be.  

 

 So, Loschmidt's theorem teaches only how to identify initial states that truly lead to a 

highly non-uniform state-distribution, but it does not give a proof that there are not 

infinitely many more initial states that would lead to a uniform state-distribution after the 

same time 1t  has elapsed.  



 

By Boltzmann's earlier argument, there surely are initial microstates for which the final 

state of the system is non-uniform. Loschmidt tells us how to find such microstates. He 

does not tell us that the number of these initial states is comparable to the number of 

those for which the final state is uniform (although naive common sense might suggest so 

much, based on the symmetry of the laws of mechanics by time reversal). 

 

On the contrary, this [the dominance of initial microstates leading to uniformity] follows 

from the theorem itself, because, as there are infinitely many more uniform state-

distributions than non-uniform ones, the number of states that ensue from uniform states 

after a given time 1t  has elapsed is much larger than the number of states that ensue from 

non-uniform states, and the latter states are those which according to Loschmidt should 

be taken as initial conditions in order that a non-uniform state-distribution occurs after 

the time 1t .  

 

Call   the set of uniform states,   the set of non-uniform microstates, U the evolution 

over the given time lapse, and  the uniform measure on the energy shell in phase space. 

In symbols, Boltzmann means )()(   , which implies (U ) (U )    , because 

by Liouville's theorem the measure  is preserved by the evolution U. The initial 

microstates that lead to uniform and non-uniform states after the time 1t  are the velocity-

reverse of the microstates belonging to U  and U  retrospectively (the velocity 

reversal is only implicit in Boltzmann's "the latter states are those which according to 



Loschmidt..."). As the velocity-reversal preserves the measure  , the former states are 

immensely more probable than the latter.27 

 In a simpler, equivalent reasoning, the dominance of microstates leading to 

uniformity may be expressed as )U()U( 11  −−  . This inequality results from 

)()U( 1 =−  , )()U( 1  =−
, and )()(   .28 

  

 One could even compute the probability of the various state-distributions from 

their relative numbers, which might perhaps lead to an interesting method for calculating 

thermal equilibrium.  

 

In this sentence, Boltzmann has silently changed the meaning of "state-distribution." It 

cannot refer, as it did so far, to a microstate of the system, since by Boltzmann's lotto 

analogy all microstates are equiprobable. It can only refer to a macrostate, for instance 

defined by a macroscopic partition of the molecules. The probability of a macrostate can 

then be defined as proportional to the number of compatible microstates. This is exactly 

what Boltzmann will do a few months later in his famous memoir "On the relation 

between the second law of the mechanical theory of heat and probability calculus with 

regard to the laws of thermal equilibrium." There the microstates are discrete 

"complexions" and the "state-distribution" is defined by cutting off the phase space of a 

molecule into equal cells and listing the number of molecules in each cell. The most 

 
27 Boltzmann had used special cases of Liouville's theorem since 1868, and he had recently read Watson's 

treatise (Watson 1876) in which the theorem was derived and used in broad Hamiltonian context: see 

Darrigol 2018, pp. 472–475. 
28 Cf. Uffink 2007, §4.3.1, Point 4. 



probable velocity distribution in this sense is a discrete version of Maxwell's law, and it 

therefore represents the state of equilibrium of the gas.29 

 

Things are quite analogous for the second principle.  

 

Boltzmann is indeed going to argue the following: just as we may compute equilibrium 

by probability considerations (computing the state of maximal probability), we may 

justify the second law by probability considerations (requiring the system to evolve 

toward states of increasing probability). 

 

In a few special cases at least, it has been possible to prove that when a system goes over 

from a non-uniform to a uniform state-distribution, then /dQ T will be negative for this 

system, and positive in the inverse case.  

 

Boltzmann means that the entropy variation calculated according to thermodynamics30 is 

positive when the system goes over from a non-uniform to a uniform state, for instance 

when a gas expands into a vacuum (by removing a wall in a double container) or when 

two different gases are allowed to diffuse into each other. The entropy variation would 

therefore be negative in the inverse transition.  

 

 
29 Boltzmann 1877b. The alternative meaning of "state-distribution" already occurred in Boltzmann's 

memoirs of 1871 and 1872. 
30 As is well known, this calculation is done by imagining a reversible transformation connecting the initial 

state to the end state and integrating the ratio /dQ T .  



