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Abstract. In mountainous areas, rockfalls, rock avalanches,
and debris flows constitute a risk to human life and prop-
erty. Seismology has proven a useful tool to monitor such
mass movements, while increasing data volumes and avail-
ability of real-time data streams demand new solutions for
automatic signal classification. Ideally, seismic monitoring
arrays have large apertures and record a significant number of
mass movements to train detection algorithms. However, this
is rarely the case, as a result of cost and time constraints and
the rare occurrence of catastrophic mass movements. Here,
we use the supervised random forest algorithm to classify
windowed seismic data on a continuous data stream. We in-
vestigate algorithm performance for signal classification into
noise (NO), slope failure (SF), and earthquake (EQ) classes
and explore the influence of non-ideal though commonly en-
countered conditions: poor network coverage, imbalanced
data sets, and low signal-to-noise ratios (SNRs). To this end
we use data from two separate locations in the Swiss Alps:
data set (i), recorded at Illgraben, contains signals of several
dozen slope failures with low SNR; data set (ii), recorded at
Pizzo Cengalo, contains only five slope failure events albeit
with higher SNR. The low SNR of slope failure events in data
set (i) leads to a classification accuracy of 70 % for SF, with
the largest confusion between NO and SF. Although data
set (ii) is highly imbalanced, lowering the prediction thresh-
old for slope failures leads to a prediction accuracy of 80 %
for SF, with the largest confusion between SF and EQ. Stan-
dard techniques to mitigate training data imbalance do not
increase prediction accuracy. The classifier of data set (ii) is

then used to train a model for the classification of 176 d of
continuous seismic recordings containing four slope failure
events. The model classifies eight events as slope failures, of
which two are snow avalanches, and one is a rock-slope fail-
ure. The other events are local or regional earthquakes. By in-
cluding earthquake detection of a permanent seismic station
at 131 km distance to the test site into the decision-making
process, all earthquakes falsely classified as slope failures
can be excluded. Our study shows that, even for limited train-
ing data and non-optimal network geometry, machine learn-
ing algorithms applied to high-quality seismic records can be
used to monitor mass movements automatically.

1 Introduction

High mountain areas are particularly affected by climate
change. Deglaciation and thawing of permafrost has impli-
cations for rock wall stability at high elevation and, con-
sequently, on communities down-valley (e.g., Allen and
Huggel, 2013; Phillips et al., 2017; Coe et al., 2018; Hock
et al., 2019). The increasing threat to mountain communi-
ties, especially in densely populated areas, demands new
monitoring techniques at high temporal resolution and broad
spatial coverage to improve predictability, alarm time, and
post-event intervention. As a result of incomplete data and
knowledge on relevant processes and triggering mechanisms,
accurate prediction of rockfall events is still not possible
(van Westen et al., 2006). However, an increase in slope
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activity (pre-event acceleration and increased frequency of
small events) is a possible precursor to larger destructive
events (Rosser et al., 2007). Existing methods to moni-
tor slope failures include point measurements (e.g., exten-
someters) and large-scale monitoring such as terrestrial laser
scanners, interferometric radar, and video image recognition
(e.g., Abellán et al., 2011). However, these techniques suffer
from disadvantages like high operating costs, limited spatial
coverage, and susceptibility to atmospheric conditions.

In the last decade, seismology has evolved into a method
to monitor earth surface processes. Knowledge from wave
propagation within the earth and generation mechanisms of
seismic waves is transferred from its original study objec-
tives, earthquakes, to the so-called field of environmental
seismology (e.g., Burtin et al., 2008; Deparis et al., 2008;
Helmstetter and Garambois, 2010; Gimbert et al., 2014; Hi-
bert et al., 2014; Larose et al., 2015; Dietze et al., 2017; All-
stadt et al., 2018; Lai et al., 2018). Seismic signals generated
by mass movements are typically emergent with dominant
frequencies of 5–10 Hz and few or no distinguishable seis-
mic phases. Signals of large events (> 105 m3) recorded at
far distances are characterized by long-period seismic waves
(< 0.1 Hz) (e.g., Allstadt, 2013). Signal duration varies be-
tween seconds and several minutes, depending on the type of
slope failures and slope scales (e.g., Vilajosana et al., 2008;
Hibert et al., 2011; Dietze et al., 2017).

Seismometers can record large mass movements up to
hundreds of kilometers away from the source (e.g., Allstadt,
2013; Walter et al., 2020) and allow continuous monitor-
ing of large areas with real-time data transmission (e.g., Ek-
ström and Stark, 2013). Additionally, the installation of seis-
mometers is relatively low-cost and straightforward as no
high-power supply and little or no construction are needed,
in contrast to, for example, interferometric radar. On the
other hand, seismic sensors are sensitive to various sources
like earthquakes, anthropogenic noise, atmospheric signals,
runoff, and slope instabilities. Consequently, to distinguish
signals of slope failures from other mechanisms, automated
techniques for detection and classification are needed.

One approach that is often used to detect seismic signals
is the well-established short-term average over long-term av-
erage (STA / LTA) detection method, based on signal am-
plitudes (Allen, 1982). However, to classify source mecha-
nisms, information on signal frequency content is often also
required. For signals with similar frequency content, ampli-
tudes, and signal duration, such as earthquakes and slope fail-
ures, detection of signals from only one source mechanism
with STA / LTA is therefore impossible. Additionally, param-
eter selection for optimizing STA / LTA is a tedious process
that requires detailed knowledge of the data. Furthermore,
seismic signals of slope instabilities are characterized by an
emergent onset, making detection with STA / LTA difficult.
For this reason, Helmstetter and Garambois (2010) suggested
an STA / LTA algorithm for use in the frequency domain
that reliably detects seismic signals without impulsive onsets

(e.g., Hibert et al., 2017). Nevertheless, the detector does not
allow a distinction between different generation mechanisms.
Therefore, Hibert et al. (2017) and Provost et al. (2017) used
a supervised machine learning algorithm, random forest, to
automatically classify local events detected with the adapted
STA / LTA algorithm of Helmstetter and Garambois (2010).
High accuracy (99 and 93 %, respectively) emphasizes such
algorithms’ capability to classify seismic signals.

One downside of the combined STA / LTA approach by
Hibert et al. (2017) and Helmstetter and Garambois (2010)
is that this method requires two optimization steps – choos-
ing the correct parameters for the STA / LTA algorithm and
for the classifier. For this reason, this approach is hence-
forth called the two-step approach in this paper. Moreover,
STA / LTA algorithms generally fail to detect signals which
emerge over a timescale larger than the long-term average
window.

