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The stability of copolymer tethers is investigated theoretically. Self-assembly of diblock

or triblock copolymers can lead to tubular polymersomes which are known experimentally

to undergo shape instability under thermal, chemical and tension stresses. It leads to a

periodic modulation of the radius which evolves to assembly-line pearls connected by tiny

tethers. We study the contributions of shear surface viscosity and spontaneous curvature

and their interplay to understand the pearling instability. The performed linear analysis

of stability of this cylinder-to-pearls transition shows that such systems are unstable if the

membrane tension is larger than a finite critical value contrary to the Rayleigh-Plateau

instability, an already known result or if the spontaneous curvature is in a specific range

which depends on membrane tension. For the case of spontaneous curvature-induced shape

instability, two dynamical modes are identified. The first one is analog to the tension-

induced instability with a marginal mode. Its wavenumber associated with the most un-

stable mode decreases continuously to zero as membrane viscosity increases. The second

one has a finite range of unstable wavenumbers. The wavenumber of the most unstable

mode tends redto be constant as membrane viscosity increases. In this mode, its growth

rate becomes independent of the bulk viscosity in the limit of high membrane viscosity and

behaves as a pure viscous surface.

a)boedec@irphe.univ-mrs.fr
b)marc.leonetti@univ-amu.fr
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I. INTRODUCTION

Polymersomes are drops bounded by a copolymer membrane1. They result from the self-

assembly of diblock copolymers into a structure already encountered when phospholipids self-

organize in a lipid bilayer. Copolymers are versatile associating biocompatibility and biodegrad-

ability to a wide chemical diversity2,3. Cross-linking between diblock copolymers confers an

increasing rigidity4. Under UV illumination, polymersomes with asymmetrical bilayers made of

a copolymer with a rod-like conformation can exhibit bursting induced by curling5. The self-

assembly of triblock copolymers in a single monolayer provides an additional tool to design con-

tainers reserved for drug delivery for example. Polymersomes are promising vehicles in biomedi-

cal applications6.

Polymersomes have analog properties to lipid vesicles. Basically, at the thermodynamical equi-

librium, their shapes are governed by bending energy and the two constraints on the inner volume

and on the surface area which are both constant because of the impermeability and the incom-

pressibility of the membrane contrary to a droplet. Polymersomes like vesicles exhibit an extended

zoology of shapes1,7–9. Notably, polymersomes and vesicles can have a cylindrical shape with an

aspect ratio up to 100. Their diameters vary from several micrometers10,11 to several tenths of

nanometers12,13. Speaking more generally on lipids and copolymers, these tubes can result from

various physical origins: a spontaneous curvature, the fabrication leading to a cylinder-like steady

state which corresponds to a local minimum of energy13, the pulling by a local force from a mother

vesicle14–18 or the emergence of tubes from vesicles due to an external flow19,20, an electric field11

or an osmotic for examples. Sedimentation of vesicles21–23 is a typical example of flow-induced

deformations, from quasi-spherical shapes to very thin tubes varying the Bond number24,25. The

process is analog in withdrawal configuration26. Tubulation can also result from encapsulating

biopolymers and osmotic deflation27 and from a mixing of membrane lipids28 for example.

The polymersome tubes can evolve to a modulated (or corrugated) shape under stretching14

or after a thermal quench10 resulting in a pattern reminiscent of the viscous Rayleigh-Plateau

instability29 and the pearling instability along lipid tubes induced by an optical tweezer30, an elec-

tric field11, a magnetic field31, the gravity field24 or by interactions with anchored amphiphilic

polymers32 or nanoparticles33. Note that pearling is also observed in biological cells under active

processes34 but also when the cortical actin network is lacking35. The pattern along polymersomes

emerges on a very slow characteristic time compared to experiments on lipid tethers. The viscous
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dissipation in the membrane is expected to play a role.

From a dynamical point of view, the membranes of polymersomes are characterized by their

fluidity. More generally, fluid interfaces are characterized by several viscosities depending on their

assembly structure: dilational and shear surface viscosities and intermonolayer friction. As self-

organized copolymer membranes are incompressible, the dilational surface viscosity is not relevant

in our case. A membrane made of triblock copolymers is a monolayer and hasn’t any contact

friction contrary to the case of a bilayer of diblock copolymers, the most standard case. Finally,

it is reasonable to consider an incompressible membrane with only the shear surface viscosity at

least in a first approach.

Contrary to lipid membranes, copolymer ones present a very high shear resistance. Their

surface (or membrane) viscosity µs is approximately three orders of magnitude larger than lipid

one36,37. In their seminal work, considering the motion of a protein, P. G. Saffman and M. Delbrück

introduced a characteristic length Lsd = µs/(ηi + ηo) where ηi,o are respectively the bulk viscosi-

ties of inner and outer fluids38,39. The ratio Lsd/R where R is the characteristic length of the

system gives an order of magnitude of the dissipation inside the membrane versus the bulk one. It

is called the shear Boussinesq number. If Lsd/R << 1, the effect of membrane shear is negligible.