Now, as there are infinitely many more uniform than non-uniform state-distributions, the 

latter case is extremely improbable and in practice it can be regarded as impossible: just 

as we can regard it as impossible that oxygen and nitrogen be initially mixed in such a 

manner that a month later the oxygen be found chemically pure in the lower half of the 

container and the nitrogen is the upper half, which is extremely improbable but not 

impossible according to probability calculus.  

 

Here is again the remark that a system is extremely unlikely to evolve from a uniform to 

a non-uniform state, now illustrated by the unmixing of two gases. Evolution from the 

mixed state to the unmixed state is not impossible, because the relative probability of the 

unmixed state is not strictly zero; but it is highly improbable because the relative 

probability is extremely small. This observation does not quite justify Boltzmann's earlier 

suggestion that the second law can be derived through considerations of probability. To 

prove so much, he would have to show that the possibility and probability of the 

evolution from a given macrostate to another are determined by the relative probability of 

these two states not only when the initial microstate is uniform but also when it is non-

uniform. 

 

Nevertheless, Loschmidt's theorem seems highly important to me, for it shows how 

intimately the second principle is connected to probability calculus, while the first 

principle is completely independent from this calculus. 

 



Boltzmann has earlier announced the significance of Loschmidt's theorem for a proper 

understanding of the second law. He now explains that the theorem is important in 

showing that the second law, unlike the first law of thermodynamics, cannot be derived 

from the laws of mechanical evolution only: the derivation must involve considerations 

of probability. Not so easy to understand is Boltzmann's "nevertheless." Plausibly, he 

means that he oxygen-nitrogen mixing illustration and the concomitant intuition that the 

probability of an evolution is determined by the relative probability of the initial and final 

macrostates sufficiently indicate, without Loschmidt's theorem, that anti-thermodynamic 

evolution is possible. But Loschmidt's theorem more rigorously shows the impossibility 

of ignoring probability considerations in relating the second law to the laws of 

mechanics.   

 

 In all cases for which /dQ T can be negative, there still are special, extremely 

improbable initial conditions for which it is positive; and the proof that it will be almost 

always negative can be given only through probability calculus.  

 

The first of these two statements is a consequence of Loschmidt's theorem. It excludes a 

derivation of the second law based only on the law of mechanics. Yet it does not force us 

to rule out the anomalous initial conditions (the contrary belief is what Boltzmann earlier 

called a sophism). What is required is a probability calculus through which these 

conditions are shown to be extremely improbable. Here Boltzmann does not mean that an 

individual initial microstate for which the entropy increases is much more probable that 

an individual initial microstate for which the entropy decreases (he has already asserted 



that all microstates are a priori equiprobable). What he means is that for a given initial 

macrostate, the entropy increases for almost every microstate compatible with this 

macrostate (and this is true in both directions of time!).  

 

It seems to me that for closed trajectories of the atoms, /dQ T  must always be zero, 

which can thus be proved independently of probability calculus. In contrast, for unclosed 

trajectories it can be negative.  

 

This is an allusion to Boltzmann's memoir of 1866, in which he gave a mechanical 

entropy formula for a set of atoms that all (very nearly) return to their original position 

after some time. In this case, no probability consideration is needed to prove that the 

entropy does not vary during a spontaneous evolution of the system. As was already 

mentioned, by 1871 Boltzmann had become convinced that the case of non-periodic 

motions, for which the entropy may vary, requires probability considerations. The next 

section of Boltzmann's present memoir indeed gives a new proof that Boltzmann's 

theorem of 1866 cannot be extended to non-periodic motion.31 Loschmidt's theorem 

further shows that the sign of the entropy variation cannot result from the laws of 

mechanics alone. 

 

I will still mention a peculiar consequence of Loschmidt's theorem: whether we trace 

back the states of the universe into an infinitely remote past or into the remotest future, 

 
31 Boltzmann 1866; 1877a, pp. 122–148. On the latter text, see Darrigol 2018, pp. 199–203. 



we have fundamentally equal reasons to regard as very probable that we will reach a 

state in which all temperature differences have vanished.  

 

Boltzmann again ventures to apply his probabilistic considerations to the entire universe. 

He implicitly assumes that all microstates compatible with the present ( 0t = ) macrostate 

of the universe are equiprobable. The set of these microstates is globally invariant by 

velocity-reversal, so that it leads to the same relative probability of uniform and non-

uniform states at times t and t− . If the uniform state is most probable in a remote future, 

so is it too in the remote past. Somewhat paradoxically, Boltzmann's probabilistic 

concept of irreversibility is time-symmetric! 

