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Abstract 

The paper deals with the development of a one-dimensional model to simulate an industrial 

adsorption process of ammonia on zinc sulphate-doped activated carbon. It is described by mass 

balance, thermodynamic and adsorption kinetics equations. Since equilibrium is involved in the 

model, we started with experimental measurements of ammonia adsorption isotherms on doped 

activated carbon. A method based on the sensitivity analysis of parameters was used to evaluate 

the estimability of unknown parameters involved in the Sips adsorption isotherm equation. The 

estimable parameters were then identified using experimental data at three different 

temperatures, i.e. 285, 293 and 313 K. Experimental breakthrough fronts at different ammonia 

concentrations and gas flow rates were then used to determine the overall mass transfer 

coefficient and the axial dispersion coefficient involved in the model equations, implemented 

and solved within Comsol Multiphysics software. Finally, we validated the model by means of 

four additional breakthrough fronts that were different from those used to identify the 

parameters. The model predictions and the experimental measurements show a very agreement 

which is quantified by the performance indices of the model and confirmed by a chi-squared 

test. The validated model can be used as a predictive tool for the design and optimization of the 

ammonia adsorption process for air purification boxes used to equip cabins with pressurization 

and air-conditioning of mechanical devices. 

Keywords: Air purification boxes, Ammonia adsorption, Doped activated carbon, 

Experimental measurements, Estimability analysis, Modeling and simulation 

1. Introduction

The emission of gaseous ammonia is one of the main concerns of composting and organic waste 

methanisation facilities. Ammonia causes chronic respiratory diseases, such as asthma and 

occupational chronic bronchitis, when the professional exposure is too high. The Ministry of 

Labor (Courtois & Cadou, 2016) has established an occupational exposure limit to ammonia at 

10 ppm in France.  

Mechanical machinery used in composting and methanisation plants often operate in an 

atmosphere where the ambient level of ammonia is higher than this maximum limit. The use of 

mechanical devices equipped with cabin pressurization and air-conditioning is common in 

many fields such as building and civil engineering, waste treatment and recycling, and 

agriculture.  
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The aim of these cabins is to provide, other than working comfort, protection against various 

risks potentially present in the changing environment of the device, such as particles and/or 

gases and toxic fumes. To do so, the cabin is placed in overpressure (> 100 Pa) with respect to 

the outside via a filtered and purified ventilation system (Bémer et al., 2015). The air flow rate 

introduced into the cockpit is around 50 to 100 m3.h-1 depending on the manufacturer.  

Currently, the installation of an air purification box is very rarely available when purchasing 

the machine, it is rather included as an adaptation. These air purification boxes, when they are 

included as protection against multiphase pollutants, are composed of a prefilter layer, followed 

by a high efficiency filtration layer, then an adsorbent layer. Suppliers offer various 

configurations, from multilayer annular cartridges to a simple overlay of adapted plane 

mediums. While some studies (Bémer et al., 2005; Organiscak and Schmitz, 2012) have 

assessed the efficiency of cabin pressurization and air-conditioning regarding protection against 

particles, there are little scientific or technical data on gas and vapor filter boxes. The sector 

with the most amount of information concerning the adsorption of dangerous gas compounds 

with regards to preventing occupational hazards is the respiratory personal protective 

equipment sector and its associated standards (Guimon, 2019).  

Activated carbon is the main adsorbent material used on an industrial scale. It is mostly chosen 

for its large specific surface area and its low cost. Zinc sulphate-doped activated carbon is the 

main medium used today to equip air purification boxes for machines to purify ammonia, and 

where the adsorption reactions of pollutant gaseous phases take place. Currently, manufacturers 

assess only the performance of the adsorption layer which is generally carried out at relatively 

high concentration levels. The issue with evaluating the performance of purification boxes used 

to equip machines is complicated insomuch as the service time is very long (several days) on 

the one hand, and there are no or very little obligations in terms of normative testing for the 

purification of the gaseous phase, on the other. 

The objective of this paper is to assess and improve the performance of gas and vapor 

purification in a pilot adsorption column containing the same zinc sulphate-doped activated 

carbon and operating in the same conditions as the reference air purification box. More 

specifically, an experimental study on adsorption of ammonia on the zinc sulphate-doped 

activated carbon is carried out along with the modeling of the phenomena involved in the 

column. The experiments mainly consist of the characterization of the doped carbon and the 

measurements of adsorption isotherms and breakthrough fronts of ammonia.  

