N

N

A Reaction-Advection-Diffusion Model for Quasi-neutral
Dynamics of Coinfected Strains
Thi Minh Thao Le, Sten Madec

» To cite this version:

Thi Minh Thao Le, Sten Madec. A Reaction-Advection-Diffusion Model for Quasi-neutral Dynamics
of Coinfected Strains. 2021. hal-03467201

HAL Id: hal-03467201
https://hal.science/hal-03467201

Preprint submitted on 6 Dec 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03467201
https://hal.archives-ouvertes.fr

A Reaction-Advection-Diffusion Model
for Quasi-neutral Dynamics of Coinfected Strains

TH1 MINH THAO LE* |, STEN MADECT

* + Laboratory of Mathematics and Theoric Physics, University of Tours, Tours, France

*Thi-minh-thao.Le@lmpt.univ-tours.fr, TSten. Madec@lmpt.univ-tours.fr

Abstract

This paper studies dynamical system of coinfected strains with spatial diffusion, under a quasi similarity
assumption. Such coinfection systems have been studied in several articles without spatial structure. In the
present study, we add a spatial structure to comprehend the impact of spatial heterogeneity on the inter-
action between similar strains. The SIS model is then a reaction-diffusion system in which the coefficients
are spatially heterogeneous. Two limiting cases are considered: the case of an asymptotically slow diffusion
coefficient and the case of an asymptotically fast diffusion coefficient. In the case of small diffusion rates,
we show that the slow system is a semilinear system of type ”replicator equations,” describing the spatio-
temporal evolution of the strains’ frequencies. This system is of the reaction-advection-diffusion type, in
which the additional advection term explicitly involves the heterogeneity of the associated neutral system.
In the case of fast diffusion, classical methods of aggregation of variables are used to reduce the spatialized
SIS problem to a homogenized SIS system on which we can directly apply the results of the non-spatial model.

Keywords. spatial quasi-Neutral dynamics, spatial SIS multi-strain dynamics, co-infection system with
diffusion, slow-fast dynamics, Tikhonov’s Theorem, Central Manifold Theorem

1 Introduction

Heterogeneity is a common feature of real world infections. Heterogeneous susceptibilities may arise, for in-
stance, through individuals having differing histories of prior exposure to infection or vaccination. Thus, it
remains challenging to accurately describe diffusion process of bacteria/virus and investigate the transmission
dynamics of free-living bacteria/virus in the contaminated environment on disease infection. There are many
studies the mathematical framework on the predator-prey models within heterogeneous environment [26] 27].
In particular, many studies deeply solution for compartmental models in epidemiology with diffusion terms.
For instants, [31, [30] studies the existence and non-existence of travelling wave solutions for a general class of
diffusive KermackMcKendrick SIR models with nonlocal and delayed disease transmission. However, there is a
lack of a comprehensive theoretical framework for spatial models of co-infection though it frequently appears in
models with migration, evolution, and heterogeneous environment. It is known that co-infection dynamics have
received considerable attention [I} [2, 21], because of their importance to biology, especially in the outbreaks
of infectious diseases. For instance, [20, B2] studied different co-infection models to help diagnose and treat
infectious diseases.

Even without a spatial structure, the interactions between traits and strains yield complex consequences on
the population dynamics [19, [I7]. However, under a quasi-neutral hypothesis, this complexity is decoded into a
replicator equation. In a heterogeneous environment, the dynamics surely become a PDE system, which is more
complex to studies. In this study, with diffusion terms and under appropriate conditions, the dynamical system
of co-infection, now becomes a reaction-advection-diffusion system, will be coded again through a replicator
equation, with or without diffusion, depending on the rate of diffusion.

In this article, we describe and study the spatial version of dynamics considered in [I7], i.e. the quasi-neutral
SIS model between similar strains, with diffusion and zero flux assumption on the boundaries, in two cases,
including slow (eA) and fast diffusions (%A) The choice of terms presenting heterogeneity depends on the
type of population considered. For the case of a large population in a bounded domain, which leads to a large
density, diffusion is a good approach to model spatial movement because organisms are assumed to have random
motions. In a mathematical sense, the term diffusion-presented by the Laplacian operator is a strongly elliptic
operator. Hence, most of results of this paper may be extended for other elliptic operators.

We focus on modeling the host-to-host transmission of different strains using the SIS (susceptible-infected-
susceptible) modeling approach. Despite the assumption on compactness and smoothness of domain, the main
difficulty is to take into account the impact of strain traits under propagation in space. It is useful to take
the viewpoint of reaction-diffusion equations, which are studied deeply in [7]. Moreover, the assumptions of
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2 GENERAL AND SEMI-NEUTRAL SYSTEMS WITH SLOW DIFFUSION

zero total flux on the boundary make our system isolated. An important point is that, in the case of slow
diffusion, we assume that whole the considered domain is at high risk of infection, which means at any point
in the considered domain, the transmission rate of either is larger than the sum of the clearance rate and
the mortality rate. This assumption leads to the existence, the uniqueness and the stability of the endemic
equilibrium. When low risk site, the set of all points in which the transmission rate is less than the clearance
rate, is non empty as well, we also have a disease-free equilibrium, which is studied concretely in [3].

For each type of diffusion, we present a specific method to approximate the solutions under a quasi-neutral
assumption on the parameters. In the case of slow diffusion, we first consider the reaction-diffusion model with
symmetric interactions, which is the neutral system with diffusion. Similar to [I7], and Ky, K, are operators
which are computed later, we find how to rewrite the original system in the form %f(:a t)=F(f,9,x,t,e)+Ksf
and %g(m,t) =eG (f,9,2,t,€) + €K,g, where f describes the fast dynamics and ¢ the slow dynamics. The
Tikhonov’s theorem used in [I7] now is improved to a Tikhonov-like theorem applied for PDEs model with

t
appropriate assumptions. Accordingly, at the slow time scale 7 = —, we obtain the slow dynamics on the slow
€

manifold.

For the case of fast diffusion, the Central Manifold Theorem [8] is applied directly on the original SIS
system under an appropriate rewriting, yielding to an ordinary differential (ODE) SIS system under the mean
variables. In this system, we invoke the quasi-neutral assumptions on the traits to use the main result of [I7].
For a clearer view, this theorem plays the main role in [, [9].

