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Generative adversarial networks and variational autoencoders (VAEs) provide impressive

image generation fromGaussian white noise, but both are difficult to train, since they need

a generator (or encoder) and a discriminator (or decoder) to be trained simultaneously,

which can easily lead to unstable training. To solve or alleviate these synchronous training

problems of generative adversarial networks (GANs) and VAEs, researchers recently

proposed generative scattering networks (GSNs), which use wavelet scattering networks

(ScatNets) as the encoder to obtain features (or ScatNet embeddings) and convolutional

neural networks (CNNs) as the decoder to generate an image. The advantage of GSNs

is that the parameters of ScatNets do not need to be learned, while the disadvantage

of GSNs is that their ability to obtain representations of ScatNets is slightly weaker than

that of CNNs. In addition, the dimensionality reduction method of principal component

analysis (PCA) can easily lead to overfitting in the training of GSNs and, therefore,

affect the quality of generated images in the testing process. To further improve the

quality of generated images while keeping the advantages of GSNs, this study proposes

generative fractional scattering networks (GFRSNs), which usemore expressive fractional

wavelet scattering networks (FrScatNets), instead of ScatNets as the encoder to obtain

features (or FrScatNet embeddings) and use similar CNNs of GSNs as the decoder

to generate an image. Additionally, this study develops a new dimensionality reduction

method named feature-map fusion (FMF) instead of performing PCA to better retain the

information of FrScatNets,; it also discusses the effect of image fusion on the quality of

the generated image. The experimental results obtained on the CIFAR-10 and CelebA

datasets show that the proposed GFRSNs can lead to better generated images than the

original GSNs on testing datasets. The experimental results of the proposed GFRSNs

with deep convolutional GAN (DCGAN), progressive GAN (PGAN), and CycleGAN are

also given.

Keywords: generative model, fractional wavelet scattering network, image generation, image fusion,

feature-map fusion
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INTRODUCTION

Generative models have recently attracted the attention of
many researchers, and they are widely used in image synthesis,
image restoration, image inpainting, image reconstruction, and
other applications. Many generative models have been proposed
in the literature. They can be roughly classified into two
types (Goodfellow et al., 2014): explicit density and implicit
density models.

Among explicit density generative models, variational auto-
encoders (VAEs) (Kingma and Welling, 2014) and their variants
(Rezende et al., 2014; Salimans et al., 2015; Gregor et al., 2018)
are most likely the most commonly used models, since they
have useful latent representation, which can be used in inference
queries. Kingma and Welling (2014) were the first to propose
VAEs, which train an encoder and decoder simultaneously
and can perform efficient inference and learning in directed
probabilistic models and in the presence of continuous latent
variables with intractable posterior distributions. Salimans et al.
(2015) bridged the gap between Markov chain Monte Carlo
(MCMC) and VAEs, and incorporated one or more steps
of MCMC into variational approximation. Sohn et al. (2015)
proposed a conditional VAE (CVAE), which joins existing label
information in training to generate corresponding category data.
Rezende and Mohamed (2015) introduced a new approach for
specifying flexible, arbitrarily complex, and scalable approximate
posterior distributions and made a clear improvement in the
performance and applicability of variational inference. Sønderby
et al. (2016) presented a ladder variational autoencoder, which
uses a process similar to a ladder network and recursively
corrects the generation distribution based on a data-independent
approximate likelihood. Higgins et al. (2017) presented a β-
VAE, which is a modification of a variational autoencoder
(VAE), with special emphasis on discovering disentangled
latent factors. Oord et al. (2017) proposed a simple yet
powerful generative model that learns discrete representations
and allowed the model to circumvent issues of posterior
collapse. Gregor et al. (2018) proposed temporal difference
VAE (TD-VAE), which is a generative sequence model that
learns representations containing explicit beliefs about states
in several steps into the future Razavi et al. (2019) proposed
vector quantized variational autoencoder (VQ-VAE), which
augments with powerful priors over latent codes and is able
to generate samples with a quality that rival those of state-
of-the-art GANs on multifaceted datasets, such as ImageNet.
Simonovsky and Komodakis (2018) proposed Graph VAE,
sidesteps the hurdles of linearization of discrete structures by
outputting a probabilistic fully connected graph of a predefined
maximum size directly at once. For more references on VAEs, see
Blei et al. (2017).

Among implicit density generative models, generative
adversarial networks (GANs) (Goodfellow et al., 2014) and their
variants (Chen et al., 2016; Radford et al., 2016) are probably
the most commonly used models, since they provide better
generated images than other generative models. Goodfellow et al.
(2014) were the first to propose GANs, which estimate generative
models via an adversarial process, where a generative model G

and a discriminative model D are trained simultaneously without
the need for Markov chains or unrolled approximate inference
networks during either training or the generation of samples.
However, the application of GANs to real-world computer vision
problems still encounters at least three significant challenges
(Wang et al., 2021): (1) high-quality image generation; (2)
diverse image generation; and (3) stable training. Therefore,
many variants of GANs have been proposed to handle the
three challenges. The variants can be roughly classified into two
groups (Wang et al., 2021): architecture variant GANs and loss
variant GANs.

In terms of architecture variant GANs, for example, Radford
et al. (2016) proposed deep convolutional GAN (DCGAN),
which uses a convolutional neural network (CNN) as the
discriminator D and deploys a deconvolutional neural network
architecture for G; the spatial upsampling ability of the
deconvolution operation enables the generation of images with
higher resolution compared with the original GANs. Mirza
and Osindero (2014) proposed conditional GAN (CGAN),
which imposes a condition of additional information, such as
a class label, to control the process of data generation in a
supervisedmanner. Chen et al. (2016) presented InfoGAN, which
decomposes an input noise vector into a standard incompressible
latent vector and another latent variable to capture salient
semantic features of real samples. Karras et al. (2018) presented
progressive GAN (PGAN) for generative high-resolution images
using the idea of progressive neural networks (Rusu et al., 2017),
which does not suffer from forgetting and is able to deploy prior
knowledge via lateral connections to previously learned features.
Karras et al. (2020a,b) proposed StyleGAN, which leads to
an automatically learned, unsupervised separation of high-level
attributes and stochastic variation in generated images and, thus,
enables intuitive, scale-specific control of the synthesis. More
recently, Hudson and Zitnick (2021) introduced the Generative
Adversarial Transformer (GANformer), which is a generalization
of the StyleGAN and a simple yet effective generalization of the
vanilla transformer, for a visual synthesis task.