First, consider a fluid lipid bilayer embedded in water: Lsd ≈ 0.9 µm in the disordered state and

Lo ≈ 7.8 µm in the ordered state deduced from the pattern of membrane flow of a vesicle adhered

on a substrate40. For a mixing of DOPC, DPPC and cholesterol and varying the temperature, the

range of Lsd varies from 0.2 µm to 100 µm, values obtained by the measurement of the diffusion

of lipid domains41,42. The membrane viscosity of Red Blood Cells is larger in the range 2 − 9

10−7 Pa.m.s which corresponds to a Saffman-Delbrück length about 30 µm43–45. In outer air cells,

Lsd exceeds 1 mm46. For a polymersome made of PEO-PBd copolymer, µs ≈ 4 10−6 Pa.s.m

what means Lsd ≈ 1− 2 mm, a value determined by falling-ball viscosimetry and pulling a tether

by optical tweezers36,37. All these experimental examples indicate that the contribution of shear

membrane viscosity is expected to play a major role in the dynamics of polymersomes. A typical

example is the transition between tank-treading and tumbling motion of a polymersome in a shear

flow. The shear membrane viscosity should promote tumbling compared to tank-treading motion.

Surface viscosities play also a role in the shape and dynamics of surfactant-laden droplets47,48,

capsules49,50 and elastic tubes51,52.

From a theoretical point of view, the linear analysis of the pearling instability in lipid tubes has

been performed53–56. However, these analysis don’t recover the limit of incompressible monolay-
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ers of surfactants57,58. We have shown in a previous study59 that this discrepancy comes from the

condition of local surface incompressibility which was not taken into account, a result supported

later by another study60. Our linear stability analysis was determined in the case where there aren’t

spontaneous curvature and surface dissipation. Note that the spontaneous curvature has been con-

sidered in variational approach which prevents determining the linear stability analysis32,61, i.e

the growth rate. A linear stability analysis was determined but without the constraint of local

incompressibility and surface shear dissipation51.

In the present work, we study the stability of an initial cylindrical polymersome under an ex-

ternal forcing such as an applied surface mechanical tension or the appearance of a spontaneous

curvature. The latter could be due to a change of copolymer conformation under illumination the

former to an external force for example. A linear stability analysis is performed taking into ac-

count the shear membrane dissipation, a salient feature of polymersomes. In the following, the

second part presents the modeling (bulk and boundary equations) used to describe the physical

quantities such as pressure, flow velocity, tension and membrane velocity. Especially, the mechan-

ical equilibrium at the membrane is detailed with each membrane force such as bending, tension

and in particular the viscous force due to shear membrane viscosity. The general expression of

the viscous force is provided with the tools of differential geometry, thanks to the reference56.

The essential elements are recalled in appendices A-C. The force is fully derived in the linear

regime with the unexpected normal component. In the third part, the basic state is recalled. In

the fourth part, all the equations are linearized and solved to study the behavior of perturbations

of wavenumbers k = 2π/λ where λ is the wavelength. In the fifth part, the dispersion relation

s = s(k) is determined, 1 / |s| being the growing characteristic time of the perturbation k if s is

positive (unstable mode) or the damping time if s is negative (stable mode).

II. MODELING

A. Problem

The model system is an infinite cylinder of an initial radius R bounded by a membrane made

of copolymers and embedded in an infinite bath. The inner and outer incompressible fluids are

newtonian of viscosities ηi and ηo respectively. The aim of this study is to consider the stability of

the membrane shape r = R under a perturbation of the shape δR(z, t) where z is the coordinate
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FIG. 1 the stability of a. cylindrical fluid membrane made of copolymers is studied along the z-axis. The

initial radius is R. The perturbation is R+ δR which is drawn in red color. Inside and outside, the fluids

are viscous of viscosities ηi and ηo respectively.

along the cylinder axis and t the time: fig.1. This response is made quantitative by a linear analysis

of stability of the system which provides the dispersion relation s = s(k) where s is the growth

rate and k the wavenumber characterizing the space modulation of shape perturbation along the

axis of the cylinder. If the perturbation δR(z, t) increases (s > 0) with time, the shape is unstable

and stable in the contrary case (s < 0).

Various kinds of systems will be studied. In the case of two fluids on both sides of the mem-

brane, the system is a polymersome with a membrane made of a monolayer of triblock copolymers

or a bilayer of diblock copolymers. In the case of only one outer fluid, the system is a micelle with

a membrane made of copolymers. The common characteristic of these systems is the high mem-

brane viscosity compared to the lipidic one. The following results are established for the first case

and extended to the second one.

In such a geometry, a point xxx in the space is well defined by its cylindrical coordinates:

xxx = r(θ, z)ererer + z ezezez (1)

where (ererer; eθeθeθ; ezezez) are the the unit vectors of the cylindrical basis. The aim of this study is to

consider the stability of the membrane shape r = R under an axisymmetrical perturbation of the

shape δR(z, t). A point xxxm at the interface is localized by:

xmxmxm = (R + δR(z, t))ererer + z ezezez (2)

Bulk equations
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Considering typical parameter values, the density ρ = 103 kg.m−3 and the viscosity η = 1

mPa.s of water, a tether radius R ≈ 1µm and a typical velocity U ≈ 1µm.s−1, inertial effects

are negligible as the Reynolds number Re = URρ/η ≈ 10−6. Thus, the pressure and the velocity

field satisfy the Stokes equation:

−∇∇∇pi,o + ηi,o ∆VVV i,o = 000 (3)

and the incompressibility equation:

∇∇∇. VVV i,o = 0 (4)

The pressure is a harmonic function. Indeed, the combination of the two previous equations (Eqs.

