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Abstract

Communication noise is a common feature in several real-world scenarios where systems
of agents need to communicate in order to pursue some collective task. In particular, many
biologically inspired systems that try to achieve agreements on some opinion must implement
resilient dynamics that are not strongly affected by noisy communications. In this work, we
study the popular 3-Majority dynamics, an opinion dynamics which has been proved to
be an efficient protocol for the majority consensus problem, in which we introduce a simple
feature of uniform communication noise, following (d’Amore et al. 2020). We prove that in
the fully connected communication network of n agents and in the binary opinion case, the
process induced by the 3-Majority dynamics exhibits a phase transition. For a noise prob-
ability p < 1/3, the dynamics reaches in logarithmic time an almost-consensus metastable
phase which lasts for a polynomial number of rounds with high probability. Furthermore,
departing from previous analyses, we further characterize this phase by showing that there
exists an attractive equilibrium value seq ∈ [n] for the bias of the system, i.e. the difference
between the majority community size and the minority one. Moreover, the agreement opin-
ion turns out to be the initial majority one if the bias towards it is of magnitude Ω

(√
n logn

)

in the initial configuration. If, instead, p > 1/3, no form of consensus is possible, and any
information regarding the initial majority opinion is lost in logarithmic time with high prob-
ability. Despite more communications per-round are allowed, the 3-Majority dynamics
surprisingly turns out to be less resilient to noise than the Undecided-State dynamics
(d’Amore et al. 2020), whose noise threshold value is p = 1/2.

1 Introduction

The consensus problem is a fundamental problem in distributed computing [6] in which we have
a system of agents supporting some opinions that interact between each other by exchanging
messages, with the goal of reaching an agreement on some valid opinion (i.e. an opinion initially
present in the system). In particular, many research papers focus on the majority consensus
problem where the goal is to converge towards the initial majority opinion. The numerous
theoretical studies in this area are justified by many different application scenarios, ranging
from social networks [2,38], swarm robotics [5], cloud computing, communication networks [41],
and distributed databases [18], to biological systems [23, 24]. As for the latter, the goal of the
majority consensus problem is to model some real-world scenarios where biological entities need
to communicate and agree in order to pursue some collective task. Many biological entities in
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different real situations perform this type of process, e.g. molecules [12], bacteria [4], flock of
birds [9], school of fish [42], or social insects [25], such as honeybees [40].

In such applicative scenarios, communication among agents is often affected by some form
of noise. For this reason, one of the main goal in network information theory is to guarantee
reliable communications in noisy networks [26]. In this context, error-correcting codes are very
effective methods to reduce communication errors in computer systems [31, 37], and this is
why many theoretical studies of the (majority) consensus problem assume that communication
between entities occurs without error, and instead consider some adversarial behavior (e.g.,
byzantine fault [8]). Despite their effectiveness in computer applications, error-correcting codes
are quite useless if we want to model consensus in biological systems. Indeed, they involve
sending complicated codes through communication links, and it is reasonable to assume that
biological type entities communicate between each other in a simpler way. For this reason, in
recent years many works have been focusing on the study of the (majority) consensus problem
where the communication between entities is unreliable and subjected to uniform noise [16, 17,
23,24].

The first consensus dynamics that have been studied in the presence of noise communication
are linear opinion dynamics, such as the Voter dynamics and the Averaging dynamics. In
particular, they were studied in the presence of uniform noise communication [33] or in the
presence of some communities of stubborn agents (i.e. agents that never change opinion) [35,
36, 46]. In these settings, only metastable forms of consensus can be achieved, where a large
subset of the agents agree on some opinion while other opinions remain supported by smaller
subsets of agents, and this setting lasts for a relatively-long time. However, the Voter model
has a slow convergence time even in fully connected networks and a large initial bias towards
some majority opinion [28], and the Averaging dynamics requires agents to perform non-
trivial computation and, more importantly, to have large local memory. For these reasons,
linear opinion dynamics struggle explaining the observed metastable consensus in multi-agent
systems [11, 15, 22], and many research papers have begun to investigate new, more plausible,
non-linear opinion dynamics.

To the best of our knowledge, theUndecided-State dynamics is the first non-linear opinion
dynamics analyzed in the presence of uniform communication noise [17]. The aforementioned
dynamics exhibits a phase-transition which depends on the noise parameter, and a metastable
phase of almost-consensus is quickly reached and kept for long time when the noise isn’t too
high. The Undecided-State dynamics turns out to be a fast, very resilient dynamics, and this
may explain why this type of process is adopted in some biological systems [40].

In this work, we consider the popular 3-Majority dynamics, which is based on majority
update-rules, the latter being widely employed also in the biological research field [13, 20]. In
particular, we introduce in the system an uniform communication noise feature, following the
definition of [17]. It has been proven that such dynamics, without communication noise, has
a very similar behaviour to that of the Undecided-State dynamics [6]. As we describe in
the next section, the two dynamics behaves similarly (even if with crucial differences) even in
presence of uniform noise, as both exhibit a phase transition. However, although 3-Majority

dynamics makes use of more per-round communications, it turns out to be less resilient to noise
than Undecided-State dynamics.

1.1 Our results and their consequences

In this work, we study the 3-Majority dynamics over a network of n agents, which induces a
process that works as follows: at the beginning, each agent holds an opinion from a set Σ; at
each subsequent discrete round, each agent pulls the opinions of three neighbor agents chosen
independently uniformly at random and updates its opinion to the majority one, if there is any;
otherwise, the agent adopts a random opinion among the sampled ones. This dynamics is a fast,
robust protocol for the majority consensus problem in different network topologies (raging from
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complete graphs to sparser graphs) [6]. For a discussion about the origin and previous results
of the 3-Majority dynamics we defer the reader to Section 1.2.

We consider the dynamics in the binary opinion case over the fully connected network.
We introduce in the process an uniform communication noise feature, following the definition
in [17] and for which we give an equivalent formulation: for each communication with a sampled
neighbor, there is probability p ∈ (0, 1) that it is noisy, i.e. the received opinion is sampled u.a.r.
between the possible opinions. Instead, with probability 1− p the communication is unaffected
by noise. As shown in [17], this noise model (over the complete network) is equivalent to a
model without any communication noise and where two communities of stubborn agents (that
is, they never change opinion) of equal size pn

2(1−p) are present in the network, where each of
the two community holds a different opinion. Even though the complete graph is a strong
assumption for such communication networks, we remark that, at every round, an agent pulls
an opinion from three neighbors: therefore, the round-per-round communication pattern results
is a dynamic graph with O (n) edges. Furthermore, such a model can be used to capture
the behavior of bio-inspired multi-agent systems in which mobile agents meet randomly at a
relatively high rate. For more details about models for bio-inspired swarms of agents, we refer
to [43].

In the aforementioned setting, we prove that the process induced by the 3-Majority dy-
namics exhibits a phase-transition. Our results are summarized in the following theorem.

Theorem. Let {st}t≥0 be the bias of the process1 induced by the 3-Majority dynamics with
uniform noise probability p. We prove the followings.

• If p < 1/3, let s0 = Ω(
√
n log n) be the bias at the beginning of the process, seq =

n
1−p

√

1−3p
1−p ,

and let ε > 0 be any sufficiently small constant. Then, there exists a time τ1 = O(log n)
such that, w.h.p.2 , the process at time τ1 reaches a metastable almost-consensus phase
characterized by the equilibrium point seq, i.e.

sτ1 ∈ [(1 − ε)seq, (1 + ε)seq].

Moreover, the bias oscillates in such interval for nΘ(1) rounds w.h.p.

• If p < 1/3, let s0 = O(
√
n log n) be the bias at the beginning of the process. Then, there

exists a time τ2 = O(log n) such that, w.h.p. , the system becomes unbalanced towards an
opinion, i.e.

|sτ2 | = Ω(
√

n log n).

• If p > 1/3, let s0 = Ω(
√
n log n) be the bias at the beginning of the process. Then, there

exists a time τ3 = O(log n) such that, w.h.p. , at time τ3 the majority opinion is lost,
i.e. sτ3 = O(

√
n). In addition, with constant probability, at time τ3 + 1 the majority

opinion changes. Moreover, for nΘ(1) additional rounds the absolute value of the bias is
O(

√
n log n) w.h.p.

Our result shows that 3-Majority dynamics is less resilient to noise than the Undecided-

State dynamics, despite in the 3-Majority dynamics more communication per-round are
allowed. Indeed, the phase transition for the Undecided-State dynamics turns out to be at
the threshold p = 1/2 [17],3 in the same setting as ours: since the threshold is higher than 1/3,

1The bias st is the difference between the majority opinion community size and the minority opinion one at
time t.