As an alternative to the two-step approach, a stochastic
classifier, hidden Markov models (HMMs), has been used
to automatically detect and classify a variety of seismic
sources (e.g., Hammer et al., 2013; Dammeier et al., 2016;
Heck et al., 2018). Hammer et al. (2013) and Dammeier
et al. (2016) focused on a regional scale with larger rockfall
volumes (> 1000 m3) detected tens to hundreds of kilome-
ters away from the source. They show that HMMs success-
fully classify seismic signals on a continuous data stream.
However, to minimize false detection and misclassification,
careful retraining and post-processing steps were required.
Dammeier et al. (2016) compared the classification output
with an earthquake catalog and suggested that, when using
HMMs in an actual operational setting, the on-duty operator
should manually inspect the signal and decide if the event is
an earthquake or a slope failure. Yuan et al. (2019) used ran-
dom forest to classify seismic signals in several minutes-long
windows of seismic data. The study focuses on multiple days
of data recorded near a geyser to detect pre-eruption seismic-
ity, which is hidden in the noise. In the following, signal clas-
sification on the continuous data stream that does not require
separate event detection is called the one-step approach.

In this paper, we use the random forest algorithm
(Breiman, 2001) to perform automatic signal classification
on continuous data on a local scale and throughout an ex-
tended time period with a large variety of noise signals. Pre-
vious local-scale two-step approaches have used specialized
networks designed to maximize monitoring capabilities (e.g.,
Provost et al., 2017). However, due to logistical and finan-
cial constraints, this is often not possible for potential haz-
ard sites. Here, we compare the one-step approach’s per-
formance in non-ideal conditions, applying it to a data set
with (i) many small slope failure events with low signal-to-
noise ratio (SNR, Illgraben) and (ii) few events but a higher
signal-to-noise ratio (Pizzo Cengalo). Furthermore, we show
that, by adjusting our methodology to a network with a sub-
optimal configuration and a data set with only a few recorded
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events available for training, automatic detection of potential
slope failures is still possible.

The scope of this study is to (a) test a system of continu-
ous classification of windowed seismic data on two different
types of data sets, (b) test the influence of signal-to-noise ra-
tios and an imbalanced training data set on classifier perfor-
mance, (c) discuss insights on the transferability of trained
classifiers to other sites, and (d) mimic operational condi-
tions to assess our approach’s capability as an alarm system
for slope failures. The investigation of source mechanisms
and processes of seismogenic mass movements is outside our
study’s scope. Such an endeavor should not be based on weak
seismic signals, which make up a large part of our catalog.

2 Study sites and data set

2.1 Illgraben, Switzerland

The Illgraben catchment in southwest Switzerland is one of
the most active mass wasting sites in the European Alps
(Fig. 1a). Yearly precipitation is controlled by summer rain-
storms with high rainfall intensity during which mass wast-
ing with rock-slope failures and debris flows occur regularly
(e.g., Badoux et al., 2009). From its highest point at the Ill-
horn (2716 m a.s.l.), the Illgraben catchment reaches down to
the Rhone Valley (600 m a.s.l.), where its main torrent flows
into the Rhone River. The 9.5 km2 Illgraben catchment is
characterized by complex geology, where highly fractured
quartzite is the dominating bedrock at the northwest face of
the Illhorn and the head of the channel trunk, and limestone
at the southeast-facing slope of the catchment (Schlunegger
et al., 2009; Bennett et al., 2013). The fractured quartzite
with erosion rates of tens of centimeters per year is the main
contributor to sediments transported via debris flows (Ben-
nett et al., 2013). A seismic network of eight high-quality
stations was installed throughout Illgraben between May and
September 2017 to monitor rock-slope as well as debris-flow
activity. Walter et al. (2017) used seismic data from a simi-
lar array to locate a debris-flow front as it propagated along
the channel. In this study, we focus on slope activity at the
Illhorn northwest face, which at peak times is characterized
by several slope failures per day. Slope failure volumes are
to date not quantified, but direct field observations by the
authors indicate volumes of tens to hundreds of cubic me-
ters. We use seismic data recorded in 2017 by three seis-
mic stations (ILL06–ILL08) located closest to the area of
interest (Fig. 1a). The three-component seismometers (LE-
3Dlite) with a lower cutoff frequency of 1 Hz and a sam-
pling frequency of 100 Hz were installed with a mean inter-
station distance of about 1 km and hundreds of meters from
the northwest face of the Illhorn.

2.2 Pizzo Cengalo, Switzerland

Pizzo Cengalo is a mountain located in Val Bondasca in east-
ern Switzerland’s canton of Grisons (Fig. 1b) about 6 km
southeast of the down-slope village of Bondo near the Italian
border. Pizzo Cengalo’s slopes have been unstable for several
decades, with multiple rock-slope failures per year. Bergell
granite defines Pizzo Cengalo’s geology, and part of its north-
facing walls are covered by glaciers (Baer et al., 2017). After
a large failure (∼ 1.5× 106 m3) in 2011, systematic moni-
toring started in 2012 (Baer et al., 2017). In 2017, an even
larger rock avalanche (> 3.5× 106 m3) killed eight hikers
and resulted in a series of debris flows that destroyed parts
of the village of Bondo (Walter et al., 2020). A warning had
been issued weeks prior to the catastrophic failure because an
acceleration of slope displacement was observed, as well as
several smaller failure events before the rock avalanche. The
large event in 2017 prompted an extension of the monitoring
system, which included the installation of three seismome-
ters (LERA1–3) close to the Bondasca river, the outlet of the
catchment, some 3.5 km down-valley of Pizzo Cengalo and
2.5 km up-valley of Bondo.

The one-component, short-period geophones (GeoSIG
0.9 Hz), with a flat response from 0.9 to 89 Hz and a sampling
frequency of 200 Hz, were installed along the channel with a
mean inter-station distance of about 20 m (Fig. 1b). An ar-
ray in such a configuration can be used to detect debris flows
based on amplitude differences while the flow approaches,
passes by, and moves away from the stations (Coviello et al.,
2019). Since the installation of the seismometers, seismic
signals and spectrograms have been made available to stake-
holders in hourly time windows in the online portal of the
engineering company Geopraevent, to recognize an increase
in rockfall activity by visually evaluating the seismic data.
Until now, this has required daily visual inspection of the
seismic signals by employees of the canton of Grisons, who
are not trained seismologists.

In November 2017, we installed an automatic camera fac-
ing Pizzo Cengalo (768411/132790, Fig. 1b). Images were
taken every 30 min and transferred in real time via a cellu-
lar connection. We used these images to validate detected
events, and the images were also available to stakeholders
on the online portal of Geopraevent.

2.3 Labeled data set

For supervised machine learning algorithms, a set of labeled
data has to be provided. Here, we focus on seismic data from
three sensors of the ILL array recorded in 2017 and the three-
sensor LERA array recorded in 2018 and 2019. We compiled
an event database for both study sites by visual inspection
of the seismic waveforms and spectrograms of seismic sta-
tions at Illgraben and Pizzo Cengalo and close-by stations
of the Swiss Seismological Service (SED) (Illgraben: sta-
tions CH.LKBD and CH.VANNI; Pizzo Cengalo: stations
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Figure 1. Illgraben catchment (a) and Val Bondasca (b) with locations in Switzerland (stars in middle panel). (a) Overview of the Illgraben
catchment in Switzerland and locations of stations ILL16–18 depicted as colored triangles. (b) Overview of Val Bondasca. Location of
LERA network depicted as colored triangles. Zoom-in shows individual seismic stations (LERA1–3) in the upper right corner. Digital
elevation models © swisstopo.