 

This is analogous to the following case: when we know that in a gas at a certain time 

there is a non-uniform state-distribution and that the gas has been present in the same 

container for a very long time without any external influence, we ought to conclude that 

much earlier the state-distribution was uniform and that the rare case has occurred in 

which the distribution gradually becomes non-uniform [Assertion 1]. In other words: any 

non-uniform state-distribution leads after a long time 1t  to a nearly uniform distribution 

[Assertion 2]. The distribution opposite to the latter distribution leads after the same time 

1t  back to the initial non-uniform distribution (more exactly to the opposite distribution) 

[Assertion 3]. However, the distribution opposite to the initial distribution would, when 

chosen as initial condition, all the same leads to a uniform distribution after the time 1t  

[Assertion 4].  

 



 Boltzmann here returns to safer grounds: the system is simply a gas that has been for a 

long time in the same container. In this case, it seems natural to assume that in the present 

non-equilibrium macrostate of the gas, the compatible microstates are all equiprobable. 

Assertions 2 and 4 follow from the additional assumption that almost every microstate 

compatible with a given non-uniform macrostate leads to a uniform state after the 

sufficiently long time 1t . Assertion 3 is just an expression of Loschmidt's theorem, and it 

is equivalent to Assertion 1 since the backward evolution is the same as the forward 

evolution after velocity reversal of the initial state. Assertions 3 and 4 together confirm 

Boltzmann's earlier remark that "even in the [Loschmidt] case the distribution will again 

become uniform after an even longer time has elapsed." 

 

 However, this transfer of the second principle to the domain of probability 

calculus may perhaps raise strong doubts about the application of this principle to the 

entire universe, no matter how certainly the laws of probability calculus will be 

confirmed in laboratory experiments. 

 

Boltzmann now returns of the case of the complete universe and questions the analogy he 

has just used with the gas case. He probably has in mind that the universe exists only in 

one global microstate, and that we cannot repeat observations of the universe in which 

the microstate compatible with its present macrostate would vary. Then the evolution of 

the universe is not a matter of probability. In contrast, the law of entropy increase is a 

matter of probability. Its applicability to the universe is therefore questionable.  

 



 

4. A condensed version of Boltzmann's reply 

 

Based on the former analysis we may extract the essence of Boltzmann's reply to 

Loschmidt as follows. Firstly, Boltzmann readily admits Loschmidt's theorem (T1) 

according to which the evolution of a (purely) mechanical system can be reversed by 

sign-reversing the velocities in the final state, as well as the disturbing consequence that 

in a molecular-mechanical model of thermodynamic systems, there are initial states of 

this model for which the entropy decreases. From this anomaly he does not infer that an 

ad hoc selection of the mechanically possible states is needed to conciliate the micro-

model with the entropy law. This inference he regards as a sophism.  

 His solution is to remark that the initial microstates for which the entropy law is 

violated are extremely few, and then to downgrade the entropy law to a statement about 

the most probable evolution of a system. Whatever the examples taken by Boltzmann for 

the micromodel, it corresponds to a Hamiltonian system for which the motion is 

described by Hamilton's equations. The system is isolated, and all forces are internal.  

  In this context, a first component of Boltzmann's probabilistic reinterpretation of 

the entropy law is the rigorous theorem: 

T2: The subsets of initial microstates that lead, after a given time has elapsed, to 

microstates compatible with the equilibrium macrostate and with a nonequilibrium 

macrostate respectively, have the same relative measure as the subsets of microstates 

compatible with these two macrostates.  

This theorem is a straightforward consequence of Liouville's theorem, when applied to 

the standard measure on the energy shell of the Hamiltonian system.  

 By analogy with simple discrete models, Boltzmann knows  



K1: The relative measure of the subsets of non-equilibrium and equilibrium 

microstates is extremely small when the number of components (atoms) of the 

micromodel is huge.  

 

In addition, he assumes A1: in actual laboratory experiments, all microstates compatible 

with the initial macrostate are equiprobable. Then, if the initial macrostate is a state of 

equilibrium, K1 implies  

P1: the probability of a fluctuation in which the system would be found out of 

equilibrium at a given later time is vanishingly small.  