2. Experimental measurements

2.1. Characterisation of zinc sulphate-doped activated carbon 

The doped carbon used comes from air purification boxes commercialized by the company, SP 

Défense. The carbon is presented in the form of grains with a diameter of around 1.5 mm. Its 

porous structure is experimentally defined using an isotherm carried out by adsorption 

manometry with liquid nitrogen at 77 K (Rouquerol et al., 2013), which enables access to 

essential information such as the specific surface area and the porous volume. The density of 

the solid or skeleton is determined by helium pycnometry. These data are summarized in Table 

1. The average size of crystal, measured by Scanning Electron Microscopy (SEM), was 0.5 µm.

All the gases (NH3, N2 and He) used in the experiments were provided by Air Liquide France

with a purity greater than 99.999 %.



2.2. Measurements of equilibrium adsorption isotherms 

For the development of the column model, adsorption isotherms of ammonia on doped activated 

carbon within a temperature range of 285-313 K with ammonia concentrations of up to 0.066 

mol.m-3 were measured using a thermogravimetric analyzer from Setaram Instrumentation 

(SETSYS TAG). The technique involves monitoring the mass variation of a sample kept at a 

specific temperature when it is subjected to different concentrations of ammonia. The 

measurement of the mass increase has a sub-microgram resolution.  The mass increase values 

obtained when equilibrium is achieved are converted in ammonia adsorption capacity per kg of 

adsorbent. Before the first measurement, primary vacuum degassing of the adsorbent was 

carried out at 200 °C for 15 hours. 

2.3. Measurements of breakthrough fronts  

The experimental adsorption rig used to measure the breakthrough fronts of ammonia is 

presented in Figure 1. Its main element is a column filled with zinc sulphate-doped activated 

carbon particles. The characteristics of the column as well as the operating conditions are given 

in Table 2. The gas studied is obtained by mixing compressed dry air and pure ammonia using 

two mass flow regulators (Brooks® Delta mass flow II) calibrated with a precision of 1 % and 

0.1 % of full scale, respectively. A small column is used to ensure a mixture of ammonia and 

air before entering the adsorption column. Two metallic grids with fine mesh were placed at 

the inlet and outlet of the column to ensure an even distribution of gases and to keep the 

adsorbent particles in the bed. 

  

Figure 1: Experimental rig used for the measurements of breakthrough fronts  

Doped activated carbon particles were used without any preliminary treatment. Temperature, 

pressure, and humidity sensors were placed upstream and downstream of the adsorption 

column. A photoionization detector (ppbRAE Plus) calibrated with a precision of 0.1 % was 



used to measure the ammonia concentrations when exiting the column. All the sensors were 

connected to an acquisition module developed by the INRS IT department. 

Table 1: Measured characteristics of the doped activated carbon 

Zinc sulphate-doped activated 

carbon 
Value 

Mean radius of particles, mm 0.59 

Solid density, kg.m-3 2053 

Particle porosity, mg
3.mpe

-3 0.40 

Mean crystal diameter, µm 0.5 

BET Specific surface area, m2.g-1 948 

Mean macropore diameter, nm 1494 

Total pore volume, cm3.g-1 0.33 

Micropore volume, cm3.g-1 0.30 

Table 2: Characteristics of the adsorption column and operating conditions 

Packed bed column with doped 

activated carbon 
Value 

Column diameter, mm 32.2 

Column height, mm 40.0 

Bed porosity, mg
3.mcol

-3 0.52 

Adsorbent mass, g 22 

Bed density, kg.m-3 623 

Temperature, °C 21 

Total pressure, kPa 101,3 

2.4. Experimental procedure  

The adsorption column was filled with 22 g of doped activated carbon particles. The air from 

the air network was dried in a silica gel column before entering the adsorption column.  The 

latter was kept under dry air until the column temperature (21°C) and relative humidity (5%) 

were stabilized. A gaseous mixture of ammonia and air was thus produced and supplied the 

adsorption column. Each experiment was repeated several times to check the repeatability and 

reproducibility of the results. 