3,4) leads to:

∆ pi,o = 0 (5)

Boundary conditions

The membrane made of copolymers is impermeable to the passage of solvent, small molecules

and ions on the time scale of experiments. It involves that the normal component of bulk velocities

is continuous:

VVV m =
∂xmxmxm
∂t

(6)

VVV m.nnn = VVV i.nnn = VVV o.nnn (7)

where nnn is the outer vector normal to the membrane. The Knudsen number which is the ratio

of the mean free path length (an intermolecular distance in liquid) compared to a typical size is

of the order of 10−4 ensuring the no-slip condition. If a membrane made of a single monolayer

of copolymers is considered, the continuity of tangent velocities is necessarily satisfied through

the membrane. More generally, as explained in the introduction, a first reasonable approach of

tubular polymersomes with a radius larger than several hundreds of nanometers is to consider the

continuity of tangent velocity :

VVV m.ttt = VVV i.ttt = VVV o.ttt (8)

where ttt refers to the tangent vectors to the membrane. If we consider a system made of a diblock

copolymer bilayer, the characteristic time of flip-flop between the two monolayers is very large

compared to the time of the experimental process. It is already the case for lipids which are much
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smaller molecules. Moreover, the compressibility coefficient of a copolymer monolayer is very

high, larger than for lipids. The condition of surface incompressibility is satisfied:

∇s∇s∇s.VVV
i = ∇s∇s∇s.VVV

o = 0 (9)

where∇s∇s∇s is the surface gradient. Finally the membrane under flow is at the mechanical equilib-

rium:

(¯̄σ̄̄σ̄̄σo − ¯̄σ̄̄σ̄̄σi).nnn + fffm = 000 (10)

where ¯̄σ̄̄σ̄̄σ = −p111 + 2η ¯̄D̄̄D̄̄D is the newtonian stress tensor and fffm is the mechanical membrane force

per unit area. η is the bulk viscosity and ¯̄D̄̄D̄̄D = (1/2) (∇V∇V∇V + ∇TV∇TV∇TV ) the strain rate tensor. Eq. 10

provides the normal and tangent mechanical equilibriums.

B. The membrane force

The membrane viscous force

The studied system concerns a surface that models a membrane of several nanometers of thick-

ness. From a general point of view, a local parametrization (s1; s2) is necessary to describe the

variations of geometrical and physical quantities along the surface. The contravariant local basis

(ttt1; ttt2; nnn) permit to separate the membrane velocity in its tangent and normal parts:

VVV m = V β tttβ + Vnnnn (11)

where the notation of Einstein is used and V β is the contravariant coordinate. The general viscous

interfacial force can be derived from the Scriven stress tensor62. Here, we consider a viscous

membrane with a shear resistance and without any dilatational viscosity as the membrane is a

bidimensional incompressible fluid. The expression of the force per unit area fff v is more intricate

than bending and tension forces56:

fff v = µs (∇2V β +KV β − 2Vn∇βH) tttβ

+2(Hgαβ −Kαβ)∇αVn tttβ

+ 2µs

(
Kαβ∇αV β − Vn(4H2 −K)

)
nnn (12)

where H is the mean curvature, K the gaussian curvature, gαβ the metric tensor in the covariant

basis andKαβ the contravariant curvature tensor. All these quantities are defined in the appendices
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A-C with some additional elements of differential geometry to explain in detail how to derive some

expressions obtained in the following parts.

The tension and bending force

The response of a copolymer membrane to a constraint is first governed by the bending energy

well described by the Helfrich energy, used extensively in the literature :

Fκ =
κ

2

∫
Sm

[
2H(xxxm)−H0

]2
dS (13)

where κ is the bending modulus of the order of twenty thermal energy kBT of the membrane, H0

its spontaneous curvature characteristic of the system and H the mean curvature.

Fγ =

∫
Sm

γ(xxxm)dS (14)

where γ is the membrane tension associated with the 2D incompressibility of membrane flow. γ

is an unknown quantity equivalent to a bidimensional pressure associated with the constraint of

incompressibility (eq. 9). Thus there is no reason to have constant tension in an unstationary

physical configuration. The forces per unit area are:

fffκ = − δFκ
δxxxm

= −κ(2∆sH + 4H(H2 −K))nnn

−2κH0Knnn + κH2
0Hnnn (15)

fffγ = − δFγ
δxxxm

= ∇∇∇sγ + 2γHnnn (16)

The minus sign in eq. 15 comes from our convention: the radius of curvature of a sphere is

negative. Note that the last term of bending force can be recast in the tension force setting γ =

γ̄ − (1/2)κH2
0 . The total membrane force fffm appearing in the mechanical equilibrium (eq. 10)

satisfies:

fffm = fffκ + fffγ + fff v (17)