2An event holds with high probability (w.h.p. in short) with respect to n if the probability it occurs is at least
1− n−Θ(1).

3In the cited work, an equivalent definition of noise model is given, and their formulation yields the threshold
p = 1/6.
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the dynamics is able to solve the consensus problem even in the presence of more noise than the
3-Majority dynamics.

We briefly recall the Undecided-State dynamics: at each round, each agent pulls a single
neighbor opinion x u.a.r. If the agent former opinion y is different from x, the agent becomes
undecided. If the agent is undecided, then it simply adopts any opinion it sees. This two-phases
update-rule turns out to be more resilient to noise and, hence, a swarm of agents would benefit
from it. In [17], the authors prove that the dynamics exhibits a similar phase transition for
the noise probability p = 1/2. Below the threshold, the dynamics w.h.p. rapidly breaks the
symmetry and converges in logarithmic time to a metastable phase of almost-consensus that
lasts for polynomial time, in which the majority opinion exceeds the minority one by a bias
of order of Θ (n). Above the threshold, no form of consensus is possible, since the bias keeps
bounded by O

(√
n log n

)

for a polynomial number of rounds, w.h.p.
Nevertheless, we remark that our work shows technical novelties compared to [17]. A first

difference lies in the fact that we find a precise equilibrium value seq that is attractive for
the bias. Secondly, we characterize in detail what happens in the metastable almost-consensus
phase: for every arbitrary small value ε > 0, we prove that the bias oscillates in the interval
[(1− ε)seq, (1+ ε)seq] for polynomial time w.h.p. Instead, in [17] no precise equilibrium value is
found, and in the metastable-almost consensus phase the bias lies in an interval of width Θ(n),
without arbitrarily approaching an equilibrium state; nevertheless, we remark that we think the
Undecided-State process should behave in such a way.

On the other hand, when the noise probability is above the threshold 1/3, we prove than
no form of consensus is possible w.h.p. as in [17], but we also show that the majority opinion
switches every O (log n) rounds with constant probability. In order to prove this, some drift
analysis results with super-martingale arguments are used [32].

As future directions, sparser topologies are worth to be investigated. We believe that, as long
as the communication graph shows strong connection properties, similar phase transitions will
be exhibited. Furthermore, it would be interesting to see whether the 3-Majority dynamics
with an arbitrary number of possible opinions, with the same noise model, has the exact same
phase transition at the noise threshold value p = 1/3: in general, this corresponds to the fact
that, for each node and at each round, exactly one communication among the three ones is noisy
in expectation.

1.2 Related Works

Origin of the 3-Majority dynamics. The study of the 3-Majority dynamics arises on
the ground of the results obtained for the Median dynamics in [19]. The Median dynamics
considers a totally ordered opinion set, in which each agent pulls two neighbor opinions i, j
u.a.r. and then updates its opinion k to the median between i, j, and k. The dynamics turns
out to be a fault-taulerant, efficient dynamics for the majority consensus problem. However, as
pointed out in [6], the Median dynamics may not guarantee with high probability convergence
to a valid opinion in case of the presence of an adversary, which is needed for the consensus
problem. Moreover, the opinion set must have an ordering, property that might not be met by
applicative scenarios such as biological systems [6]. These facts naturally lead researchers to
look for efficient dynamics that satisfy the above requirements.

To the best of our knowledge, [1] is the first work analyzing the h-Majority dynamics. In
detail, in the h-Majority dynamics we have n nodes and, at every round, every node pulls the
opinion from h random neighbors and sets his new opinion to the majority one (ties are broken
arbitrarily). More extensive characterizations of the 3-Majority dynamics over the complete
graph are given in [7, 8, 10,27].

In [7] it is shown that the 3-Majority dynamics is a fast, fault-tolerant protocol for (valid)
majority consensus in the case of k ≥ 2 colors, provided that there is an initial bias towards some
majority opinion. Furthermore, [7] shows an exponential time-gap between the 3-Majority
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consensus process and the median process in [19], thus establishing its efficiency. In [8], the
analysis is extended to any (even balanced) initial configuration in the many-color case, in the
presence of an different kind of bounded adversaries. The authors of [8] emphasize how the
absence of an initial majority opinion considerably complicates the analysis, in that it must
be proved that the process breaks the initial symmetry despite the presence of the adversary.
Indeed, before the symmetry breaking, the adversary is more likely to cause undesired behaviors.
The strongest result about the convergence of the 3-Majority is that in [27]. The authors
show that in the case of k opinions, the process converges in time O(k log n) rounds, and it is
tight when k = O(

√
n). The 3-Majority dynamics is also studied in different topologies: [29]

analyzes the 3-Majority process in graphs of minimum degree nα, with α = Ω
(

(log log n)−1
)

,
starting from random biased binary configurations.

Other popular non-linear opinion dynamics. Other important and efficient opinion dy-
namics for the majority consensus problem are the 2-Choices and the Undecided-State

dynamics. For an overview on the state of the art about opinion dynamics we defer the reader
to [6]. We just want to quickly give the definitions of the 2-Choices dynamics (the Undecided-

State was already defined in the previous subsection). In the 2-Choices, each agent samples
two neighbors u.a.r. and updates its opinion to the majority opinion among its former opinion
and the two sampled neighbor opinions if there is any. Otherwise, it keeps its opinion. We just
want to remark that the expected per-round behaviors of the 2-Choices dynamics and that of
the 3-Majority are the same, while the actual behaviors differ substantially in high probabil-
ity [10]. This is why mean-field arguments are sometimes not sufficient to analyze such processes.
For example, we have ran simple experiments that suggest that our uniform noise model on the
2-Choices dynamics yields a threshold noise value p = 1/2, just like the Undecided-State

dynamics.
As the 2-Choices and the 3-Majority dynamics, the Undecided-State dynamics turns

out to be an efficient majority consensus protocol, with the difference that it requires only one
communication per round for each agent. Further description is given in the previous section. It
is worth mentioning the more recent work [3], which analyzes a variant of the Undecided-State

dynamics in the many-color case starting from any initial configuration.

Consensus dynamics in the presence of noise or stubborn agents. The authors of [45]
initiate the study of the consensus problem in the presence of communication noise. They
consider the Vicsek model [44], in which they introduce a noise feature and a notion of robust
consensus. Subsequently, dynamics for the consensus problem with noisy communications have
received considerable attention. In particular, as mentioned in the introduction, this direction
is motivated, among many reasons, by the desire to find models for the consensus problem in
natural phenomena [23].

The communication noise studied in this type of problem can be devided in two types:
uniform (or unbiased) and non-uniform (or biased). The uniform case wants to capture errors in
communications between agents in real-world scenarios. The non-uniform communication noise
instead describes the case in which agents have a preferred opinion. The authors of [23] are the
first to explicitly focus on the uniform noise model. In detail, they study the broadcast and the
majority consensus problem when the opinion set is binary. In their model of noise, every bit in
every exchanged message is flipped independently with some probability smaller than 1/2. As
a result, the authors give natural protocols that solve the aforementioned problems efficiently.
The work [24] generalizes the above study to opinion sets of any cardinality.

As for the non-uniform communication noise case, in [16] it is considered the h-Majority

dynamics with a binary opinion set {alpha,beta}, with a probability p that any received
message is flipped towards a fixed preferred opinion, say beta, while with probability 1− p the
former message keeps intact. They suppose there is an initial majority agreeing on alpha, and
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they analyze the time of disruption, that is the time the initial majority is subverted. They
prove there exists a threshold value p⋆ (which depends on h), such that 1) if p < p⋆, the time
of disruption is at least polynomial, w.h.p., and 2) if p > p⋆, the time of disruption is constant,
w.h.p. Their result holds for any sufficiently dense graph. We remark that our work differs
from [16] in that there is no preferred opinion, and the noise affecting communications may
result in any possible opinion.