3. Model development 

In the model development of the ammonia adsorption process on doped activated carbon, one 

of the main issues is to select the adsorption equilibrium isotherm that best describes the 

process. This isotherm must predict the maximum adsorbed quantity of gaseous ammonia 

(adsorbate) on the solid (adsorbent) depending on the temperature and the ammonia 

concentration. In addition, the temperature can have a negative effect on the adsorbent capacity. 

In order to thoroughly describe the adsorption phenomenon of ammonia on doped activated 

carbon, the renowned Sips adsorption model was used. It is detailed in the next section. 

3.1. Sips adsorption isotherm 

This semi-empirical equation describing the quantity adsorbed at equilibrium, qe (mol.kg-1), 

depending on the concentration in the gaseous phase at equilibrium, c (mol.m-3), considers the 

interactions between the adsorbate molecules and the adsorbent surface with a heterogeneity 

factor, and is expressed as follows (Do, 1998): 
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 and  are constants. 0mq (mol.kg-1), 0sb (m3.mol-1) and 0s  are the maximum quantity adsorbed, 

the equilibrium constant and the Sips heterogeneity factor at the reference temperature 0T  (K), 

respectively. Q (J.mol-1) is the heat of adsorption and 
gR (J.mol-1.K-1) is the ideal gas constant.  

On the other hand, the Sips model is able to describe the ammonia adsorption phenomenon with 

precision, in particular for adsorbents with an adsorption energy distribution, due to their pores 

of varying sizes. This adsorption energy or isosteric heat of sorption can be expressed using the 

Van't Hoff equation as (Do, 1998):  

( ) ( ) ( )0 lng sb cH Q R T s− = −  (5) 

where H (J.mol-1) is the isosteric heat of sorption.  

It depends on the temperature through the parameters qm, bs and s, and on the concentration in 

the gas phase. The negativity of enthalpy variations indicates that the adsorption is an 

exothermic process. Furthermore, the value of the isosteric heat of sorption will provide 

insightful information about the type of adsorption that ammonia undergoes on the doped 

activated carbon. In fact, a high (low) value means that ammonia is chemically (physically) 

adsorbed. The limit value between these two types of adsorption lies between 20 and 40 kJ/mol 

(Králik, 2014). 

The isotherm equation (Eq.1) therefore involves six unknown parameters, i.e. 0mq , 0sb , 0s ,Q ,

and  , which should be deduced from the experimental measurements. 

3.2. Breakthrough fronts  

A mathematical model was developed to describe the behavior of the breakthrough fronts of 

the dynamic adsorption of ammonia on doped activated carbon. It consists of mass balance 

equations, and thermodynamic, hydrodynamic, and kinetic equations. Moreover, the model was 

based on the following main assumptions:  (i) the gas mixture obeys the ideal gas law, (ii) the 

pressure drop in the column is neglected, (iii) ammonia is the only adsorbed molecule, (iv) the 

resistance to the mass transfer through the boundary layer surrounding the solid particles is 



neglected, (v) the kinetics of the mass transfer within a particle is described by means of the 

linear driving force (LDF) model, (vi) the equilibrium isotherm of the gas phase with the 

adsorbent is described by the Sips isotherm equation, (vii) the adsorbent particles are assumed 

to be spherical and homogeneous in size and density, (viii) the temperature of the column as 

well as the physical properties of the adsorbent are assumed to be constant, (ix) the column is 

a continuum of two phases, one solid and one gas, (x) only the axial dimension of the column 

is taken into account (mono-dimensional model). 

In the gas phase, the ammonia mass balance is described by the following transient PDE 

involving diffusion, convection, and adsorption: 
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where c (mol.m-3) is the concentration of ammonia in the gas phase, q (mol.m-3) is the average 

concentration of ammonia adsorbed in the solid phase, v (m.s-1) is the interstitial gas velocity, 

axD (m².s-1) is the axial dispersion coefficient and 
b (mg

3.mcol
-3) is the bed porosity. 

The associated initial and boundary conditions are given as:  
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where inc  (mol.m-3) is the concentration of ammonia at the column inlet.   

