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Non-Parametric Bayesian Subspace Models for
Acoustic Unit Discovery

Lucas Ondel, Member, IEEE, Bolaji Yusuf, Student Member, IEEE, Lukáš Burget,Member, IEEE and Murat
Saraçlar, Member, IEEE

Abstract—This work investigates subspace non-parametric
models for the task of learning a set of acoustic units from
unlabeled speech recordings. We constrain the base-measure of
a Dirichlet-Process mixture with a phonetic subspace—estimated
from other source languages—to build an educated prior, thereby
forcing the learned acoustic units to resemble phones of known
source languages. Two types of models are proposed: (i) the
Subspace HMM (SHMM) which assumes that the phonetic
subspace is the same for every language, (ii) the Hierarchical-
Subspace HMM (H-SHMM) which relaxes this assumption and
allows to have a language-specific subspace estimated on the
unlabeled target data. These models are applied on 3 languages:
English, Yoruba and Mboshi and they are compared with various
competitive acoustic units discovery baselines. Experimental re-
sults show that both subspace models outperform other systems in
terms of clustering quality and segmentation accuracy. Moreover,
we observe that the H-SHMM provides results superior to the
SHMM supporting the idea that language-specific priors are
preferable to language-agnostic priors for acoustic unit discovery.

I. INTRODUCTION

Building a speech recognition system requires a large col-
lection of transcribed data. For instance, recent publications
[1], [2], [3] report using tens of thousands hours of recordings
paired with their corresponding textual transcription. Such
amounts of transcribed data are available for only a handful of
languages and stunt the development of speech technologies
for many languages. While collecting audio data is relatively
easy in our digital word, human-based transcriptions are ex-
pensive and too slow to keep pace with the daily production of
multimedia content. A tremendous step would be made if one
could automatically transcribe this data as it would drastically
increase the amount of available resources to build speech
technologies in many languages.

In parallel, there is a keen interest to understand how infants
learn to recognize speech. Indeed, whereas speech recogni-
tion systems are built upon human-transcribed data, toddlers
learn seamlessly to structure speech with very distant and
noisy supervision. As a remarkable example of this learning
capability, children born blind are perfectly able to learn to
recognize speech even deprived of any supervision coming
from the visual signal. In an attempt to explain this capability
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using the “reverse-engineering approach” [4], many models
for automatic labeling of the data have been proposed by the
machine learning community [5], [6], [7].

These two research ideas, while having very distinct ob-
jectives, share a common interest: to build a machine learning
algorithm that automatically learns a discrete representation of
the speech signal in an unsupervised fashion. For the former,
this would allow automatic labeling of large collection of data,
for the latter, it would serve as a simulation of how infants
learn to process speech.

Current acoustic unit discovery (AUD) studies follow two
major approaches:

• non-parametric Bayesian models [8], [9], [10], [11] which
are usually infinite mixture of time series models such as
Hidden Markov Model (HMM)

• neural-network-based models [12], [13], [14] using quan-
tization layers with template vectors that represent the
acoustic units’ vocabulary.

Note that these approaches are not mutually exclusive and can
be combined as was shown in [15], [16].

This work focuses on subspace model techniques applied
to non-parametric Bayesian models on the task of discovering
a set of pseudo-phones (called acoustic units) from unlabeled
audio recordings1.

Preliminary results on subspace models for AUD have
been published in [17], [18] giving rise to two models: the
Subspace HMM (SHMM) and Hierarchical-Subspace HMM
(H-SHMM). In this paper, we provide a more comprehensive
theoretical coverage of these models, their relationship with
the Dirichlet process and a complete inference scheme. In
addition, we conduct an in-depth performance analysis of the
subspace models as well as a comparison with state-of-the-art
baselines. Note that we assume readers’ familiarity with the
Dirichlet process and variational inference [19].

The rest of the paper is organized as follows: in Section II,
we introduce a formal Bayesian formulation of the AUD
problem, as well as the Dirichlet process HMM model upon
which the subspace models are built; in Section III, we
introduce the subspace models as HMM-based AUD models
with specific prior forcing the model’s parameters to dwell in
a “phonetic” subspace; in Section IV, we detail the inference
and experimental results are presented in Section V.

1All the models and algorithms presented in this work are implemented at:
https://github.com/beer-asr/beer
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II. BAYESIAN AUD

A. Probabilistic interpretation of AUD

We first introduce a probabilistic formulation of the AUD
task which will motivate the Bayesian approach of this
work. Given a speech utterance of N observations X =
(x1, . . . ,xN ), the AUD task amounts to find:
• A collection of U vectors H = {η1, . . . ,ηU} best

describing the observations, where each η represents the
parameters of a distribution of observations for a specific
sound. These sounds are called acoustic units as they
represent the basic elements of speech.

• The sequence of indices u = u1, . . . , uL, L < N where
ui ∈ {1, . . . , U} is the index of an acoustic unit.

Rather than the maximum a posteriori estimate H∗,u∗ =
argmaxH,u p(H,u|X), we seek to obtain the posterior dis-
tribution over the embeddings H and label sequence u:

p(H,u|X) =
p(X|H,u)p(u|H)p(H)∫

H

∑
u p(X|H,u)p(u|H)p(H)dH

. (1)

This allows us to have an estimate of uncertainty. The Bayesian
statement of AUD in (1) is analogous to the statistical for-
mulation of ASR [20] with, however, one major difference:
in the case of AUD, the inventory of units is unknown and
needs to be inferred from the data along with the acoustic
unit embeddings η1,η2, . . . .

It is important to understand the different roles played by
the three factors in the numerator of (1):
• p(X|H,u): the likelihood of the observations given the

collection of acoustic unit parameters and the sequence
of labels. This term, referred to as the acoustic model,
tells how plausible the sequence of observations is given
the sequence of acoustic units.

• p(u|H): the prior over the label sequence is the language
model over the acoustic units’ labels. It models the
phonotactic constraints of the discovered units.

• p(H): the prior over the collection of embeddings, this
term is essential as it defines, before observing data, what
are the potential acoustic unit candidates. This term will
be the focus of this work.

Under the Bayesian AUD interpretation, the collection of
vectors H bears a particular meaning: they are the parameters
of the acoustic model.

B. Non-parametric AUD

In practice, the size of the acoustic units inventory U is
not known and we have to pick an appropriate value. This
is not an easy task since every language has a unique set of
phones and we would like to infer the value of U in light of
the data. We achieve this behavior by letting U → ∞ and
adding a distribution P over the parameters of p(u,H). This
approach, referred to as non-parametric Bayesian [21], lets the
model learn its own complexity from the data. Following, [8],
[11] we set P to be a Dirichlet Process DP(γ,G0) [22] with
concentration γ and base measure G0(η) over the acoustic
unit embeddings.