The noise feature affecting opinion dynamics has been shown to be equivalent to a model
without noise, in which communities of stubborn agents (i.e., they never change opinion) are
added to the network [17]. Hence, we discuss some previous works that consider such a model.
In [46], the authors focus on the voter model, and show that the presence stubborn agents
with opposite opinions precludes the convergence to consensus. The work [39] studies the asyn-
chronous voter rule and the asynchronous majority rule dynamics with Poisson clocks, when
the opinion set is binary using mean-field techniques, in presence of agents that either have a
probability (which depends on their current opinion) not to update when the clock ticks, or
are stubborn. In the second case, which directly relates with our work, they show that for the
3-Majority dynamics there are either one or two possible stable equilibrium, depending on
the sizes of the stubborn communities, which are reached in logarithmic time. If the two sizes
are close between each other and not too large, then agreement on both opinions is possible
in the steady state. Otherwise, either no agreement is possible, or the process converges to
an agreement towards a single opinion (that of the largest stubborn community). This work
includes the case in which the two stubborn communities have equal size, which corresponds to
the uniform communication noise model. Nevertheless, we have some crucial differences: first of
all, our work consider the synchronous version of the 3-Majority dynamics, which cannot be
analyzed with the same tools. Indeed, in each update round, the synchronous model has non-
zero probability to reach any of the two monochromatic configurations. This feature is absent in
the asynchronous version, since at each update, with probability equal to 1, at most one agent
can change opinion. Furthermore, we want to remark that mean-field arguments do not capture
important aspects of the process, such as metastability, which in [39] is shown only through
simulations. For example, the actual behavior of the process in the long-term is oscillation in
a very small interval around the equilibrium values, spending long times in those intervals, and
eventually switching between the two. We characterize the width of the oscillation interval and
show there is high probability of convergence, providing also a lower bound on the time the
process spends in the equilibrium interval.

1.3 Structure of the paper

Next section contains the preliminaries for the analysis and the result statements. Section 3 is
devoted to the statements of the main theorems. In Section 4 we prove the theorems. Finally, in
Appendix A we state some probabilistic tools we use throughout the analysis, and in Appendix B
add some proofs due to space limitations.

2 Preliminaries

The 3-majority dynamics. Let G = (V,E) be a finite graph of n nodes (the agents), where
each node is labelled uniquely with labels in [n] := {1, . . . , n}. Furthermore, each node sup-
ports an opinion from a set of opinions Σ. The 3-Majority dynamics defines a stochas-
tic process {Mt}t∈N which is described by the opinion of the nodes at each time step, i.e.
Mt = (i1(t), . . . , in(t)) ∈ Σn for every t ≥ 0, where ij(t) is the opinion of node j at time t.
The transition probabilities are characterized iteratively by the majority update rule as follows:
given any time t ≥ 0, let Mt ∈ Σn be the state of the process at time t. Then, at time t+1, each
node u ∈ V samples three neighbors in G independently uniformly at random (with repetition)
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and updates its opinion to the majority one among the sampled neighbor opinions, if there is
any. Otherwise, it adopts a random opinion among the sampled ones. For the sake of clarity,
we remark that when u samples a neighbor node twice, the corresponding opinion counts twice.

Since Mt depends only on Mt−1, it follows that the process is a Markov chain. In the
following, we will call the state of the process also by configuration of the graph.

The communication noise. We introduce an uniform communication noise feature in the
dynamics, which is equivalent to that in [17]. Let 0 < p < 1 be a constant. When a node pulls a
neighbor opinion, there is probability p that the received opinion is sampled u.a.r. in Σ; instead,
with probability 1− p, the former opinion keeps intact and is received.

3-Majority dynamics in the binary opinion case. The communication network we fo-
cus on is the complete graph G = Kn with self loops in the binary opinion case, i.e. Σ =
{alpha,beta}. For the symmetry of the network, the state of the process is fully characterized
by the number of nodes supporting a given opinion, which implies that the nodes do not require
unique IDs. Hence, we can write Mt = (at, bt), where at is the number of the nodes supporting
opinion alpha at time t, and bt is the analogous for opinion beta. Moreover, since at each time
t, at + bt = n, it suffices to know {bt}t≥0 to fully describe the process.

We define the bias of the process at time t by

st = bt − at = 2bt − n, (1)

which takes value in {−n, . . . , n}, and we notice that the process can also be characterized by
the values of the bias alone, i.e. {st}t≥0. We will use the latter sequence to refer to the process.
We remark that st > 0 if the majority opinion at time t is beta and st < 0 if it is alpha. We
say that configurations having bias st ∈ {n,−n} are monochromatic, meaning that every node
supports the same opinion, while a configuration with st = 0 is symmetric. In the introduction,
we took the bias to be |st| but, for the sake of the analysis, we consider its signed version here.
We finally remark that the random variable bt (and, analogously, at) is the sum of i.i.d. Bernoulli
r.v.s, which allows us to make use of the popular Chernoff bounds (Lemmas 16 and 19). In detail,

if X
(t)
i is the r.v. yielding 1 if nodes i adopts opinion beta at round t+1, and 0 otherwise, then

bt =
∑

i∈[n]X
(t)
i . Therefore, for (1),

st = 2
∑

i∈[n]

X
(t)
i − n =

∑

i∈[n]

(2X
(t)
i − 1), (2)

where (X
(t)
i − 1) are i.i.d. taking values in {−1, 1}. For this reason, we can apply the Hoeffding

bound (Lemma 17) to the bias.

Some notation. For any function f(n), we make use of the standard Landau notation O (f(n)),
Ω (f(n)),Θ (f(n)). Furthermore, for a constant c > 0, we writeOc (f(n)),Ωc (f(n)), and Θc (f(n))
if the hidden constant in the notation depends on c.

3 Results

We here show our three main theorems. The first one shows how the dynamics solves the majority
consensus problem when p < 1/3, even if in a “weak” form (since only an almost-consensus is
reached). Section 4.1 is devoted to the proof of this theorem.

Theorem 1 (Victory of the majority). Let {st}t≥0 be the process induced by the 3-Majority

dynamics with uniform noise probability p < 1/3. Let ε > 0 be any arbitrarily small constant
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(such that ε < 1/3 and ε2 ≤ (1 − 3p)/2) and let γ > 0 be any constant. Let seq =
n

(1−p)

√

1−3p
1−p .

Then, for any starting configuration s0 such that s0 ≥ γ
√
n log n and for any sufficiently large

n, the following holds w.h.p. :

(i) there exists a time τ1 = Oγ,ε,p(log n) such that (1− ε)seq ≤ sτ1 ≤ (1 + ε)seq;

(ii) there exists a value c = Θγ,ε,p(1) such that, for all k ≤ nc, (1− ε)seq ≤ sτ1+k ≤ (1 + ε)seq.

Our second theorem shows how the dynamics is capable of quickly breaking the initial sym-
metry. By applying also Theorem 1, it shows that the consensus problem is solved. The proof
of the theorem is shown in Section 4.2.

Theorem 2 (Symmetry breaking). Let {st}t≥0 be the process induced by the 3-Majority

dynamics with uniform noise probability p < 1/3, and let γ > 0 be any positive constant. Then,
for any starting configuration s0 such that |s0| ≤ γ

√
n log n and for any sufficiently large n,

w.h.p. there exists a time τ2 = Oγ,p(log n) such that |sτ2 | ≥ γ
√
n log n.

Our last theorem shows that no form of consensus is possible when p > 1/3, and it is proved
in Section 4.3.

Theorem 3 (Victory of noise). Let {st}t≥0 be the process induced by the 3-Majority dynamics
with uniform noise probability p > 1/3. Let ε > 0 be any arbitrarily small constant (such that
ε < min{1/4, (1− p), (3p− 1)/2}) and let γ > 0 be any positive constant. Then, for any starting
configuration s0 such that |s0| ≥ γ

√
n log n and for any sufficiently large n, the following holds

w.h.p. :

(i) there exists a time τ3 = Oε,p(log n) such that sτ3 = Oε(
√
n) and, moreover, the majority

opinion switches at the next round with probability Θε(1);

(ii) there exists a value c = Θγ,ε(1) such that, for all k ≤ nc, it holds that |sτ3+k| ≤ γ
√
n log n.

4 Analysis

In this section we analyze the process. We first give some preliminary results. Afterwards, in
Section 4.1 we prove Theorem 1, in Section 4.2 we prove Theorem 2, while Section 4.3 is devoted
to the proof Theorem 3.

We now give the expectation of the bias at time t, conditional on its value at time t− 1. Its
proof can be found in Appendix B, and it is based on simple calculations.