XP.PICE1, CH.VDL, and CH.FIESA). Additionally, we use
a list of observed slope failures made available by the canton
of Grisons for Pizzo Cengalo and earthquake catalogs from
SED and the European-Mediterranean Seismological Cen-
tre (EMSC). For the classification, we decided to use three
different classes: noise (NO), slope failures (SFs), and earth-
quakes (EQs). The NO class contains samples of continuous
noise and noise signals of anthropogenic and atmospheric
origin (Marchetti et al., 2019). We use the SF class as an um-
brella term for all types of mass movements that might oc-
cur (e.g., snow or debris avalanches, rockfalls). We consider
this assumption valid, as different granular flow types share
the common seismogenesis of particle ground impacts (e.g.,
Suriñach et al., 2005; Farin et al., 2019), although length and
amplitudes depend on runout distance and volume. We as-
sume that differences in signal characteristics between EQ,
NO, and SF classes are more significant than discrepancies
between different types of granular flow signals. The most
critical parameters for manually classifying an event as slope
failure are dominant frequencies of 5–10 Hz, emergent onset,
no phase arrivals, not being listed in earthquake catalog, not
being seen on surrounding seismic stations, or lower ampli-
tude at surrounding stations.

The EQ class contains a set of local, regional, and teleseis-
mic events. Extensive testing showed that lumping all earth-
quakes in one class does not negatively affect classifier per-
formance (Fig. A2). An example signal of each class is pre-
sented in Fig. 2. For the continuous noise, we choose random
times over the year. For noise signals, earthquake signals, and
slope failure signals, we manually picked the events’ start
time and end time when the signal exceeds the noise level.
The number of events in each class for both study sites is
presented in Fig. 3a and Table B2. Note that there are only

five events that are related to slope failures at Pizzo Cen-
galo in 2018. Due to instrument malfunction, these events
were not captured by the automatic camera. The sparsity of
recorded events leaves us with a poor data set for this class.
This issue is addressed further in Sect. 3.2. Figure 3b shows
a boxplot of the signal-to-noise ratios of SF and EQ events
at both sites. The signal-to-noise ratio for earthquakes ranges
between 1 and 103, with a mean of 5 (Fig. 3b). The signal-to-
noise ratio for slope failures varies between 1 and 30, with a
mean of 4 for the Illgraben data set and 22 for the Pizzo Cen-
galo data set.

3 Methodology

A schematic illustration of our automatic one-step classifier
applied to the Pizzo Cengalo data set is shown in Fig. 4a. We
use Random Forest, a supervised ensemble machine learn-
ing algorithm (Breiman, 2001), to classify different seismic
sources using a running window on a continuous data stream
on all network stations. Random forest is based on the ma-
jority vote of several weak decision trees, where each deci-
sion tree is built on a random subset of features and train-
ing data set. Decision trees consist of nodes, branches, and
final nodes. A split based on a threshold on a variable is per-
formed on each node, resulting in one or two branches. This
process continues until a classification result is obtained in
a final node, a so-called leaf. A single weak tree performs
poorly in the classification task, as it is only trained on a sub-
set of features and the training data set. However, the per-
formance improves as the aggregated decision trees perform
a majority vote, where the proportion of trees that voted for
one class gives the probability for the class. The time window
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Figure 2. Waveforms, spectrogram, and spectra of example events for each class recorded at Illgraben (left panels) and Pizzo Cengalo (right
panels). Spectrograms have been computed with a window length of 128 samples, an overlap of 120 samples, and an FFT length of 2048
samples.

is then labeled according to the class with the most votes,
i.e., the highest probability. We choose random forest be-
cause (i) it is a comprehensive machine learning algorithm
that has been shown to outperform other algorithms, like sup-
port vector machines and boosting ensembles, in a variety of
cases (Fernández-Delgado et al., 2014) and (ii) it has already
been successfully used to classify rock-slope failures (Hibert

et al., 2017; Maggi et al., 2017; Provost et al., 2017; Malfante
et al., 2018). Moreover, random forest estimates the feature
importance by measuring the impurity, which describes how
many samples of how many different classes belong to one
node after a split. Hence, if all samples in a node belong to
one class, impurity is zero and the classifier is perfect. The
averaged impurity decrease from a feature over all decision
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Figure 3. (a) Bar chart with events per class for both the Illgraben and the Pizzo Cengalo data set. (b) Boxplot of SNRs of all slope failure
and earthquake events at Illgraben and Pizzo Cengalo. The boxes denote the quartiles (25–75 %), the black horizontal line denotes the mean,
and the black vertical error bars indicate outliers.

trees then gives a ranking of the most discriminating feature.
This allows a more detailed analysis of potential causes for
misclassification. For the implementation of random forest
we use scikit-learn, a Python library for machine learning
(Pedregosa et al., 2011).

3.1 Data stream handling

To avoid the extra step of detecting events with a trigger such
as the STA / LTA algorithm, we classify a running window on
the continuous data stream with an overlap of 2/3 of the win-
dow length. The overlap was chosen to avoid missing events
on the window margins but was not tested for optimal perfor-
mance. We transform the event catalog with start times and
end times of all events into a catalog containing the times
of all running windows that include an event for both the
Illgraben and the Pizzo Cengalo data set. For the Pizzo Cen-
galo data set, we make use of the network configuration at
the study site, in order to increase the number of training
samples. At the frequency band of interest (1–10 Hz), associ-
ated wavelengths are larger than the inter-station distance, re-
sulting in waveforms with only small differences. For earth-
quakes and slope failures, instead of using the same onset
for the sliding windows at all stations, we choose a random
onset with a maximum of 2/3 of the sliding window before
the event start time. This way, we catch different windows
of the signal and increase the training data set by a factor of
3 without using the same window several times. This proce-
dure is unnecessary for the Illgraben data set, as the source–
receiver distances vary for each station. For discrete noise
signals often recorded at only one station, we choose sliding
windows at the recording station, again with a random onset
up to 2/3 of the sliding window before the event start time.
For the continuous noise, we choose a random station at each
time step.

We divide the catalog with labeled events into a training
and test data set, with 70 % of all events as training data and
30 % as test data. This partition was chosen to be able to
meaningfully assess the algorithm performance for the small
number of slope failures in the Pizzo Cengalo data set. This

way, there are windows of three slope failure events in the
training and validation data set and windows of two slope
failure events in the test data set. We choose a window length
of 20 s as an initial guess. Numbers for resulting training
and test data set sizes for Pizzo Cengalo and Illgraben are
presented in Table B2. Following Provost et al. (2017), we
then compute features of these sliding windows. As we do
not use the entire waveform of the event, but only the parts
that appear in the sliding window, we exclude features related
to the entire waveform of the signal (e.g., duration and rise
time). Additionally, the network configuration at Pizzo Cen-
galo does not allow network features (signals are too simi-
lar between stations), nor does it allow for polarity features
(only vertical component available). For the sake of com-
parison, we also disregard network and polarity features for
the Illgraben data set. We are left with a total number of
55 features, including waveform characteristics in the time
and frequency domain (see Table B). These features have
been proven significant for accurate seismic signal classifica-
tion (e.g., Hibert et al., 2017; Provost et al., 2017). Addition-
ally, we tested a Python tool for automatic feature generation
for time series (TSFRESH; Christ et al., 2016), which did not
improve classification results compared to the features pro-
posed by Provost et al. (2017). Before feature calculation, we
apply a four-corner Butterworth band-pass filter (1–10 Hz).
For feature generation after Provost et al. (2017), we choose
frequency bands of 1–3, 3–6, 5–7, 6–9, and 8–10 Hz.