In terms of loss-variant GANs, for example, Arjovsky et al.
(2017) proposed Wasserstein GAN (WGAN), which uses the
Wasserstein distance as the loss measure for optimization instead
of Kullback–Leibler divergence. Gulrajani et al. (2017) proposed
an improved method for training the discriminator for aWGAN,
by penalizing the norm of discriminator gradients with respect to
data samples during training rather than performing parameter
clipping. Nowozin et al. (2016) proposed an alternative cost,
which is a function of the f-divergence, for updating the
generator, which is less likely to saturate at the beginning
of training. Zhu et al. (2017) proposed CycleGAN for the
task of image-to-image translation. Qi (2020) presented loss-
sensitive GAN (LS-GAN), which trains the generator to produce
realistic samples by minimizing the designated margins between
real and generated samples. Miyato et al. (2018) proposed
spectral normalization GAN (SN-GAN), which uses a weight
normalization technique to train the discriminator more stably.
Brock et al. (2019) proposed BigGAN, which uses hinge loss
instead of Jensen–Shannon divergence and a large-scale dataset
to train the generator to produce more realistic samples.
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Although GANs and VAEs are great generative models, they
raise many questions. A significant disadvantage of VAEs is
that the resulting generative models produce blurred images
compared with GANs, since the quality of VAEs crucially relies
on the expressiveness of their inference models. A significant
disadvantage of GANs is that the training process is very difficult
and may lead to unstable training and model collapse. To
design a network that can maintain the characteristics of high-
quality generated images of GANs as much as possible while
reducing the training difficulty of GANs, Angles and Mallat
(2018) proposed generative scattering networks (GSNs), which
use wavelet scattering networks (ScatNets) (Bruna and Mallat,
2013) as the encoder to obtain features (or ScatNet embeddings)
and the deconvolutional neural network of DCGAN (Radford
et al., 2016) as the decoder to generate an image. The advantage
of GSNs is that there is no need to learn the parameters of
ScatNets; therefore, the difficulty of training is reduced when
compared with DCGAN, while the disadvantage of GSNs is that
generated images can lose details, which affects the quality of
the generated images. After careful inspection, we determined
that the sources of relatively low-quality generated images of
GSNs include at least two aspects: (1) the expression ability of
ScatNets is slightly weaker than that of CNNs used in DCGAN;
(2) applying PCA (Abdi and Williams, 2010) to reduce the
dimension of the feature map of ScatNets in the encoder part
of GSNs leads to an overfitting problem in the testing process of
GSNs. This finding leads to the central question of our study:

Can we change the feature extraction method of ScatNets
to a more powerful one that still does not need learning? Can
we develop a more suitable dimensionality reduction method to
solve the overfitting problem in the testing process of GSNs?

In an attempt to solve the above questions, in this study,
we propose generative fractional scattering networks (GFRSNs),
which can be seen as an extension of GSNs. The contributions of
this article are as follows:

1) We use, for more expressiveness, fractional wavelet scattering
networks (FrScatNets) (Liu et al., 2019) instead of ScatNets
(Bruna and Mallat, 2013) to extract features of images, and
we use image fusion (Liu et al., 2016; Yang et al., 2017)
in GFRSNs to effectively improve the visual quality of the
generated images.

2) We propose a new dimensionality reduction method named
feature-map fusion (FMF), which is more suitable for
reducing the feature dimension of FrScatNets than PCA, since
the FMF method greatly alleviates the overfitting problem on
the testing datasets using GFRSNs.

3) The image generated by the proposed GFRSN on the test set
is better than that produced by the original GSNs.

The remainder of this article is organized as follows: In section
Generative Scattering Networks (GSNs), wavelet scattering
networks and the architectural components of GSNs are briefly
introduced. The main architectural components of GFRSNs,
which include fractional wavelet scattering networks, the FMF
dimensionality reduction method and generative networks, and
an image fusion method are introduced in section Generative
Fractional Scattering Networks (GFRSNs). The performance of

FIGURE 1 | Structure of generative scattering networks (GSNs) with principal

component analysis (PCA) dimensionality reduction method.

GFRSNs is analyzed and compared with that of the original GSNs
in section Numerical Experiments. The conclusions and further
discussion are presented in section Conclusions.

GENERATIVE SCATTERING NETWORKS
(GSNS)

In this section, we first briefly recall the generative scattering
networks (GSNs) (Angles and Mallat, 2018), whose structure is
shown in Figure 1.

The input Mth-order tensor X ∈ R
N1×N2×···×NK , where

Rdenotes the real domain and eachNi,i = 1, 2, 3, · · ·K, addresses
the i-mode of X , and is first fed into the feature extraction part of
the encoder to obtain the ScatNet features ∈ R

M1×M2×···×ML .
The next part of the encoder aims to map the features to
a Gaussian latent variable z ∈ R

U , which is accomplished
by whitening and projection to a lower-dimensional space.
Inspired by Zou and Lerman (2019), we refer to this process as
Gaussianization. Decoder G can be seen as a generator and is
trained byminimizing the reconstruction loss between the output
X̃ ∈ R

N1×N2×···×NK and input X . In other words, the generator
calculation is regarded as the inverse problem of the scattering
transform. The main components of GSNs include ScatNets,
Gaussianization with PCA, and the generative network G. These
components are recalled as follows.

Wavelet Scattering Networks (ScatNets)
Let the complex bandpass filter ψλ be constructed by scaling and
rotating a filter ψ , respectively, by2j and δ, as follows (Bruna and
Mallat, 2013):

ψλ (t) = 22jψ
(

2jδ−1t
)

, λ = 2jδ, (1)

with 0 ≤ j ≤ J − 1, and δ = kπ/K, k = 0, 1, ...,K − 1.
The wavelet-modulus coefficients of x are given by:

U [λ] x = |x ∗ ψλ| . (2)

The scattering propagator U
[

p
]

is defined by cascading wavelet-
modulus operators

U
[

p
]

x = U [λm] · · ·U [λ2]U [λ1] x

=

∣

∣

∣

∣

∣

∣

∣

∣

∣x ∗ ψλ1
∣

∣ ∗ ψλ2

∣

∣

∣
· · · ∗ ψλm

∣

∣

∣

∣

, (3)
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where p = (λ1, λ2, .., λm) are the frequency-decreasing paths;
in other words, |λk| ≥

∣

∣λk+1

∣

∣ , k = 1, 2, ...,m − 1. Note that
U[∅]x = x, and∅ expresses the empty set.