III. THE BASIC STATE

In the basic state, the shape is a cylinder of radius R under tension γ0. All the quantities are

named by a superscript (0) which means order zero to contrast with perturbations which are of

order one. There is no fluid flow:

VVV (i,o),(0) = 000 (18)
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The external pressure po,(0) is set to zero while the internal pressure pi,(0) is given by the normal

component of the mechanical equilibrium with the effective membrane tension γ̄0:

pi,(0) = p0 =
γ0

R
− κ

2R3
+
κH2

0

R
=

γ̄0

R
− κ

2R3
(19)

γ̄0 = γ0 +
1

2
κH2

0 (20)

Other quantities of the order zero come from differential geometry and are essential to calculate

the viscous membrane force fff v. They are provided in the appendices A-C unless :

H(0) = − 1

2R
; K(0) = 0 (21)

ttt
(0)
θ = Reθeθeθ ; ttt(0)

z = ezezez ; nnn(0) = ererer (22)

IV. LINEAR ANALYSIS OF STABILITY

A. Notation

In the most general way, we should search the radial and azimuthal perturbations. However

as we will see further, the most unstable mode has a wavelength which is large compared to the

diameter. This excludes the azimuthal modes which would cost a larger bending energy. The

perturbation of membrane shape δR(z, t) is expanded on normal modes of wavenumber k:

δR =
∑
k

δRk =
∑
k

Rk e
st+ jkz + cc (23)

with | Rk |<< R, j2 = −1. Rk is the amplitude of the perturbation of mode k. ccmeans complex

conjugate. All the physical quantities are developed in the same way:

δA =
∑
k

δAk + cc =
∑
k

A
(i,o)
k (r) est+ jkz + cc (24)

where δA are the pressure δp(i,o), the radial δV (i,o)
r or longitudinal δV (i,o)

z velocities in the inner

and outer volumes. The amplitude is a function of the radial coordinate r.

B. Membrane incompressibility and viscous force

Associating the bulk incompressibility of fluids (eq. 4) to the membrane incompressibility (eq.

9) permit to simplify the second constraint to:(
nnn. ¯̄DDD.nnn

)
xxxm

= 0 (25)
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Using eq. 22, the linearization leads to ererer.δδδ ¯̄DDD.ererer = 0 and becomes in cylindrical coordinates:(
∂δV

(i,o)
r

∂r

)
r=R

= 0 (26)

In the basic state, velocity is zero (eq. 18): V β,(0) = V
(0)
n = 0. Thus only the terms of the

membrane viscous force (eq. 12) with non zero geometrical factors in the basic state are relevant.

With all the results in Appendix C, the linearized membrane viscous force is derived:

fff v = µs

(∂2δV
(i,o)
z

∂z2
− 1

R

∂δV
(i,o)
r

∂z

)
r=R

ezezez

− 2µs
R2

(δV (i,o)
r )r=R ererer (27)

The perturbed force still has a normal component, a property of a bidimensional flow on a curved

surface.

C. Hydrodynamics

The pressure is a harmonic function. In the cylindrical geometry, Using the condition of exis-

tence at the center of the cylinder r = 0 and when r tends to infinity, we derive:

δp
i,(1)
k = pik I0(kr) est+ jkz (28)

δp
o,(1)
k = pokK0(kr) est+ jkz (29)

where I0 and K0 are modified Bessel functions of first and second kind of order 063. The fluid

velocities are calculated from Stokes equation (Eq. 3):

δV i
r,k =

(
uikI1(kr) +

pik
2ηi

rI0(kr)
)
est+ jkz (30)

δV i
z,k =

(
vikI0(kr) +

jpik
2ηi

rI1(kr)
)
est+ jkz (31)

δV o
r,k =

(
uokK1(kr) +

pok
2ηo

rK0(kr)
)
est+ jkz (32)

δV o
z,k =

(
vokK0(kr) − jpok

2ηo
rK1(kr)

)
est+ jkz (33)

where I1 and K1 are modified Bessel functions of first and second kind of order 163.

The fluid is incompressible (Eq. 4) leading to two relations between inner and outer coeffi-

cients:

pik + ηik(uik + jvik) = 0 (34)

pok + ηok(−uok + jvok) = 0 (35)
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D. Boundary conditions at membrane

The tangent and normal velocities are continuous at the membrane (eqs. 7, 8):

vikI0 +
jpik
2ηi

RI1 = vokK0 −
jpok
2ηo

RK1 (36)

uikI1 +
pik
2ηi

RI0 = uokK1 +
pok
2ηo

RK0 (37)

where the argument of Bessel functions is kR.

The new equation 26 dealing with the membrane incompressibility allows to calculate simply

two new relations:

uik =
pikR

2ηi

I0 + kRI1

I1 − kRI0

(38)

uok =
pokR

2ηo

K0 − kRK1

kRK0 + K1

(39)

where the relations I ′0 = I1, K ′0 = −K1, (xI1)′ = xI0 and (xK1)′ = −xK0 are used. Solving

all the equations 34-39 permits to establish the relation between inner and outer perturbations of

pressures:

pok = pik
ηo
ηi

kRK0 +K1

I1 − kRI0

2I0I1 + kR(I2
1 − I2

0 )

2K0K1 + kR(K2
0 −K2

1)
(40)

Note that here the ratio of viscosities appears.