3.2 Imbalanced data set handling

The limited amount of data and, more specifically, the small
number of SF events that happened in 2018 at Pizzo Cen-
galo lead to an imbalanced data set. As shown in Fig. 3a,
the number of events is unevenly distributed among classes.
This poses a problem for machine learning algorithms, as
they generally optimize the score, i.e., the number of cor-
rectly labeled classes. In a highly imbalanced data set, the
classification algorithm may be less sensitive to the minor-
ity class, as it does not drastically impair the score if it is
labeled incorrectly. For our data set, with the events that we
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Figure 4. (a) One-step classification scheme with continuous data stream, windowed data, classification per station, and label for window;
(b) confusion matrix for a two-class problem (positive, negative), with true labels as rows and predicted labels as columns. True posi-
tives (TPs) and true negatives (TNs) on the diagonal, and false negatives (FNs) and false positives (FPs) on the off-diagonal elements.
(c) ROC curve with true-positive rate (TPR) on the y axis and false-positive rate (FPR) on the x axis. Shaded area (AUC) measures model
accuracy.

are most interested in being the minority class, it is particu-
larly important to address this problem. Therefore, we intro-
duce here different data augmentation and classifier tuning
methods to improve the classifiers’ performance on the im-
balanced Pizzo Cengalo data set.

There are several possibilities to handle imbalanced data
sets, based either on manipulating the training data set or
on changes within the algorithm (Chawla, 2010). The most
straightforward approaches are random undersampling (US)
and naive oversampling (OS) training data. For random un-
dersampling, only a random subset of training data of the ma-
jority class is chosen. This way, the data set becomes more
balanced by reducing the samples in the majority classes.
However, this might mean that important characteristics of
the majority class are not captured. In contrast to undersam-
pling, naive oversampling randomly multiplies samples in
the minority class but thus increases the risk of overfitting
– i.e., the lack of generalization – within the minority class.

A more sophisticated way of increasing training sam-
ples in the minority class is synthetic minority oversam-
pling (SMOTE) (Chawla et al., 2002). SMOTE is based on
the idea of creating new training samples in the minority
class by interpolating between a sample and a random set
of its k-nearest neighbors in feature space. Therefore, a new
sample is generated with features similar to already-existing
samples. This increases the sample size of the minority class
but minimizes the problem of overfitting. On the algorithm
level, random forest opens two possibilities for imbalanced
data: setting a class weight on the minority class or under-
sampling the training data for every single tree, a so-called
balanced random forest (BRF) (Lemaître et al., 2017). Here,
we use a BRF classifier that undersamples the majority class
and weighs the classes inversely to the number of samples in
each class.

3.3 Training process and evaluation

We use two different metrics to evaluate model accuracy, the
confusion matrix and receiver operating characteristic (ROC)
curves. The confusion matrix consists of the true label of
each class’s samples as rows and the classifier-predicted label
as columns (Fig. 4b). For a perfect classifier, all samples are
located on the diagonal of the matrix. Using the confusion
matrix, the classifier can be evaluated for each class sepa-
rately. Furthermore, we normalize the confusion matrix, such
that the sum of each row is 1.0. The ROC curve uses the true-
positive rate (TPR) and false-positive rate (FPR) for different
probability thresholds (Fawcett, 2006). TPR is defined as the
number of true positives divided by the sum of true posi-
tives (TPs) and false negatives (FNs) (TPR= TP/(TP+FN)).
FPR is defined as the number of false positives (FPs) di-
vided by the sum of false positives and true negatives (TNs)
(FPR= FP/(FP+TN)). Class prediction of random forest
is based on the score of a class, i.e., its probability defined
by the number of predictions out of all trees. By lowering
the threshold for classification – i.e., the probability thresh-
old for a class to be predicted – FPR and TPR increase as
FN samples transition to TP and TN samples transition to FP.
As an example, we consider an imaginary two-class problem
with a decision threshold of probability> 0.5 for the “pos-
itive” class leading to TP= 1, FP= 2, TN= 3, and FN= 4
and resulting TPR= 1/5 and FPR= 2/5. When lowering the
probability threshold for the “positive” class to be predicted
to, say, 0.2, TP will increase, but so will FP, giving TP= 4,
FP= 3, TN= 2, and FN= 1. This results in larger values of
TPR and FPR (TPR= 4/5, FPR= 3/5). When plotting FPR
against TPR for each probability threshold, one obtains the
ROC curve with a monotonous increase. For a schematic
drawing, see Fig. 4b. The best-case scenario is a TPR of 1
and an FPR of 0, i.e., a step transition from coordinates (0, 0)
to (0, 1), whereas a random classifier would result in a diago-
nal from (0, 0) to (1, 1). The area under the curve (AUC) can
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be used as a one-value metric for model performance. The
larger the area under the ROC curve, the better the model ac-
curacy. Both metrics, confusion matrix and ROC–AUC, can
directly be transferred into a multiclass environment. For the
confusion matrix, this simply results in several columns and
rows. The ROC curve can be computed for each class sepa-
rately by bundling all other classes together.

We use the confusion matrix as an initial performance
evaluation of random forest for both the Illgraben and the
Pizzo Cengalo data set. We then use the ROC–AUC analy-
sis to estimate the influence of the window length and the
imbalanced data set handling techniques on the Pizzo Cen-
galo data set. For a more representative measure, we use k-
fold cross-validation when computing the ROC curves (e.g.,
Stone, 1974). As our training data set only contains three
events in the minority class, we use 3-fold cross-validation,
with a random 2/3 of each class in the training data set
and 1/3 used for validation. This way, we obtain three ROC
curves and AUC values per class trained and tested on three
different random subsets. We then take the mean TPR and
FPR to plot the ROC curves. We computed the 95 % confi-
dence level using Student’s t distribution for small sample
sizes (n= 3).

3.4 Simulated real-time monitoring at Pizzo Cengalo

To test how the classifier performs in a real-life application,
we use a model trained on the 2018 Pizzo Cengalo data set
and classify more than a million time windows of recorded
seismic data at Pizzo Cengalo in 2019. We train, validate,
and test the model on 2018 data, containing five slope failure
events, and then use the model to classify 2019 data. Seis-
mograms and spectrograms of the training events are shown
in Fig. A1. For 2019, no full event catalog is available. We
cross-check events classified as slop failure with earthquake
catalogs, hiker reports, and pictures from the automated cam-
era. If none of these methods give clarity, we manually clas-
sify the seismic signals based on typical characteristics of
slope failure events, such as dominant frequencies between 5
and 10 Hz, an emergent onset, and a duration of several tens
of seconds (e.g., Hibert et al., 2011).