To allow efficient variational inference with the Dirichlet
Process [19], we use the stick-breaking process view of the
Dirichlet process, expressed as a generative process:

γ ∼ G(a0, b0) (2)
vi ∼ B(1, γ), i = {1, 2, . . . } (3)
ηi ∼ G0(η), i = {1, 2, . . . } (4)

ψi = vi

i−1∏
j=1

(1− vj) (5)

G(η) =

∞∑
i=1

ψiδηi(η), (6)

where B is a Beta distribution, G is a Gamma distribution
and δηi is the Dirac delta function centered at ηi. Note
that we have added a Gamma prior over the concentration
of the Dirichlet Process so that we learn the value of the
concentration parameter directly from the data.

Finally, we use the base measure G0(η) and the constructed
distribution G(η) to build the prior p(u|H)p(H) in the fol-
lowing way:

p(u|H)p(H) =

[ L∏
n=1

G(ηun)︸ ︷︷ ︸
p(un|H)

]
︸ ︷︷ ︸

p(u|H)

[ ∞∏
k=1

G0(ηk)

]
︸ ︷︷ ︸

p(H)

. (7)

One more time, we highlight the different roles played by
the two terms in (7). G0(η) is a continuous density over the
embedding space: it defines which embeddings are likely to
be selected as acoustic units. G(ηun), on the other hand, is
a discrete distribution over an infinite set of atoms (i.e. the
samples from the base measure) and it defines how frequently
a unit occurs in speech. In other words, G(ηun) is a (unigram)
language model of the units.

C. Acoustic Model

We now turn to the definition of the acoustic model
p(X|H,u). We denote by Xul the sub-sequence of the ob-
served data that belongs to the acoustic unit with index ul
such that X =

(
Xu1

, . . . ,XuL

)
. We assume the following

factorization of the likelihood:

p(X|H,u) =

L∏
l=1

p(Xul |H, ul) =

L∏
l=1

p(Xul |ηul). (8)

Following [8], we model the likelihood p(Xul |ηul) by a left-
to-right HMM with S hidden states where each state has a
GMM emission density with C components:

p(Xul |ηul) =
∑
sul

∑
cul

p(Xul , cul , sul |ηul) (9)

=
∑
sul

∑
cul

Nl∏
nl=1

p(xulnl , c
ul
nl
|sulnl ,ηul)p(s

ul
nl
|sulnl−1),

where:
• sul = sul1 , . . . , s

ul
Nl

is the sequence of indices of the HMM
states for acoustic unit ul,
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• cul = cul1 , . . . , c
ul
Nl

is the sequence of indices of the
mixture components for the acoustic unit ul,

• p(sul1 |s
ul
0 ) = p(sul1 ) is the probability of the initial state,

• Nl is the length of the sequence of observations Xul .
Finally, the acoustic unit embedding ηul en-
codes the parameters of the HMM model
{πsul}, {µ

s,c
ul
}, {Σs,c

ul
}, ∀ s ∈ {1, . . . , S}, c ∈ {1, . . . , C},

where:
• πsul are the mixing weights of the GMM associated with

the sth state of the HMM of the acoustic unit ul,
• µs,cul , Σs,c

ul
are the mean and the covariance matrix of the

cth Normal component of the GMM associated with the
sth state of the HMM of the acoustic unit ul.

We have not included any parameters for the within-unit
transition probabilities p(sulnl |s

ul
nl−1) as it has been empirically

observed that they play no significant role when modeling
speech [23]. Therefore, we assume the transition probabilities
are fixed so that there is a 0.75 probability of remaining
in the same state and a 0.25 probability of exiting to the
next state of the HMM. Note that this only concerns the
transition probabilities within the unit; transition probabilities
between units are governed by the distribution sampled from
the Dirichlet process.

D. Acoustic Unit embeddings
We detail now the relation between the embedding ηul

and the HMM parameters. To keep the notation uncluttered,
we drop the subscripts and superscripts ul and nl, therefore,
we write x,η, . . . instead of xulnl ,ηul , . . . . Observe that the
distribution of p(x, c|s,η) is a product of a Normal and
a Categorical distribution and, moreover, each of them is
a member of the exponential family of distributions [24].
Consequently, we have:

p(x, c|s,η) = p(x|µs,c,Σs,c)p(c|πs) (10)
p(c|πs) = p(c|ωs)

= exp{ωs>T (c)−A(ωs)} (11)
p(x|µs,c,Σs,c) = p(x|θs,c)

= exp{θs,c>T (x)−A(θs,c)} (12)

where ωs, T (c) and A(ωs) are the natural parameters, the
sufficient statistics and the log-normalizer of the Categorical
distribution over the GMM components of the sth HMM state.
Similarly, θs,c, T (x) and A(θs,c) are the natural parameters,
the sufficient statistics and the log-normalizer of the Normal
distribution associated with state s and the mixture component
c. For both distributions, the natural parameters and the suffi-
cient statistics can be derived from their respective definitions
[24]:

ωs =


ln
(
πs1
πsC

)
...

ln
(
πsC−1

πsC

)
 T (c) =

 1[c = 1]
. . .

1[c = C − 1]


(13)

θs,c =

[
(Σ

s,c
)−1µs,c

− 1
2 vec((Σs,c)−1)

]
T (x) =

[
x

vec(xx>)

]
, (14)

where “vec” is the vectorization operation and 1 is the
indicator function. Note that because π is constrained such
that

∑C
c=1 πc = 1, the natural parameter ω is a (C − 1)-

dimensional vector whereas π is a C-dimensional vector.
Finally, the log-normalizers A(ωs) and A(θs,c) are given by:

A(ωs) = ln
(
1 +

K−1∑
k=1

exp{ωsk}
)

(15)

A(θs,c) = −1

4
θs,c>1 mat

(
θs,c2

)−1
θs,c1 −

1

2
ln | − 2mat

(
θs,c2

)
|,

(16)

where ωsk is the kth element of ωk, mat is the in-
verse of the vec operation, θs,c1 = (Σ

s,c
)−1µs,c, and

θs,c2 = − 1
2 vec((Σs,c)−1).

Finally, we define the embedding η to be a “super-vector”
obtained by concatenating the natural parameters of the Nor-
mal and Categorical distributions of all S states of the HMM
modeling of an acoustic unit. It has the following layout:

η =



η1

...

ηs =


ωs

θs,1

...
θs,C


...
ηS


, (17)

where ηs is the concatenation of the natural parameters of the
Normal and Categorical distributions for the sth state of the
HMM of an acoustic unit.