All the relations between the coefficients are valid whatever the forces involved in the mechan-

ical equilibrium. The tangent one permit to determine the variation of the mechanical tension

γ = γ0 + δγ:

∂δγ

∂z
+ ηo

(∂δV o
z

∂r
+
∂δV o

r

∂z

)
− ηi

(∂δV i
z

∂r
+
∂δV i

r

∂z

)
+µs

(∂2δV
(i,o)
z

∂z2
− 1

R

∂δV
(i,o)
r

∂z

)
= 0 (41)

with the equation applied at r = R. To understand the different contributions to the tension, we

first investigate the case µs = 0:

γµs=0
k =

pok
k
K1 +

pik
k
I1 − pokR

(
K0 +K1

K0 − kRK1

kRK0 +K1

)
+pikR

(
I0 + I1

I0 + kRI1

I1 − kRI0

)
(42)

The third and fourth terms cancel without contrast of viscosity between inside and outside (see

40). In the case µs 6= 0, the mechanical tension is:

γk = γµs=0
k +

µs
ηi
pki

2I0I1 + kR(I2
1 − I2

0 )

I1 − kRI0

(43)
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Consider now the normal mechanical equilibrium taking anti account the membrane incompress-

ibility constraint (eq. 26):

δpi − δpo − δγ

R
− 2µs
R2

δV i
r

= κ(2
∂2δH

∂z2
+

3

R2
δH +

2

R
δK)

+2κH0δK − 2γ̄0δH (44)

where δH = H −H(0) = H + 1/2R and δK = K −K(0) = K. Their expressions are provided

in appendix C as a function of δR and its derivatives. This equation has been separated in two

members, the right member which depends on δH and δK and thus on δR and the left member

with terms of pressure, membrane viscous force and tension which depend on the coefficients

p
(i,o)
k after little algebra. The right member will provide the criteria of instability while the left one

contributes to the dynamics, the characteristic time of growing perturbation. Eq. 44 provides the

relation between the amplitudes of pressure pik and and shape perturbation R(1)
k .

V. RESULTS AND DISCUSSION

A. dispersion relation in the general case

To obtain the characteristic time of growth or relaxation of a shape perturbation δR, the conti-

nuity of the normal membrane velocity satisfies with eqs:

∂δRk

∂t
= sδRk = δV

(i,o)
r,k (45)

leading to the following relation between the amplitudes :

sR
(1)
k = uikI1 +

pik
2ηi

RI0 (46)

Using equations (38,43,44,46), the dispersion relation s = s(k) is provided by the following

general equation what is the original analytical result of this paper:

s(k) = − κ

2R3

Q(k)

(1 + k2R2)D(k)
(47)

Q(k) = kR (R4k4 + bR2k2 + c) (48)

D(k) =
µs
R

kR

1 + k2R2
+ ηi

I2
1

2I0I1 + kR(I2
1 − I2

0 )

+ ηo
K2

1

2K0K1 + kR(K2
0 −K2

1)
(49)
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associated with the following definitions of the constants:

b =
γ̄0R

2

κ
− 1

2
+ 2H0R

=
γ0R

2

κ
− 1

2
+ 2H0R +

1

2
H2

0R
2 (50)

c =
3

2
− γ̄0R

2

κ

=
3

2
− γ0R

2

κ
− 1

2
H2

0R
2 (51)

The polynomial P (k) can be determined by the minimization of the energy of a modulated

lipidic tube and has been performed by several authors61,64. The product (1 + k2R2)D(k) is often

called the dynamical factor which characterizes how fast the perturbation is damped or amplified.

It takes into account the hydrodynamic dissipation in the outer and inner bulk and also here, the

hydrodynamic dissipation along the membrane. Sometimes, it was proposed that this term is

the same as the well-known Tomotika result65 as if the lipidic or copolymer membrane has the

same dynamical behavior as a fluid-fluid interface governed by surface tension. This point of view

neglected in fact the incompressible nature of a lipidic or copolymer membrane and the gradient of

the mechanical tension due to this constraint. However, a more accurate analysis was undertaken

notably to understand the laser-induced pearling of lipidic tethers30,66 providing a new dynamical

factor53–56,67. Nevertheless, it has been already shown59 that these results were not in agreement

with previous results on the stability of a highly viscous cylinder fluid with strong surfactants57.

Finally, if the shear membrane viscosity and the spontaneous curvature are set to zero, we recover

the same expressions as tour previous study59.

To our knowledge, the unique expression which takes into account the membrane dissipation has

been reported in the previous work56 which does not consider the spontaneous curvature. However,

as aforementioned, the tension gradients were neglected leading to a different expression than ours.

B. the case without spontaneous curvature and shear membrane viscosity

Here, we recalled briefly the results when only the membrane tension plays a role in agreement

with two previous studies59,60 to make clear the contribution of spontaneous curvature and shear

membrane viscosity in the following. Thus, we set: H0 = 0 and µs = 0.