The scattering operator SJ performs spatial averaging on a
domain whose width is proportional to 2J :

S
[

p
]

x = U
[

p
]

x ∗ φJ = U [λm] · · ·U [λ2]U [λ1] x ∗ φJ

=

∣

∣

∣

∣

∣

∣

∣

∣

∣x ∗ ψλ1
∣

∣ ∗ ψλ2

∣

∣

∣
· · · ∗ ψλm

∣

∣

∣

∣

∗ φJ . (4)

The network nodes of layer m correspond to the set Pmof all
paths p = (λ1, λ2, .., λm) of length m. This m-th layer stores
the propagated signals

{

U
[

p
]

x
}

p∈Pm
and outputs the scattering

coefficients
{

S
[

p
]

x
}

p∈Pm
. The output is obtained by cascading

the scattering coefficients of every layer.
Note that x in (2) can be one-dimensional data x ∈ R

N1 ,
two-dimensional data X ∈ R

N1×N2 , and third-order tensor X ∈

R
N1×N2×N3 , which can be seen as N3 two-dimensional data X ∈

R
N1×N2 , and ScatNet addresses with these Xs one by one and

then superimposes the results as output features. According to
Mallat (2012), if we feed the input X ∈ R

N1×N2×N3 into ScatNet,
then we can obtain ScatNet features (or ScatNet embeddings)
as follows:

= S
[

p
]

X ∈ R
N3×(1+LJ+L2J(J−1)/2)×(N1/2

J)×(N2/2
J), (5)

whereN3 is the number of input sample channels, andN1 andN2

are the width and height of the input sample, respectively. N1/2
J

and N2/2
J are the width and height of the output features. J is a

scale factor, and L is the number of rotation angles. Note that the
number of feature maps in the first, second, and third layers is 1,
LJ, and L2J(J-1)/2, respectively.

Gaussianization With PCA
As shown in Figure 1, the last step of the encoder maps the
transformed features in such a way that we can sample from
the Gaussian distribution to generate new images, as required
by the generator. Specifically, let { }Tt=1 be the output features
of the ScatNet embedding, and let be the representing matrix
of { }Tt=1, while z is the latent variable of the generator. As
advocated in Angles and Mallat (2018), z can be interpreted as an
address, with a dimension d lower than that in the input image.
Hence, to get a lower-dimensional embedding of the output
features, one can perform principal component analysis (PCA)
(Abdi andWilliams, 2010) to project the features of the scattering
transform to a lower-dimensional space.

Next, to whiten them, we choose u = 1
T

∑

T
t=1 ,

∑

=
1
T

∑

T
t=1

(

− u
) (

− u
)∗
, and the whitening map A =

∑−1/2 (

Id − u
)

.
Hence, the resulting embedding of the encoder is

z =
∑−1/2 (

− u
)

. (6)

After the above process, the whitened sample is uncorrelated,
and their distribution will be close to a normal one with identity
covariance (Angles and Mallat, 2018), which is exactly what we
want to feed to the generator.

Generator Networks in GSNs
The generative network G of GSNs is a neural one, which
is similar to the generator of DCGAN (Radford et al., 2016),
which inverts the whitened scattering embedding on training
samples. The generator network G includes a fully connected
layer (FC), batch normalization layer (BN) (Ioffe and Szegedy,
2015), bilinear upsampling (Upsample) layer, and convolutional
layer (Conv2d) with a kernel size of 7 × 7. Except for the last
layer, which uses the tanh activation function, the others use the
default ReLU (Nair and Hinton, 2010) activation function.

Generative scattering networks with PCA as the
dimensionality reductional method choose the L1-norm
loss function and solve the following optimization problem
(Zhao et al., 2017):

g1 = min LossL1
(

X , X̃
)

= min
1

N

N
∑

i=1

∣

∣

∣
X
(i) − X̃

(i)
∣

∣

∣
, (7)

where X represents the input data, X̃ represents the generative
data, X (i) represents the i-th input sample, and X̃

(i) represents
the i-th generative sample:

X̃ = G
(

PCA
(

S
[

p
]

X
))

, (8)

where S[p]X denotes the feature extraction process with
ScatNets, and PCA(.) represents that the feature dimensionality
reduction method is PCA. G(.) represents the generative
network G. The optimization problems in (7) are then solved
with the Adam optimizer (Kingma and Ba, 2015) using the
default hyperparameters.

GENERATIVE FRACTIONAL SCATTERING
NETWORKS (GFRSNS)

In this section, we introduce the proposed generative fractional
scattering networks (GFRSNs), whose structure is shown in
Figure 2.

The input X ∈ R
N1×N2×···×NK is first fed into the fractional

wavelet scattering networks (FrScatNets) to obtain FrScatNet
features (or FrScatNet embeddings)

α
∈ R

M1×M2×···×ML ,
whose dimensions are then reduced by the proposed feature-
map fusion (FMF) method to obtain an implicit tensor α ∈

FIGURE 2 | Structure of generative fractional scattering networks (GFRSNs).
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FIGURE 3 | Fractional wavelet scattering network and the feature-map fusion dimensional reduction method.

R
O1×O2×···×OK , which is then fed into the generator G to

obtain the generated output tensor X̃α ∈ R
N1×N2×···×NK . In

other words, the generative network G is seen as the inverse
problem of FrScatNets. The main components of GFRSNs
include FrScatNets, Gaussianization with feature-map fusion
dimensionality reduction method, and the generative network G.
In the following, these components of GFRSNs are introduced.

Fractional Wavelet Scattering Networks
(FrScatNets)
In this subsection, fractional wavelet scattering networks
(FrScatNets) (Liu et al., 2019) are briefly introduced. Similar to
(2), the fractional wavelet modulus coefficients of x are given by:

Uα [λ] x = |xΘαψλ| , (9)

where Θα is the fractional convolution defined
by Shi et al. (2010);

x (t)Θαψλ (t) = e−
j
2 t

2 cot θ
[(

x (t) e
j
2 t

2 cot θ
)

*ψλ (t)
]

, (10)

where the parameter α is the fractional order and θ = απ /2
represents the rotation angle. Note that when α= 1, the fractional
convolution in (10) reduces to conventional convolution in (2).