Lemma 4. Let {st}t≥0 be the process induced by the 3-Majority dynamics with uniform noise
probability p ∈ (0, 1). The conditional expectation of the bias is

E [st | st−1 = s] =
s(1− p)

2

(

3− s2

n2
(1− p)2

)

. (3)

By the lemma above, we deduce that there are up to three equilibrium configurations in
expectation. The first one corresponds to s = 0, and the other (possible) equilibrium correspond
to the condition

1− p

2

(

3− s2

n2
(1− p)2

)

= 1

The latter condition results in

s = ± n

(1− p)
·
√

3(1− p)− 2

(1− p)
= ± n

(1− p)
·
√

1− 3p

1− p
,

which is well defined if only if p ≤ 1/3. We will denote the absolute value of the latter two
values by seq.
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4.1 Victory of the majority

The aim of this subsection is to prove Theorem 1: so, in each statement we assume that {st}t≥0

is the process induced by the 3-Majority dynamics with uniform noise probability p < 1/3.
We first show a lemma which states that, for any small constant ε > 0, whenever st−1 6∈

[(1− ε)seq, (1 + ε)seq], then st gets closer to the interval.

Lemma 5. For any constant ε > 0 such that ε2 < (1−3p)/2 and for any γ > 0, if s ≥ γ
√
n log n,

the followings hold

(i) if s ≤ (1− ε)seq, then P
[

st ≥ (1 + 3ε2/4)s | st−1 = s
]

≥ 1− 1

nγ2ε4/32
;

(ii) if, s ≥ (1 + ε)seq, then P
[

st ≤ (1− 3ε2/4)s | st−1 = s
]

≥ 1− 1

nγ2ε4/32
.

Proof. We first notice that

(1− ε)seq ≤ n

1− p

√

1− 3p− 2ε2

1− p
, (4)

which holds since ε2 ≤ (1− 3p)/2 and can be proved with simple calculations.
For Lemma 4, if each s ≤ (1− ε)seq, then

E [st | st−1 = s] =
s(1− p)

2

(

3− s2

n2
(1− p)2

)

≥ s

(

3− 3p

2
− 1− 3p − 2ε2

2

)

= s(1 + ε2).

where the inequality follows from (4). Since (2), for the Hoeffding bound (Lemma 17), it holds
that

P
[

st ≤ s(1 + ε2)− sε2/4 | st−1 = s
]

≤ e−s2ε4/(32n) ≤ e−γ2ε4 logn/32 ≤ 1

nγ2ε4/32
.

The second inequality in the lemma follows by a symmetric argument, observing that

(1 + ε)seq ≥ n

1− p

√

1− 3p+ 2ε2

1− p
,

for ε such that ε2 < (1− 3p)/2.

The following lemma serves to bound how far the bias can get from the interval [(1+ε)seq, (1−
ε)seq].

Lemma 6. For any constants ε > 0 and γ > 0, if s ≥ γ
√
n log n, the followings hold

(i) if s ≤ (1 + ε)seq, then P
[

st ≥ (1− ε− ε2)s | st−1 = s
]

≥ 1− 1

nγ2ε2/16
;

(ii) if s ≥ (1− ε)seq with ε < 1, then P [st ≤ (1 + ε)s | st−1 = s] ≥ 1− 1

nγ2ε2p2
.

Proof. The proof is similar to that of the previous lemma. From Lemma 4, we get that

E [st | st−1 = s] ≥ s

(

1− ε− ε2

2

)

,

which follows since s ≤ (1 + ε)seq by simple calculations. For the Hoeffding bound (Lemma 17)
we get

P

[

st ≤ s

(

1− ε− ε2

2

)

− ε2 · s
2

∣

∣

∣

∣

st−1 = s

]

≤ e−
γ2ε4

16 =
1

n
γ2ε2

16

.

9



The second claim comes symmetrically from Lemma 4 by observing that, since s ≥ (1− ε)seq

E [st | st−1 = s] ≤ s (1 + (1− 3p)ε) .

The Hoeffding bound implies

P [st ≥ s (1 + ε) | st−1 = s] ≤ P [st ≥ s (1 + (1− 3p)ε) + 2pε · s | st−1 = s] ≤ e−γ2ε2p2 =
1

nγ2ε2p2
.

We provide another lemma to control the behavior of the bias. The proof is again deferred
to Appendix B, and consists in the application of simple concentration bounds.

Lemma 7. For any constant k > 0, the followings hold:

(i) if s ≥ seq, then P [st ≥ 2seq/3 | st−1 = s] ≥ 1− 1/nk.

(ii) if 0 ≤ s ≤ 2seq/3, then P [st ≤ seq | st−1 = s] ≥ 1− 1/nk.

We can piece together the above lemmas, which imply the following corollary, whose proof
consists in many calculations and is thus deferred to Appendix B.

Corollary 8. For any constant ε > 0 such that ε < 1/3 and ε2 < (1 − 3p)/2, the followings
hold:

(i) if |seq − s| ≤ (ε/4)seq, then

P [|seq − st| ≤ εseq | st−1 = s] ≥ 1− 1

nγ2ε2p2/25
;

(ii) if (ε/4)seq ≤ |seq − s| ≤ seq/3, then

P

[

|seq − st| ≤ |seq − s| ·
(

1− 3ε2

25

) ∣

∣

∣

∣

st−1 = s

]

≥ 1− 1

nγ2ε4p2/(21832)
.

We are finally ready to prove the theorem.

Proof of Theorem 1. We divide the proof in different cases. First, suppose that (ε/4)seq ≤
|seq − s| ≤ εseq. Let T1 = nγ2ε4p2/(21932). Then, from Corollary 8.(i) and (ii), for the chain rule,
we have that

P

[

T
⋂

k=1

{|seq − st+k| ≤ εseq}
∣

∣

∣

∣

∣

st = s

]

≥ 1− 1

nγ2ε4p2/(22032)
.

Second, suppose that εseq ≤ |seq − s| ≤ seq/3. Then, from Corollary 8.(ii), for the chain
rule, a time T2 exists, with

T2 = O



− log n

log
(

1− 3ε2

25

)



 = O
(

log n/ε2
)

such that

P [|seq − st+T2 | ≤ εseq | st = s] ≥ 1− 1

nγ2ε4p2/(22032)
.

Third, suppose that s ≤ 2seq/3. From Lemma 5.(i) and Lemma 7.(ii), for the chain rule and
the union bound, there is a time

T3 = O





log n

log
(

1 + 3ε2

4

)



 = O
(

log n/ε2
)
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such that

P [2seq/3 ≤ st+T3 ≤ seq | st = s] ≥ 1− 1

nγ2ε4/26
.

Then, we are in one of the first two cases, and we conclude for the chain rule.
Fourth, suppose that s ≥ (1+ 1

3 )seq. From Lemma 5.(ii) and Lemma 7.(i), for the chain rule,
a time T4 exists, with T4 = O (log n), such that

P [|seq − sT4 | ≤ seq/3 | st = s] ≥ 1− 1

nγ234/26
.

The theorem follows with τ1 = O (T2 + T3 + T4)

4.2 Symmetry breaking

The aim of this section is to prove Theorem 2: so, in each statement we assume that {st}t≥0

is the process induced by the 3-Majority dynamics with uniform noise probability p < 1/3.
The symmetry breaking analysis essentially relies on the following lemma which has been proved
in [14]. We report the proof in Appendix B.

Lemma 9. Let {Xt}t∈N be a Markov Chain with finite-state space Ω and let f : Ω 7→ [0, n]
be a function that maps states to integer values. Let c3 be any positive constant and let m =
c3
√
n log n be a target value. Assume the following properties hold:

(i) for any positive constant h, a positive constant c1 < 1 (which depends only on h) exists,
such that for any x ∈ Ω : f(x) < m,

P
[

f(Xt) < h
√
n
∣

∣ Xt−1 = x
]

< c1;

(ii) there exist two positive constants δ and c2 such that for any x ∈ Ω : h
√
n ≤ f(x) < m,

P [f(Xt) < (1 + δ)f(Xt−1) | Xt−1 = x] < e−c2f(x)2/n.

Then the process reaches a state x such that f(x) ≥ m within Oc2,δ,c3(log n) rounds with proba-
bility at least 1− 2/n.

Our goal is yo apply the above lemma to the 3-Majority process, which defines a Markov
chain. In particular, we claim the hypothesis of Lemma 9 are satisfied when the bias of the
system is o

(√
n log n

)

, with f(x) = s (x), m = γ
√
n log n for any constant γ > 0. Then,

Lemma 9 implies the process reaches a configuration with bias greater than Ω
(√

n log n
)

within
time O (log n), w.h.p. We need to prove that the two hypotheses hold.