If we only keep the pressure and the membrane terms that do not depend on space, the pressure
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FIG. 2 Variation of the dispersion relation with the mechanical tension γ0. The mean curvature H0 and the

surface viscosity µs are set to zero. The growth rate s is made dimensionless with the characteristic time

2R3/(κηi) based on the inner bulk viscosity. The membrane contrast is equal to one, it means the same

internal and external bulk viscosities. The tether is stable for γ0R
2/κ = 0.5 and unstable for

γ0R
2/κ = 2, 5, 10.

perturbation can be written using the normal equilibrium (eq. 44) and appendix C:

δpi − δpo ≈ δR

R2

( 3κ

2R2
− γ0

)
(52)

Where the radius is increased (decreased) by the perturbation δR, the pressure diminishes (raises)

if the membrane tension γ0 exceeds a critical value γc, a function of the bending elastic modulus

and the radius: γ0 > γc with γc = 3κ/2R2. This corresponds to b > 0 and c < 0. In this

case, a longitudinal flow amplifies the initial perturbation: the membrane tube is unstable. This

result is known and has also been derived by energetic analysis. It highlights the contribution of

bending energy. Indeed, for a fluid-fluid interface, the critical surface tension of the Rayleigh-

Plateau instability is zero and not a finite value as here. At equilibrium, the membrane tension

is γ = κ/2R2 obtained by the minimization of the Helfrich and tension energies for a cylinder.

It means that an external force must be applied to reach the threshold γc with a laser, an electric

field, a flow such as in elongational configuration or sedimentation. If a force f pulls the tether

at each tip, the critical force fc is given by: fc = (γc + κ
2R2 )2πR = (8/3)πRγc, an expression

different from 2πRγc given for a fluid-fluid interface which still underlines the role of bending

energy. Another characteristic of this instability is that all the wavenumbers in the range [0; k0] are
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unstable as their growth rate s(k) is positive (see figure 2):

k0 =
1

R

(
1

4
− γ0R

2

2κ
+

1

4

(
4(
γ0R

2

κ
)2 + 12

γ0R
2

κ
− 23

)1/2
)1/2

(53)

One of the unstable modes grows faster and is called the most unstable wavenumber km that

increases with the dimensionless membrane tension γ0R
2/κ and with the ratio of viscosities ηi/ηo.

With the same viscosities inside and outside ηi = ηo, km ≈ 0.56/R what corresponds to a

growth rate sm = s(km) ≈ 0.24κ/ηR3. The characteristic time is given by the competition

between bending resistance and viscous stress. Consider the following parameter to have an order

of magnitude: a radius R = 1µm, a lipidic bending modulus κ = 20kBT and the water viscosity

η = 1 m.Pa.s: the wavelength λm = km/2π ≈ 11µm and 1/sm ≈ 50 ms. Relevant values of the

difference of viscosities between inside and outside and membrane tension lead to a 10 % variation

of km. A complete analysis of variations of km and sm with the membrane tension and the bulk

viscosities can be found in our previous study59.

C. the case with spontaneous curvature and without shear membrane viscosity
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FIG. 3 Variation of the dispersion relation with the spontaneous curvature H0 in the regime of high H0.

The mechanical tension γ0 and the membrane viscosity µs are set to zero, The maximal growth rate tends

to the curve s ≈ 0.01ηiκH
2
0/(2R) in the limit of high spontaneous curvature. The wavenumber which

cancels the growth rate is 1/R and the wavenumber km of maximal growth rate is approximately 0.61/R

for large H0 in the same limit.
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FIG. 4 Variation of the dispersion relation with the spontaneous curvature H0 in the regime of moderate

H0 range. The mechanical tension γ0 and the membrane viscosity µs are set to zero, the internal and

external bulk viscosities are equal. Note that with our convention, the curvature of a sphere is negative, a

classic way in modeling vesicles under flow. The tether is unstable for H0 = −1.6/R, −1.3/R and stable

for H0 = −0.5/R, 1/R, 1.6/R. The transition is at H0 = −1/R. The negative and positive values of H0

have been chosen such that (1/2)H2
0R

2 < 3/2, the threshold of the instability driven by the mechanical

tension.

We recall the convention on the sign of H0: the curvature of a sphere and by extension of a

cylinder is negative. It comes from a preliminary choice using differential geometry to describe

more easily the variations of the geometrical properties along the surface. To come back to the

other convention (a positive curvature for a sphere or a cylinder), H0 has to be replaced by −H0.

Then, the only difference is the constant b which becomes b = γ̄0R2

κ
− 1

2
− 2H0R.

The spontaneous curvature H0 appears either in the effective membrane tension γ̄0 or by the

variation of the gaussian curvature (see eq. 10) which provides a linear variation of the coefficient

b with H0. This linear term disappears if the membrane is flat (see eq. A5) highlighting the

difference with previous studies68. Investigating the signs of b and c makes clear that at large

spontaneous curvature, the coefficients are dominated by the square of H0 while for weak values,

the linear term is essential. For the sake of simplicity, we only investigate the limits of zero tension

γ0 = 0 (figures 3 and 4) and zero effective tension γ̄0 = 0 (figure 5). This choice has a degree of

which provides a clear picture of the contribution of spontaneous curvature.