The fractional scattering propagator Uα
[

p
]

is defined by
cascading fractional wavelet modulus operators

Uα
[

p
]

x = Uα [λm] · · ·Uα [λ2]Uα [λ1] x

=

∣

∣

∣

∣

∣

∣

∣

∣

∣xΘαψλ1
∣

∣Θαψλ2

∣

∣

∣
· · ·Θαψλm

∣

∣

∣

∣

, (11)

where p = (λ1, λ2, .., λm)are the frequency-decreasing paths;
in other words, |λk| ≥

∣

∣λk+1

∣

∣ , k = 1, 2, ...,m − 1. Note that
Uα [∅] x = x, and∅ expresses the empty set.

The fractional scattering operator Sα performs spatial
averaging on a domain whose width is proportional to 2J :

Sα
[

p
]

x = Uα
[

p
]

xΘαφJ = Uα [λm] · · ·Uα [λ1] xΘαφJ

=

∣

∣

∣

∣

∣

∣

∣

∣

∣xΘαψλ1
∣

∣Θαψλ2

∣

∣

∣
· · ·Θαψλm

∣

∣

∣

∣

ΘαφJ . (12)

The structure of FrScatNets is shown on the left of Figure 3.
The network nodes of the layer m correspond to the set Pm

of all paths p = (λ1, λ2, .., λm) of length m. This m-th layer
stores the propagated signals

{

Uα
[

p
]

x
}

p∈Pm
and outputs the

fractional scattering coefficients
{

Sα
[

p
]

x
}

p∈Pm
. The output is

obtained by cascading the fractional scattering coefficients of
every layer. Note that when α = 1, the FrScatNets in (12) default
to conventional ScatNets in (4), since the fractional convolution
in (10) reduces to conventional convolution in (2).

Note that FrScatNets retain the advantages of ScatNets, for
example, no need for learning, translation-invariant property,
linearized deformations, and certain parameters. Compared with
ScatNets, FrScatNet adds a free parameter α, which represents
fractional order. With α continuously growing from 0 to 2,
FrScatNets can show the characteristics of an image from time
domain to frequency domain. Thus, FrScatNets provide more
fractional domain choices for the feature extraction of input data.
Furthermore, for the image generation task in this study, we can
obtain as many generated images from FrScatNet embeddings
as different fractional orders αi, and then they can be fused to
further improve the quality of the generated images.
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If we feed the input X ∈ R
N1×N2×N3 into the FrScatNet,

then we can obtain the features of FrScatNet (or FrScatNet
embeddings) as follows:

α
= Sα

[

p
]

X ∈ R
N3×(1+LJ+L2J(J−1)/2)×(N1/2

J)×(N2/2
J). (13)

Note that the size of output features of FrScatNets is the same as
that of ScatNets, whose size is shown in (5).

Gaussianization With FMF
In this subsection, we introduce a new method called FMF
to reduce the dimensionality of the features after a fractional
scattering transformation. We propose such an algorithm based
on the hierarchical tree structure of features extracted by the
fractional scattering transform to replace PCA to map the
features to a low-dimensional space. More specifically, since the
output features of different layers from the fractional scattering
transform have a hierarchical structure, which is not considered
in the PCA algorithm, we need a dimensionality reduction
method that can make full use of this hierarchical information.
The number of feature maps in the first, second, and third layers
is 1, LJ, and L2J(J-1)/2, respectively. Obviously, the third layer
has the largest number of feature maps. Therefore, we fuse only
the feature maps from the third layer of the fractional scattering
transform to significantly reduce the data dimension. The fusion
method is very simple: we obtain a new feature map by simply
taking the average of every L(J-1)/2 feature map, which obtains LJ
feature maps after applying the FMF method to the output of the
third layer of FrScatNets. The dotted box on Figure 3 illustrates
the proposed FMF method.

Therefore, an input tensor X ∈ R
N1×N2×N3 is fed into the

FrScatNets to obtain FrScatNet features
α
in (13), which are

then processed by the FMF method, obtaining an implicit tensor

α = FMF
(

α

)

∈ R
N3×(1+LJ+LJ)×(N1/2

J)×(N2/2
J), (14)

whose size is significantly smaller than the size shown in
(13) without using the FMF method. Note that FMF(.) means
performing the FMF method.

The obtained implicit tensor α is then input to the generator
network G, described below, to obtain the generated image.

Generative Networks in GFRSNs
The generative network G of GFRSNs is also a deconvolutional
neural network that has a generator similar to that of DCGAN
(Radford et al., 2016), which inverts fractional scattering
embeddings on training samples. The generative network G of
GFRSNs also includes a fully convolutional layer (Fully Conv)
(Long et al., 2015) and several convolution blocks that consist
of bilinear upsampling (UP), two convolutional layers (Conv)
with a 3 × 3 kernel size, batch normalization, and ReLU (the
activation function of the last convolution layer is tanh). GFRSNs
also choose the L1-norm loss function and solve the following
optimization problem:

g2 = min LossL1
(

X , X̃α
)

= min
1

N

N
∑

i=1

∣

∣

∣
X
(i) − X̃

(i)
α

∣

∣

∣
, (15)

where X̃α represents the generative data and X̃
(i)
α . represents the

i-th generative sample, and

X̃α = G
(

FMF
(

Sα
[

p
]

X
))

, (16)

where Sα[p]X denotes the feature extraction process with
FrScatNets, FMF(.) represents the dimensionality reduction
process, and G(.) represents the generative network.

The optimization problem in (15) is then solved with the
Adam optimizer (Kingma and Ba, 2015).

Image Fusion
In contrast to GSNs, the proposed generative fractional scattering
networks (GFRSNs) embed the input using FrScatNets, which
allows for deriving many embeddings, since FrScatNets have
an additional fractional order α; therefore, we can embed the
input in different fractional order domains. These FrScatNet
embeddings may extract many different but complementary
features from the input. We can effectively use these embeddings
to generate many images and further improve the quality of
the synthesized images using fusion methods. In this study, as
shown at the bottom of Figure 2, we use a simple image fusion
method that is weighted average. As examples, we simply use
the following:

X̃α1 ,α2 = λX̃α1 + (1− λ) X̃α2 , (17)

where λ is the balanced parameter, which is set here to 0.5.