E. Joint Distribution

To conclude the description of the model, we present the
complete joint distribution. For simplicity, we introduce the
variable zn = (ul, snl) which encodes an acoustic unit index
ul and a particular HMM state snl . Notice that the time index
n in zn—which combines both the relative time indices l and
nl—is absolute with respect to the sequence of observations,
i.e. n ∈ {1, . . . , N}. Similarly, cn represents the index of a
GMM component at time n. We write ηzn = η

snl
ul which

corresponds to the natural parameters of the snl th HMM state
of the acoustic unit with index ul. With this notation, the joint
distribution is given by:

p(X, c, z,H,v, γ) = p(H)p(γ)p(v|γ)p(X, c, z|H,v) (18)
p(X, c, z|H,v) = p(z|v)p(X, c|z,H) (19)

=

N∏
n=1

p(zn|zn−1,v)p(xn, cn|ηzn), (20)

where v = {v1, v2, . . . } is the set of stick breaking weights.
This is the likelihood of a typical “phone-loop” HMM [25]
where z is the sequence of hidden states. As explained in [26],
this interpretation of the model allows an efficient dynamic
programming algorithm to evaluate all possible sequences of
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ηi

Stick-breaking
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∞

γ

x1
1 x1

2
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nents

s1
1 s1
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. . . s1

l s2
1 s2

2
. . . HMM states

u1 u2 . . . Acoustic unit
labels

Fig. 1: Bayesian network of the non-parametric acoustic unit clustering model. The model is composed of 3 layers of hidden
variables: (i) the GMM components which acts as a quantization layer, (ii) the HMM states layer which captures the temporal
dynamic of the data, and (iii) the acoustic units’ layer which encodes the phonetic information.

units (see Appendix A-A). The per-state emission likelihood
in (20) is given by:

p(xn, cn|ηzn) = p(xn|θcnzn)p(cn|ωzn), (21)

where θcnzn is the vector of natural parameters of the cnth
mixture components of the sn state, and the two factors on
the right hand side are defined in (11) and (12). The transition
probability combines the within and across units’ transition in
the following way:

N∏
n=1

p(zn|zn−1,v) =

L∏
l=1

p(ul|v)
Nl∏
n=1

p(suln |s
ul
n−1), (22)

where the transition probability within a unit’s HMM is fixed:
p(sn|sn−1) = const and the probability of the unit index
p(ul|v) is given by the stick-breaking process as defined in
Section II-B:

p(ul|v) = vul

ul−1∏
i=1

(1− vi). (23)

The priors over the stick-breaking process parameters v and
the prior over the concentration parameter γ are given by:

p(v|γ) =
∞∏
i=1

p(vi|γ) (24)

p(vi|γ) = B(1, γ) (25)
p(γ) = G(a0, b0), (26)

the prior over embeddings H is defined from the base measure:

p(H) =

∞∏
u=1

G0(ηu), (27)

and its exact construction will be addressed in the next section.
Finally, Figure 1 gives a graphical perspective of the com-

plete model. It is composed of 3 layers of hidden variables:
(i) the GMM components layer which acts as a quantization
layer, i.e. it transduces a sequence of continuous features into
a sequence of discrete symbols, (ii) the HMM states layer
which captures the temporal dynamic of the data, and (iii) the
acoustic units’ layer which encodes phonetic information.

III. PRIOR OVER THE EMBEDDINGS

We have formulated a probabilistic interpretation of the
AUD problem. From this, we have seen that 3 terms emerge:
(i) the likelihood defining the acoustic model, (ii) the language
model and (iii) the prior over the embeddings. We have
detailed the two first terms in the previous section and, now,
we draw our attention to the last term: the prior over the
embeddings G0(η).

A. Conjugate prior

Early Bayesian AUD models [8], [11], [16] set G0(η) to be
the conjugate prior of the conditional HMM likelihood:

G0(η) =

S∏
s=1

p(ωs)

C∏
c=1

p(θs,c) (28)

p(ωs) = exp
{
ξ>0

[
ωs

−A(ωs)

]
−A(ξ0)

}
(29)

p(θs,c) = exp
{
ϑ>0

[
θs,c

−A(θs,c)

]
−A(ϑ0)

}
, (30)

where ξ0 and ϑ0 are the natural parameters of the conjugate
prior of the states’ emission density. The conjugacy implies
that the prior p(ωi) over the natural form of the mixing
weights is a Dirichlet distribution and the prior p(θi,j) over the
natural form of the mean and the precision matrix (inverse of
the covariance matrix) is a Normal-Wishart distribution. This
choice is convenient since it greatly simplifies the inference; it
is, however, difficult to control precisely which type of sounds
the prior will emphasize. In previous works, p(ωi) and p(θi,j)
were set to be vague priors (i.e. priors that play a mininal
role in the estimation of the posterior distribution) leading the
AUD model to consider, say, the phone /aw/ and the sound of
a slamming door as equally good candidate acoustic units.

B. Phonetic Subspace

Vague priors are easy to define but they fail to provide a
reasonable selection of “good” candidates. Recent works [17],
[18] have proposed to remedy this shortcoming by introducing
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Fig. 2: Illustration of the concept of phonetic subspace: each phone is represented as a vector η encoding the parameters of
a probabilistic model (an HMM in this example). Ideally, moving away from the subspace only changes the characteristics
of the phone (speaker, channel, loudness, ...) but not the phone itself. For illustration purposes, the red line represents one of
such factor of variability: the speaker subspace. Finally, not that in this example, the parameter space has only 2 dimensions
(η1 and η2) but in practice it will have several thousands of dimensions.

subspace-based priors which act as informative (or educated)
priors over the space of acoustic unit embeddings. These
works rely upon the concept of phonetic subspace which we’ll
illustrate with an example.

Let’s consider that we fit an HMM to a set of recordings of
the English phone /aw/ which gives the embedding vector ηaw.
Moving ηaw in any direction in the embedding space will affect
the parameters of the HMM and, consequently, the phone it
represents. As an example, a particular displacement may lead
to changing the phone /aw/ to /ow/. Moving the ηaw even
further will change the original /aw/ phone more profoundly
and yield, say, the consonant /z/. In this thought experiment,
we have assumed that there is a continuum between all phones
or, expressed in another way, that we can smoothly transition
from one phone to another. Generally, we can envision all the
phones of a language as points on a low-dimensional manifold
which represents this continuum. This manifold is depicted by
the blue line in Figure 2 and it is what we call the phonetic
subspace. Importantly, this concept of phonetic subspace is
independent of the choice of the phone model: GMM, HMM,
Linear Dynamical Model, etc. However, the type of model
used will influence how well the continuity between phones
is represented.

C. SHMM

The Subspace HMM (SHMM) [17] defines the base mea-
sure G0(η) as the probability distribution induced by the
following sampling process:

W ∼ p(W) =
∏
r,c

p(Wr,c) (31)

p(Wr,c) = N (0, 1) (32)
b ∼ p(b) = N (0, I) (33)

eu ∼ p(eu) = N (0, I) (34)
ηu = f(Weu + b), (35)

where eu is a Q-dimensional embedding of the acoustic unit
u on the subspace, the weights matrix W and the bias vector
b are the parameters of the phonetic subspace, and f(·) is a

function that takes a real vector and projects it to the HMM
parameter space. In this work, it is set such that:

πsu,j =
exp{Ws

π · eu + bsπ}j
1 +

∑K−1
k=1 exp{Ws

π · eu + bsπ}k
(36)

Σs,c
u = diag(exp{Ws,c

Σ · eu + bs,cΣ }) (37)

µs,cu = Σu
s,c ·

(
Ws,c

µ · eu + bs,cµ
)
, (38)

where diag(·) returns a diagonal matrix from an input vector,
exp is the element-wise exponential function and exp{...}j is
the jth element of the resulting vector. Ws

π is the subset of
rows of matrix W assigned to the mixing weights πs of the sth
HMM state. Matrices Ws,c

µ and Ws,c
Σ are similarly defined for

the mean and covariance matrix of the cth Gaussian component
and sth HMM state. Note that (36) holds for j ∈ {1, ...,K−1}
and πK = 1−

∑K−1
k=1 πk.