Lemma 10. For any constant c3 > 0, let s be a value such that |s| < c3
√
n log n. Then,

(i) for any positive constant h > 0, there exists a positive constant c1 < 1 (which depends only
on h), such that

P
[

st < h
√
n
∣

∣ st−1 = s
]

< c1;

(ii) two positive constants δ, c2 exist (depending only on p), such that if |s| ≥ h
√
n, then

P [st < (1 + δ)s | st−1 = s] < e−
c2s

2

n .

Proof. As for the first claim, a simple domination argument implies that

P
[

|st| < h
√
n
∣

∣ st−1 = s
]

≤ P
[

|st| < h
√
n
∣

∣ st−1 = 0
]

. (5)
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Thus, we can bound just the second probability, where the initial bias is zero. As shown in
Section 2, st is a sum of n i.i.d. Rademacher r.v.s with zero mean and unitary variance. We
can hence make use of the Lemma 18 (Berry-Essen inequality). In particular, let Φ(x) be the
cumulative function of a standard normal distribution. A constant C > 0 exists such that

∣

∣P
[

st ≤ h
√
n
∣

∣ st−1 = 0
]

−Φ(h)
∣

∣ ≤ C√
n
.

Since Φ(h) = c for some constant c > 0 which depends only on h, we have that

c− C√
n
≤ P

[

st ≤ h
√
n
∣

∣ st−1 = 0
]

≤ c+
C√
n
.

Since P [|st| < h
√
n | st−1 = 0] ≤ P [st ≤ h

√
n | st−1 = 0], for n large enough we get

P
[

|st| < h
√
n
∣

∣ st−1 = 0
]

< 2c.

By setting c1 = c/2 and from Eq. (5) we get claim (i).
As for the second claim, assume s > 0 and h

√
n ≤ s ≤ h

√
n log n. By Lemma 4 and the fact

that h
√
n ≤ s ≤ h

√
n log n ≤ (1−√

ε)seq, we have (as in Lemma 5)

E [st | st−1 = s] =
s(1− 2p)

2

(

3− s2

n2
(1− 2p)2

)

≥ s

(

3

2
− 3p − 1− 6p− 2ε

2

)

= s(1 + ε).

From the Hoeffding bound (Lemma 17), we get that

P [st ≤ s (1 + ε)− sε/4 | st−1 = s] ≤ e−s2ε2/(32n).

Observe that P [|st| ≤ s (1 + 3ε/4) | st−1 = s] ≤ P [st ≤ s (1 + 3ε/4) | st−1 = s]. Thus, we have
the claim by setting δ = 3ε/4 and c2 = ε2/32.

The symmetry breaking is then a simple consequence of the above Lemma.

Proof of Theorem 2. Apply Lemmas 9 and 10 with h = c3 = γ.

4.3 Victory of noise

In this subsection, we prove Theorem 3: so, in each statement, we assume that {st}t≥0 is the
process induced by the 3-Majority dynamics with uniform noise probability p > 1/3.

We make use of tools from drift analysis (Lemma 15) to the absolute value of the bias of the
process, showing that it reaches magnitude O (

√
n) quickly. Then, since the standard deviation

of the bias is Θ (
√
n), we have constant probability that the majority opinion switches Lemma 13.

Finally, with Lemma 14, we show that the bias keeps bounded in absolute value by O
(√

n log n
)

.

Lemma 11. For any constant ε > 0 such that ε < (1−p), if s ≥ 2
√
n/
(

ε2
)

, the following holds

E [|st| | st−1 = s] ≤ E [st | st−1 = s] ·
(

1 +
ε

2

)

.

The proof can be found in Appendix B and makes use of some probabilistic inequalities such
as the Jensen’s one. With next lemma, we show that the absolute value of the process quickly
becomes of magnitude O (

√
n).

Lemma 12. For any constant ε > 0 such that ε < min{(1 − p), (3p − 1)/2} we define smin =√
n/ε2. Then, for any starting configuration s0 such that s0 ≥ smin, with probability at least

1− 1/n there exists a time τ = Oε(log n) such that |sτ | ≤ smin.

12



Proof. Let h(x) = ε·x
2 be a function. Let Xt = |st| if st ≥ smin, otherwise Xt = 0. We now

estimate E [Xt −Xt−1 | Xt−1 ≥ smin,Ft−1], where Ft is the natural filtration of the process Xt.
We have that

E [Xt −Xt−1 | Xt−1 ≥ smin,Ft−1] = E [Xt | Xt−1 ≥ smin,Ft−1]−Xt−1

(a)

≤ E [|st| | st−1 ≥ smin,Ft−1]− st−1

(b)

≤ E [st | st−1 ≥ smin,Ft−1] ·
(

1 +
ε

2

)

− st−1

(c)

≤ st−1(1− ε)
(

1 +
ε

2

)

− st−1 ≤ −ε · st−1

2
,

where (a) holds because Xt ≤ |st|, (b) holds for Lemma 11, and (c) holds for Lemma 4. Thus,

E [Xt−1 −Xt | Xt−1 ≥ smin,Ft−1] ≥ h (Xt−1) .

Since h′(x) = ε/2 > 0, we can apply Lemma 15.(iii). Let τ be the first time Xt = 0 or,
equivalently, |st| < smin. Then

P [τ > t | s0] < exp

[

−ε

2
·
(

t− 2

ε
−
∫ s0

smin

2

ε · y dy

)]

≤ exp

[

−ε

2
·
(

t− 2

ε
−
∫ n

smin

2

ε · y dy

)]

= exp

[

−ε

2
·
(

t− 2

ε
− 2

ε
(log n− log smin)

)]

= exp

[

−ε

2
·
(

t− 2

ε
− 2

ε
((log n)/2 + 2 log ε)

)]

≤ exp

[

−ε · t
2

+ 1 +
log n

2

]

.

If t = 4(log n)/ε, then we get that P [τ > t | s0] < e−3(log n)/2+1 < 1/n.

Next lemma states that, whenever the absolute value of the bias is of order of O (
√
n), then

the majority opinion switches at the next round with constant probability.

Lemma 13. For any constant ε > 0 such that ε < 1/4, and let st−1 be a configuration such
that |st−1| = s ≤ √

n/ε. Then, the majority opinion switches at the next round with constant
probability.

Proof. Wlog we assume st−1 > 0. Now, st−1 = bt−1 − at−1, with n/2 < bt−1 ≤ n/2 +
√
n/(2ε)

and n/2 − √
n/(2ε) ≤ at−1 < n/2. Both bt−1 and at−1 can be expressed as the sum of i.i.d.

Bernoulli r.v.s. Since E [at | n/2−
√
n/(2ε) ≤ at−1 < n/2] ≤ n/2, we have

P

[

at ≥
n

2
+

√
n

2ε

∣

∣

∣

∣

st−1 = s

]

= P

[

at ≥
n

2
·
(

1 +
1

ε
√
n

) ∣

∣

∣

∣

st−1 = s

]

≥ e−
9

2ε2 ,

where the latter inequality holds for the reverse Chernoff bound (Lemma 19), whose hypothesis
is satisfied since ε < 1/4. Thus, there is at least constant probability that the majority opinion
switches.

Next lemma shows that the signed bias decreases each round. Its proof can be found in
Appendix B.

Lemma 14. For any constant ε > 0 such that ε ≤ (3p− 1)/2, the followings hold

(i) if s ≥ γ
2

√
n log n, then P [st ≤ (1− 3ε/4)s | st−1 = s] ≥ 1− 1

nγ2ε2/27
;

(ii) if s ≥ 0, then P
[

−γ
2

√
n log n ≤ st ≤ s+ γ

2

√
n log n | st−1 = s

]

≥ 1− 2

nγ2/8
.

We are ready to prove Theorem 3.

13



Proof of Theorem 3. Claim (i) follows directly from Lemmas 12 and 13. As for claim (ii), when-
ever the bias at some round t = τ + k becomes |st| ≥ (γ/2)

√
n log n, from Lemma 14.(ii) (and

its symmetric statement), we have that |st| ≤ γ
√
n log n with probability 1−2/n

γ2

8 . Then, from
Lemma 14.(i) it follows that the bias starts decreasing each round with probability 1−1/nγ2ε2/27

until reaching (γ/2)
√
log n. This phase in which the absolute value of the bias keeps bounded

by
∣

∣γ
√
n log n

∣

∣ lasts for at least nγ2ε2/28 with probability at least 1− 1/(2nγ2ε2/28) for the chain
rule.
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[14] A. E. F. Clementi, M. Ghaffari, L. Gualà, E. Natale, F. Pasquale, and G. Scornavacca.
A tight analysis of the parallel undecided-state dynamics with two colors. In I. Potapov,
P. G. Spirakis, and J. Worrell, editors, 43rd International Symposium on Mathematical
Foundations of Computer Science, MFCS 2018, Liverpool, UK, volume 117 of LIPIcs,
pages 28:1–28:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[15] A. Condon, M. Hajiaghayi, D. Kirkpatrick, and J. Manuch. Approximate majority analyses
using tri-molecular chemical reaction networks. Natural Computing, Aug. 2019.