In the case without mechanical tension (γ0 = 0), the limits of high (figure 3) and small to
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moderate (figure 4) spontaneous curvature present a different relation of dispersion, i.e the vari-

ation of the growth rate s of a perturbation in respect of its wavenumber k. Indeed, in the limit

of large values of the spontaneous curvature, the cylinder membrane is always unstable due to the

effective membrane tension γ̄0 = κH2
0/2 >> 3/2 explaining shape instability (b > 0 and c < 0):

see figure 3. As expected, the dispersion relation is analog to the tension-induced pearling insta-

bility which is recalled in the section V B. The marginal mode is the zero wavenumber (figure

3). In the case of small to moderate spontaneous curvature (figure 4), the tether becomes unsta-

ble above the threshold H0c = −1/R corresponding to the marginal mode kc = 1/R. A finite

range of wavenumbers [k1; k2] with k1 > 0 is unstable contrary to tension-induced pearling. For

H0R = −1.8, the most unstable mode kc = 2π/λc leading to a wavelength λc ≈ 5.38R. Here,

the term 2κH0δK ≈ 2κH0k
2δR/R of the normal mechanical equilibrium eq. 44 varies linearly

with H0 and governs the amplified perturbation. A necessary condition is a negative spontaneous

curvature: H0 < 0 corresponding to the same sign of the tether’s curvature. This is strikingly dif-

ferent from the effective tension-induced instability where H0 and −H0 play the same role. Thus,

this mode of instability is called spontaneous curvature-induced instability.
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FIG. 5 Variation of the dispersion relation with the spontaneous curvature H0 in the case of a zero

effective membrane tension γ̄0 = 0.

In the case without effective mechanical tension (γ̄0 = 0), the tether is unstable if H0R <

1/4 −
√

3/2 ≈ −0.97. A negative spontaneous curvature is a prerequisite. A finite range of

wavenumbers [k1, k2] with k1 > 0 is unstable meaning that the instability is the same as the

spontaneous curvature-induced pearling instability. In the limit of high −H0R, k1 ≈ −3/4H0R
2

explaining why this statement is not clear in figure 5. The most unstable mode has a higher
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wavenumber and a higher growth rate than the case without mechanical tension.

D. the cases with shear membrane viscosity

Previously, the only dissipation included in the modeling was the one due to the long range

hydrodynamical flow around and inside the tether coupled with the shape perturbation. In this part,

the shear membrane viscosity µs is introduced. The aim is to determine its role in the characteristic

time of the process and the selected characteristic wavelength λm = 2π/km. We expect at least

a strong slowing down of any dynamics. This is demonstrated in figures 6 and 7 to compare to

figures 2-5.

Two modes have been previously identified with two different typical dispersion relations s(k): a

membrane tension-induced instability (or effective membrane tension) and a specific spontaneous

curvature-induced instability.

First, consider the case without spontaneous curvature: H0 = 0. As for bulk dissipation, the shear

membrane viscosity appears only in the dynamical factor (1 + k2R2)D(k) which contributes to

select the most unstable mode km and the characteristic time 1/s(km) associated with this mode.

Thus, the threshold is always given by the critical membrane tension: γ0 > γc with γc = 3κ
2R2 .

The dispersion relation has a typical variation with a large range of unstable wavenumbers [0; k0]

with two marginal modes 0 and k0 given by the relation 53. Note that k0 does not depend on

the membrane and bulk viscosities. Whatever the membrane tension above the critical one, the

most unstable wavenumber km tends to zero with increasing the membrane viscosity: figure 6.

Indeed, if the following parameters are considered γ0R
2/ηi = 10, km varies from 0.56

R
m−1 for

µs = 0 to km = 0.12
R

m−1 for µs/ηiR = 104. For example, with R = 1µm, λm ≈ 11µm

and λm ≈ 52µm respectively. The membrane tension-induced shape instability promotes large

wavelengths compared to the radius, a high shear membrane viscosity amplifying this effect.

VI. CONCLUSION

In polymersomes, membrane dissipation prevails over bulk dissipation in most configurations.

Indeed, numerical evaluations show that the Saffman-Delbrûck length Lsd is larger than the typical

size of a polymersome. All the results and discussions might be presented consider the Boussi-

nesq number Bqs = ηs/ηR = Lsd/R which is less than the unity in polymersomes. Without
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FIG. 6 Variation of the dispersion relation s(k) with the membrane viscosity µs in the case of a zero

spontaneous curvature H0 = 0. Note that here, the growth rate s is made dimensionless using the

membrane viscosity contrary to the previous figures. The dimensionless membrane tension is set to

R2γ0/κ = 10. The internal and external bulk viscosities are equal. The membrane viscosity has a stronger

effect in the linear selection of the wavelength of the pattern than bulk viscosities.
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spontaneous curvature, we recovered the results of literature. With spontaneous curvature, the dis-

persion relation is established. With spontaneous curvature and shear surface viscosity, there is a

novel instability with its own dispersion relation (figure 7) which permits to select a characteristic

size (most unstable mode) associated with a characteristic time governed by membrane dissipation

only. Indeed, only a finite range of wavenumbers is unstable with the minimal one which is differ-

ent from zero. This result can be a guide to determine the shear surface viscosity by the analysis

of growing modes along a tether made of copolymers.
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APPENDIX A - SOME ELEMENTS OF DIFFERENTIAL GEOMETRY