NUMERICAL EXPERIMENTS

In this section, we evaluate the quality of the generated images
by the proposed GFRSNs by means of several experiments. The
quality of the generated images is evaluated with two criteria:
peak signal to noise ratio (PSNR) (Wang et al., 2003) and
structural similarity (SSIM) (Wang et al., 2004).

We performed experiments on two datasets that have different
levels of variability: CIFAR-10 (Krizhevsky, 2009) and CelebA
(Liu et al., 2015). The CIFAR-10 dataset includes 50,000 training
images and 10,000 testing images, whose sizes are 32 × 32 ×

3. In all the experiments on the CIFAR-10 dataset, after image
grayscale preprocessing, the number of rotation angles L is set to
8, and the fractional scattering averaging scale is set to 2J = 23 =
8, which means that we linearize translations and deformations
of up to 8 pixels. Therefore, the size of the output features from
FrScatNets according to Equation (13) is 1 × 217 × 4 × 4,
which is then, after the FMF method according to Equation (14),
reduced to 1 × 49 × 4 × 4 (the size of implicit tensor α).
In addition, the CelebA dataset contains thousands of images,
and we choose 65,536 training images and 16,384 testing images,
whose sizes are 128 × 12 8 × 3. In all the experiments on the
CelebA dataset, after image grayscale preprocessing, the number
of rotation angle L is set to 8, and the fractional scattering
averaging scale is set to 2J = 24 = 16, which means that we
linearize translations and deformations of up to 16 pixels. Thus,
the size of the output features from FrScatNets according to (13)
is 1 × 417 × 8 × 8, which is then, after FMF method according
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TABLE 1 | Core parameters of FrScatNet with and without feature

dimensionality reduction.

Parameter Descriptions Dataset

CIFAR-10 CelebA

N1 × N2 ×

N3

The size of input

image

32 × 32 × 1 128 × 128 × 1

J The fractional

scattering

averaging scale

3 4

L The number of

rotation angle

8 8

N3×(1+ LJ+
L2J(J−1)

2 )× N1

2J
×

N2

2J

The shape of

FrScatNets

features
α

1 × 217 × 4 × 4 1 × 417 × 8 × 8

N3 ×

(1+ 2× LJ)×
N1

2J
×

N2

2J

The shape of

implicit tensor
α

with FMF

1×49×4×4 1×65×8×8

to Equation (14), reduced to 1 × 65 × 8 × 8 (the size of implicit
tensor α). Table 1 shows the core parameters of FrScatNet and
its settings on the CIFAR-10 and CelebA datasets.

In the following, we first compare the visual quality of the
generated images with different feature dimensionality reduction
methods in the framework of GFRSNs. Then, we compare
the visual quality of the generated images with FrScatNets.
Finally, we compare the visual quality of the fused images and
unfused images. The following experiments are implemented
using PyTorch on a PC machine, which sets up an Ubuntu 16.04
operating system and has an Intel (R) Core(TM) i7-8700K CPU
with a speed of 3.7 GHz and 32 GB RAM, and has two NVIDIA
GeForce GTX1080-Ti GPUs.

Image Generative Results With Different
Dimensionality Reduction Methods
In this subsection, we compare the results on the quality of
generative images with two different dimensionality reduction
methods: the PCA method and the proposed FMF method. We
set the fractional orders to be α1 = α2 = 1, and use conventional
ScatNets to extract features from the input X for simplicity.

For the PCA-based GFRSNs, the flow chart is shown in
Figure 1. For the CIFAR-10 dataset, the size of the implicit vector
z is 49 × 4 × 4 = 784, and for the CelebA dataset, the size of the
implicit vector z is 65× 8× 8= 4,160. We use the PyTorch code
of generative scattering networks1 provided by Tomás Angles.
The PSNR and SSIM on the CIFAR-10 and CelebA datasets are
shown in the second columns of Tables 2, 3, respectively.

As shown in the two tables, the scores of PSNR (Train PSNR)
and SSIM (Train SSIM), both in the training dataset, are very
good for the PCA-based GFRSNs; however, their corresponding
values (test PSNR and test SSIM) in the testing dataset are slightly
low. This phenomenon indicates that an overfitting problem has
occurred using the PCA-based GFRSNs. We argue the reason
behind this phenomenon could be that the output feature of

1https://github.com/tomas-angles/generative-scattering-networks

TABLE 2 | Peak signal to noise ratio (PSNR) and structural similarity (SSIM) scores

of training and testing images from FrScatNets with fractional orders α1 = α2 = 1

on the CIFAR-10 dataset.

PCA Feature-Map Fusion Increased (%)

Train PSNR 23.08 20.1500 −12.69

Test PSNR 17.92 18.1000 1.00

Train SSIM 0.9428 0.8859 −6.08

Test SSIM 0.8206 0.8352 1.78

Increased means the percentages of relative improvements of FMF over principal

component analysis (PCA), the better results are shown in bold.

TABLE 3 | PSNR and SSIM scores of training and testing images from

FrScatNets with fractional orders α1 = α2 = 1 on the CelebA dataset.

PCA Feature-Map Fusion Increased (%)

Train PSNR 23.8124 22.7526 −4.45

Test PSNR 20.5312 19.7688 −3.71

Train SSIM 0.9529 0.944 −0.93

Test SSIM 0.9104 0.8993 −1.22

Increased means the percentage of relative improvements of FMF over PCA, the better

results are shown in bold.

FrScatNets
α
in (16) is a 4th-order tensor, which is performed

by PCA to obtain an implicit vector z. This process loses
correlations between various dimensions of the data. Therefore,
we consider using FMF as the dimensionality reduction method
to maintain the structures of the input data better.