[16] E. Cruciani, H. A. Mimun, M. Quattropani, and S. Rizzo. Phase transitions of the k-
majority dynamics in a biased communication model. In International Conference on Dis-
tributed Computing and Networking 2021, ICDCN ’21, page 146–155, New York, NY, USA,
2021. Association for Computing Machinery.

[17] F. D’Amore, A. E. F. Clementi, and E. Natale. Phase transition of a non-linear opinion
dynamics with noisy interactions - (extended abstract). In A. W. Richa and C. Scheideler,
editors, Structural Information and Communication Complexity - 27th International Collo-
quium, SIROCCO 2020, Paderborn, Germany, Proceedings, volume 12156 of Lecture Notes
in Computer Science, pages 255–272. Springer, 2020.

[18] M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari, R. Pagh, and M. Rink.
Tight thresholds for cuckoo hashing via XORSAT. In S. Abramsky, C. Gavoille, C. Kirchner,
F. M. auf der Heide, and P. G. Spirakis, editors, Automata, Languages and Programming,
37th International Colloquium, ICALP 2010, Bordeaux, France, Proceedings, Part I, volume
6198 of Lecture Notes in Computer Science, pages 213–225. Springer, 2010.

[19] B. Doerr, L. A. Goldberg, L. Minder, T. Sauerwald, and C. Scheideler. Stabilizing consensus
with the power of two choices. SPAA ’11, page 149–158, New York, NY, USA, 2011.
Association for Computing Machinery.

[20] J. Dong, D. Fernández-Baca, F. McMorris, and R. C. Powers. Majority-rule (+) consensus
trees. Mathematical Biosciences, 228(1):10–15, 2010.

[21] D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, 2009.

[22] Emanuele Natale. On the Computational Power of Simple Dynamics. PhD Thesis, Sapienza
University of Rome, 2017.

[23] O. Feinerman, B. Haeupler, and A. Korman. Breathe before speaking: efficient information
dissemination despite noisy, limited and anonymous communication. Distributed Comput.,
30(5):339–355, 2017.

[24] P. Fraigniaud and E. Natale. Noisy rumor spreading and plurality consensus. Distributed
Comput., 32(4):257–276, 2019.

[25] N. Franks, S. Pratt, E. Mallon, N. Britton, and D. Sumpter. Information flow, opinion
polling and collective intelligence in house-hunting social insects. Philosophical transactions
of the Royal Society of London. Series B, Biological sciences, 357:1567–83, 12 2002.

[26] A. E. Gamal and Y. Kim. Network Information Theory. Cambridge University Press, 2011.

[27] M. Ghaffari and J. Lengler. Nearly-tight analysis for 2-choice and 3-majority consensus
dynamics. In C. Newport and I. Keidar, editors, Proceedings of the 2018 ACM Symposium
on Principles of Distributed Computing, PODC 2018, Egham, United Kingdom, pages 305–
313. ACM, 2018.

15



[28] Y. Hassin and D. Peleg. Distributed Probabilistic Polling and Applications to Proportionate
Agreement. Information and Computation, 171(2):248–268, Dec. 2001.

[29] N. Kang and N. Rivera. Best-of-three voting on dense graphs. SPAA ’19, page 115–121,
New York, NY, USA, 2019. Association for Computing Machinery.

[30] P. N. Klein and N. Young. On the number of iterations for dantzig-wolfe optimization and
packing-covering approximation algorithms. ArXiv, cs.DS/0205046, 1999.

[31] R. Koetter and F. R. Kschischang. Coding for errors and erasures in random network
coding. IEEE Trans. Inf. Theory, 54(8):3579–3591, 2008.

[32] P. K. Lehre and C. Witt. Concentrated hitting times of randomized search heuristics
with variable drift. In H. Ahn and C. Shin, editors, Algorithms and Computation - 25th
International Symposium, ISAAC 2014, Jeonju, Korea, Proceedings, volume 8889 of Lecture
Notes in Computer Science, pages 686–697. Springer, 2014.

[33] W. Lin, L. Zhixin, and G. Lei. Robust consensus of multi-agent systems with noise. In
2007 Chinese Control Conference, pages 737–741, 2007.

[34] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005.

[35] M. Mobilia. Does a Single Zealot Affect an Infinite Group of Voters? Physical Review
Letters, 91(2):028701, July 2003.

[36] M. Mobilia, A. Petersen, and S. Redner. On the role of zealotry in the voter model. Journal
of Statistical Mechanics: Theory and Experiment, 2007(08):P08029, 2007.

[37] T. K. Moon. Error Correction Coding: Mathematical Methods and Algorithms. Wiley-
Interscience, USA, 2005.

[38] E. Mossel, J. Neeman, and O. Tamuz. Majority dynamics and aggregation of information
in social networks. Auton. Agents Multi Agent Syst., 28(3):408–429, 2014.

[39] A. Mukhopadhyay, R. Mazumdar, and R. Roy. Voter and majority dynamics with biased
and stubborn agents. Journal of Statistical Physics, 181, 11 2020.

[40] A. Reina, J. A. R. Marshall, V. Trianni, and T. Bose. Model of the best-of-n nest-site
selection process in honeybees. Phys. Rev. E, 95:052411, May 2017.

[41] Y. Ruan and Y. Mostofi. Binary consensus with soft information processing in cooperative
networks. In Proceedings of the 47th IEEE Conference on Decision and Control, CDC 2008,
Cancún, Mexico, pages 3613–3619. IEEE, 2008.

[42] D. J. Sumpter, J. Krause, R. James, I. D. Couzin, and A. J. Ward. Consensus decision
making by fish. Current Biology, 18(22):1773–1777, 2008.

[43] G. Valentini, E. Ferrante, and M. Dorigo. The best-of-n problem in robot swarms: For-
malization, state of the art, and novel perspectives. Frontiers in Robotics and AI, 4:9,
2017.
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A Tools

We make use of the following general result on (super/sub)-martingales, which can be found
in [32].

Lemma 15. Let {Xt}t∈N be a stochastic process adapted to a filtration {Ft}t∈N, over some state
space S ⊆ {0} ∪ [xmin, xmax], where xmin ≥ 0. Let h : [xmin, xmax] → R

+ be a function such
that 1/h(x) is integrable and h(x) differentiable on [xmin, xmax]. Define T := min{t | Xt = 0}.
Then, the followings hold.

(i) If E [Xt −Xt+1 | Xt ≥ xmin,Ft] ≥ h(Xt) and
d
dxh(x) ≥ 0, then

E [T | X0] ≤
xmin

h(xmin)
+

∫ X0

xmin

1

h(y)
dy.

(ii) If E [Xt −Xt+1 | Xt ≥ xmin,Ft] ≤ h(Xt) and
d
dxh(x) ≤ 0, then

E [T | X0] ≥
xmin

h(xmin)
+

∫ X0

xmin

1

h(y)
dy.

(iii) If E [Xt −Xt+1 | Xt ≥ xmin,Ft] ≥ h(Xt) and
d
dxh(x) ≥ λ for some λ > 0, then

P [T > t | X0] < exp

(

−λ

(

t− xmin

h(xmin)
−
∫ X0

xmin

1

h(y)
dy

))

.

(iv) If E [Xt −Xt+1 | Xt ≥ xmin,Ft] ≤ h(Xt) and
d
dxh(x) ≤ −λ for some λ > 0, then

P [T < t | X0] <
eλt − eλ

eλ − 1
exp

(

−λ

(

xmin

h(xmin)
+

∫ X0

xmin

1

h(y)
dy

))

.

For an overview on the forms of Chernoff bounds see [21].

Lemma 16 (Multiplicative forms of Chernoff bounds). Let X1,X2, . . . ,Xn be independent {0, 1}
random variables. Let X =

∑n
i=1Xi and µ = E [X]. Then:

(i) for any δ ∈ (0, 1) and µ ≤ µ+ ≤ n, it holds that

P [X ≥ (1 + δ)µ+] ≤ e−
1
3
δ2µ+ ; (6)

(ii) for any δ ∈ (0, 1) and 0 ≤ µ− ≤ µ, it holds that

P [X ≤ (1− δ)µ−] ≤ e−
1
2
δ2µ

− . (7)

We also make use of the Hoeffding bound [34].