In the solid phase which is constituted by the doped carbon particles,  the kinetics of the mass 

transfer is approximated by means of the LDF  model proposed by Glueckauf and Coates (1954) 

as: 

( )*

LDF ek q q
q
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= −
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where *

e e sq q =  (mol.m-3) is the concentration of ammonia in the solid phase at equilibrium, 
s  

(kg.m-3) is the density of the solid constituting the activated carbon and 
LDFk (s-1) is the overall 

mass transfer coefficient which accounts for the contributions of gas/solid mass transfer and 

macropore and micropore diffusion. Taking into account the assumption (iv), 
LDFk is expressed 

by means of the following equation (Ruthven, 1985):  
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where 
per (m) is the mean radius of the particle, 

eD (m².s-1) is the effective diffusion coefficient 

of the adsorbate in the gas phase of the particle, Hk  is Henry’s equilibrium constant (low 

concentration), 
µD (m².s-1) is the intra-crystalline diffusion coefficient, and 

µr (m) is the mean 

crystal radius. 



It should be noted that the LDF model, which is an approximation of the second law of Fick, 

averages the radial concentration of the adsorbate within the particle. However, despite this 

approximation, the use of the LDF model often provides satisfactory results for simulations of 

adsorption processes, which may be explained by the fact that adsorption kinetics often have 

secondary impact with respect to adsorption equilibrium isotherms. 

The resulting model (Eqs. (6-10)) will be analyzed, identified, and validated using the 

experimental measurements. It is noteworthy that since the axial dispersion increases with the 

flow rate, the parameters 
1mc  and 

2mc  (see Table 3) involved in the correlation of  Rastegar and 

Gu (2017) were estimated in order to keep the same tendency. The unknown parameters of the 

model to be estimated from the measurements are therefore LDFk , 
1mc  and 

2mc .  

The model equations are implemented and solved within Comsol Multiphysics ® software.  

Table 3: Correlations used to estimate the model parameters 
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diffusion, ABD , (m2.s-1) 
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Knudsen diffusion, KD  

(m².s-1) (Do, 1998)  
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Axial dispersion 

coefficient, axD  (m².s-1), 

(Rastegar and Gu, 2017)  
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4. Estimability analysis and identification of parameters 

In both adsorption isotherm and breakthrough front models, the unknown parameters involved 

should be estimated using experimental measurements. However, the question is to know 

whether the available measurements contain enough information to estimate all the unknown 

parameters or only part of them. To answer this question, we carried out a parameter 

estimability analysis based on the sensitivities of the measured outputs with respect to the 

parameters. The objective is to determine the most estimable parameters from the 

measurements available and potentially design appropriate experiments to estimate the least 

estimable parameters.  

The estimability analysis is based on the following matrix of sensitivities: 
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In this matrix, each column corresponds to the effect of a parameter on the outputs at different 

temperatures, for example. Each row corresponds to the effect of all parameters on one output 

for a given temperature.   

The sensitivities are multiplied by scaling factors to ensure dimensional consistency and 

guarantee the same order of magnitude of the elements expressed as: 
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where ˆ
iy  is the value predicted by the model which is determined by the vector of unknown 

parameters p,  pn is the number of unknown parameters, 
jp is the nominal value of the jth 

parameter taken from the literature or previous studies, and i T k
y  is the estimation of the ith 

output, obtained using the nominal vector of the  parameters p . 

The Z matrix is implemented within the estimability algorithm developed by Yao et al., (2003) 

in order to rank the parameters. It consists of the following steps: 

(i) Calculate the module of each column of the Z matrix. 

(ii) Choose the first estimable parameter corresponding to the column with the highest module. 

(iii) Create an XL matrix (vector in the first iteration), containing the Z column of the estimable 

parameter. 

(iv) Calculate the ZL matrix, which is the prediction of the Z sensitivity matrix, by using the 

subset of XL columns, as follows: 
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(v) Calculate the residual matrix LR : 

L LR Z Z= −

(vi) Calculate the module of each column of the RL matrix. The column with the highest value

corresponds to the next estimable parameter.

(vii) Increase the XL matrix by adding the Z column of the new estimable parameter. The new

matrix is called XL+1.

(viii) Repeat steps (iv) to (vii) until the highest module value in the columns of the RL matrix

of residuals is smaller than a limit value (estimability threshold).

A parameter is considered to be non-estimable if the value of the module of its corresponding 

column in the Z matrix is less than a given estimability threshold. Its value is then taken from 

the literature or from previous studies. 