For the proposed FMF-based GFRSNs, the flow chart is shown
in Figure 2. The size of the implicit tensor αi

is 1 × 49 × 4 ×

4 on CIFAR-10, and for the CelebA dataset, the size of implicit
tensor αi

is 1 × 65 × 8 × 8. The PSNR and SSIM on the
CIFAR-10 and CelebA datasets are shown in the third columns
of Tables 2, 3, respectively. As can be seen from the two tables,
train PSNR and train SSIM of the FMF-basedGFRSNs are slightly
worse than those of the PCA-based GFRSNs on the CIFAR-10
and CelebA datasets; however, the test PSNR and test SSIM of the
proposed FMF-based GFRSNs are better than those of the PCA-
based GFRSNs. For example, Test PSNR and Test SSIM have
relatively increased by 1 and 1.8%, respectively, when compared
with the PCA-based GFRSNs, on the CIFAR-10 dataset. However,
with regard to the CelebA dataset, Test PSNR and Test SSIM have
decreased by 3.71 and 1.22%, respectively, when compared with
the PCA-based GFRSNs. Nevertheless, the experimental results
still show that the overfitting problem on the testing datasets can
be alleviated with the FMF dimensionality reduction method.

Although the performance of the proposed FMF method on
theCIFAR-10 dataset is better than that of PCA and has a similar
generation ability on the CelebA dataset, more importantly, FMF
has better generalization performance under the framework of
GFRSNs. In other words, our generative model will not overfit
on the test set. However, in order to better reflect the role
of fractional scattering transformation and, hence, abolish the
influence of FMF, we still use the PCA method in the following
two experiments.
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TABLE 4 | Results with FrScatNets on the CIFAR-10 dataset.

(α1, α2) Fusion Test PSNR Increased (%) Test SSIM Increased (%)

Base line with

(α1, α2 ) =

(1.00,1.00)

No 18.1000 0 0.8352 0

(0.10,1.00) No 13.9738 −22.80 0.5442 −34.84

Yes 16.9597 −6.30 0.6974 −16.50

(0.40,1.00) No 18.8280 4.02 0.8514 1.94

Yes 18.9869 4.90 0.8970 7.40

(0.70,1.00) No 18.6614 3.10 0.8469 1.40

Yes 18.8421 4.10 0.8887 6.40

(1.30,1.00) No 18.6169 2.86 0.8462 1.32

Yes 18.8059 3.90 0.8870 6.20

(1.60,1.00) No 18.8209 3.98 0.8517 1.98

Yes 18.9688 4.80 0.8987 7.60

(1.90,1.00) No 14.0110 −22.59 0.5474 −34.46

Yes 16.9959 −6.10 0.7041 −15.70

(1.00,0.10) No 14.0099 −22.60 0.5498 −34.17

Yes 16.9054 −6.60 0.6941 −16.90

(1.00,0.40) No 18.9351 4.61 0.8550 2.37

Yes 18.9507 4.70 0.8978 7.50

(1.00,0.70) No 18.7289 3.47 0.8499 1.76

Yes 18.7335 3.50 0.8753 4.80

(1.00,1.30) No 18.6947 3.29 0.8434 0.98

Yes 18.5887 2.70 0.8753 4.80

(1.00,1.60) No 18.9056 4.45 0.8545 2.31

Yes 18.9507 4.70 0.8987 7.60

(1.00,1.90) No 14.0487 −22.38 0.5520 −33.91

Yes 16.9778 −6.20 0.7074 −15.30

Fusing

(0.40,1.00)

and

(1.60,1.00)

Yes 19.1589 5.85 0.8927 6.89

Some better results are shown in bold. In the second column, “No” means un-fused

image, and “Yes” means fused image. We also show the percentages of relative

improvements on Test PSNR and Test SSIM of FrScatNets of various fractional orders

(α1, α2 ) over the conventional ScatNets (the first row), respectively.

Image Generative Results With Different
Fractional Order α

In this subsection, we explore the impact of fractional order
α on the quality of the generated image using the framework
of GFRSNs shown in Figure 1. The other parameter settings of
FrScatNets are shown in Table 1. We choose the L1 loss function
in (15) and train the generator with the Adam optimizer using
the default hyperparameters.

In this subsection, we use a two-dimensional fractional Morlet
wavelet to construct the FrScatNets. For the two-dimensional
fractional wavelet, two fractional orders, α1 and α2, are needed to
determine the rotational angle. The angle is defined asθ = απ/2,
ranging from 0 toπ; thus, the fractional orders α1 and α2 change
from 0 to 2. To save computation time, we fix one order as 1
and the other order changes within the range 0–2 for computing
the fractional scattering coefficients. The chosen values are 0.1,
0.4, 0.7, 1, 1.3, 1.6, and 1.9. The above parameter settings are

TABLE 5 | Results with FrScatNets on CelebA dataset.

(α1, α2) Fusion Test PSNR Increased (%) Test SSIM Increased (%)

Base line with

(α1, α2 ) =

(1.00,1.00)

No 21.1668 0 0.9221 0

(0.10,1.00) No 18.3728 −13.2 0.7709 −16.4

Yes 21.0186 −0.7 0.9156 −0.7

(0.40,1.00) No 21.4631 1.1 0.9350 3.3

Yes 22.2040 5.3 0.9608 6.5

(0.70,1.00) No 21.3996 1.1 0.9525 2.3

Yes 22.3098 5.4 0.9820 6.2

(1.30,1.00) No 21.3785 1 0.9433 2.4

Yes 22.3098 5.4 0.9793 6.2

(1.60,1.00) No 21.4631 1.4 0.9571 3.8

Yes 22.3310 5.5 0.9839 6.7

(1.90,1.00) No 18.6268 −12 0.7866 −14.7

Yes 21.1456 −0.1 0.9219 −0.02

(1.00,0.10) No 18.2458 −13.8 0.7561 −18

Yes 20.9551 −1 0.9092 −1.4

(1.00,0.40) No 21.5055 1.6 0.9405 2

Yes 22.3098 5.4 0.9756 5.8

(1.00,0.70) No 21.2515 0.4 0.9249 0.3

Yes 22.2251 5 0.9700 5.2

(1.00,1.30) No 21.2303 0.3 0.9267 0.5

Yes 22.2251 5 0.9581 3.9

(1.00,1.60) No 21.4843 1.5 0.9433 2.3

Yes 22.3098 5.4 0.9765 5.9

(1.00,1.90) No 18.7115 −11.6 0.7912 −14.2

Yes 21.1732 0.03 0.9212 −0.1

Fusing

(0.40,1.00)

and

(1.60,1.00)

Yes 22.0770 4.3 0.9802 6.3

Some better results are shown in bold. In the second column, “No” means un-fused

image, and “Yes” means fused image. We also show the percentages of relative

improvements on Test PSNR and Test SSIM of FrScatNets of various fractional orders

(α1, α2) over the conventional ScatNets (the first row), respectively.

same as those in Liu et al. (2016). Note that FrScatNets reduce to
conventional ScatNets when α1 = α2 = 1. The PSNR and SSIM
of the generated images from FrScatNets on the CIFAR-10 and
CelebA datasets are shown in Tables 4, 5.