 

This is Boltzmann's first, best-founded step toward conciliating the entropy law with 

Loschmidt's theorem. P1 may be rephrased as follows: a closed system is very unlikely to 

evolve from the macrostate of maximal probability (the equilibrium state) to a state of 

much lower probability (a non-equilibrium state). 

 Without warning, Boltzmann moves from P1 to  

P2: when a system is originally out of equilibrium, the probability that after a 

sufficiently long time it will reach equilibrium is extremely large.  

 

By A1 and K1, the equilibrium macrostate is immensely more probable than any non-

equilibrium macrostate. Boltzmann seems to regard it as intuitively obvious that  

A2: A closed system made of an enormous number of molecules should almost 

certainly evolve toward states of increasingly high probability, until the state of 

highest probability (the equilibrium state) is reached.  

 

Or he may just be unaware of the difference between P1 and P2.32 At any rate, his 

reasoning is supported by simple models in which the tendency toward states of higher 

probability is intuitively obvious. For instance, if a great number of rapidly moving 

elastic balls are originally confined in the left half of a rigid container through a sliding 

wall, we easily imagine that after removing the sliding wall the balls will quickly spread 

 
32 This confusion is unfortunately reflected in Darrigol 2018, pp. 197, 560. It will be corrected in the 

paperback edition (2021). 



through the new available volume until approximate uniformity is reached. In contrast, 

we do not imagine that an originally uniform distribution of the balls in the volume of the 

container could lead after some time to a significantly non-uniform distribution. Things 

are different if the number of balls is small: it becomes quite conceivable that after some 

not too large time all the balls are found in the left half of the container. But this becomes 

extremely unlikely if the number of balls is of the order of the Avogadro number.  

 Although A2 (in full generality) is only implicit in Boltzmann's reply to 

Loschmidt, it appears a few months later in his famous memoir relating entropy to 

combinatorial probability, as "A [closed] system of bodies constantly evolves from a less 

probable to a more probable state." Similar statements, sometimes more carefully 

expressed as concerning the most probable evolution, frequently appear in Boltzmann's 

later writings. I call them the Boltzmann principle, because there is much evidence that 

Botzmann used this principle to justify the entropy law (intuitively at least), not vice-

versa.33  

  As Boltzmann realizes, A1 and A2 together lead to the conclusion that a non-

equilibrium macrostate at time zero almost certainly leads to states increasingly close to 

the equilibrium state for positive times and also for negative times. This is 

counterintuitive, because we can easily imagine a situation in which at time zero the 

system is in the middle of a transition from a non-equilibrium to an equilibrium state. 

Then the system should be further from equilibrium for negative times, just as a 

Loschmidt state would do for positive times. Boltzmann, however, does not mean his 

probabilistic prediction to apply in such transitory situations. He assumes either that the 

system exists only for positive time (as is the case in the sliding-wall experiment) or that 

 
33 Boltzmann 1877b, p. 166. See Darrigol 2021, pp. 560–563. 



the system has long been evolving by itself before time zero. In these cases, he believes 

he can safely assume that all microstates compatible with the initial macrostate are 

equally probable (A1).34 

 

 

5. Criticism 

 

In retrospect, we know that most of Boltzmann's statements regarding the evolution of a 

suitable mechanical micro-model are correct and that the probabilistic kind of 

irreversibility he sees in this evolution is genuine.35 This can be verified, for instance, by 

numerical simulation of one of Boltzmann's model: a large number of elastic disks 

moving in a plane between rigid walls.36 However, his probabilistic principles of 

evolution (P) result from a heterogeneous mixture of theorems (T), unproven assumptions 

(A), and knowledge inferred from simple models (K). While the T's and K's are sound 

enough, the A's raised the suspicion of Boltzmann's critics. Why and in what sense 

should the various microstates compatible with a given macrostate be declared 

equiprobable?  Why should a system evolve toward states of higher and higher 

probability?  I will briefly indicate Boltzmann's later reply to these questions, based on 

the so-called H curve.37 

 
34 In contrast, when we already know that the system has been evolving from a state out of equilibrium, 

there is only a very small fraction of the microstates compatible with the present macrostate that are 

compatible with this knowledge, and A1 cannot be true. 
35 See Cercignani 1998; Gallavotti 2014. 
36 See Alder and Wainwright 1960; Orban and Bellemans 1967. 
37 Ernst Zermelo (1896, pp. 795–796) strongly attacked A2 in 1896, arguing that probabilities by 

themselves could say nothing on the evolution of a system. Jos Uffink (2007, §4.3.1, Points 2 and 3) 

deplores the lack of justification of both A1 and A2, and his overall judgment of Boltzmann's reply is 



 Let a plausible mechanical model of a monatomic gas evolve during a time much 

longer than the relaxation time (which is the time that the gas takes to return to 

equilibrium when starting from a non-equilibrium state). Divide the phase-space of a 

molecule into cells of uniform size  , and call iN  the number of molecules in the cell i 

at a given time. Define the macrostate of the gas as the distribution 1 2( , ,..., ,...)iN N N . 