Analogously to the non-spatial models in [I7], we obtain the diffusion replicator system at the end and they
are in different types due to the distinguished kinds of diffusions. The replicator system with diffusion attracts
much attention and be studied in [6]. Comparing two cases of diffusion, the Tikhonov-like approximates the
slow-fast form to the replicator system, in which variables are prevalences of strains. Meanwhile, the Central
Manifold Theorem leads us to equations of total masses over the domain of susceptible, infected and coinfected
strains. Although, both of them claim that the original system’s solution can be approached based on the
solution of a simpler system in any bounded time interval as e — 0. Despite the distinction in variables of
system in slow-manifold, error estimates in both cases are computed in L? and L' norms, respectively.

This article is organized as follows. Sections [2] and [3|are dedicated to the case when the coefficients of diffusion
are €. In the beginning of section [2] we present the model and state some general results including the existence
of a unique solution and the introduction of new variables. Next, we analyzes the semi-neutral system and the
slow-fast form to prepare for application the approximation theorems. Similarly to [I7], we solve the system
with slow diffusion in each elementary sub-case in which only one trait depends on the strains. For this sake,
a lemma showing of to combine the elementary cases is presented, starting section With these sufficient
materials, the replicator system with diffusion follows with proofs and finalizes the case of small diffusion rates.
The model with fast diffusion (1A) is studied in section [4f We refer the Central Manifold Theorem in [9] and
make some conventions at the beginning to apply this result. As mentioned after the application of the Central
Manifold Theorem, we invoke the quasi-neutral assumptions on traits. These ingredients are combined and used
to derive the replicator system, by the main result in [I7], in which the variables are total masses over domain
of strains. Section [5] is to compare the two cases of diffusion in some respects including the relations with
basic reproduction ratio Ry and three examples for different behaviors. Section [f] draws remarkable results and
concluding. The final section Appendix [A] closes this article with the proofs of the theorems stated in section

2

2 General and Semi-neutral Systems with Slow Diffusion

2.1 The general N-strain model

The dynamics studied in this article groups the pathogen types in N subsets, indexed by i, 1 < i < N. With
a set of ordinary differential equations, we then track the proportion of hosts in 1 + N + N? compartments:
susceptible: S (z,t), hosts colonized by strain-i: I; (x,t), hosts co-colonized by strain-i then strain-j: Lij(zt)-
Notice that we include also same strain coinfection, as argued in [I7].

We formulate the general model based on the same structure as that in [I7] but here allow for strains to
vary in their transmission rates f; (z), clearance rates of single infection «; () (or duration of carriage 1/v; (z)),
clearance rates from mixed co-colonization v;; (x), within-host competition reflected in relative transmissibilities
from mixed coinfected hosts (p; () and p’; (x)), as well as co-colonization vulnerabilities k;; (z), already studied
in [17). In a compact domain Q C RY with smooth boundary I', we consider the general SIS dynamics in a
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coinfection system with diffusion as follows

N
as
e +Z%I + ]21% i S;ﬁiJi+ eAS,
al, , .
L =BS — (k) - 1 ZI%BJJ + AL, 1<i<N, (2.1)
j=1
ol .
o —rialiBidi = (r+ i) L+ eAlij, 1<i,j<N,

where J; is proportion of all hosts transmitting strain ¢, including singly- and co-colonized hosts and has the
explicit formula

N
Z pw[l] +p]’£ ﬂ) :

We will assume no-flux boundary conditions, i.e. the Neumann boundary conditions 8,8 = 9,1; = 9,1;; =0
on the boundary I' of © and the given initial values.

Note that 3;J; is the infection force of strain i, for all i. In , for 1 < 4,5 < N, parameters (that all
depend on space) are interpreted as follows

Table 1: Conventions and notations of parameters

Parameter Interpretation Under strain similarities
1. Bi(z) Strain-specific transmission rates Bi(x) =B (x) (1+eb; (x))
2. yi(z) Strain-specific clearance rates of single colonization vi (@) =v(z) (1 + ev; (2)
3. iy (o) Clearance rates of co-colonization with ¢ and j vij () =7 (x) (1 + euy; (2))
4. pj (o) Transmission capacity of the strain s E {i,7} by a host co-  pf; (v) = 3 + ew;; ()
colonized by strain-¢ then strain-j, (p?ij (z) + pfj (z) = 1)
5. kij () Relative factor of altered susceptibility to co-colonization k;; (z) = k (x) + eay; (x)
between colonizing strain ¢ and co-colonizing strain j
r(x) Susceptible recruitment rate (Equal to natural mortality)

Assumption 1. We assume the regularity for the intial values and parameters as follows.
e Initial values S (z,0), I; (z,0), and I;; (z,0) are smooth enough in z € Q, for 1 <i,j < N.
e All the parameters in (2.1), which are included in Table|l} are all smooth enough in = € .

It is classical that this systems conserved the positive quadrant and then we consider only positive solutions.

For the sake of simplicity, we denote the inverse duration of a carriage episode by strain ¢ with m; = r 4+,
of a co-carriage episode by strains ¢ and j with m;; = r +;; and the corresponding inverse duration of carriage
if all strains were equivalent with m = r + ~.

In this paper, we use the notation Vu and Au when u (x,-) = (u1 (z,") wuo(x,") ... wuglx, ))7 for k € N,
with the meaning

Vu= (Vuy Vuz ... Vu), and Au= (Aur Auy ... Auy).

0X -
Such a very general pattern of considered system forms — = F(X,xz,¢) + eAX with Neumann boundary

ot

0X
condition, where X = (X1, Xs,...,X,) € R™ and is equivalent to n

dX
algebraic transformations. The part — = F(X,z) + eAX is called as the semi-neutral system, consistently

= F(X,z) + O(e) + eAX after some

stays unaltered and be investigated in the subsection [3.1} It is important to note that this system is structurally
unstable. Then, the part O (¢) is a slow perturbation of the neutral system. To treat such an emergence by a
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0X
Tikhonov-liked theorem, it’s essential to rewrite —— = F(X, z) 4+ O(€) + eAX into equivalent slow-fast form

ot
%: f U, V,x) 4+ O(e) + eAU
av
s (g(U,V,z)+O(e) + AV) (2.2)
ou ov
% = % = 0, on 0Of)

where U € RY is the slow variable and V € R” is the fast variable. This step is achieved thanks to the ansatz
will be yielded from the study of the semi-neutral system.