We benchmark our test with the two-step approach of
STA / LTA detection in the frequency domain and classifica-
tion of the detected events using random forest. After exten-
sive testing, we define the parameters that provide accurate
detection for our data set as an STA window length of 1 s
and an LTA window length of 18 s. The detector turns on
when the STA / LTA ratio exceeds 4 and turns off when the
STA /LTA ratio becomes lower than 2. Additionally, we use
a coincidence trigger, with a threshold of 3, which means that
the STA / LTA threshold needs to be exceeded at all three sta-
tions.

Figure 5. Confusion matrices of an initial test of the continuous
random forest approach on 20 s windowed data. (a) Illgraben data
set, (b) Pizzo Cengalo data set.

4 Results

4.1 Classifier performance on labeled data sets

For an initial evaluation, we tested the random forest clas-
sifier’s performance on the Illgraben and the Pizzo Cen-
galo data set. We used a randomized grid search to obtain
the best-performing hyper-parameters, such as number and
depth of decision trees. The final parameters are presented
in Table B3. Normalized confusion matrices for both data
sets are shown in Fig. 5. We trained the models on 20s win-
dow sizes, and no class balancing has been applied. For the
Illgraben data set, the classifier correctly classifies between
70 and 85 % for all classes. The largest confusion occurs
between the NO and SF class. For the Pizzo Cengalo data
set, the classifier correctly classifies between 90 and 100 %
for the NO and EQ class, but only 44 % of the SF class. In
this case, the largest confusion occurs between the SF and
EQ class.

4.2 ROC analysis on Pizzo Cengalo data set

We computed ROC curves and AUC values for different win-
dow sizes and under- and oversampling techniques for the
Pizzo Cengalo data set (Fig. 6). Figure 6a shows the AUC
values for the SF class plotted on a heatmap. Rows show dif-
ferent window sizes (10–60 s), and columns different tech-
niques. Associated standard deviations are shown in Fig. 6b.
Darker colors mark a larger AUC value and a smaller stan-
dard deviation. The different color maps highlight the differ-
ence between the AUC values and AUC standard deviations.
Although almost all values lie within the confidence inter-
vals, overall the smallest window size and the largest window
size give slightly better values with a small standard devia-
tion. Additionally, the AUC value for a simple random forest
and BRF is higher without the data manipulation techniques.

As a compromise between large AUC value and small
standard deviation, we choose 40 s windows and classical
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Figure 6. ROC analysis on the Pizzo Cengalo data set. (a) Heatmap of AUC values for SF class for different window sizes and different
methods to handle imbalanced data sets, namely undersampling (US), oversampling (OS), synthetic minority oversampling (SMOTE), ran-
dom forest with original data set (RF), and balanced random forest (BRF). The darkest colors denote the largest AUC values. (b) Heatmap of
95 % confidence interval of AUC values. Darker colors denote smaller standard deviation. (c) ROC curve for 40 s time window and random
forest. Three-fold cross-validation with mean as solid line and 95 % confidence interval. Zoom into corner with circles illustrates TPR and
FPR values for different thresholds. Probability threshold for TPR of SF class> 0.9 is depicted.

random forest, i.e., without modifications for handling imbal-
anced data. The ROC curve of this configuration is shown in
Fig. 6c. To make sure we correctly classify most of the win-
dows containing a slope failure signal, we set the target TPR
to > 0.9. From the 3-fold cross-validation ROC analysis, we
obtain a mean probability threshold of 0.23 for a TPR> 0.9
in the SF class. As a next step, the optimal model parameters
(e.g., number of decision trees, number of features chosen for
each tree, and maximum tree depth) for the 40 s window size
and random forest are chosen using the randomized cross-
validation search of scikit-learn (Pedregosa et al., 2011). We
use the obtained classifier to classify the test data set from the
2018 data, containing two SF events, which were not used for
the model setup and, therefore, an unbiased evaluation of the
classifier. We set the probability threshold for the SF class
to 0.23 as obtained from the ROC curve. Consequently, for
probabilities higher than 0.23 for the SF class, the window
will be classified as slope failures, even if another class has a
higher probability.

4.3 Classifier performance with classification threshold
on Pizzo Cengalo data set

We used the low probability threshold from the ROC analy-
sis to label all 40 s time windows of the Pizzo Cengalo test
data set. The results of this setup are shown in Fig. 7. The
normalized confusion matrix (Fig. 7a) shows a misclassifica-
tion of 20 % for slope failures. Additionally, 10 % of earth-
quakes are classified as noise. The misclassification rate of
noise is, however, very small (1 %). The most discriminating
features are presented in Fig. 7b. The colors denote spectral

and waveform features. Distinctive features are spectral gy-
ration radius (gamma2), spectral centroid (gamma1), central
frequency of the first quartile (Fquart1), variance of the nor-
malized fast Fourier transform (FFT) (VarFFT), frequency at
the maximum of the FFT (FmaxFFT), frequency at spectrum
centroid (FCentroid), energy of the last 2/3 of the autocorre-
lation function (INT2), and the energy of the seismic signal
in the frequency band of 1–3 Hz (ES[0]) (Table B; Provost
et al., 2017). Figure 7b shows that the most discriminating
features by far are characteristics in the frequency domain.

4.4 Classifier implementation on Pizzo Cengalo seismic
data

As a next step, the model is used to classify seismic data
recorded at Pizzo Cengalo in 2019, mimicking operational
conditions of a near real-time classification. We first compute
the signal features of 40 s time windows with an overlap of
2/3 of the window length for each station and perform a clas-
sification. Next, a majority vote of the stations is performed,
and a label is assigned to the time window. This means that,
if more than one station assigns the time window to the same
class, the end label is chosen accordingly. In case every seis-
mic station classifies the same time window into a different
class, the time window will be labeled as noise. We compare
the results to an event catalog compiled from hiker reports,
manual classification of seismic data, and automatic-camera
images. The classification parameters for the manual classi-
fication of the seismic data are consistent with creating the
training catalog.
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Figure 7. Confusion matrix and feature importance analysis of the optimized classifier for the Pizzo Cengalo data set. (a) Normalized
confusion matrix of final model test. The darker the colors, the higher the values. For an ideal classifier, all samples would be located on
the diagonal. (b) Eight most distinct features normalized to one. Dark columns mark spectral features (characteristics of signal in frequency
domain); light columns mark waveform features (characteristics of signal in time domain). Labels: spectral gyration radius (gamma2),
spectral centroid (gamma1), central frequency of the first quartile (Fquart1), variance of the normalized FFT (VarFFT), frequency at the
maximum of the FFT (FmaxFFT), frequency at spectrum centroid (FCentroid), energy of the last 2/3 of the autocorrelation function (INT2),
and the energy of the seismic signal in the frequency band of 1–3 Hz (ES[0]) (Provost et al., 2017). (c) Pairplot of four most distinct features.
Per cell two features are plotted against each other, except for diagonal. Diagonal shows univariate distribution of the feature. Colors mark
different event classes.