The estimability threshold value is set in an almost arbitrary manner. Therefore, the number of 

estimable parameters depends significantly on the chosen value. In this work, the threshold 

value is set equal to 0.04 as in Yao et al. (2003), roughly meaning that for a parameter to be 

estimable, a variation of 10% of its value should cause at least a variation of 2 % of the model 

outputs. On the other hand, the elements sij of the Z matrix are local sensitivities, i.e., they 

depend on the initial values used for the unknown parameters, the resulting order of estimability 

of parameters may therefore change from one set of initial values to another. A more advanced 

method has recently been developed by Bouchkira et al. (2021) based on the works of Eghtesadi 

et al. (2013) and Saltelli et al. (2006). 

The optimal values p* of the most estimable parameters pest are then determined by solving the 

following constrained optimization problem:  
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subjected to:

min max

est est estp p p      (15) 

where mes

iy  and mod

iy are the measured and predicted outputs, respectively. 

The optimization algorithm used is based on the method of moving asymptotes (MMA) 

(Svanberg, 1987) available in Comsol Multiphysics ® software.  

The accuracy of the identified parameters is assessed by means of confidence intervals (CI) 

given as: 
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where COV is the covariance matrix estimated using the following equation: 
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is the Student t-distribution corresponding to the significance level / 2t and (n-np) 

degrees of freedom, J is the Jacobian matrix of the residue vector rv, i.e. the difference between 

the predictions of the model and the measured values of the outputs expressed as: 
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Once the unknown parameters identified, the quality of the model predictions is assessed by 

means of the following performance indices: 

-the root mean square errors (RMSE) between the model predictions and the experimental 

measurements, defined as (Shafeeyan et al., 2015): 
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- and the Pearson correlation coefficient (Benesty et al., 2009) expressed as: 
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where n is the number of measurements, k represents the operating conditions (temperature, 

flow rate, or concentration, for example), 
mes

y and 
mod

y  are the mean values of the measured 

and predicted data, respectively. Other indices can also be used (Willmott, 1981; Willmott et 

al., 1985; Ayawei et al., 2017) but do not lead to relevant information in our case.  

5. Results and discussion 

5.1. Adsorption isotherms 

The estimability analysis algorithm using the forward orthogonalization algorithm of Yao et al. 

(2003) was applied to the Sips isotherm and led to the results presented in Table 4. 

Table 4: Parameter estimability analysis of the Sips model  

Rank 1 2 3 4 5 6 

Parameter qm0 s0 Q/RgT0 bs0 χ α 

Iteration 1 3.81 1.12 0.77 1.05 0.027 0.006 

Iteration 2 0 0.65 0.57 0.35 0.021 0.006 

Iteration 3 0 0 0.55 0.35 0.018 0.003 

Iteration 4 0 0 0 0.31 0.009 0.003 

Iteration 5 0 0 0 0 0.008 0.003 

Iteration 6 0 0 0 0 0 0.003 



The estimability order of the parameters is as follows: qm0 > s0 > Q/RT0 > bs0 > χ >α. It is worth 

noticing that the last two parameters, χ and α, are not estimable based on the available 

experimental measurements and the estimability threshold value of 0.04. Therefore, their values 

were taken from one of our previous studies and set equal to 1.58 and 0.17 respectively 

(Cardenas et al., 2020; Bedel et al., 2017). 

The four estimable parameters were then identified using the available experimental 

measurements. The optimal values, the confidence intervals at 95 %, and the correlation matrix 

are summarized in Table 5 (the value of 285 K is used as the reference temperature). The tight 

confidence intervals show that the parameters are accurate and consistent with the values 

reported in the literature (Do, 1998; Bedel et al., 2017). On the other hand, the correlation matrix 

shows that the parameters are not strongly correlated. The same results are obtained in GAMS 

optimization environment using Baron global optimizer (Sahinidis, 1996). 

Table 5: Identified parameter values of the Sips model 

   Correlation matrix 

Parameters Value CI (95%) qm0 bs0 s0 Q/RgT0 

qm0, (mol.kg-1) 2.98 ±0.14 1    

bs0, (m
3.mol-1) 187.2 ±41.8 -0.82 1   

s0 1.96 ±0.20 -0.59 0.14 1  

Q/RgT0 15.18 ±1.61 0.34 -0.60 -0.07 1 
 

 

Figure 2: Comparison between Sips isotherm predictions and experimental measurements 

Figure 2 shows the equilibrium adsorption isotherms of ammonia on zinc sulphate-doped 

activated carbon at 285, 293 and 313 K, with an ammonia concentration between 0 and 0.066 

mol.m-3. The high value of the Pearson correlation coefficient and the low value of RMSE 

demonstrate that the Sips isotherm is in very good agreement with the experimental 

measurements in the considered temperature and high ammonia concentration ranges. The 

resulting isosteric heat of adsorption at 285 K is equal to 36 kJ.mol-1 thus proving that ammonia 



is likely to be chemically adsorbed. The isotherm so identified will be used later in the modeling 

of the adsorption process.  