This subsection makes a change of variables then allows to rewrite the system in an equivalent structure ex-
plicitly dependent on €. Then, we study the important semi-neutral system which is obtained for e = 0 except
in diffusion terms. The study on the semi-neutral system leads to the definition of the appropriate slow and
fast variables (z;,v;). These variables together with the ansatz are the key for the slow-fast study of the
next section.

e Initially, sum up all the equations of (2.1), we have that

& S+ZI+ZI” r(1—8)—r ZI+ZI” +eA S+ZI+ZLJ

1,7=1 1,5=1 3,7=1

On S—i—ZI-i—ZIw =0 on TI.

3,j=1

Denoting

T = ZI + Z i (2.3)

3,j=1

we have the following equation

0

8t(S+T)—r[l—(S’—i-T)}—i—eA(S—i—T).

with the Neumann boundary condition. The assumed smoothness of Q2 implies that eA generates a C° semi
group of contraction on C? (£2), see [5].

Note that S + 7T = 1 are the solution of r[1 — (S+T)] + eA(S+T) = 0 and the linearized operator be-
comes €A — r which has spectrum lies in the left-half plane (since the Laplacian has the negative spectrum
and r(xz) > 0). By the Theorem 11.20 in [29], we deduce that S + T = 1 is asymptotically stable, which
implies that S + Zl L+ Z” 1

S+ Zi:l I + Zij:l i; = 1 in this article.

I;; —+ 1 as t — oo asymptotically for all . Therefore, we can assume that

From this convention, we deduce that, (2.1 has unique solution for every e > 0. Indeed, (2.1)) can be rewritten
in the form of

0
P (x,t) = F (u(z,t),z,€) + eAu(x,t), x € (2.4)
with u = (S L ... Iy I;v ... Inn T. We state the following result on the unique existence of solution

of (2.4). The proof is given in Appendix

Theorem 2. Given compact domain Q € RY and u : Q x [0,4+00) — R”, (x,t) = u(x,t). Assume that
F:R™ x Q x RT is continuous in v € Q and F : R® x Q x RT — R"™ is a Lipschitz map in u € R", i.e. there
is a constant L such that

|F'u — Fv|| < Lju—wv], Yu,v € R", Vz e .
Then ([2.4) admits a solution in C% (Q x -, R") N C (- x [0,00),R™), and this solution is unique.
For the sake of clarify later, we now make conventions for the norms used in this article.

Definition 3. Let v: Q x RT — R™ and v € L? (Q) for each t > 0, we define.
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e The norm |-|; for v (z,t) € R™ for each x € Q and t € R™:

n

o (2, )] =Y Jvi (z,0)] (2.5)

with v (z,t) = (v (@,8) vz (1) ... wn(x,t)).

e The norm |-|, for v (z,t) € R for each z € Q and t € R*:

n 1/2
[0 (,t)], = <Z [vi (x,t)|2> (2:6)

i=1
with v (z,t) = (vi (z,8) v (z,t) ... wn(w,t)).
However, for the sake of simplicity, we only write || instead of |-|,.

e The norm for v (-, t) € L? () for each t € R™:
1/2
2
o8l = ( [ ool dx) . 2.7)

Note that in @4), u (z,t) € RN *N+1 and in this finite-dimensional space, the norms || and -], are equiv-
alent, we recall our previous convention S + ZZI\LI I + ZZszl I;; = 1. Then, thanks to the positivity of the
solutions, |u (-, t) |1 = SJrZiV:l I+ Zﬁ'jzl I;; = 1 and satisfies the Theorem Hence, the system (2.1)) always
has unique solution.

e Secondly, for the sake of simplicity, we denote m; = r + v;, m;; = r + v;; and m = r 4+ . Then, we
define total mass of single infected I, the total mass of double infected D and and the total mass of infected T,
as in [I7], which reads

N N
1:2@, D:ZIZ»]», T=I1+D. (2.8)
i=1 =1

(2.8)) yields Zf\; J; = T. For later computations, remark that Zivzl Bid; = BT + GZZN:l b;J;. Thanked to the
new variables, the systems for (5,T), (I;, ;) and (i), ; ;< Teads

98 N N N
E :r(l—S)—i—'yT—i—efy Zl/ili—f— Z uijlij —BST—GﬁSZbZ‘Ji—FeAS
i=1 ij=1 i=1
oT N N N
5 =pST — mT + eﬁSZbiJi — €y Zuifi + Z il | + eAT
i—1 i=1 ij—=1
N
aI;
ot =f (1 + Ebi) J; S — (m + e'yui)li — BI; Z (k + EOéij) (1 + ij) Jj + eAl;
j=1
BJZ al al 1 i 1 A
8t :ﬂ (1+6b2) JZS—ﬂIlZ(kJrea”) (1+€bJ)JJ — €Y I/ZL‘+Z 5 +60Jij uiinj -+ 5 +€w]—i l/ji-[ji
j=1 j=1
ARSI 1.
—mdJ; + 52 ((2 + OJ%) (/f + eaij) (1 + Ebj) IZJJ + <2 + EOJ;-Z-> (k + EOéji) (1 + sz) I]JZ> + eAJ;
i=1
al;; .
8t :ﬂ (k + EOlij) (1 + ij)IiJj — (m 4+ GFYuij)Iij + GAIZ‘j, 1 S (2%} S N

(2.9)
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2.2 The semi-neutral system

Take ¢ = 0 in (2.9) except the diffusion rates, we obtain the semi-neutral systerrﬂ for (S,T,1,1;,J;), which
reads

%j =m(1—-S5)—BST +eAS
T
or =BST — mT +eAT
ot
ol
% =pTS — (m+ BkT) I +eAl,
a} (2.10)
aitz =pJ;S — mlI; — BkI;T —&—eAIi, 1< <N
aa'? =(B8S —m)J; — BkI;T + % (LT + JI) +eAJ;, 1<i<N
I
aat] =Bk Jj —mli +eAl;
with the Neumann boundary condition and the initial condition
oS or 0I, 0I;
_ = = = = Q
on On  On on 0 on 9
S(x, 0) = So(.’lf), T(.’L‘,O) = To(l’), I(l‘,O) = i70(l‘), Iij(l’, 0) = ij,O(x)~
e Firstly, we consider the semi-neutral equation for (S,T'), that reads
%—f =m (1 —S5)— BST + eAS
oT
— =—-mT T + eAT.
ot mT +f5T + e (2.11)
S(z,0) =So(z), T(x,0)=To(z),
05, - _or
an 100 =g -lea =0

By the Theorem [2| that has the unique solution.