Importantly, the construction of an acoustic unit embedding
ηu relies upon a phonetic subspace parameterized by W and
b. Since these parameters are unknown in practice, they need
to be inferred prior to utilizing them for AUD. This issue will
be addressed in Section IV-B.

D. H-SHMM

The SHMM introduced in the above section has made the
implicit assumption that the phonetic subspace is universal,
i.e. it is the same for all the languages. [18] argues that this
assumption is unrealistic and proposes to have a language-
specific base measure Gλ0 (η) defined by the following gener-
ative process:

M = {M0, . . . ,MK ,m0, . . . ,mK} (39)

αλ ∼ N (0, I) (40)

Mi ∼ p(Mi) =
∏
r,c

p(Mi,r,c), p(Mi,r,c) = N (0, 1) (41)

mi ∼ p(mi) = N (0, I) (42)

Wλ = M0 +

K∑
k=1

αλkMk, bλ = m0 +

K∑
k=1

αλkmk (43)

eu ∼ N (0, I), ηu = f(Wλ · eu + bλ). (44)
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This generative process incorporates a G-dimensional lan-
guage embedding αλ which is used to built a language specific
phonetic subspace by a linear combination of bases {Mi}
and {mi}. These bases define a hyper-subspace of languages,
as depicted in Figure 3. Because of the hierarchical nature
of the generative process, the resulting model is termed the
Hierarchical Subspace HMM (H-SHMM).

The bases {Mi} and {mi} are shared across languages
and act as “template” phonetic subspaces. In this view, each
language specific phonetic subspace is a weighted combination
of these generic subspaces. Similar to the SHMM subspace
parameters, these parameters are unknown in practice and need
to be estimated prior the AUD task.

IV. INFERENCE

We now turn to the problem of inference for the SHMM and
the H-SHMM. Since these models include many parameters,
the derivation of the update equations is long and tedious.
Therefore, we have opted to only give a general overview of
the training in the main text with more technical details left
to Appendix A.

A. Variational Bayes Inference

As discussed in Section II-A, from a Bayesian perspective,
the AUD task amounts to finding the a posteriori distribution:

p(c, z,H,v, γ|X) =
p(X, c, z,H,v, γ)

p(X)
. (45)

Note that H refers to the acoustic unit parameters, incorpo-
rating the subspace parameters as well as the low-dimensional
embeddings. Since the denominator p(X) =

∫
· p(X|·)p(·)d· is

intractable, we resort to the Variational Bayes framework [27]
to find an approximate posterior q(c, z,H,v, γ). This entails
maximizing the following lower-bound:

ln p(X) ≥
〈
ln
p(X, c, z,H,v, γ)

q(c, z,H,v, γ)

〉
q(c,z,H,v,γ)

, L, (46)

where we write: 〈f(x)〉q(x) =
∫
x
f(x)q(x)dx.

To be able to maximize (46), we use the following struc-
tured mean-field factorization:

q(·) = q(c|z)q(z)
[ ∞∏
i=1

q(ηi)

][ ∞∏
i=1

q(vi)

]
]q(γ) (47)

M1

Wλ1
Wλ2Wλ3M2

Fig. 3: Illustration of a hierarchical subspace model. For
each language λ, acoustic unit embeddings (encoding the
parameters of a probabilistic model) are assumed to live in
a language-specific subspace of the total parameter space
spanned by Wλ. This subspace is given by a weighted sum
of matrix bases M1,M2, . . . (shared across languages) and
language-specific weights αλ: Wλ = αλ1M1 + αλ2M2 + . . . .

Algorithm 1 Training of phone-loop model for acoustic unit
discovery. Detailed coverage of the update equations can be
found in Appendix A
.

1: function VB MSTEP(X, q∗(c|z), q∗(z), q∗(γ))
2: . No closed-form solution, stochastic optimization

described in Appendix A-B
3: q∗(H)← argmaxq(H) L
4: . Update defined in (68)
5: q∗(v)← argmaxq(v) L
6: . Update defined in (71)
7: q∗(γ)← argmaxq(γ) L
8: return q∗(H), q∗(v), q∗(γ)

9: function VB ESTEP(X, q(H), q(v))
10: . Update defined in (51)
11: q∗(c|z)← argmaxq(c|z) L
12: . Update defined in (56)
13: q∗(z)← argmaxq(z) L
14: return q∗(c|z), q∗(z)

15: procedure TRAIN(X, E)
16: . E: number of epochs (i.e. 1 epoch = E-step + M-

step)
17: . initialize the variational posteriors (Appendix A-E)
18: q∗(v), q∗(γ), q∗(H)← . . .
19: for e← 1 to E do
20: q∗(c|z), q∗(z)← VB ESTEP(X, q∗(H), q∗(v))
21: q∗(H), q∗(v), q∗(γ)←
22: VB MSTEP(X, q∗(c|z), q∗(z), q∗(γ))

leading to an optimization algorithm analogous to the
Expectation-Maximization (EM) algorithm [28] where we al-
ternately estimate q(c|z) and q(z) (E-step) and q(H), q(v) and
q(γ) (M-step). The complete training procedure is summarized
in Algorithm 1.

B. Learning from other languages

The idea behind the SHMM is to supply prior information
via the subspace parameters {W,b} to the AUD system
before observing the data. Hence, training the subspace param-
eters on the target language defeats the purpose of the model.
In practice, we infer a set of variational posteriors q0({z}),
q0({eu}) and q0(W,b) on phonetically transcribed source
languages. This is the supervised phase of the training, where
the system learns the notion of phone from transcribed data.
At this stage, the phone-loop of the AUD model is replaced
with a forced alignment graph since the variable u is observed
in this case. Then, on the target language, we infer new
variational posteriors q1({z}), q1({eu}) using q0(W,b). Note
that q0(W,b) is not updated during this stage, but transferred
from the source languages as is. The H-SHMM is trained
with a similar procedure: first we estimate q0(M) on several
languages and then we use this posterior to learn q1({eu},αλ)
(and the other variational posteriors) on the target language λ
while keeping q0(M) fixed.



7

V. RESULTS

In this section, we experimentally validate the benefits of
subspace models on the AUD task. In Sections V-A and V-B,
we describe the experimental setup and the evaluation metrics
respectively. Then, we analyze the improvement brought by
the SHMM and the H-SHMM compared to a Bayesian HMM
AUD baseline in Sections V-D and V-E. Finally, we compare
the SHMM and the H-SHMM models with two alternative
approaches: cross-lingual phonetic decoders, i.e. phone recog-
nizers each trained on a different language than the target one,
and neural-networks with discretization layers.

To account for model stochasticity, we run our AUD systems
5 times and we report the mean and standard deviation of the
results.

A. Data and features

We use the following languages to evaluate the performance
of our models:

1) Mboshi [29]: 4.4 hours with 5130 utterances by 3
speakers.

2) Yoruba [30]: 4 hours with 3583 utterances by 36 speak-
ers.