Here, we recall some elements of differential geometry which are necessary to calculate the

tension force, the bending force and especially the viscous membrane force (see Eq. 12) which is

a complex function of geometrical quantities and membrane velocity. A point of the membrane is

localized by a parametrization (s1; s2):

xxxm = xxxm(s1, s2) (A1)

The tangent vectors to the surface at xxxm are defined by:

tttβ =
∂xxxm
∂sβ

(A2)

The normal unit vector at the same point is determined as usual:

nnn =
ttt1 ∧ ttt2
|| ttt1 ∧ ttt2 ||

(A3)

The contravariant basis (ttt1 ; ttt2 ; nnn) permit to define all the physical quantities at the surface. In-

deed, the velocity is given by its contravariant coordinate and the normal one: see eq. 11. A dual

basis called covariant (ttt1 ; ttt2 ; nnn) can be defined as:

tttβ.ttt
α = δαβ (A4)
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where δατ is the Kronecker symbol. The metric (g) and curvature (K) tensors are given by:

gαβ = tttα.tttβ ; gαβ = tttα.tttβ (A5)

Kαβ = −tttα.
∂nnn

∂sβ
(A6)

gαβ gβτ = δατ ; g = det(gαβ) (A7)

The two metric tensors are useful to go down and up an index of tensors: gαβAβ = Aα and

gαβA
β = Aα. To calculate the membrane viscous force, it is necessary to calculate gατKτβ =

Kα
β and gβτKα

τ = Kαβ .

The two invariants of the curvature tensor are the mean curvature H and the gaussian curvature

K:

H =
1

2
Kα
α =

1

2
gαβKβα (A8)

K = det(Kαβ) (A9)

Differential operators are necessary to calculate the gradient of the mechanical tension in fffγ

and the Laplace-Beltrami of the mean curvature of the bending force fffκ:

∇∇∇sf =
( ∂f
∂sα

)
tttα (A10)

∆sf =
1
√
g

∂

∂sβ

(√
g gβα

∂f

∂sα

)
(A11)

APPENDIX B - AXISYMMETRICAL EXPRESSIONS IN THE PARAMETRIZATION

(θ, z)

As explained in the section II A, the characteristics of the studied system are well described by

a local basis based on the parametrization (θ, z). As we consider axisymmetrical deformations,

the shape of the membrane is only a function of z:

xxxm = f(z, t)ererer + z ezezez (B1)

Thus, the contravariant basis (tttθ; tttz; nnn) satisfies using eq. A1:

tttθ =
∂xxxm
∂θ

= f eθeθeθ (B2)

tttz =
∂xxxm
∂z

= f ′ererer + ezezez (B3)

nnn =
tttθ ∧ tttz
|| tttθ ∧ tttz ||

=
ererer − f ′ ezezez√

1 + f ′2
(B4)
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where f ′ = (∂f/∂z). The metric tensor in the covariant and contravariant basis are deduced:

gθθ = f 2 (B5)

gθz = gzθ = 0 (B6)

gzz = 1 + f ′2 (B7)

gθθ =
1

f 2
(B8)

gθz = gzθ = 0 (B9)

gzz =
1

1 + f ′2
(B10)

The curvature tensor Kαβ is:

Kθθ = − f√
1 + f ′2

(B11)

Kθz = Kzθ = 0 (B12)

Kzz =
f ′′√

1 + f ′2
(B13)

Some intermediates are necessary:

Kθ
θ = − 1

f
√

1 + f ′2
(B14)

Kz
θ = Kθ

z = 0 (B15)

Kz
z =

f ′′

(1 + f ′2)3/2
(B16)

Thus, the mean H and gaussian K curvatures are determined:

2H =
f ′′

(1 + f ′2)3/2
− 1

f
√

1 + f ′2
(B17)

K = − f ′′

f(1 + f ′2)
(B18)

To determine the membrane viscous force, the tensor Kαβ is necessary:

Kθθ = − 1

f 3
√

1 + f ′2
(B19)

Kθz = Kzθ = 0 (B20)

Kzz =
f ′′

(1 + f ′2)5/2
(B21)
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APPENDIX C - PERTURBATIONS

Only the geometrical quantities which are necessary to the calculation of the linearized state

are provided. The shape perturbation is a modulated cylinder of radius f(z, t) = R + δR(z, t)

with the condition || δR ||<< R:

tθtθtθ = tθtθtθ
(0) + δReθeθeθ (C1)

tztztz = tztztz
(0) + δR′ ererer (C2)

nnn = nnn(0) − δR′ ezezez (C3)

δH = H −H(0) =
1

2
(δR′′ +

δR

R2
) (C4)

δK = K −K(0) = K = −δR
′′

R
(C5)

∆sδH = ∆sH =
∂2δH

∂z2
=

1

2
(δR′′′′ +

δR′′

R2
) (C6)

∇∇∇sδγ = ∇∇∇sγ =
(∂δγ
∂z

)
ezezez (C7)
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