Before analyzing, similar to [3], we say that x is a low-risk site if the local disease transmission rate § (z)
is lower than the local disease recovery rate (which is the sum of clearance rate and mortality rate) m (z). A
high-risk site is defined in a similar manner. Let

H ={ze€Q:8(x)<m(z)} and H"={zeQ:p(x)>m(z)} (2.12)

denote the set of these low- and high-risk sites, respectively. Accordingly, the term Ry (z) is the local repro-
duction number at 2 € Q. Then Ry(z) < 1 for low-risk sites 2 € H~ and Ry(z) > 1 for high-risk sites 2 € H+.
It is well-known that without movement, the disease can persist at high-risk sites but not at low-risk sites. We
say that, a domain € is a low-risk domain if [, # < [, m and a high-risk domain if [,, 3 > [, m.

In this case of slow diffusion, i.e. in sections [2] and [3] we make an assume that

Assumption 4. The domain €2 is high-risk everywhere, i.e. 8(z) > m(x) for all x € Q.

m(x) 1
Blz)  Ro(z)
well-defined. At each z € (Q, consider the differential equations of variables (S (,t),T(, t))

Denoting S*(z) = and T*(z) = 1 — S*(z), then 0 < §*,T* < 1 for all x € Q, which is

ds - .
—=m(x)(1-8)—06(x)ST

@ (2) (1-§) - B () | .
%z—m(a:)T—Fﬂ(x)ST

with initial condition (5 0),T (0)) = (S(x,0),T (z,0)). It is claimed that (s (z,8),T (x, t)) (8" (2),T* (z))
for each x € Q and ¢t — oo, see [17].

1The name semi-neutral system comes from the fact that if e = 0, except the coefficients of diffusion terms, then the parameters
do not depend on the strains as in the neutral theory.
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- 2
Furthermore, noting that ’S(m,t) — S*(x)| <2 for all (z,t) € Q x RT and Q is compact, by Dominated
Convergence Theorem, for all sequence (¢,), satisfying tg < t; < -+ < t, < ..., t, = 400, we obtain that

Hg(x,t) — S*(x)H2 —0ast— oo.

n

Another important point is that, for any ¢ € R+, S (z,t) is smooth enough with respect to x. Indeed, we
have the differential equation for S (x) — S (2') as follows

% (5@ -56") = (5@ -56)) [~m+8)+5(S@)+5)].

Noting that S (z) + S (2/) < 2 for all t € RT and z,2’ € Q, applying the Gronwall’s inequality, we deduce that

5)-5()
Ed N
Analogously, we observe x — T (z,t) is smooth enough as well.
Alternatively, we have that

can be controlled at each t, since S (0) is smooth enough with respect to x.

0
ot

then F(X) is Lipschitz continuous with coefficient C' > 0. We have the following transformations

(s- s) - (5-8)=(5-38) [F$)-F(5)] +¢(s-5)as

:Qat\s s] <c‘s s‘ —i—e(S 5) (S—S)JFE(S—S)M

2315/‘5 5‘ <c/’s S‘ +e/Q<S 5)as

By the definition of S and max ‘S -8 ‘ < 2 then by the Gronwall’s inequality we have that

(S s) []-'(S)—]—'(S‘)}—i—eAS, with F(X)=F(X,)=m()(1-X()=B()X()(1—X()

HS—§H2=O(\/E), since S (-,0)=S5"(-,0),

which leads to ||S — S*||, = O (V/€) as t — oo since € is compact.
Recalling that S + T =1 then | T — T*||, = O (v/€) when t — oo.

e Secondly, we consider the semi-neutral equation for I(x,t) which reads

% = BTS — (m+ BET) I + €Al
ol
|6Q—0

Similarly to the previous proof for the stability of (S(x,t), T(x,t)), we consider the equation for I (-,t) at
each z € Q

oI - .
o = BTS" —(m+ BT L, 1(,0)=1(,0),
S .o mT™* )
which implies I (x,t) — I'* (z) := it BRT" at each z € Q as t — oo, as proved in [I7].

By the same arguments for Hg(ac, t) — S*(x) H2 — 0 ast — oo previously, we also obtain that Hf(x, t) —I*(x) H2 —
0ast— oo.

Similarly to the proof of the smoothness of x — S (x,t), we can prove that z — I (x,t) is smooth enough
as well, for all t € RT.
Accordingly, we deduce the equation
0
ot

where G (X) = BT*S* — (m + SkT*) X and
(S, T,5,T") =p[(T-T) 5" + (S =5) T+ (T -T7) (5 - 57)]

(1-1) =g =g (I)] +¢ (57,51 +ealL

which means G is Lipschitz continuous and |¢|, = O (y/€). We make the similar process as before, then
combining the Holder’s inequality, we deduce that

2(’%/’] I‘ (C+e) /Q‘I—f‘ere/Q(Iff)Af

7
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which implies HI — sz = O (/€) by applying the Gronwall’s inequality with noting that I (-,0) = I (-,0). Thus,
we have that ||I — I*||, = O (V/e) as t — oo.

For later reference, we also write

m m mT™* BkT*?
S =—, T"=1-—, I'=—— D'=T"-T"=—"—"——+\, 2.14
B’ B’ m+ BkT*’ m + BET* (2.14)
Hence, for (S,T,I) satisfying the semi-neutral system (2.10), we have that
IS -8, 50 (e, IT-T,»0(. -1, 0 (o). (2.15)
when t — oo.
e Thirdly, the N? equations for I;; in (2.10) yields that, for 1 <i < N,
8Iij
ot = ﬂkLJ] - mL;j + EAIZ'J'. (216)

Whose dynamics is trivial once I; and J; are known. Indeed, assume that for each 7, there exists (I~Z- (x,t), J; (, t))

such that ||I; — I, = O (y/€) and ’ Ji — J; = O (V/¢€), then we can rewrite (2.16) into

BIij
ot

— —mly; + BRL; 4+ Bk (1= 1) Jy+ (5 = T3 ) T (1= 1) (05 = ;)| + eals.
At each z € Q, we consider the equation of fij (-, 1)

ol . .
] = —m[ij + BinJj7 Iij (,0) = Iij (.’1,‘70)

ot

Once again, by the same argument for the smoothness of x — S (z,t), we obtain that x — fij (z,t), for all
1<4,j<N.
Then we can obtain the differential equation for (Ii» — I )

2
ot
Denoting

(1= Tis) = =m (1 = Iig )48k [ (5= ) Ty + (5 = ) T (1= 1) (05 = T )| +eas (B = Iy ) +eATy.