The volume of the portion of the global space associated with a given macrostate is 

1 2

!

! !... !...

N

i

N

N N N
 = . 

By Boltzmann's A1, this quantity should be proportional to the probability of the 

macrostate. For a very large value of the total number N of molecules, we very nearly 

have 

ln ln constanti i

i

N N = − + . 

By definition, the H function is the sum lni ii
N N . As Boltzmann proved in 1877, the 

distribution for which the probability is maximal or, equivalently, the one for which H is 

minimal under the constraints of constant N and constant total energy is a discrete version 

of Maxwell's distribution (it is spatially uniform and it is Gaussian for the velocities). 

Moreover, the value of H for this distribution agrees with the classical entropy of a 

monatomic gas, and its value out of equilibrium agrees with the function which forever 

increases according to Boltzmann's H theorem of 1872. Boltzmann therefore regards H−  

as an extension of the entropy for states out of equilibrium.38  

 
unflattering: "One may question whether his considerations of the probability of the initial state hit the nail 

on the head. Probability theory is equally neutral to the direction of time as is mechanics."   
38 Boltzmann 1877b, 1881a.  



               H(t) 

 The Boltzmann equation of 1872 for the evolution of the distribution of the 

molecules is based on Maxwell's intuitive expression for the number of collisions of 

various kinds occurring in the gas per unit time. It leads to a strict decrease of the H 

function in time, as was just said. But this is only an approximation, in a sense Boltzmann 

did not clarify in 1872. The exact evolution of H follows from the equations of motion of 

the molecules, since these equations determine which molecules enter or leave a given 

cell i in the course of time. Boltzmann imagines a coin being flipped an indefinite number 

of times and compares the evolution of H with the variation of the proportion p of heads 

and tails for the N flips of ranks , 1,...,n n n N+ +  when n increases (n here plays the role 

of a discrete time). He probably has in mind some similarity between the random flips 

and the molecular collisions, which cause random jumps of the velocity values. The 

resulting curve is represented in Fig. 2.39 

 In the course of time, the value of H is most likely to be very close to the 

equilibrium value Hmin, just as the value of p is most likely to be equal to 1/2. The 

stochastic character of the dynamics implies that the evolution of H is highly irregular, 

with occasional fluctuations, fluctuations within the fluctuations, and so forth. The 

frequency of the fluctuations of H is a very rapidly decreasing function of their 

amplitude, as is the case for the departure 1
2

p −  of p from the equilibrium value 1/2. 

 

 

 

 

 
39 Boltzmann 1872, 1895 (with dice instead of coin), 1897, 1898. 



 

  

 

 

 

 

 

Fig. 2: Boltzmann's H curve. From Uffink 2007, §4.5.3. 

 

Suppose that at a given time the gas is seen out of equilibrium. On the graph of 

the H function, draw the horizontal line corresponding to the value of H for this non-

equilibrium state. This line occasionally intersects a peak of the H curve, and it most 

probably does so very near the summit of this peak since the frequency of the fluctuations 

is a very rapidly decreasing function of their amplitude. If the gas system is on the right 

side of the peak, then H will decrease in subsequent times. If it is on the left side, it will 

increase for a short time until it passes the summit and starts decreasing. This is how 

Boltzmann justifies his statements of 1877 regarding the most probable increase of 

entropy. This picture is evidently time-symmetric: when starting from a state out 

equilibrium, the H function is most likely to decrease, both in the positive and in the 

negative direction of time. 

 There are two difficulties with this picture. Firstly, Boltzmann does not give any 

rigorous proof that the H curve truly has the shape he imagines for a gas system. 

Secondly, it is not clear why in actual experiments the probability of the outcome is 



dictated by the probability of being at a given height of the H curve in the course of time. 