In keeping with the AUD problem definition, we assume that
we lack any transcribed data at training time, and our test data
constitute our training data. Specifically, we do not assume the
existence of a separate, transcribed development set for the
target language for hyper-parameter selection. Therefore, we
train and test on the entirety of each corpus as we would have
to do for a real target language.

In place of a language-specific development set, we use
English (from TIMIT [31] excluding the sa utterances) as a
development language. Any hyper-parameter selection is done
by picking the model which maximizes the task metrics on
this set, and we transfer the model directly to any new target
languages. The use of English as a development language
has the added advantage that it facilitates comparison with
baselines that can only be constructed for English, e.g. because
they require training data that is only available for English.

In addition to the target languages, we also need a set of
source languages for training the subspace of the SHMM
and the hyper-subspace of the H-SHMM. We use seven
transcribed source languages: German, Spanish, French and
Polish from Globalphone [32]; and Amharic [33], Swahili [34]
and Wolof [35] from the ALFFA project [36]. For each of
these, we use only a subset of 1500 utterances; the resulting
durations are shown in Table I. The difference in durations is
due to the varying length of utterances for each corpus.

Finally, each system is trained on 13-dimensional MFCC
features (12 coefficients and the per-frame energy) along with
their first and second order derivatives.

TABLE I: Amounts of data for each source languages, i.e.
languages used to pre-train the (H-)SHMM.

Language AM FR GE PO SP SW WO

Data size (hours) 2.73 3.84 2.71 3.45 2.72 1.43 1.81

TABLE II: AUD performance of the SHMM.

Language System NMI F-score

English HMM 35.42 ± 0.18 63.50 ± 0.81
SHMM 38.96 ± 0.07 74.03 ± 0.49

Topline-U 44.02 ± 0.20 78.67 ± 0.13
Topline-S 45.24 74.66

Mboshi HMM 37.14 ± 0.26 48.63 ± 0.91
SHMM 38.95 ± 0.60 60.13 ± 0.43

Topline-U 52.14 ± 0.37 77.01 ± 0.11
Topline-S 55.52 78.05

Yoruba HMM 36.20 ± 0.31 53.97 ± 0.22
SHMM 38.98 ± 0.15 63.77 ± 0.39

Topline-U 45.25 ± 0.22 74.10 ± 0.21
Topline-S 48.71 71.73

TABLE III: Effect of the phonetic subspace at initialization.

Language System NMI F-score

English HMM 1.80 ± 0.03 0.20 ± 0.00
SHMM 18.50 ± 1.14 54.06 ± 2.08

Mboshi HMM 1.60 ± 0.08 0.05 ± 0.00
SHMM 21.04 ± 1.11 36.19 ± 1.97

Yoruba HMM 1.43 ± 0.05 0.46 ± 0.03
SHMM 22.84 ± 0.81 44.31 ± 1.70

B. Metrics

We use F-score and normalize mutual information (NMI)
as the metrics for evaluating AUD performance.

1) F-score measures phone segmentation performance. We
get precision and recall rates by comparing phone
boundaries detected by the system of interest to refer-
ence phone boundaries with a tolerance ±20 millisec-
onds. We report the harmonic mean of precision and
recall as the F-score.

2) Normalized mutual information measures phone clus-
tering quality. We compute the NMI from a frame level
alignment of discovered units U and actual reference
phones P , resulting in a matrix containing the joint
probabilities p(U,P ). From this, we compute NMI as:

NMI(P,U) = 200× I(P ;U)

H(P ) +H(U)
%, (48)

where H(·) is the Shannon entropy functional [37]
and I(P ;U) is the mutual information [37]. Since
0 ≤ I(P ;U) ≤ min

(
H(P ), H(U)

)
, the NMI takes

on values between 0 and 100. An NMI of 0 is obtained
when I(P ;U) = 0 and the discovered acoustic units
are completely unrelated to the actual phones. An NMI
of 100 is obtained when I(P ;U) = H(P ) = H(U)
which only occurs when discovered units have a one-to-
one correspondence with the actual phones. Note that the
H(U) term in the denominator penalizes representations
with too many units. Without it, we could artificially
inflate the NMI by increasing the number of units.
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C. Hyper-parameters

Unless stated otherwise, the hyper-parameters of the SHMM
and H-SHMM are set as follows:
• each acoustic unit HMM has 3 states left-to-right topol-

ogy with 4 Gaussians per state with diagonal covariance
matrix.

• The truncation τ (Appendix A-D)—the upper bound on
the number of units discovered—is set to 100

• the parameters of the concentration prior in (2) are set to
a0 = 1 and b0 = 1

τ
• the dimension of the phonetic subspace Q is set to 100
• the dimension of the language embedding G is set to 5.
• the Normal-Wishart distributions of the non-informative

conjugate prior of HMM system ( Section III-A) are set
as: m0 = µ̂, β0 = 1, W0 = diag(Σ̂) and ν0 = D + 1,
where µ̂, Σ̂ are the empirical mean, covariance of the
data. Similarly, the Dirichlet distributions are set to have
concentration parameters equal to 1.

• for the HMM baseline, the variational posteriors are
initialized to have the same parameters as the prior, and
we break the symmetry of the mixture components by
perturbing their means with Gaussian noise with standard
deviation of 0.01.

D. SHMM

Our first experiment compares the effect of using an edu-
cated prior—as implemented by the SHMM—against the non-
informative conjugate prior as described in Section III-A. We
refer to the later model as the HMM-based AUD system or
simply HMM. Our implementation of the HMM follows [11].

From Table II, we observe that the SHMM outperforms the
HMM baseline in terms of clustering quality and segmentation
accuracy. We also report the results of two oracle systems:
• Topline-U, the unsupervised topline, is an SHMM AUD

system whose phonetic subspace is pre-trained on the
target language using the reference transcription. The
concomitant phone embeddings are discarded and new
embeddings are inferred with the AUD procedure without
any transcription. This “cheating” experiment shows us
the best performance achievable if we could estimate the
perfect phonetic subspace.

• Topline-S, the supervised topline, is an HMM phone-
recognizer with a uniform phonotactic language model
trained on the target data. This model reveals the best
clustering results we could obtain by using an HMM to
model each acoustic unit.

In terms of clustering quality (NMI metric), we observe
that Topline-U is quite close to Topline-S. This highlights
the soundness of using a phonetic subspace. However, it
also shows that estimating the phonetic subspace from other
languages is not optimal and leaves room for improvement.

The goal of an educated prior is to provide the system with
some information before observing the data. In the context of
the SHMM, this prior information is the phonetic subspace
which encodes the notion of phone for the AUD system. To
verify that the phonetic subspace brings relevant information
a priori, we report in Table III the performance of the HMM

TABLE IV: Adapting the phonetic subspace to the target
language.