¢ (x,t) = Bk [(L - Il) jj + (Jj — j]> I + (Ii - Il) <Jj - jj) + 6AI~¢3}

then ||¢||, = O (/€). By the same process as previous, we have that

2:_m/Q 2+/Q¢(x’t) ([Z.j_fij)—e/ﬂ‘v (Iij_fij)r.

Using the Holder’s inequality for the term fQ o (z,1) (IZ-- — f”) then applying the Gronwall’s inequality again,

19
20t Jq

note that Iij (,0) = jij ('70)7 we have that Iij - Iij

2—>O(\/E)ast—>oo,f0ra111§z’,j§N.

2.3 The slow-fast form and approximations theorems

Next, we consider the semi-neutral system for <IZ> forall1<i< N

J;
oL _ BJ;S —ml; — BRI, T +eA;
ot (2.17)
5 = (BS —m)Ji = BRLT + == (LT + i) +eAJ;

Denoting D* =T" — I*, we set
—(m+BKT*) m
Ax) = ( BkT™ 6/{:]*) ,
2 2
8




2 GENERAL AND SEMI-NEUTRAL SYSTEMS WITH SLOW DIFFUSION

and )
(2T I 1 T —I*
P= <D* T*>’ P = 1P| (—D* 2T*)' (2.18)

A@=r@ (T D) rt@

We have

1
where £ = m + SET™* — §Bkl* >0 and |P (z)| = 2T** — I*D* > 0.
In the equations for (I;, J;) in (2.17), we substitute (S, T, I) by (S*,T*, I*) and note that

IS =Sly =0 (Ve), IT=T"ly=0(Ve), [I-TI"[;=0(Ve).

Now, we have the semi-neutral system of equations for (I;,.J;), ;<. in the sense of norm ||-||, of L? ():

3(0)- 0 (1) o (5) (29

Applying Theorem [ we have that

Ii_fiQZO(\ﬁ)y ‘Ji—inZO(\ﬁ), (2.20)
where (I;, J;); ;< are solutions of the semi-neutral system (2.17) and (1:“ jl) cicn € solutions of
i< 1<i<
5 (Jz> =A(x) (Jz> +e <AJi> (2.21)

Hence, it suffices to consider the system (2.21]). For every 1 <i < N, set

(ZZ) = p! G) (2.22)

)foreach1<i<N:

Zq

7

% <Z) - <_£0(x) 8) <Z) +e {Pl (z) <§ 2) p (x)} <Z> (2.23)

This step of changing to (z;,v;) plays an important role. Since under these new variables, we can rewrite into
the slow-fast form. It allows us to apply the approximation theorem introduced in the next subsection.

When v; = 0 - which will be asymptotically true - then z; is exactly II— = 7{ the prevalence of strain ¢ in
the total of infected, see the proof in [19].

From ([2.21) we infer an equation for <

aai;z =—&u;+0(e) +eAv; + 6% (2T*VT* — I*VD*) Vo, + (T*VI* — I*VT*) V2] L

382; =0 (€) + eAz; + €|1?| [(=D*VT* +2T*VD*)Vv; + (—=D*VI* +2T*VT") Vz] 220
Next, by setting 7 = et, (2.24]) can be read as the slow time scale

588:)_1 =—&ui+0(€) + 6|1?| [(2T*VT* — I"VD*)Vuv; + (T*VI* — I"VT*)Vz] + eAv; -

gf —0(1) + |—]13| [(=D*VT* + 27"V D*) V; + (—D*VI* + 2T*VT*) Vz;] + Az 22

We need to compute explicitly the perturbation O(1) in (2.24]). This computation is quite complex especially
when involving perturbation in each parameters, so its worthwhile of dividing this progress into five sub single
cases wherein only one perturbation at the time occurs.

After that, we will treat the slow-fast form by a Tikhonov-like theorem, that is presented in the Theorem
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This result is for the parameter-dependent reaction-diffusion system with Neumann boundary condition as
following,

% (x,t)=F(f(sc,t),g($,t),x,t) +Kff<x7t)
6%9(3&(‘/) =G (f(x,t),g(x,t),x,t) + EGl(x) : Vf (CC,t) + GKgg(l‘,t) (2.26)

D fat) = aglwt) =0, zed0,
@0 =), 90 =g @

in which,
e f:OXR—=>R"and g: Q) xR — R™,
e (1 : Q) — R™ is continuously differentiable and - denotes the scalar product,

e the operators Ky, K, defined on C* (Q x [0,¢1]) by Kyu := ay () Vu + Au, Kgu := a4 (x) Vu + Aw, in
which ay (z) is an n x n diagonal matrix and a4 (x) is an m x m diagonal matrix, in which entries of each
matrix depends on x € . We assume that ay (x) and a4 (x) are differentially continuous in x.

Theorem 5. Let fo(x,t) : Q X [to,t1] — R™, go(z,t) : Q X [to,t1] — R™ be continuous functions satisfying
equations

O flt) =F (S0, g, 0),,0) + Ky (1)

0 =G (f(z,t),9(z,1), 2,t) (2.27)
%f(a:,t) :é%g(x,t)zo, x € 00
where F : R X R™ xR +— R" and G : R® x R™ x R — R™ are continuous functions. We make an addition
assumption that go € C* (Q x R).
For any (z,t) € Q x RT and f (z,t) € R™, we denote A(x,t) is the Jacobian matriz of G (f (z,t),-,z,t)
with respect to the second variable.
Alternatively, we assume that F,G are continuously differentiable with respect to their first two arguments
in a neighborhood of the trajectory fo(x,t), go(z,t), and that A (x,t) is a Hurwitz matriz, i.e. every eigenvalue
of it has strictly negative real part, for all t € [to,t1] and x € Q.