On 176 d in 2019 (day of year 94 to 270), 21 d have at
least one window classified as slope failure. To exclude mis-
classified windows because they only contain a small sig-
nal portion, we set a minimum threshold of three consecu-
tive SF classifications. With this threshold, we limit the num-
ber of slope failure detections to eight. Out of these eight,
three correspond to manually picked slope failures, two of
which happened on 4 and 26 April and one on 16 July.
However, the automatic camera shows that the April events
are snow avalanches rather than rock-slope failures (Fig. 8).
Seismic waveforms and associated classifications for 16 July
are shown in Fig. 9, with a zoom on a rockfall event (c–
e) and a noise signal (f–h). Four events that were classified
as slope failures are earthquakes on 22 May, 29 July, 8 and
29 August. Two out of these earthquakes originate from the
German lakeside of Lake Constance about 160 km northwest
of Pizzo Cengalo, with a distance between the epicenters of
about 3 km and magnitudes of 3.6 and 3.4 (EMSC catalog).
The two other earthquakes are M 3.3 and M 2.2 earthquakes
with epicenters about 170 km south and 33 km west of Pizzo
Cengalo, respectively (EMSC catalog). The last event classi-
fied as slope failure on 13 August is characterized by a du-

ration of 10 s and is not listed in any earthquake catalog. All
waveforms, spectrograms, and spectra are shown in Fig. 10.

To quantify the performance of the algorithm presented
here, we benchmark the continuous approach against a two-
step approach with an STA / LTA detection on the Pizzo Cen-
galo data set. The continuous approach correctly classifies
three slope failures (TP), misses one slope failure (FN), and
classifies four earthquakes as slope failures (FP). The two-
step approach of STA / LTA detection correctly classifies two
slope failures (TP), misses two slope failures (FN), and clas-
sifies six earthquakes as slope failures (FP). For a simple
comparison, we can use the critical success index (CSI=
TP/(TP+FN+FP)), which ignores all non-events (TN). For
the Pizzo Cengalo data set, we obtain a CSI of 0.375 for the
continuous approach, whereas, for the STA / LTA approach,
we obtain a CSI of 0.2.

4.5 Transferability to other study sites

We tested the transferability of a trained model to other study
sites by assessing the performance of a model trained on one
site and tested on another, and trained on both sites and tested

Nat. Hazards Earth Syst. Sci., 21, 339–361, 2021 https://doi.org/10.5194/nhess-21-339-2021



M. Wenner et al.: Automated continuous seismic signal classification 349

Figure 8. Automatic-camera photos of slope failures in 2019. Photos from April show the avalanche deposits from the events classified
as slope failures of 4 and 26 April. Photos from July and August are from before and after the events of 16 July and 14 August. For the
14 August event, no deposit is visible on the photos.

on one site. The result of all possible combinations is shown
in Fig. 11. A classifier trained on one site and tested on an-
other reduces the mean score over each class by about 30 %
for the Pizzo Cengalo and the Illgraben data set. Especially
the score of the minority class, the slope failure class, is re-
duced to 20 and even 0 %, respectively. For both the Illgraben
and the Pizzo Cengalo data set, a classifier trained on both
data sets increases the mean test scores over all classes only
marginally. However, in both cases, the slope failure class’s
test scores increase by nearly 10 % compared to a classifier
only trained on the respective data set.

5 Discussion

5.1 Data set comparison

We trained a random forest classifier on two different types
of data sets: the Illgraben data set, with a balanced abundance
of all types of classes, and the Pizzo Cengalo data set, with
a highly imbalanced number of events. Both the Illgraben
and the Pizzo Cengalo data sets were aggregated by man-
ual inspection of the seismic data and, for the Pizzo Cengalo
data set, direct observations at the site. Even though both
data sets have been carefully examined, a misclassification
of events cannot be excluded. For earthquakes, a misclassifi-
cation is highly improbable, as all events were cross-checked
with publicly available earthquake catalogs. However, cross-
checking databases for rockfall events are rare, especially for
events that have not affected infrastructure. Therefore, an in-
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Figure 9. Classifier tested on 1 d of data from Pizzo Cengalo in 2019 (16 July). (a) Waveform of 1 d, with data gap (orange area). (b) Label of
each 40 s time window. (c) Waveform and (d) spectrogram with spectral power of a slope failure and (e) associated classifications. (f) Noise
event with (g) spectrogram and (h) associated classifications.

herent bias by manual labeling and falsely labeled events is
possible but can hardly be avoided for these data sets.

The Illgraben data set contains only 4 weeks of manually
labeled data, but in those 4 weeks the number of recorded
slope failures and earthquakes is nearly the same (Fig. 3a).
The large number of slope failure events during that period
can be explained by three extreme precipitation events that
also triggered three debris flows (e.g., Wenner et al., 2019).
Under these conditions, slope failure activity increases dras-
tically.

The Pizzo Cengalo data set contains manually labeled data
of the summer period (June–October). The LERA network
was set up in the aftermath of a large rock avalanche event
in 2017. Since then, slope activity has strongly decreased.
This implies that automatic detection and classification is
based on a small number of training events in the slope fail-
ure class and a comparably large number of events in other
classes. The small number of recorded earthquakes can be
attributed to general poor data quality. Many recorded earth-
quakes barely exceeded the noise level and were therefore
not included in the catalog.

For slope failures, the Pizzo Cengalo data set includes
fewer events than the Illgraben data set. However, the mean
SNR is higher. Overall, SNRs of events in both data sets
compare to SNRs found in other studies (e.g., Dammeier
et al., 2016). The SNR distribution in both data sets is also
reflected in the initial classification test (Fig. 5). In this test,
no performance enhancement was applied. Whereas the clas-

sifier performs similarly well for each class for the Illgraben
data set, 22 % of the slope failure signals are misclassified
as noise. The large number of misclassification could be re-
lated to the low SNR for slope failures in the data set. For the
Pizzo Cengalo data set, the classifier performs significantly
worse for the slope failure class, but the confusion is more
pronounced between the slope failure class and earthquake
class than slope failure and noise. Hence, the Pizzo Cengalo
data set’s misclassification might result not from poor SNR
but from the underrepresentation of the slope failure class.
We expect an improvement of the classifiers performance af-
ter adding slope failure seismic signals of future events to the
training data set.

5.2 Performance enhancement

One way to enhance the classifier’s performance on the Ill-
graben data set could be to add network and polarity features.
Provost et al. (2017) have shown that network features count
among the most important features for classifying detected
events. However, the setup of the LERA network at Pizzo
Cengalo has an unfavorable aperture for detecting and clas-
sifying detected seismic signals, as the stations are set up in
a line with inter-station distances of 9 and 31.5 m. This pro-
hibits the usage of network characteristics, like arrival time
differences and amplitude ratios.