Language System NMI F-score

English SHMM 38.96 ± 0.07 74.03 ± 0.49
SHMM-finetune 37.66 ± 0.29 72.28 ± 0.56

H-SHMM 39.75 ± 1.14 76.38 ± 0.49

Mboshi SHMM 38.95 ± 0.60 60.13 ± 0.43
SHMM-finetune 37.50 ± 0.37 54.30 ± 0.63

H-SHMM 42.73 ± 0.97 64.63 ± 1.74

Yoruba SHMM 38.98 ± 0.15 63.77 ± 0.39
SHMM-finetune 36.86 ± 0.24 58.12 ± 0.72

H-SHMM 39.52 ± 0.46 66.27 ± 0.6

TABLE V: Cross-lingual phone-recognizer for AUD.

NMI F-Score
System English Mboshi Yoruba English Mboshi Yoruba

Cross-AM 27.94 25.49 25.69 53.18 43.02 48.39
Cross-FR 35.34 33.58 30.19 70.82 54.16 56.21
Cross-GE 32.69 29.44 25.57 68.43 48.57 53.75
Cross-PO 33.30 31.05 28.15 66.90 56.16 56.78
Cross-SP 33.43 29.83 25.58 67.20 54.10 55.20
Cross-SW 31.93 30.01 24.40 67.10 44.66 49.46
Cross-WO 30.37 35.66 33.03 60.18 59.82 61.12

and the SHMM AUD systems at initialization. For the SHMM,
this means after the subspace has been pre-trained on the
source languages; for the HMM, this means after random
initialization of the variational posteriors). As expected, the
SHMM has much better performance at initialization com-
pared to the HMM system which has a vague prior.

E. H-SHMM

We have seen that building an AUD system with an educated
prior such as the SHMM brings a significant improvement.
This performance boost can be explained partly by the added
information brought by the phonetic subspace. However, this
information may not always be accurate: for instance, the set
of languages used for learning the phonetic subspace may not
be “relevant” (phonetically speaking) for the target languages.
This phonetic mismatch between the source languages and
the target language results in the observed performance gap
between the SHMM model and Topline-U (see Table II).

As explained in previous sections, the H-SHMM attempts to
reduce the mismatch between the source and target language
by adapting the phonetic subspace to the target data. In
Table IV, we compare the H-SHMM to the SHMM. We
observe that if we update the SHMM phonetic subspace
posterior q0(W,b) on the target language rather than freez-
ing it as learned from the source languages, the clustering
and segmentation performance degrades (“SHMM-finetune” in
Table IV). The H-SHMM, on the other hand, by constraining
the adaptation of the phonetic subspace by its hyper-subspace,
successfully adapts the phonetic subspace on the target data.
However, despite the improvement brought by the H-SHMM,
our best system remains far from Topline-U suggesting that
there is still potential for adapting the subspace to the target
language.



9

F. Comparison with other methods

We have shown that subspace models, as implemented by
the SHMM and the H-SHMM, offer a significant improvement
over the Bayesian HMM baseline. We now broaden the
comparison with non-Bayesian approaches.

1) Cross-lingual decoders: We compare our subspace AUD
models against cross-lingual decoders. To make the compari-
son fair, the cross-lingual decoders are structurally equivalent
to the AUD models: each of them is an HMM phone-loop
(with the same number of Gaussians per state) trained on
phonetically transcribed data. We use the same languages and
data (Table I) as for estimating the phonetic subspace for the
SHMM and H-SHMM models. Results are shown in Table V:
we observe that these cross-lingual decoders are much less
accurate both in terms of clustering and segmentation. Note
that the SHMM and H-SHMM use the data of all source
languages whereas the cross-lingual decoders are trained on
a single language. To assess that the benefits of the subspace
methods are not due to having more data, we report in Table VI
the performance of the SHMM2 using only one language to
estimate the phonetic subspace, we observed that for any given
language, the SHMM AUD system outperforms the cross-
lingual decoder trained on the same source languages.

Additionally, an interesting insight is highlighted by the
results in Table VI: for Mboshi, we observe that training the
phonetic subspace of the SHMM on a single source language is
better than training on all source languages. This indicates that
some combination of source languages can be detrimental for
the AUD SHMM. However, the H-SHMM, which adapts the
phonetic subspace (in an unsupervised fashion) to the target
language achieves better results than any SHMM.

2) Neural-network based AUD systems: In recent years,
several neural-network-based systems have been proposed for
discovering acoustic units from speech. While architecture and
objective function differ across models, all of them follow the
same principle: an encoding-decoding architecture with one or
more discretization hidden layers. We compare our subspace-
based models against the following neural-network baselines:

• VQ-VAE [38]: a variational auto-encoder with a quantiza-
tion layer; variations of this model were successfully used
for AUD by several teams in recent iterations of the Zero
Resource Challenge [12], [7], [39], [40]. Keeping with
our theme of using English as a development language,
we tuned the VQ-VAE hyper-parameters to maximize
the NMI on English and transferred them to the other
languages

• constrained VQ-VAE [41]: a recently proposed post-
processing method for VQ-VAE which encourages tem-
porally consecutive frames to be quantized to the same
class; this was shown to provide a significant improve-
ment over the the plain VQ-VAE [41]

• ResDAVEnet-VQ [14]: neural network with quantization
layers trained to correlate images with their associated
audio captions; we choose this baseline to compare our

2We make this comparison only with the SHMM, as it is not sensible to
estimate the “hyper-subspace” of the H-SHMM with only one lanugage.

method against an AUD system with a weak supervision
signal

• VQ-WAV2VEC [13]: a convolutional neural network with
a quantization layer trained with a contrastive prediction
objective on the 960 hour Librispeech corpus [42].

The VQ-VAE3 and the constrained VQ-VAE are trained on
the same target data as the SHMM and the H-SHMM. For
ResDAVENet and VQ-WAV2VEC, we used the pre-trained
model directly and use their quantization output for evaluation
purposes. Note that ResDAVENet and VQ-WAV2VEC were
trained only on English data which explains some of the
degradation in performance when they are used for AUD for
other languages.

The results are presented in Table VII. We observe that
the best performing neural network baseline is the constrained
VQ-VAE, showing that a temporal constraint is an important
feature in any AUD models. Nevertheless, the Bayesian sub-
space models perform significantly better.

The Bayesian AUD models may seem simple compared to
large convolutional neural networks. However, they benefit
from a well-structured prior which guides them during the
clustering. Conversely, the neural network-based AUD models
are very potent but lack structured priors and are easily trapped
in sub-optimal solutions, limiting how well they can utilize
their potential.

G. Effect of the subspaces dimensionality

In this last part, we provide an analysis of the effect of
phonetic and language subspace dimensionality.

1) SHMM: In Figure 4a, we illustrate the effect of the
subspace dimensionality for the SHMM. We observe that, in
terms of clustering, the behavior varies by target language.
For English and Yoruba, the optimal subspace dimension is
around 250 while for Mboshi, it is between 50 and 100.

This performance variance highlights the major drawback of
the SHMM: the assumption of a universal phonetic subspace.
Indeed, we see that there is no unique setting that fits well for
all possible languages.

Segmentation wise, a low (50-100) dimensional subspace
leads to more accurate segmentation. This suggests that a
coarser phonetic representation is preferable when the seg-
mentation accuracy is concerned.