Generally, as shown in Table 4, best results are not obtained
using FrScatNets with (α1, α2) = (1, 1), which means that
FrScatNets with some fractional order choice of (α1, α2) obtain
better embeddings than the conventional ScatNets. For example,
both the PSNR and SSIM results are very good the FrScatNets
with (α1, α2) = (0.4, 1.00) were used and whose Test PSNR and
Test SSIM increased by 4.2 and 1.9%, respectively, compared with
those of the ScatNets.

For the CelebA dataset, as shown in Table 5, both the PSNR
and SSIM scores in the test set are also very good when
FrScatNets with (α1, α2) = (1.6, 1) are used. Indeed, Test PSNR
and Test SSIM increased by 1.4 and 3.8%, respectively, compared
with those of the ScatNets.
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FIGURE 4 | Generative images on CIFAR-10 dataset using FrScatNet embeddings. (A) Original training images; (B) generative training images using FrScatNets with

(α1, α2 ) = (0.4, 1); (C) generative training images using FrScatNets with (α1, α2) = (1, 1); (D) fused training image using FrScatNets with (α1, α2 ) = (0.4, 1 and (α1, α2)

= (1, 1); (E) original testing images; (F) generative testing images using FrScatNets with (α1, α2 ) = (0.4, 1); (G) generative testing images using FrScatNets with (α1,

α2) = (1, 1); (H) fused testing image using FrScatNets with (α1, α2 ) = (0.4, 1) and (α1, α2) = (1, 1).

The generative images on the CIFAR-10 dataset using
FrScatNets with (α1, α2) = (0.4, 1) and (α1, α2) = (1, 1) are
shown in Figure 4. The generative images on the CelebA dataset
using FrScatNets with (α1, α2)= (1.6, 1) and (α1, α2)= (1, 1) are
shown in https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

Image Generative Results With Image
Fusion
In this subsection, we explore the impact of image fusion on the
quality of the generated images using the framework of GFRSNs
shown in Figure 2.

Since conventional GSNs are a good baseline for the
framework of GFRSNs with different fractional orders (α1, α2),
as an example, we consider the case in which the generative
images from FrScatNets with different fractional orders (α1,
α2), where α1 and α2 are not simultaneously equal to 1.00, are
fused with the generative images from conventional ScatNets,
in other words, FrScatNets with fractional orders (α1, α2)
= (1, 1). Since the fractional parameters can have multiple
choices, naturally, we hope to explore the effect of image fusion
under different fractional parameters. All the fused images are
achieved using the average method shown in Equation (17),
and we choose λ = 0.5. The PSNR and SSIM results of

fused images on the CIFAR-10 dataset are shown in Table 4,
and those on the CelebA dataset are shown in Table 5. Note
that the results are shown in the row where the “Fusion
or not?” column is “Yes” in Tables 4, 5. As can be seen
from the two tables, the results of PSNR and SSIM for the
fused images are generally better than those for the unfused
images from FrScatNets with different fractional orders (α1, α2),
where α1 and α2 are not 1 at the same time. For example,
when the generative images from FrScatNets with (α1, α2) =
(0.4, 1) are fused with the generative images from ScatNets,
the Test PSNR and Test SSIM are increased from 18.828
and 0.8514 to 18.9869 and.897, respectively, on the CIFAR-
10 dataset. The results are also better than those of ScatNet-
based GFRSRNs, whose Test PSNR and Test SSIM are 18.1
and 0.8352, respectively. When the generative images from
FrScatNets with (α1, α2) = (1.6, 1) are fused with the generative
images from ScatNets, the test PSNR and test SSIM are increased
from 21.4632 and 0.9571 to 22.337 and 0.9839, respectively,
on the CelebA dataset. The results are also better than those
of ScatNet-based GFRSRNs, whose test PSNR and test SSIM
are 21.1668 and 0.944, respectively. The fused images on the
CIFAR-10 dataset are shown in Figures 4D,H and those on
the CelebA dataset are shown in https://mmlab.ie.cuhk.edu.hk/
projects/CelebA.html, respectively.

Frontiers in Neurorobotics | www.frontiersin.org 9 October 2021 | Volume 15 | Article 752752

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Wu et al. Fractional Wavelet-Based Generative Scattering Networks

We also consider the generative images from FrScatNets with
fractional orders (0.4, 1) and (1.6, 1), and the results are shown
in the last row of Tables 4, 5, respectively. As can be seen from
the two tables, the test PSNR and test SSIM are better than the
fusion results of fractional orders (1.6, 1) and (1, 1) on both the
CIFAR-10 and CelebA datasets.

The Deformation Property of the Proposed
GFRSNs
In this section, we evaluate the deformation property of the
proposed GFRSNs as generally done in GANs. Specifically, given
two images x1 and x2, we modify β to get the interpolated images:

xβ = G ((1− β) z1 + βz2) , forz1 = 8(x1) and z2 = 8(x2) ,

(18)

where 8(.) denotes the fixed embedding, that is, the fractional
scattering transform and Gaussianization process. The results are
shown in https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

As Angles and Mallat (2018) point out, the Lipschitz
continuity to deformations of the scattering network resulting in
the continuous deformation from one image to another image.
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html shows that
the proposed GFRSNs improve the capability to extract
information while maintaining the deformation properties when
compared with GSNs. On the other hand, we reproduce the
morphing properties of GANs without learning a discriminator.

Besides, we should note that the generated images have
strong similarities with those in the training set and, thus,
lead to some unrealistic results; this is partially due to the
autoencoder architecture of our model. Although under the
autoencoder architecture, regarding the generative model as an
inverse problem of FrScatNets, can eliminate our need to train
an encoder or a discriminator, however, within this supervised
paradigm, the generalization ability of the model may be limited
to some extent. Therefore, when we try to recover images from
unknown images, the results of the model will generate images
that are similar to ones in the training set.

Comparison Results With GANs
In this section, we compared the results of the proposed GFRSNs
with GANs on the CelebA dataset.