Then there exists eg > 0 and C' > 0 such that inequalities

/UM%ﬂ*ﬂ%ﬂﬂhéca Vit € [to, 1]
2 (2.28)

/W%@J»fm%wﬂmsck, Vi € [to, 41
Q

for all solutions of (2.26) with [, |fo(x,t0) — f(x,to)|*dx <€, [, ]g0(z,to) — gz, to)|*dx < € and € € (0,¢€).

The conclusion of this theorem means that, for the initial values closed enough to fy (z,t9) and go (z, ) in the
sense of L2 (Q) norm, we have the approximation for the solution of (2.26). Explicitly, this can be rewritten as
follows

Ifolz,t) = f(z,0)ll, =0 (Ve),  lgo(,t) —g(z, )|, =0 (Ve),  Vte [to,ta]
for all solutions of with || fo(z,t0) — f(z,t0)]l4 = O (V€), llgo(z,t0) — gz, to)|ly = O (Ve) and € € (0, €).

Next, we claim a result that allows us approximate the original system by the semi-neutral system. The
following error estimate gives a more precise description of these limits.

Theorem 6. Given Q € R™ compact domain with smooth boundary. Let F and G be two continuously differ-
entiable functions on Q x [0,00) and suppose that F is Lipschitz continuous. Assume there exists a bounded
function u satisfies the reaction diffusion equation with Neumann boundary condition

% = F(u,z) + €G (u, x) + eAu,

u(z,0) =ug (), x€Q, (2.29)
ou

%bﬂ =0.

10



3 APPROXIMATION THEOREMS, DERIVATIONS OF ORIGINAL DYNAMICS AND MAIN RESULTS FOR THE
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Then for every fired T > 0, Vt < T, we have that [ |u(x,t) — v (z,t)[*de = O (¢), i.e. ||u(z,t) —v(z,t)|, =
O (V€), with v (t) is the solution of the problem

v
T =F (v) + eAv,
v(z,0)=uo(z), z€Q, Vel (2.30)
0
l|8§2 =0.

3 Approximation theorems, derivations of original dynamics and
main results for the case of slow diffusion

3.1 Lemmas and derivation of non-semi neutral dynamics

Next we develop a lemma showing allowing to linearly combine all the relevant simple cases directly into the
slow equation. For this purpose, we use the following notations in system ({2.1]).

Bi = B (1+ x1€b;) ; vi = (1 + xeevi); Yig =7 (1 + xs€uij) ;

1 - L (3.1)
P = 3 +xaewjj, s €{i,j}, (ng ergj = 0) ; kij =k + xsej,

where x4 € {0,1} for d =1,2,3,4,5.

Any combination of axes of trait variation among strains, can be captured via A where A is a subset of
{1,2,3,4,5}, and for some fixed initial values given, denote C'4 be the system with yg =1if d € A and
xa = 0 if d ¢ A. For simplicity, we note also Cqy by Cy for d € {1,2,3,4,5} denote the absence/presence of
perturbations in that parameter among strains.

Remark 7. If A = ) then there is no trait perturbation and the system Cjy is exactly the semi neutral model
(2.10)).

In order to capture all the perturbations of order 1 in the equation of the z; we need these additional changes
of variables:

Sz, t) =5 —eX(z,t) + O (€7); T(x,t)=T"+eX(x,t)+O(e); I(x,t)=I"+¢€Y(z,t)+0(¢*)| (3.2)

where S*, T* and I* are defined in (2.14]), and for ¢ =1,--- | N:

1
72 wijlij(x,t) + ujilji(x,t)) . (3.3)

J=1

[\

With these notations, C 4 reads

ax ) ) N N
E Z—BT X+X165 ;szz—Xg’ylz:;l/llz—X3’7;L1+6AX+O(€)
9y N N
o =BT =TT —kI)X = (m+ BETT)Y +x18(S™ — kI") Zb Ji=x2y Y _vili = xsB8 Y aiiLid; + €AY + O (e)
i=1 ij=1
OL; 1 al 1 al
8151 =—-—mL; + Xgiﬂ’yqu; JZ:; uiij + X3§’Yﬂk3Ji ; l/jilj +eAL; +O (6)
(3.4)
together with
o (L) _ —(m + BKT™) I;
a\Ji) \ -2 Ji
L 5 1 0 (3.5)
PG ) 2( )( )y (G) o (1)
where M 4 is the matrix
N N
—x18k > bidi — xo i — Xx58 Y @ij; X16b;5*
i=1 j=1
N , ) X ) (3.6)
B -21 (xakw?; — x5%2) J; — x1 & Z:lbiji —x2i  x18bs (S* + %) +8 E (xakwi; 4 L
JI= 1= j=1

11
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In order to apply the Theorem , we rewrite system C 4 using the changes of variables <UZ) = p! (Il)

with P! in (2.18). Let us note
L=(Li)i, v={(vi)i, z= ()i

and —¢ = —(m + BkT*) + B];I* < 0. The system C4 reads now as the slow-fast form
0X . 1 2 3
5 = BI"X + xaFx (v,z) + x2Fx (v,2) + x3Fx (L) + eAX + O(e)
% =B(S* = T* —kI*)X — (m + BET*)Y + x1Fy- (v,2) + X2 FE (v, 2) + x5 Fy (v,2) + €AY + O(e)
aa[;i =—mL; + x3FL, (v,z) + O (¢) + eAL;
681: = —¢v; + O(e) + eAv; + e|1?| [(2T*VT* —I"VD*)Vu; + (T*VI* — I"VT") Vz]
%? =e(F,,(X,Y,L,v,z) + O(¢)) + eAz; + ell?l [(=D*VT* 4+ 2T*VD*)Vv; + (—=D*VI* + 2T*VT*)Vz]

(3.7
For i =1,---, N, the functions Fi, F{, Fy, are obviously deduced from the right term of (3.4)) and are linear
in theirs variables, X,Y, L, respectively. The function F} is quadratic in (v,z). Finally, F,, is given by the
second line of the right term of (3.6 after the linear change of variables ([2.22)):

—k -1
it 3 (3 e Proseew vl

2
(3.8)

Lemma 8. Let e = 0 in (3.11). Then there exist a function ®(z) = (X*(z),Y™*(z), x3L*(z),0) such that the
solution (X,Y,L,v,z) of (3.7) with any initial condition

(X7 Y,L7V,Z)(0) = (X(),Yo,L(),V(hZ()) eR xR x (Rn)g
verifies z(t) = zo for all ¢ > 0 and

lim (X,Y,L,v)(t) = ®(z¢)

t—+oo

exponentially. Moreover, X* and Y* are linear function of the ;.