Lemma 17 (Hoeffding bounds). Let 0 < a < b be two constants. Let X1,X2, . . . ,Xn be inde-
pendent random variables such that P [a ≤ Xi ≤ b] = 1 for all i ∈ [n]. Let X =

∑n
i=1 Xi and

E [X] = µ. Then:

(i) for any t > 0 and µ ≤ µ+, it holds that

P [X ≥ µ+ + t] ≤ exp

(

− 2t2

n(b− a)2

)

; (8)
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(ii) for any t > 0 and 0 ≤ µ− ≤ µ, it holds that

P [X ≤ µ− − t] ≤ exp

(

− 2t2

n(b− a)2

)

. (9)

We make use of the following result which explicit the convergence “speed” in the central-
limit theorem.

Lemma 18 (Berry-Esseen). Let X1, . . . ,Xn be n i.i.d. (either discrete or continuous) random
variables with zero mean, variance σ2 > 0, and finite third moment. Let Z the standard normal
random variable, with zero mean and variance equal to 1. Let Fn(x) be the cumulative function
of Sn

σ
√
n
, where Sn =

∑n
i=1 Xi, and Φ(x) that of Z. Then, there exists a positive constant C > 0

such that

sup
x∈R

|Fn(x)− Φ(x)| ≤ C√
n

for all n ≥ 1.

Finally, we use some anti-concentration inequalities know as reverse Chernoff bounds. The
proof can be found in the appendix of [30].

Lemma 19 (Reverse Chernoff bounds). Let X1,X2, . . . ,Xn be i.i.d. {0, 1} random variables.
Let X =

∑n
i=1Xi and µ = E [X], with µ ≤ n/2. Furthermore, let δ ∈ (0, 1/2] be a constant. If

δ2µ ≥ 3, then:

(i) for any µ ≤ µ+ ≤ n, it holds that

P [X ≥ (1 + δ)µ+] ≥ e−9δ2µ+ ; (10)

(ii) for any 0 ≤ µ− ≤ µ, it holds that

P [X ≤ (1− δ)µ−] ≥ e−9δ2µ
− . (11)

B Missing proofs

Proof of Lemma 4. Let b = bt and a = at. Then s = b − a and n = a + b, which implies
b = (n + s)/2 and a = (n − s)/2. The probability that, when a node samples a neighbor, it
receives opinion beta is b′ = (b/n) · (1 − p) + p/2, where (b/n) · (1 − p) is the probability to
receive a non-noisy message which contains opinion beta, and p/2 is the contribution of the
noise. Analogously, the probability that it receives opinion alpha is a′ = (a/n) · (1− p) + p/2.
Then, the probability the node updates its opinion to beta is (b′)3 + 3a′(b′)2. So, for Eq. (1),
we have that

E [st | st−1 = s] = 2n
(

(b′)3 + 3a′(b′)2
)

− n =
s(1− p)

2

(

3− s2

n2
(1− p)2

)

,

where the last equation follows from simple calculations.

B.1 Proofs: victory of the majority

Proof of Lemma 7. Let k be any arbitrarily large constant. As for (i), Lemma 4 gives that

E [st | st−1 = s] ≥ s(1− p) ≥ seq(1− p),

since seq ≤ s ≤ n. Then, let δ = (1− 3p)/3 > 0. By using the Hoeffding bound, it holds that

P [st ≤ seq(1− p)− δ · seq | st−1 = s] ≤ e−
δ2s2eq

4 ≤ 1

nk
,
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where the latter inequality holds since seq = Θ(n) and seq > (2k/δ) log n for a sufficiently large
n. As for (ii), Lemma 4 implies that

E [st | st−1 = s] ≤ 3s(1− p)

2
≤ seq(1− p),

which is true since 0 ≤ s ≤ 2seq/3. The Hoeffding bound then gives

P [st ≥ seq(1− p) + pseq | st−1 = s] ≤ e−
p2s2eq

4 ≤ 1

nk
,

where the latter inequality holds since seq = Θ(n) and so seq > (2k/p) log n for a sufficiently
large n.

Proof of Corollary 8. First, we prove (i). From Lemma 6 and the union bound, we have that

P

[(

1− ε

4
− ε2

16

)

·
(

1− ε

4

)

seq ≤ st ≤
(

1 +
ε

4

)

·
(

1 +
ε

4

)

seq

∣

∣

∣

∣

st−1 = s

]

≥ 1− 1

nγ2ε2p2/25
.

The claim follows by osberving that

[(

1− ε

4
− ε2

16

)

·
(

1− ε

4

)

seq,
(

1 +
ε

4

)

·
(

1 +
ε

4

)

seq

]

⊆ [(1− ε)seq, (1 + ε)seq] .

As for claim (ii), we divide the proof in two different cases. Suppose, first, that 2seq/3 ≤ s ≤
(1− ε/4)seq. A constant ε/4 ≤ δ ≤ 1/3 exists such that s = (1 − δ)seq. Then, from Lemmas 5
and 6

P

[

(1− δ)

(

1 +
3ε2

26

)

seq ≤ st ≤ seq

∣

∣

∣

∣

st−1 = s

]

≥ 1− 1

nγ2ε4p2/214
.

Notice that
∣

∣

∣

∣

seq − (1− δ)

(

1 +
3ε2

26

)

seq

∣

∣

∣

∣

= seq − (1− δ)

(

1 +
3ε2

26

)

seq

= (seq − (1− δ)seq) ·
[

1−
(1− δ) · 3ε2

26
· seq

δ · seq

]

≤ (seq − s) ·
[

1− 3ε2

25

]

,

where in the last inequality we used that δ < 1/3. Hence,

P

[

|seq − st| ≤ |seq − s| ·
[

1− 3ε2

25

] ∣

∣

∣

∣

st−1 = s

]

≥ 1− 1

nγ2p2ε4/214
. (12)

Second, suppose (1 + ε/4)seq ≤ s ≤ 3seq/2. Again, a constant ε/4 ≤ δ ≤ 1/3 exists such that
s = (1 + δ)seq. From Lemmas 5 and 6, it holds that

P

[

(1 + δ)
(

1− δ − δ2
)

seq ≤ st ≤ (1 + δ)

(

1− 3ε2

26

)

seq

∣

∣

∣

∣

st−1 = s

]

≥ 1− 1

nγ2ε4p2/(21832)
,

for the union bound, since δ ≤ 1/3. Notice that

∣

∣seq − (1 + δ)
(

1− δ − δ2
)

seq
∣

∣ = seq − (1 + δ)
(

1− δ − δ2
)

seq

= ((1 + δ)seq − seq) ·
[

(1 + δ)(δ + δ2)seq
δseq

− 1

]

≤ ((1 + δ)seq − seq) ·
[

16

9
− 1

]

= ((1 + δ)seq − seq) ·
[

1− 2

9

]

,
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where the inequality holds since δ ≤ 1/3. By simple calculations, it can be seen that (1 +

δ)
(

1− 3ε2

26

)

≥ 1. Then, we have also that

∣

∣

∣

∣

seq − (1 + δ)

(

1− 3ε2

26

)

seq

∣

∣

∣

∣

= (1 + δ)

(

1− 3ε2

26

)

seq − seq

= ((1 + δ)seq − seq) ·
[

1−
(1 + δ) · 3ε2

26 seq

δseq

]

(a)

≤ ((1 + δ)seq − seq) ·
[

1− 3
(

1 +
ε

4

)

· 3ε
2

26

]

(b)

≤ ((1 + δ)seq − seq) ·
[

1− 9ε2

26

]

,

where (a) holds since ε/4 ≤ δ ≤ 1/3, and (b) holds since ε > 0. Thus,

P

[

|seq − st| ≤ |seq − s| ·
[

1− 9ε2

26

] ∣

∣

∣

∣

st−1 = s

]

≥ 1− 1

nγ2ε4p2/(21832)
. (13)

Combining Eqs. (12) and (13), we get that, whenever (ε/4)seq ≤ |seq − s| ≤ seq/3, then

P

[

|seq − st| ≤ |seq − s| ·
[

1− 3ε2

25

] ∣

∣

∣

∣

st−1 = s

]

≥ 1− 1

nγ2ε4p2/(21832)
.