2) H-SHMM: The H-SHMM has two subspaces: the lan-
guage subspace and the phonetic subspace. Figure 4b shows
the performance of the H-SHMM as the language subspace
dimension is varied (the phonetic subspace dimension is fixed
to 100). We observe that having larger dimension is globally
preferable though the effect is only significant for the Mboshi
data. Notice that the curves in Figure 4b are somewhat
noisy, indicating that the H-SHMM is affected by random
initialization.

The performance of the H-SHMM as the phonetic subspace
dimension is varied is shown in Figure 4c. In this experiment,
the language dimension is fixed to 5. We observe that the
behavior is now homogeneous across languages: both for the

3Implementation and training details for the VQ-VAE can be found at
https://github.com/BUTSpeechFIT/vq-aud
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TABLE VI: SHMM performance pre-trained with only one source language.

NMI F-Score
System English Mboshi Yoruba English Mboshi Yoruba

SHMM-AM 36.60 ± 0.39 41.17 ± 0.36 38.22 ± 0.15 68.11 ± 0.33 57.90 ± 1.02 62.12 ± 0.29
SHMM-FR 37.13 ± 0.08 41.36 ± 0.40 36.70 ± 0.42 76.27 ± 0.13 63.66 ± 1.03 65.73 ± 0.70
SHMM-GE 35.79 ± 0.08 41.91 ± 0.56 34.64 ± 0.44 76.97 ± 0.52 65.27 ± 1.07 63.62 ± 0.59
SHMM-PO 38.21 ± 0.10 42.04 ± 0.14 37.34 ± 0.10 76.93 ± 0.23 64.34 ± 0.78 64.94 ± 0.28
SHMM-SP 38.01 ± 0.14 41.27 ± 0.41 35.54 ± 0.31 75.00 ± 0.15 64.82 ± 0.44 64.95 ± 0.20
SHMM-SW 34.57 ± 0.19 40.63 ± 0.16 33.91 ± 3.16 75.83 ± 0.13 62.16 ± 0.42 62.30 ± 1.17
SHMM-WO 32.19 ± 0.74 42.70 ± 0.17 34.02 ± 0.08 70.78 ± 1.18 67.62 ± 0.43 66.77 ± 0.16

TABLE VII: Comparison with neural-network-based AUD.

NMI F-Score
System English Mboshi Yoruba English Mboshi Yoruba

VQ-VAE 35.30 ± 0.50 35.88 ± 0.69 31.74 ± 0.65 52.50 ± 3.17 34.74 ± 2.76 35.26 ± 0.94
constrained VQ-VAE 36.01 ± 0.59 36.49 ± 0.79 32.30 ± 0.62 71.33 ± 2.98 50.47 ± 1.39 49.04 ± 1.44
ResDAVEnet-VQ 34.39 33.67 34.07 64.36 52.85 50.90
VQ-WAV2VEC 35.20 28.79 30.66 26.84 14.94 15.84

SHMM 38.96 ± 0.07 38.95 ± 0.60 38.98 ± 0.15 74.03 ± 0.49 60.13 ± 0.43 63.77 ± 0.39
H-SHMM 39.75± 0.58 42.73 ± 0.97 39.52 ± 0.46 76.38 ± 0.49 64.63 ± 1.74 66.27 ± 0.60
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Fig. 4: NMI and F-Score metrics when varying the (a) dimension the phonetic subspace of SHMM, (b) dimension of the
language subspace of the H-SHMM, and (c) dimension of the phonetic subspace of the H-SHMM.

clustering and segmentation the optimal phonetic subspace
dimension is between 50 and 100 dimensions. This shows
the benefit of adapting the phonetic subspace on the target
language: we can have better clustering and segmentation
while using lower dimension to represent each language-
specific phonetic subspace.

VI. CONCLUSION

This work provides a theoretical treatment of subspace
models for the task of Acoustic Units Discovery (AUD). It
shows how the paradigm of subspace models naturally fits
within the non-parametric Bayesian framework: an educated
prior is formed by constraining the base measure to a subspace
that is estimated on phonetically transcribed data from a set

of source languages. Thus, the acoustic unit parameters are
constrained to live in a phonetic subspace forcing the model
to learn units that resemble the phones of the source languages.

This work focuses on two specific models: the Subspace
HMM (S-HMM) and the Hierarchical Subspace HMM (H-
SHMM). The SHMM assumes that the phonetic subspace is
language agnostic: it is the same for every language whereas
the H-SHMM assumes that the phonetic subspace is language
dependent and has to be adapted on the target language.

Experimental results show that, both the SHMM and the H-
SHMM outperform state-of-the-art AUD baselines in terms of
clustering quality and segmentation accuracy in three different
languages: English, Yoruba and Mboshi. Furthermore, the H-
SHMM proves to be superior to the SHMM which supports
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the idea that each language has a unique phonology that needs
to be learn specifically.

Finally, the concept of subspace models for AUD can be
expanded in several ways; we list here potential future research
on subspace modeling for AUD.
• The quality of the phonetic subspace—how well the

subspace models the continuum of phone in a language—
is highly dependent on the choice of the acoustic model,
an HMM in the present work. Building more refined
generative models of phones would allow a qualitatively
better acoustic unit embeddings.

• This works uses a single subspace of all the phones
assuming implicitly a continuum between any pair of
phones. This continuity may not be relevant between
phones of distinct category, e.g. vowels and fricatives.
To bypass this issue, one can have a specific subspace
for different phonetic categories. This would have the
added advantage of easing the interpretation of the final
acoustic units (for instance an acoustic unit embedding
on a vowel-specific subspace is a vowel)

• Adding a speaker subspace to model explicitly the
speaker variability would help the AUD model adapt to
the speaker and avoid having speaker-specific clusters.
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APPENDIX A
INFERENCE

In this appendix, we detailed the optimization of the vari-
ational posterior defined in (47). Note that q(H) and q(v)
are distributions over infinite set of variables and, therefore,
cannot be used directly in any practical implementation. We
derive the optimal factors ignoring this issue and we address
it specifically in appendix A-D.

A. Latent variables z, c

We assume q(H), q(v) and q(γ) are fixed and we derive
the optimal variational posteriors q∗(c|z) and q∗(z). q∗(c|z):

ln q∗(c|z) +
=

N∑
n=1

〈ln p(xn, cn|ηzn)〉q(ηzn ), (49)

where +
= means equality up to a constant. Furthermore, (49)

implies that:

q∗(c|z) =
N∏
n=1

q∗(cn|zn) (50)

q∗(cn|zn) =
exp{〈ln p(xn, cn|ηzn)〉q(ηzn )}∑C
j=1 exp{〈ln p(xn, j,ηzn)〉q(ηzn )}

. (51)

From (10), the expected likelihood has the following form:

〈ln p(xn, cn|ηzn)〉q(ηzn ) =

[
〈ωzn〉q

−〈A(ωzn)〉q

]> [
T (cn)
1

]
+

[
〈θcnzn)〉q
−〈A(θcnzn)〉q

]> [
T (xn)

1

]
.

(52)

In practice, the expectations are estimated empirically using
the variational posterior q(ηzn) derived in appendix A-B.