Proof. First, in (3.11)), we can write the system for X,Y,L,v when ¢ = 0 in the following form
0=G(z,(X,Y,L,v))

with function G (71, 22) : RV x R2V+2 5 R2N+2 ) = 2 29 = (X, Y, L, v).
The Jacobian matrix of G respected to (X Y L V) reads as as follows

—BT 0 * x ... % *

B(S* —T*—kI*) —(m+BkT*) 0 ... 0 =«
0 0 “m 0 0
0 0 0 -m 0

Az, t) = 0 0 0 0 ... -m =« - (39)

0 0 0 0 0 —¢ 0 0
0 0 0 0 0 0 —¢ 0
0 0 0O 0 ... 0 0 0 .. -¢

Since A (z,t) is block-diagonal matrix, it is easy to find the characteristic polynomial
A+ BT*) (A +m+ BET*) (A +m)" (A + )"

which implies that all the eigenvalue of A have the negative real part.

Using the triangular structure of (3.11)) the idea is to compute the limits when ¢ — 0 step by step of v,
12
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L, X and Y in this order. Here we make a quick formal computation by simply plugging the limits obtained
at one step into the equation of the next step.

Indeed, since is equivalent to but in the slow motion, we take ¢ = 0 in . We have directly
z(t) = zo for all t > 0 and v; = e~%'0;(0) — 0 exponentially as ¢ — +oo. Remark that taking v; = 0 in
the others equations leads to the simple change of variables : I, = I*z; and J; = T%2; that we can plug in

(13-4)-(3.5)-(3.6) to simplify the explicit computations.

Now we have the following exponential limits
1
Li(t) = x3—F1,(0,20) = x3Li (20),

Denoting L* = (L), and plugging this into the equation of X we have that exponentially:

X(t) — X1F% (0,20) + x2F% (0,20) + x3F% (x3L*(20))) = X*(20).

=
BT
Remark that by linearity of the Fi and the fact that XZ = xq for each d, we have the simpler formula
* 1 *
X*(z0) = ~ a7 (x1Fx (0,20) + x2F% (0,20) + xsFx (L*(20))) - (3.10)
Finally, using the same arguments we get

Y(t) = Y*(20) exponentially

wherein we have note

1

ot BRT” (5(S* —T* — kI*)X*(20) + x1Fy (0,20) + X2 F% (0,20) + x4 Fy (0, ZO)) .

Y*(z0) =
O

The next step is to change the time scale. Taking 7 = et in (3.7)) we obtairﬂ the following system which is
equivalent to (3.7) but in the slow motion 7

X = BTX 4k (v,7) +xaFR (v,) s FR (L) 4 0(0) + eAX
I BS" T KINX — (m BRT)Y +xaF (v,2) +xa B (v,2) 4 X FF (v,2) + O() + €AY
eaa[: =—mL; + x3Fr, (v,z) + O () + eAL;
68@? = — €v; + O(e) + e% [(27*VT* — I*VD*) Vo, + (T*VI* — I[*VT*) V2] + eAv;
gf —F.,(X,Y,L,K,v,2) + O(e) + |713| [(=D*VT* + 2T*VD*) Vu; + (—D*VI* + 2T*VT*) V2] + Az
(3.11)

Using the notation of the Theorem [5] we see that the fast variables is y(7) = (X, Y, L, v) and the slow variable
is (1) = z(7). The first step in applying the Theorem [5|is to take e = 0 in (3.11)) and to show that the fast
variable converge exponentially to an attractor ¢(z) which is parametrized by the slow variable.

Now, we take e = 0 in (3.11]) and

(X, Y, L, v)(1) = ®(z(7)), (3.12)
the 2NV + 2 first equations are satisfied and the N last equations give the slow system
dz; 1
dj— =F,(X"(2),Y"(z),L"(2),0,2z) + ﬁ (=D*VI* 4+ 2T*VT*)Vz; + Az;. (3.13)

It’s important to note that, since v = 0 then gives Zi\; z; = 1. This is plausible because z; reflects the
frequency of strain ¢ by the formula I, = I*z; for all i.

The Theoremimply that the solutions of together with gives a good approximation of the original
system for a small enough but positive e. Coming back to the original variables of the SIS system, we
deduce the following result on error estimate, whose proof will be given in section |3.2

2We use the usual notation abuse. Rigorously speaking, we have to define )}(T) =X (E) and the same for each variables. Here
we remove the™ for simplicity.

13
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Lemma 9. Let T > 0 be fixed. There exists ¢y > 0 and Cp > 0 such that for any € € (0,¢y) we have for any

solution of (S, (3)i, (£ij)ij); ; of (2.1)) and (z;); of (3.13)

[1s()-s1+%/

Proof. See section [3.2 O

I; (%) - I*Zi(T)‘z + i /‘D*zz (1) zj (1) = Lij (E) ’2 < eCrp, (3.14)

1,j=1 Q

It remains to compute explicitly the slow system (3.13). The following lemma shows that it suffices to
compute independently each perturbation, that is A = {d} for d = 1,--- ;5. The case of a general A being just
a sum of each simple case thanked to the following result.

Lemma 10. Let A C {1,---,5}. Recall that yq =1ifd € A and xq = 0if d ¢ A. The functions F,, for
t=1,---, N in (3.13) read
5
in, (X*(Z)’ Y*(Z), L*(Z)a 0, Z) = Z Xdzifi‘, (Z) >
d=1
where the functions f¢ do not depend on xg.
In particular, if A = {d} for some d € {1,2,3,4,5}, then
F. (X" (2),Y*(2z),L*(2),0,z) = zifi (z).

Proof. Taking v; = 0 in (3.8]) we see that there is two constant C'x and Cy such that

F.,(X*(z),Y*(z),L*(2),0,2) = (CXX*(Z), +CyY*(z) + (0 1) PM4P™! <(1))> +x3v(0 1) P (L;)(Z)> )

Firstly, as it is show in the proof of the lemma [8] the expression of X* and Y* are both a linear combination
of the 4.