To address the problem of the imbalanced Pizzo Cengalo
data set and resulting misleading scores, we test several tech-
niques to handle such data sets and use receiver operating
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Figure 10. Waveforms, spectrograms, and spectra of all events classified as slope failure in 2019 at Pizzo Cengalo, as well as the missed
slope failure on 14 August 2019 (bottom left panel). White labels on spectrograms mark the type of event.

characteristic curves for performance assessment. The area
under the curve for SF is largest for a generic random forest.
Further assessment shows that SF’s true positives are largest
when using a technique to handle imbalanced data sets, but
this leads to a substantial increase in EQ events being classi-
fied as SF. Using a generic random forest, SF is underrepre-
sented, ending up not only with zero true positives but also

with zero false positives. By lowering the probability thresh-
old for SF, the true-positive rate increases, whereas the false-
positive rate stays low. Therefore, for this data set, we de-
cided to ignore problems with imbalanced data sets and mit-
igate misclassifications by lowering the probability thresh-
old. It remains to be seen if this approach performs equally
well on other data sets, but in our case it gives the best re-
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Figure 11. Scores for each class with different training and testing data sets. Labels on the y axis show the data set(s) used for training before
the vertical bar and the data set used for testing after the vertical bar.

sults by maximizing the number of true positives in SF and
minimizing the number of EQs classified as SF. This does
not mean, however, that imbalance countermeasures did not
work. Compared to the initial test (Fig. 5b), any of the mea-
sures mentioned above improves the classification result.

We choose to use a 40 s window as an operative window
size to test on the 2019 data, even though 10 and 60 s show
equally high AUC values and low standard deviations. On a
continuous data stream a 10 s window with 6s of overlap does
not leave enough time to compute features and classify the
event in real time. The 60 s window, on the other hand, results
in a classification delay of 1 min, and we assume that chances
are higher of missing smaller events which are masked by a
large amount of noise in the 60 s window.

Generally, an imbalanced data set can be tackled by in-
creasing the amount of training data in the minority class. A
classifier trained for an area that is more active or has been
monitored during a longer period is expected to give better
results with higher accuracy. Additionally, the small number
of events in the slope failure class can lead to overfitting, i.e.,
an insufficient generalization of the model. Hence, small de-
viations in signal characteristics can lead to misclassification
and undetected slope failures. However, as seen on tests on
the Illgraben data set, solely a larger training data set will not
give a perfect classifier either. We attribute the low SNR to
the classifier’s relatively poor performance of 30 % misclas-
sified events in the slope failure class at Illgraben.

5.3 One-step vs. two-step method at Pizzo Cengalo

Several studies have shown that classification algorithms
accurately classify events detected with the STA / LTA ap-
proach (e.g., Hibert et al., 2017; Provost et al., 2017). The
benchmark analysis performed on the Pizzo Cengalo data set
indicates that our continuous approach (CSI of 0.375) per-
forms slightly better than a two-step approach (CSI of 0.2).
However, the small number of events prohibits a statement
on robustness. Interestingly, there is a large overlap in the
earthquakes being misclassified as slope failures between the
two approaches.

Feature importance analysis for the continuous one-step
approach presented here shows that the classifier predomi-
nantly uses spectral features to distinguish between different
classes. This is consistent with the fact that the windowing
eliminates information from the entire waveform. Provost
et al. (2017) showed that for the two-step approach several
waveform features – e.g., duration and the ratio between as-
cending and descending time of the signal – are powerful dis-
tinctive features of slope failures and earthquakes. These are,
however, characteristics of the entire waveform of an event.
In our case, constant window size with start and end regard-
less of event start and end sacrifices this information, and the
classifier therefore relies on spectral features. However, the
spectral content of earthquakes and slope failures at our site
is highly similar, which complicates a correct classification
(Fig. 2). This is illustrated by the univariate distributions and
correlations in Fig. 7c, which show large overlaps between
the classes, even for the most discriminating features.

Despite the loss of several waveform features, the continu-
ous approach outperforms the two-step approach in our case.
We attribute the enhanced performance of the continuous ap-
proach to the reduced parameter tuning effort: In the two-step
approach, the performance of the classifier is strongly influ-
enced by the STA / LTA detector’s accuracy. Tests show that
a manually picked catalog achieves up to a 15 % higher ac-
curacy than the same catalog compiled with an STA / LTA
algorithm.

Even though it is not a focus of this study, we note that
STA / LTA detection algorithms tuned to detect short signals
(several tens of seconds) miss events of long duration and
gradual amplitude increase, such as debris flows, volcanic
tremors, lahars, and glacier lake outburst floods. Coviello
et al. (2019) show that with a window size of 10 and 100 s
for STA and LTA, respectively, debris flows can be detected,
excluding other events like earthquakes. However, this also
excludes the detection of short slope failure signals. The con-
tinuous approach is capable of detecting such events and
is therefore applicable in multiple contexts and at different
sites. For example, intense precipitation raises the noise level
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by an increase in runoff and, consequently, seismogenic sed-
iment transport (Tsai et al., 2012; Burtin et al., 2016). Simi-
larly, snow cover and strong temperature fluctuations can af-
fect the instrument itself and change the noise level. A pre-
liminary implementation of a classifier with a fourth class
called runoff trained on 2 d of increased water discharge
(measured with gauges) found two additional days of peak
discharge. Using the two step-method of STA / LTA requires
a second STA / LTA algorithm with its own parameters to de-
tect these signals. Consequently, applying a continuous ran-
dom forest in different circumstances potentially requires lit-
tle effort, as there is no need to fine-tune the detection algo-
rithm while improving the overall results over the two-steps
approach.

5.4 Test on 2019 Pizzo Cengalo data

The continuous random forest correctly classifies events in
the test data with a high SNR. A slope failure that was ob-
served by hikers on 14 August was classified as noise. Often
events create dust clouds that are easily noticeable despite a
small mass-movement volume. The misclassification likely
results from a low SNR (Fig. 10), and hence the probably
relatively small volume of the event, as all windows contain-
ing the event were classified as noise. For most waveform
and spectral features, especially the most discriminating ones
(feature importance analysis), values of time windows con-
taining the slope failure signal do not differ from values of
windows that contain only noise. Filtering of the waveform
to minimize noise is difficult, as the frequency band of the
slope failure coincides with the primary noise. Furthermore,
the automatic-camera pictures show no apparent detachment
zone (Fig. 8). This either means that the break-off happened
outside of the camera field or validates our assumption of a
small-volume event.

Two of the events classified as slope failure are snow
avalanches in April 2019 (Fig. 8). At this time, Pizzo Cen-
galo’s active slope was partially covered by snow. As both
avalanches happened during snowfall periods with obscured
view from the automated camera to Pizzo Cengalo, the events
were only validated by pictures several days after the ac-
tual event. The random forest classifier was only trained on
data from the summer period, and therefore snow avalanches
were not part of the training data set. However, the seismic
signature of snow avalanches is highly similar to those of
other mass movements (e.g., Suriñach et al., 2001; van Her-
wijnen and Schweizer, 2011; Heck et al., 2018). This also
validates our assumption that signal differences between dif-
ferent mass movements are less prominent than differences
associated with noise and earthquakes. Hence, for training
purposes, snow avalanches could be included in the slope
failure class. This would allow the detection of slope fail-
ure events in winter and in summer months and increase the
number of events in the slope failure class, resulting in a less
imbalanced training data set.