Using (51), we derive the optimal posterior of the HMM
state sequence:

ln q∗(z)
+
=

N∑
n=1

〈ln
p(xn, cn|ηzn)
q(cn|zn)

〉q(cn|zn)q(ηzn )

+ 〈ln p(zn|zn−1v)〉q(v). (53)

For conciseness, we introduce the following placeholders:

φn(zn) = 〈ln
p(xn, cn|ηzn)
q(cn|zn)

〉q(cn|zn)q(ηzn ) (54)

Azn−1,zn = 〈ln p(zn|zn−1,v)〉q(v). (55)

Rewriting (53) with φn(zn) and Azn−1,zn we get:

q∗(z) =
1

ζ

N∏
n=1

exp{φn(zn) +Azn−1,zn} (56)

ζ =
∑
z

N∏
n=1

exp{φn(zn) +Azn−1,zn}. (57)

The normalization constant ζ in (57) requires to sum over all
possible state sequences z. Despite the astronomical number
of possible sequences, this sum can be computed exactly and
efficiently using dynamic programming [43], [44], [26].

B. Acoustic units’ embeddings
We focus now on deriving the acoustic units’ posterior q(H)

using first the SHMM and then H-SHMM. In both cases, we
assume the other variational factors q(c|z), q(z), q(v) and
q(γ) to be fixed.

1) SHMM: Recall from section III-C that each acoustic
unit vector is constructed from a low-dimensional embedding
in a subspace. Because the prior and the likelihood are
not-conjugate, we cannot obtain closed-form solution and,
consequently, we add the following parametric constraints to
the variational posterior:

q(W,b)

∞∏
i=1

= N (ν,diag(exp{ξ})), (58)

where ν is a vectorized form of W and b, and we optimize the
empirical expectation of (46) with respect to the parameters ν
and ξ:

L +
=

1

J

J∑
j=1

N∑
n=1

〈ln p(xn, cn|ηzn,j)〉q(cn|zn)q(zn)

−DKL

(
q(Sj ,Ej)||p(Sj ,Ej)

)
(59)

(Sj ,Ej) = ν + exp{ξ} � εj , εj ∼ N (0, I), (60)

where � represents element-wise multiplication. In (59), the
expectation of the log-likelihood can be computed exactly by
using (51) and q(zn):

〈ln p(·|ηzn,j)〉q = q(zn)

[
ωzn,j

−A(ωzn,j)

]> 
q(c1|zn)

...
q(cC−1|zn)

1


+ q(zn)q(cn|zn)

[
θcnzn,j

−A(θcnzn,j)

]> [
T (xn)

1

]
.

(61)
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In practice, we optimize (59) using stochastic gradient ascent.
2) H-SHMM: Optimization of the acoustic units’ posterior

in the H-SHMM is very similar to the SHMM case. However,
we need to take into account that each subspace is language
specific. Let’s consider that we have a set of L languages and
we would like to learn an inventory of acoustic units Hλ for
each language λ ∈ {1, . . . , L} . From the definition of the
H-SHMM ((40)-(44)), we have:

q({Hλ}) , q(M)

L∏
λ=1

[ ∞∏
i=1

q(eλi )

]
q(αλ). (62)

(63)

Similarly as before, we introduce the following parametric
constraint:

q(M, {Eλ}, {αλ}) = N (ν,diag(exp{ξ})), (64)

and we optimize the empirical expectation of (46):

L +
=

1

J

J∑
j=1

L∑
λ=1

[ N∑
n=1

〈ln p(xλn, cλn|ηλzn,j)〉q(cλn|zλn)q(zλn)

−DKL

(
q(Eλ

j ,α
λ
j )||p(E

λ
j ,α

λ
j )
)]

−DKL(q(Mj)||q(Mj)) (65)

(Mj , {Eλ
j }, {αλj }) = ν + exp{ξ} � εj , εj ∼ N (0, I),

(66)

using stochastic gradient ascent.

C. Update of the stick-breaking process

We address now the last part of the inference: the update of
the variational posteriors of the stick-breaking process. For this
stage, we consider that the variational posteriors q(c|z), q(z),
q(H) are fixed. The following updates equations are based
on the the variational treatment of the stick-breaking process
presented in [19].

1) Stick-breaking parameters: We first start to estimate the
optimal q∗(v) assuming q(γ) is fixed:

ln q∗(v)
+
= 〈ln p(z|v)〉q(z) + ln p(v). (67)

From (22) and (23) we have p(z|v) = p(s|u)p(u|v) which
leads to:

q∗(v) =

∞∏
k=1

B(αk, βk) (68)

αk = 1 +
〈 ∑
ui∈u

1[ui = k]
〉
q(u)

(69)

βk = 〈γ〉q(γ) +
〈 ∑
ui∈u

1[ui > k]
〉
q(u)

), (70)

where 1[...] is the indicator function. The expectations in (69)
adn (70) requires summing over all the units of all possible
sequences u from q(z). Once again, this large summation can
be calculated exactly using dynamic programming [26].

2) Concentration parameters: Finally, the optimal varia-
tional posterior q∗(γ) while assuming q(v) is fixed is given
by:

q∗(γ) = G(a, b) (71)

a = a0 +

∞∑
k=1

1, b = b0 −
∞∑
k=1

〈ln(1− vk)〉q(vk).

(72)

D. Truncation

In our derivation of the optimal variational posteriors, we
have ignored issues raised by the sum or product of infinitely
many terms. Following [19], we address this by introducing
a truncation parameter τ such that q(vτ = 1) = 1. This
approximation, motivated by the almost sure truncation of the
Dirichlet Process [45], ensures that q(ui > τ) = 0, ∀i and,
therefore, truncates all infinite sum and product to τ terms in
the solution of the optimal variational posteriors.

E. Initialization

Because of the constraints imposed on on the variational
posterior (47), the optimization is prone to converge to a
local optimum. To avoid this, we initialize the model for the
supervised phase of the training by the following procedure:

1) we train a standard HMM with C-components GMM
emissions for each phone using the Baum-Welch training
and the provided phonetic transcription.

2) for each state of each phone’s HMM
a) we set the mixing weights π such that πk = 1

C
b) compute the per-state global mean µ̂ =

1
C

∑C
c=1 µc and global diagonal covariance matrix

Σ̂ = 1
C

∑C
c=1 Σc

c) we set each Gaussian component to have mean µ̂
and covariance matrix Σ̂.

3) using the HMM estimated in step 1, we initialize
q∗(zn) using the Baum-Welch algorithm and we set
q∗(cn|zn) = const

4) we set ν = 0 and exp{ξ} = 1
D1 then, we burn-in the

model by optimizing ν and ξ until convergence while
keeping other factors fixed.

The initialization for the unsupervised phase—the actual
AUD task—is easier:
• we initialize the posterior of the stick-breaking process

by setting q∗(v) := p(v) and q∗(γ)
• we use the variational posteriors estimated during the su-

pervised phase to initialize the new variational posteriors
as explained in section IV-B.

• finally, we set ν, ξ such that q1(E) = N (0, I) (respec-
tively q1(E,α) = N (0, I) for the H-SHMM).