5.2. Breakthrough fronts 

As with adsorption isotherms, the estimability algorithm of  Yao et al. (2003) was applied to 

the model of breakthrough fronts involving three unknown parameters, i.e. 
LDFk , 

1mc  and 
2mc . 

The results obtained are presented in the following table: 

Table 6: Parameter estimability analysis of adsorption models  

 

 

 

 

 

The analysis of these results shows that all parameters can be estimated from the available 

experimental measurements. The order of estimability is given as follows: 
LDFk > 

1mc  > 
2mc .  

The experimental data used consist of breakthrough front measurements carried out at four 

different concentrations of ammonia (0.066; 0.054; 0.041 and 0.029 mol.m-3) and three different 

gas flow rates (13.8, 9.0 and 4.4 L.min-1), i.e. a total of 12 experiments to identify the 

parameters. The optimized values are presented in Table 7, as well as the confidence intervals 

(CI) at 95 % and the correlation matrix. 

Table 7: Optimized parameter values of the ammonia adsorption model 

      Correlation matrix 

Parameters Value CI (95%) 
1,LDFk s−  

1mc  
2mc  

kLDF (s
-1) 6.7×10-4 ±2×10-5 1     

cm1 0.011 ±3×10-3 -0.25 1   

cm2 1.7×10-3 ±6×10-4 -0.31 -0.81 1 

Here again, the tight confidence intervals show that the parameters were accurately determined 

with low correlation coefficients. The resulting axial dispersion coefficients (see Table 8) 

obtained for different gas flow rates are consistent with the literature data (e.g., Knox et al, 

2016). 

Table 8: Values of axial dispersion at different flow rates 

vQ , L.min-1 axD , m2.s-1 

13.8 0.016 

9 0.011 

4.4 0.007 

Rank 1 2 3 

Parameters 
LDFk , s-1 

1mc  
2mc  

Initial values 8×10-4 0.18 0.008 

Iteration 1 177 81.7 92.8 

Iteration 2 0 71.9 64.1 

Iteration 3 0 0 25.8 



Figure 3 compares the model predictions with the experimental measurements of breakthrough 

fronts at different concentrations of ammonia and gas flow rates, while all other parameters 

remain constant.  

 
 0.066 mol.m-3   0.054 mol.m-3  0.041 mol.m-3  0.029 mol.m-3 

 13.8 L.min-1      △ 9 L.min-1   4.4 L.min-1     - model 

Figure 3: Comparison of breakthrough fronts predicted with the experimental data  

It can be seen that the higher the increase of ammonia concentration and gas flow rate, the 

steeper the breakthrough front. On the other hand, the model predictions exhibit a good 

agreement with the experimental measurements. The relative disagreement at low flow rates 

and concentrations may be explained by the fact that it was very complicated to correctly supply 

the column with low concentrations, which increases the measurement errors. Despite these 

difficulties, the Pearson correlation coefficient (r = 0.997) was close to 1 and the root mean 

squares error (RMSE = 0.018) was very low, thus showing the good performance of the model. 

The identified model was then validated using additional measurements of breakthrough fronts 

carried out at four gas flow rates of 25, 17, 13 and 7 L.min-1, which were different from those 

used in parameter identification at an ammonia concentration of 0.041 mol.m-3. The optimized 

values of the parameters presented in Table 7 were used to compute the model predictions in 

the same operating conditions. Figure 4 shows the comparison between the resulting 

predictions and the experimental data at different gas flow rates. 

 



 

Figure 4: Comparison of predicted breakthrough fronts with experimental measurements at 

different flow rates. 