Comparison Results With DCGAN and PGAN
We compare the visual results of the proposed GFRSNs with
those of the DCGAN (Radford et al., 2016) and progressive
GAN (PGAN)2 (Karras et al., 2018), as shown in https://
mmlab.ie.cuhk.edu.hk/projects/CelebA.html, from which we can
see that DCGAN produces a certain degree of distortion.
On the contrary, the proposed GFRSNs and PGAN do not
show this kind of problem. PGAN generates more image
details than the proposed GFRSNs, and we think that the
reasons are:

(1) The proposed GFRSNs still belong to the autoencoder
architecture, which is generally inferior to that of the

2https://github.com/facebookresearch/pytorch_GAN_zoo

GANs in terms of image generation quality. However, the
autoencoder has its own merits; for example, it can obtain
an image code (or a latent vector), which is very helpful for
downstream tasks such as image classification. In contrast,
the GANs cannot generate this latent vector.

(2) The proposed GFRSNs use learning-free FrScatNets instead
of CNNs in the encoder stage, which significantly reduces
the parameters (for example, reducing the parameters by
half compared with DCGAN). However, it also has a certain
impact on image generation performance.

(3) The proposed GFRSNs can maintain the structure of the face
but show smoothed results to a certain extent. The reason for
this is, maybe, the choice of L1 loss.

(4) PGAN uses a more advanced low-resolution to high-
resolution generation paradigm, which is more effective than
the generator used in GFRSNs.

Note that we choose DCGAN as one of the compared methods,
since we use the same generator architecture as the DCGAN.
The reason we choose PGAN rather than the more recent
BigGAN (Brock et al., 2019) as the other compared method is
that the two models achieved similar results without additional
class information.

Comparison Results With CycleGAN
We compare the objective evaluation criteria (PSNR and SSIM)
with CycleGAN3 (Zhu et al., 2017) on the CelebA dataset. Note
that SSIM and PSNR are not suitable for evaluating the quality
of GANs, since GANs, generally, generate images directly from
Gaussian white noise. That is, we do not have real images
corresponding to the generated images, but real images are
needed to calculate the PSNR and SSIM scores.

The reason we choose CycleGAN as the compared method is
that it can be seen as a special kind of autoencoder model and,
hence, can be used to calculate the PSNR and SSIM scores. The
structure of CycleGAN is shown in https://mmlab.ie.cuhk.edu.
hk/projects/CelebA.html. As in the experiment of GFRSNs, we
choose 65,536 training images and 16,384 testing images. For the
training process, we divide the training set into two subsets of the
same size, namely, A and B, to meet the unique circular training
process. By training CycleGAN through 32,768 images in domain
A and 32,768 images in domain B, we can calculate Train PSNR
and Train SSIM. For the testing process, we also divide the testing
set into two subsets of the same size, namely, A and B, to meet the
unique circular training process. By training CycleGAN through
8,192 images in domain A and 8,192 images in domain B, we
can calculate Test PSNR and Test SSIM. It can be known from
the experimental process that in order to calculate the PSNR and
SSIM values of the training data set and the testing data set, there
are several characteristics when using CycleGAN:

(1) The training and testing processes are performed separately;
that is, the trained generator of CycleGAN is not used in the
testing process, since CycleGAN performs the task of image-
to-image translation or style transfer (Gatys et al., 2016). In

3https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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TABLE 6 | Quantitative results of CycleGAN and the proposed GFRSNs with

fractional orders α1 = 0.4, α2 = 1 on the CelebA dataset.

Train PSNR TestPSNR Train SSIM Test SSIM

Cycle GAN 30.8059 32.6890 0.9824 0.9822

Ours 27.9721 21.4631 0.9629 0.9350

order to get the Test PSNR and Test SSIM of the testing
images, we still need to train CycleGAN with the testing
images. For example, as is shown in https://mmlab.ie.cuhk.
edu.hk/projects/CelebA.html, the generator GAB takes an
image from domain A, and then tries to do an image-to-
image translation, so that the output will be a fake image with
a style similar to domain B. However, there is only one style
of images in the CelebA dataset; therefore, the generator will
learn the same image as the input. That is, it is unfair to use
the PSNR or SSIM score to measure the quality of CycleGAN
to some extent, since CycleGAN trains the testing images.

(2) In CycleGAN, the role of the generator is not focused on
generating images from noise. On the contrary, the generator
takes their effort to the task of image-to-image translation.
When the style of two subsets is the same, this kind of
image-to-image method will undoubtedly lead to pixel-level
alignment and, hence, failure of pixel error-based metrics,
such as PSNR and SSIM. That is, the PSNR and SSIM scores
can be seen as the upper bound of other methods.

The results of the comparison of PSNR and SSIM scores of the
proposed GFRSNs with CycleGAN are shown in Table 6, from
which we can see that the result of GFRSNs is worse than that of
CycleGAN, especially on the testing set. This is not surprising,
because CycleGAN implements style transfer between training
data and testing data, while GFRSNs implements reconstruction
from FrScatNet features to images. The PSNR and SSIM scores
of CycleGAN can be seen as the upper bound of GFRSNs; that is,
the proposed GFRSNs still have a lot of room for improvement.

CONCLUSIONS

This study proposes generative fractional scattering networks
(GFRSNs), which use fractional wavelet scattering networks
(FrScatNets) as encoder to obtain features (or FrScatNet
embeddings) and deconvolutional neural networks as decoder
to generate an image. Additionally, this study develops a new
feature-map fusion (FMF) method to reduce the dimensionality
of FrScatNet embeddings. The impact of image fusion is also
discussed in this study. The experimental results on the CIFAR-
10 and CelebA datasets show that the proposed GFRSNs can
lead to better generated images than the original GSNs in the
testing dataset. Compared with GANs, the proposed GFRSNs

lack details of the generated image because of the essence of the
autoencoder structure; however, the proposed GFRSNs have the
following merits:

(1) They can obtain an image code (or a latent vector),
which is very helpful for downstream tasks such as
image classification.

(2) They use learning-free FrScatNets instead of CNNs in the
encoder stage, which significantly reduces the parameters.

(3) They may have a potentially good performance in the
differential privacy (DP) learning framework, since Tramer
and Boneh (2021) show that ScatNet outperforms deep
CNNs in differential private classifiers. We studied the image
generation performance of GFRSNs under the framework
of differential privacy learning. Appendix A gives some
preliminary results.
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