Nowadays, we might alleviate the first difficulty by noting that numerical simulations of 

the evolution of gas models do yield the desired behavior of H. In a more mathematical 

vein, one could assume the ergodic hypothesis according to which the global phase of the 

gas system densely fills the energy shell in phase space in the long run. The fraction of 

time that the system spends in a given portion of this shell in the long run is then 

proportional to the measure of this portion. In particular, the temporal probability of a 

given distribution of the gas molecules is proportional to 
He−

, which measures the 

volume of phase space associated with the distribution. This explains why H, in the 

course of time, is very likely to be very close to the equilibrium value, and why 

significant departures from this value are very rare, with a frequency rapidly diminishing 

with the amplitude of the departure.  

 Boltzmann briefly assumed ergodicity in 1868, but soon judged it implausible. 

Moreover, he understood that the time scale for the ergodic filling of the energy shell 

would be enormously larger than any physically relevant time. For these reasons, he 

replaced ergodicity with a weaker hypothesis, according to which for almost every choice 

of the initial phase, the temporal average of the observable properties of the system 

reaches a very nearly constant limit after a moderately long time (of the order of the 

relaxation time). This is what I called the Boltzmann hypothesis. Boltzmann had of course 

no way to derive this hypothesis from the dynamics of the micromodel, but he could 

allege conformity with the observed existence and uniqueness of thermodynamic 



equilibrium.40 Under the ergodic hypothesis, the temporal average Q  of a physical 

quantity Q over an infinite time can be replaced with its average Q  over the energy 

shell (microcanonical average), because we have 

Q Q Q Q= = = . 

This is still true under the Boltzmann hypothesis, except that the first equality is no 

longer exact, and that the temporal average is now performed over a physically accessible 

long time. In particular, the temporal average of H, H2, H3, ...  can be replaced with the 

microcanonical average, so that the temporal distribution of the values of H is very nearly 

given by their microcanonical weight 
He−

, as was exactly the case under the ergodic 

hypothesis.41 

 We are left with the second difficulty, regarding Boltzmann's way of relating the 

H curve with the probable evolution of a single gas system from a given initial state. In a 

laboratory experiment, we may artificially prepare a gas in a state in which half of the 

molecules are in the left half of the container, by suddenly removing a sliding wall. This 

implies that at time zero, the system is either on the left side or the right side of a peak of 

the H curve. The choice of the starting point on the H curve being otherwise arbitrary, the 

system is most likely to be very close to the summit of the peak. Consequently, after a 

finite time has elapsed, the system is most likely to be found in a state of lower H, 

 
40 This justification is fragile, because there is no warranty that in actual relaxation experiments all possible 

initial microstates may occur. 
41 Boltzmann 1868, pp. 95–96; 1881b, pp. 592–593. See Darrigol 2018, pp. 558–560. Boltzmann's analysis 

does not apply to systems for which the microcanonical distribution does not yield the observed time-

averages. This the case for systems involving long-range coupling, encountered for instance in plasma 

physics. For an extension of statistical mechanics to such systems, cf. Tsallis 2009. 



although H may very briefly increase in the first instants.42 If we wait long enough after 

equilibrium has been reached and then observe the gas at a randomly chosen time, there 

is a tiny chance that it will be found out equilibrium. For most of these occurrences, the 

system will be very near a summit of the H curve, and the value of H should be lower 

both before and after the chosen time, just as Boltzmann predicted.  

 These predictions are based on the temporal probability of the various values of 

H. Under the ergodic hypothesis or under the Boltzmann hypothesis, this temporal 

probability coincides with the combinatorial probability 
He−

 based on the assumption A1 

for the equiprobability of all microstates compatible with a given macrostate. This 

explains why Boltzmann's predictions of 1877 based on combinatorial probability 

coincide with predictions based on the shape of the H curve. Boltzmann's assumption A1  

is thereby justified. 

 The H curve also sheds light on the frequent case in which we know the system to 

be in the process of transiting from a non-equilibrium state to the equilibrium state. For 

instance, at time zero we observe a not yet completely mixed state of two gases that have 

been diffusing into each other for a while. In this case, we know that the system must 

originally be somewhere on the right side of a peak of the H curve, that it proceeded from 

a higher value of H, and that for a given positive time it is most likely to take a lower 

value of H. Clearly, we cannot account for this behavior by assuming the equiprobability 

of all microstates compatible with the macrostate at time zero. This would lead to the 

false prediction that the system most likely is on top of a peak of the H curve. Indeed, the 

 
42 In such experiments there is a common arrow of time, from the unlifted to the lifted sliding wall. In other 

words, the temporal asymmetry, which is absent in the complete H curve, is generated by the preparation of 

the initial state. 



past of the system cannot be judged by probabilistic considerations since it is already 

known. At best, such considerations apply to the future of the system. 