The values of the Pearson correlation coefficient close to one and the very low values of RMSE 

index demonstrate that the gap between the experimental data and the model predictions is 

minimal. Furthermore, the chi-squared test was used to statistically validate the model. The null 

hypothesis (H0) was defined as:  the predicted and measured breakthrough fronts have the same 

distribution with the probability of 95%. The alternative hypothesis (H1) is therefore: the 

predicted and measured breakthrough fronts do not have the same distribution with the 

probability of 95%. The observed chi-squared statistic is calculated by means of the following 

equation (Ayawei et al., 2017): 

( )
2

2

1

mes mod
n

i i

mes
i i

y y

y


=

−
=   (21) 

where 
mesy and 

mody  are the measured and predicted values, respectively. The computed values 

of chi-squared are also reported in Figure 4. 

On the other hand, the critical chi-squared value corresponding to the degree of freedom which 

is equal to the number of experimental measurements minus one, and to the significance level 

of the test (5%) was 3.84.  It can be seen that all the computed values of the chi-squared are less 

than the critical value meaning that we cannot reject the null hypothesis (H0), i.e., we can affirm 

with a probability of 95% that the predicted and measured breakthrough fronts have the same 

distribution.  



The model that has been identified and validated can now be used as a tool to predict the 

saturation time of an ammonia adsorption column with doped activated carbon and to study the 

effect of different operating conditions such as temperature, concentration, flow rate, porosity, 

bed geometry, porosity, etc. 

6. Conclusions

The accuracy and efficiency of the one-dimensional adsorption model developed, identified, 

and validated to simulate a fixed-bed column where ammonia is adsorbed on doped activated 

carbon was demonstrated. Therefore, it can be used in the design and optimization of industrial 

air purification boxes for mechanical devices.  

However, the performance of the model can be further increased by improving in particular the 

equilibrium and transfer kinetics models. Indeed, the use of Toth’s isothermal equation would 

better represent the equilibrium data, especially at low concentrations. Furthermore, since 

ammonia is likely to be adsorbed chemically, it would be interesting to investigate adsorption 

with chemical reaction using a Freundlich type isotherm.  Moreover, the use of the advanced 

estimability analysis based on global sensitivities (Bouchkira et al, 2021), will allow us to 

compute the estimability threshold value for each parameter and determine the most estimable 

whatever their initial values. 

Finally, the combination of these equilibrium equations with a multiscale model of mass 

transport in porous particles, would significantly improve the adsorption model and enable a 

better understanding of the mechanism of ammonia adsorption on doped activated carbon.  

Nomenclature 

c Ammonia concentration (mol.m-³) 

1mc ,
2mc Constants to estimate the axial dispersion 

inc Initial concentration of ammonia (mol.m-3) 

µD Intra-crystalline diffusion coefficient (m².s-1) 

ABD Binary or molecular diffusion (m².s-1) 

axD Axial dispersion coefficient (m².s-1) 

eD Effective porous diffusion (m².s-1) 

KD Knudsen diffusion (m².s-1) 

MD Mean diffusion of the mixture (m².s-1) 

ped Diameter of the activated carbon particle (m) 
mseJ Objective function 

bk The Boltzmann constant (J.K-1) 

Hk Henry’s law constant (-) 

LDFk Overall LDF mass transfer coefficient (s
-1) 

AM Molecular weight of ammonia (kg.mol-1) 

BM Molecular weight of air (kg.mol-1) 

L Bed height (m) 

tp Total pressure (Pa) 

'Pe Péclet number 
*

eq Quantity of ammonia adsorbed at equilibrium (mol.m-3) 



vQ  Flow rate (L.min-1) 

µr  Crystal radius (m) 

pRe  Reynolds number 

mpr  Macropore radius (m) 

per  Activated carbon particle radius (m) 

T  Operating temperature (K) 

0T  Reference temperature (K) 

v  Interstitial velocity (m.s-1) 
 

Greek letters 

t  Level of significance  

H  Isosteric heat of sorption (J.mol-1) 
, ,A B k    Minimum value of the potential energy (J) 

b  Bed porosity (mg
3.mcol

-3) 

pe  Particle porosity (mg
3.mpe

-3) 

Bµ  Dynamic viscosity of air (kg.m-1.s-1) 

g  Air density (kg.m-3) 

s  Solid density (kg.m-3) 

A ,
B  Characteristic length of the Lennard-Jones potential (m) 

pe  Tortuosity in the particle  

D  Collision integral 
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