We chose a minimum of three consecutive windows clas-
sified as slope failure for a slope failure event detection. If we
were to increase the number to four, the number of slope fail-
ure event detections would be lowered to four. Out of these
four, only one is an actual slope failure, and three are earth-
quakes. If we were to decrease the number of consecutive
windows that need to be classified as slope failure to one,
three more earthquakes would be detected as a slope failure
event. Even by lowering the number of windows, the missed
slope failure event would still not be detected. Thus, the
classifiers’ performance in correctly classifying three slope
failure events is overshadowed by the four false alarms de-
spite the consecutive window threshold. For operational use,
a false-alarm ratio> 50 % is not acceptable as operators will
lose confidence in the classifier.

In a promising approach, Hammer et al. (2017) use hid-
den Markov models to detect snow avalanches by training a
background model from continuous seismic data and using
seismic signals of only one avalanche to distinguish noise
from avalanches. However, the model was only tested on 5 d
of data. Continuing with this approach, Heck et al. (2018)
classify more than 100 d and find that, for a reliable classi-
fication with a small number of false alarms, a daily update
of the background model as well as extensive array-based
post-processing is necessary. With our approach, using ran-
dom forest, no retraining of the background model is nec-
essary, and thus the computational cost for a single param-
eter tuning is negligible. For operational use at the Pizzo
Cengalo site, array-based post-processing as proposed by
Heck et al. (2018) is not possible. Amongst other array-based
post-processing steps, Heck et al. (2019) include detections
from a seismic station 14 km away from the test site in the
decision process to discriminate between noise signals and
avalanches. We explore this approach with our classification
problem of earthquakes falsely classified as slope failures.
We train a model for a seismic station of the Swiss Seis-
mological Service (CH.FIESA) located 130 km away from
Pizzo Cengalo. At this distance local and regional earth-
quakes that were misclassified as slope failures at Pizzo Cen-
galo are still recorded, but not slope failures. We use the
EMSC earthquake catalog to compile a training data set con-
taining 45 earthquakes and 513 noise samples in 2018. We
then train the model on 20 s windows of seismic data. For
the decision-making process, we test the trained model on
seismic data recorded when a slope failure was classified at
Pizzo Cengalo in 2019. All four earthquakes falsely clas-
sified as slope failures at Pizzo Cengalo were classified as
earthquakes at FIESA. All time windows around the slope
failures at Pizzo Cengalo were classified as noise at FIESA.
Therefore, a simple inclusion of a station at a regional dis-
tance to Pizzo Cengalo reduced the false alarms to zero.

Our approach is computationally inexpensive, as the clas-
sification model only has to be trained once. From there on,
computational power is only needed to compute features of
the 40 s windowed seismic data. For this near-real-time sim-
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ulation, we used a standard machine (2017, Inter Core i7),
which was able to compute all features and classify the win-
dowed data within 3 s. Combined with the consecutive win-
dow threshold, this allows for a short warning time within
tens of seconds after the event start.

5.5 Classifier transferability

For future applications, a key question is how a classifier
trained on one data set can be transferred to other environ-
ments and study sites. Especially for sites previously not
monitored, a classifier trained on other sites could give a head
start in seismic monitoring. Figure 11 clearly shows that a
classifier trained on one site and tested on another performs
poorly. However, for both the Illgraben and the Pizzo Cen-
galo data set, a classifier trained on both data sets increases
the test scores for all classes, and especially the minority
class, compared to a classifier only trained on the respec-
tive data set. Therefore, we suggest that cross-context train-
ing and data set amalgamation has the potential to improve
classification outcome and should be investigated in future
work.

6 Conclusions

In this study, we apply a random forest classifier on win-
dowed seismic data to detect and distinguish between noise
and seismic signals of slope failures and earthquakes. We test
our workflow on two data sets and explore ways to improve
its performance on the imbalanced data sets. The improve-
ment techniques allow us to overcome an obstacle that often
occurs in natural-hazard detection: the deficiency of train-
ing data. The advantage of random forest compared to previ-
ously suggested approaches using hidden Markov models is
its simplicity and relative ease of implementation in terms of
parameter tuning, post-processing, and computational cost.

We developed a new method to process continuous data
streams in near-real time, which combines detection and
identification of rare events. Additionally, this algorithm can
outperform a two-step STA / LTA detector and event classi-
fier. The high number of true positives gives us confidence
to detect slope failures. However, sub-optimal network con-
figuration, similar frequency content generated by different
sources, and low SNR lead to a high false-alarm rate. Inclu-
sion of classification results from a second seismic station at
regional distance to the study site significantly reduces false
positives and is therefore advised for operational use.

We show that two different data sets run into two different
types of problems: low SNR of targeted class and an imbal-
anced data set. Training data manipulation and small adjust-
ments to the classifier can both mitigate poor classification
results due to an imbalanced data set.

Our approach enables us to detect the occurrence of rare
events of high interest in a large data set of more than a mil-
lion windowed seismic signals. Our model, trained on rock-
slope failures, also detected snow avalanches. It therefore
seems that this method is well suited to detect mass move-
ments in general.

Manual review of seismic data is a tedious task; especially
for non-experts, uncertainty and misclassification rates can
be high. An automatic classifier, however, can run in the
background on a standard machine (in our case 2017, In-
tel Core i7) and alert stakeholders in the case of an event
classified as slope failure. Our implementation of a machine
learning algorithm for seismogenic mass-movement detec-
tion may therefore provide valuable support to natural-hazard
management in the future.
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Appendix A: Slope failure signals

Figure A1. Seismic signals, spectrograms, and spectra of four additional slope failure events in 2018 used for training. Spectrograms have
been computed with a window length of 128 samples, an overlap of 120 samples, and an FFT length of 2048.

Figure A2. Confusion matrix of initial test of random forest on the Pizzo Cengalo data set. (a) All earthquakes lumped into one class.
(b) Earthquakes divided into local and regional or teleseismic earthquakes.
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Appendix B: List of computed features
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Table B2. Number of events and number of windowed seismic data (20 s windows as an example) of the training and test data set of Pizzo
Cengalo and Illgraben.

Events in data set Number of 20 s windows

Pizzo Illgraben Pizzo Illgraben
Cengalo Cengalo

Training data Noise 1025 222 2095 473
Slope failures 3 59 76 337
Earthquakes 17 66 438 674

Test data Noise 438 85 836 160
Slope failures 2 31 54 170
Earthquakes 13 34 373 373

Table B3. Random forest parameters.

Number of trees 2000
Split quality measure Gini criterion
Minimum number of samples required to be a leaf node 4
Maximum depth of a tree 60
Minimum number of samples for an internal node to be split 2
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