B.2 Proofs: symmetry-breaking

Proof of Lemma 9. Define a set of hitting times T := {τ(i)}i∈N, where

τ(i) = inf
i∈N

{

t : t > τ(i− 1), f(Xt) ≥ h
√
n
}

,

setting τ(0) = 0. By the first hypothesis, for every i ∈ N, the expectation of τ(i) is finite. Now,
define the following stochastic process which is a subsequence of {Xt}t∈N:

{Ri}i∈N = {Xτ(i)}i∈N.

Observe that {Ri}i∈N is still a Markov chain. Indeed, if {x1, . . . ,Xi−1} be a set of states in Ω,
then

P [Ri = x | Ri−1 = xi−1, . . . , R1 = x1]

= P
[

Xτ(i) = x
∣

∣ Xτ(i−1) = xi−1, . . . ,Xτ(1) = x1
]

=
∑

t(i)>···>t(1)∈N

P
[

Xt(i) = x
∣

∣ Xt(i−1) = xi−1, . . . ,Xt(1) = x1
]

· P [τ(i) = t(i), . . . , τ(1) = t(1)]

= P
[

Xτ(i) = x
∣

∣ Xτ(i−1)=xi−1

]

= P [Ri = x | Ri−1 = xi−1] .

By definition, the state space of R is {x ∈ Ω : f(x) ≥ h
√
n}. Moreover, the second hypothesis

still holds for this new Markov chain. Indeed:

P [f(Ri+1) < (1 + ε)f(Ri) | Ri = x]

= 1− P [f(Ri+1) ≥ (1 + ε)f(Ri) | Ri = x]

= 1− P
[

f(Xτ(i+1) ≥ (1 + ε)f(Xτ(i))
∣

∣ Xτ(i) = x
]

≤ 1− P
[

f(Xτ(i+1) ≥ (1 + ε)f(Xτ(i)), τ(i + 1) = τ(i) + 1
∣

∣ Xτ(i) = x
]

20



= 1− P
[

f(Xτ(i)+1 ≥ (1 + ε)f(Xτ(i))
∣

∣ Xτ(i) = x
]

= 1− P [f(Xt+1 ≥ (1 + ε)f(Xt) | Xt = x]

< e−c2f(x)2/n.

These two properties are sufficient to study the number of rounds required by the new Markov
chain {Ri}i∈N to reach the target value m. Indeed, by defining the random variable Zi =

f(Ri)√
n
,

and considering the following “potential” function, Yi = exp
(

m√
n
− Zi

)

, we can compute its

expectation at the next round as follows. Let us fix any state x ∈ Ω such that h
√
n ≤ f(x) < m,

and define z = f(x)√
n
, y = exp

(

m√
n
− z
)

. We have

E [Yi+1|Ri = x] ≤ P [f(Ri+1) < (1 + ε)f(x)] em/
√
n

+ P [f(Ri+1) ≥ (1 + ε)f(x)] em/
√
n−(1+ε)z

(from hypothesis (ii)) ≤ e−c2z2 · em/
√
n + 1 · em/

√
n−(1+ε)z

= em/
√
n−c2z2 + em/

√
n−z−εz

= em/
√
n−z(ez−c2z2 + e−εz)

≤ em/
√
n−z(e−2 + e−2) (14)

<
em/

√
n−z

e

=
y

e
,

where in (14) we used that z is always at least h and thanks to hypothesis (i) we can choose a
sufficiently large h, which depends on c2 and ε.

By applying the Markov inequality and iterating the above bound, we get

P [Yi > 1] ≤ E [Yi]

1
≤ E [Yi−1]

e
≤ · · · ≤ E [Y0]

eτR
≤ em/

√
n

ei
.

We observe that if Yi ≤ 1 then Ri ≥ m, thus by setting i = m/
√
n + log n = (c3 + 1) log n, we

get:

P
[

R(c3+1) logn < m
]

= P
[

Y(c3+1) logn > 1
]

<
1

n
. (15)

Our next goal is to give an upper bound on the hitting time τ(c3+1) logn. Note that the event
“τ ((c3 + 1) log n) > c4 log n” holds if and only if the number of rounds such that f(Xt) ≥ h

√
n

(before round c4 log n) is less than (c3 + 1) log n. Thanks to Hypothesis (1), at each round
t there is at least probability 1 − c1 that f(Xt) ≥ h

√
n. This implies that, for any positive

constant c4, the probability P [τ ((c3 + 1) log n) > c4 log n] is bounded by the probability that,
within c4 log n independent Bernoulli trials, we get less then (c3 + 1) log n successes, where the
success probability is at least 1− c1. We can thus choose a sufficiently large c4 = c4(c1, c3) and
apply the multiplicative form of the Chernoff bound (Lemma 16), obtaining

P [τ ((c3 + 1) log n) > c4 log n] <
1

n
. (16)

We are now ready to prove the Lemma using (15) and (16), indeed

P [Xc4 logn ≥ m] > P
[

R(c3+1) logn ≥ m ∧ τ ((c3 + 1) log n) ≤ c4 log n
]

= 1− P
[

R(c3+1) logn < m ∨ τ ((c3 + 1) log n) > c4 log n
]

21



≥ 1− P
[

R(c3+1) logn < m
]

+ P [τ ((c3 + 1) log n) > c4 log n]

> 1− 2

n
.

Hence, choosing a suitable large c4, we have shown that in c4 log n rounds the process reaches
the target value m, w.h.p.

B.3 Proofs: victory of noise

Proof of Lemma 11. Trivially, it holds that

|st| ≤ |st − E [st | st−1 = s]|+ |E [st | st−1 = s]| .

Furthermore, from Lemma 4, we have that E [st | st−1 = s] ≥ 0 as long as s ≥ 0. By writing

|st − E [st | st−1 = s]| =
√

(st − E [st | st−1 = s])2,

and by using the Jensen’s inequality for a concave function (i.e. the square root), it follows that

E [|st| | st−1 = s] ≤
√

E

[

(st − E [st | st−1 = s])2
∣

∣

∣
st−1 = s

]

+ E [st | st−1 = s]

= σ (|st| | st−1 = s) + E [st | st−1 = s] , (17)

where σ(x) represents the standard deviation of a r.v. x. As pointed out in the preliminaries

(Section 2), the bias can be written as the sum of i.i.d. random variables Y
(t)
i taking values in

{−1,+1}. For such sum of variables, the variance is linear:

σ (|st| | st−1 = s)2 =

n
∑

i=1

σ
(

Y
(t)
i

∣

∣

∣
st−1 = s

)2
≤ n ,

where the latter inequality holds since σ
(

Y
(t)
i

∣

∣

∣ st−1 = s
)2

≤ 1 for every i. Furthermore, from

Lemma 4, we deduce that

E [st | st−1 = s] ≥ s(1− p)(3− (1− p)2)

2
≥ s(1− p).

Since s ≥ 2
√
n

ε2 ≥ 2
√
n

ε(1−p) , we get that E [st | st−1 = s] ≥ 2
√
n

ε . By using the latter facts in Eq. (17),
we obtain

E [|st| | st−1] ≤ E [st | st−1 = s] ·
(

1 +
σ (|st| | st−1 = s)

E [st | st−1 = s]

)

≤ E [st | st−1 = s] ·
(

1 +

√
n

2
√
n

ε

)

≤ E [st | st−1 = s] ·
(

1 +
ε

2

)

.

Proof of Lemma 14. From Lemma 4, for each s ≥ 0 it holds that

E [st | st−1 = s] ≤ 3s(1− p)

2
≤ (1− ε)s, (18)

where the second inequality is true since ε ≤ (3p − 1)/2. We now apply the Hoeffding bound
(Lemma 17) to st:

P [st ≥ (1− ε)s + ε · s/4] ≤ e−s2ε2/(32n) ≤ e−γ2ε2 logn/27 ≤ 1

n
γ2ε2

27

.
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As for the second claim, we notice that, from Eq. (18), E [st | st−1 = s] ≤ s. The Hoeffding
bound (Lemma 17) now implies that

P

[

st ≥ s+
γ

2

√

n log n
]

≤ e−γ2 logn/8 ≤ 1

nγ2/8
.

Moreover, from Lemma 4, for any 0 ≤ s ≤ n, E [st | st−1 = s] ≥ 0. Applying again the Hoeffding
bound, we get that

P

[

st ≥ −γ

2

√

n log n | st−1 = s
]

≤ e−γ2 logn/8 ≤ 1

nγ2/8
,

For the union bound, we get the second claim.
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