 There is a residual difficulty. On the H curve, there are as many points at which H 

tends to decrease as there are points at which H tends to increase. This perfect symmetry, 

which is a straightforward consequence of the temporal symmetry of the microdynamics, 

seems to be incompatible with the dissymmetry between past and future in our universe: 

whenever we observe a quasi-closed subsystem in our universe the entropy increases for 

any of these subsystems. In Eddington's words, there is a common "arrow of time."43 As 

Boltzmann explains to the author of this objection (Ernst Zermelo), the error is to 

consider all the subsystems as existing in abstracto from an indefinite past to an 

indefinite future. In reality, all the subsystems are extracted from a universe which we 

know to have started from a globally improbable state (this is the so-called past 

hypothesis). There is a global arrow of time defined by the global entropy increase of the 

universe. When a closed subsystem of this universe is formed either by artificial means of 

by natural means, the sign of the entropy increase for this subsystem is determined by the 

fact that the formation of the subsystem occurs in the positive direction of time. As 

judged from the entropy variation, the direction of time flow is therefore the same in each 

of the subsystems as in the global universe.44  

It is worth noting that this reasoning contradicts Boltzmann's earlier statement (in 

1877) that the entropy law, being reduced to a probabilistic statement, might not apply to 

the universe (of which we have only one instantiation). The entropy law, as he now 

conceives it, is not the statement that for a system out of equilibrium at time zero the 

 
43 Eddington 1929, p. 68. 
44 Boltzmann 1897. Cf. Schrödinger 1951, pp. 193–195. 



entropy tends to decrease both in the positive and in the negative direction of time, it is 

the statement that there is a choice of the direction of time for which the entropy tends to 

decrease. The universe, as far as it may be regarded as a closed system comparable to a 

gas system, has its own H curve. Since it is notoriously out of equilibrium and since it has 

been so for a long time, it must be somewhere on an upward or downward slope of a peak 

of this curve, not too close to the summit nor to the equilibrium baseline. By definition, 

the positive direction of time is that for which H is decreasing.45 

 Lastly, one may wonder, as Boltzmann's British readers did, how the smooth, 

monotonic evolution of H given by the Boltzmann equation relates to the exact H curve 

given by the molecular dynamics. Although Boltzmann never gave a precise answer to 

this question, a few clues may be found in his reply to British criticism.46 For the most, he 

reasoned at the molecular level, introducing the assumption of "molecular chaos" under 

which Maxwell's collision formula (which leads to the Boltzmann equation) is 

statistically valid. Since the Boltzmann equation is a consequence of this formula, it also 

has a limited statistical validity. The evolution of H given by the Boltzmann equation 

corresponds to the most likely shape of the relevant peaks of the H curve. Starting from a 

given non-equilibrium distribution of the molecules of the gas, we are most likely on top 

of a peak, and although for each possible peak (compatible with the initial distribution) 

there are fluctuations on the slopes of the peak, these fluctuations average out from peak 

 
45 Boltzmann 1898, p. 637. See Darrigol 2018, pp. 552–553 (also for the related Boltzmann-Schütz 

argument). 
46 Boltzmann 1895, p. 541. On the British debate, cf. Brown, Myrvold, and Uffink 2009, pp. 182–284. 

Loschmidt and Boltzmann did not discuss the Boltzmann equation in their first exchange; they did so a few 

months later (see Darrigol 2018, pp. 228–231). 



to peak and the evolution is smoothly monotonous on average.47 The end result is a 

symmetric cusp with the horizontal asymptote minH H= . As Boltzmann briefly indicated, 

the Boltzmann-Grad limit of an infinite number of molecules with vanishingly small 

collision probability (keeping the mean free path constant during this double limit), 

would yield the same behavior.48 Indeed, in this limit the probability of fluctuations 

becomes smaller and smaller, whatever their size. The successive peaks on the H curve 

are more and more distant and they get smoother and smoother. In the end, for a given 

initial value of H, we are left with a single symmetric cusp. The other peaks are thrown to 

infinity.49 
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