Secondly, recalling that we have at this step I; = I*z;, J; = T*z;, L; = x3L* and xﬁ = x4, for d = 3
and d = 5 particularly. Plugging this in (3.7)), we see that the matrix M 4 is also a linear combination of the
X4 which yields for some functions mg (z) which do not depend on x4 :

1 (0
(0 1) PMuP ! <1> = Z Xdma (z) . (3.15)
de{1,2,3,4,5}
Thirdly, plugging I; = I*z; and J; = T™*z;, for all ¢ in (3.4)) we prove that

N
* ]‘ * 1k
Li (z) = %BM 17z Z (wij + uji) 25

j=1
The result follows directly from three previous points. O

In the next section these functions fj are explicitly compute for any d.

3.2 Main results and proofs

We reuse the computations in [17], in each case of A = {d}, d € {1,2,3,4,5}. We set that
o1
U= g (DIVI 421V T).

Note that ¢ = 0 if I* and T* do not depend on .
In each following case of perturbation, by the similar argument, we obtain the slow system (3.13]), respec-
tively.

e Perturbations in transmission rates, A = {1}

Oz 2BS*T*?

N
Zi bz —ijzj +1§VZZ+A21,

or P j=1 1< <N.
8Zi

hiad =0

on |89 )

14
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e Perturbations in clearance rates v;, A = {2}
Oz; I (I +T%)
or |P|

%|8Q:07 1<i<N.
on

N
721/ij zi+1§~Vzi+Azi,
=1

e Perturbations in co-infection clearance rate v;;, A = {3}

8z ~AT*D* | & N -

o = P Z Uij + Uj;) Z Z U+ wy) 2z | 2+ 9 Ve + Az,
T J=1 7,l=1

3 i
“i Sila=0, 1<i<N.

e Perturbations in perturbations in transmission coefficients from mixed carriage p;;, A = {4}

N

8z 2mT*D* S .

9% _ in E (wz-j - wgz) zj +9-Vz + Az,
—

or 7] 1<i<N
(‘3zl
|aQ =0,
e Perturbations co-colonization interaction k;;, A= {5}
N
0z — T*I*D* I* -
67' = 6 Z( i *Oél'j> Z5 — ZalejZl +19Vzl+Azz,
=1 jl=1 1<i<N.
822
|aQ =0,
Let A C {1,2,3,4,5}. Using the notations in the previous section, (3.13) reads.
de N N N N
dTl :@121' bl — Z ijj + @221‘ —V; + Z Vjzj + @321' - Z(UU + uji)zj + Z (ujl + Ulj)Zle
=1 j=1 j=1 jil=1
N _ N e N
+ @4Zi Z (ng — w;i) Zj + @521' Z <D*Oéji — D*Ozij) Zj — Z Q125 2] + ¥ - VZZ + Azl
j=1 j=1 7,l=1
(3.16)
where ©;, i = 1,2,3,4,5, are given by
238*T*? NI (I +T7) ~T*D* 2mT™* D* BT*I1*D*
O1() =x1—5— ©20z)=x2——5— O3(z) =x3 ;o Ou@)=xa——05— O5(@)=xs—p5—
| Pl |P| |P| |P| |P|
(3.17)
because all the parameters 3, v, m and the values S*, T*, I'**, D* depend on x € .
Tt is useful to rewrite (3.16]) using the pairwise invasion fitness between strains. Define
O ()
O(x) =01 () + 63 (x) + O3 (z) + 64 (x) +O5 () and b; (x) = o) (3.18)

we see that 6; (x) > 0 for each i = 1,2,3,4,5 and 01 + 05 + 03+ 6, + 65 = 1 for all z. For completeness, if A =0
then we set © = 1. Using these notations, we obtain our main result.

Theorem 11. Consider the system of equations

821'
or
214+ 204+ +2zy=1.

=0z (A(2)z), — 2" A(z)z) + J-Vzi+Az,i=1,--- N,

(3.19)

15
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where A (x) is the square matriz of size N x N whose coefficient (i;j) are the pairwise fitness )\g (z) which
satisfy

X (z) = 01 (bi — bj) + 02 (—vi + v5) + 03 (—uij — wji + 2u55) + 04 (wfj - wﬁz) + 05 (1 (i — i) + aji — ajj) -
(3.20)

*

with =
Then, for any initial values of (2.1), for each 79 > 0, T > 19 arbitrarily and independent on €, there is €9 > 0,
C > 0 and a vector of positive coefficients zg € RN werifying Zivzl Zo,; = 1, such that Ve < €

/‘S*( x— —I—Z/‘Izlxr ( +Z/’Dzlxrzja:7') IU<:U,Z>‘2SGC, Vr € (10,T).

Q
where S, (I1, Iz, ..., In), (Iij)ije{l LN} IS the solution of (2.1) and (21, 22,...,2N) is the solution of reduced
system (3.19)) together with z(0) = z¢.

This system (3.19) is a general replicator system with diffusion, which is studied in [6]. We back to the
proof of Theorem [9}

Proof. We separate this proof into three steps, in which, we respectively show the approximation for S, I,
i=1,..., N using the theorems @, then prove the approximation holds for I;;, 7,5 =1,..., N.

e Firstly, use the Theorem [6we have that

IS (2,t) = 5™ ()]l = O (Ve) - (3.21)

On the other side, we note that the algebraic linear transformations to the new variables (zi,vi); ;< y; and
v; — 0 when € — 0 (by the Theorem [f]), which deduces that

15 (2, 1) = 5™ (@)l + Z I1Z; (,) = "2 (2, )|, = O (V) , (3.22)
=1

where (27,25,...,23%) are solution of slow-fast system (3.7), noting that and changing time scale yielding the
equivalent system .

e Secondly, by the lemma [§] and the same arguments in [I7], we can verify the exponential stability con-
dition of the Theorem [5] Hence, the solution of system after changing time scale 7 = et tends to the
solution of as € — 0 on [r9,T], with 79 > 0, T' > 7. arbitrary and independent on e.

Combine with the previous claim , we obtain that

HS(Q?,%) S* JrZHI zi(z,T) ( )H (3.23)

o Thirdly, we make a result for solutions I;; (x,t), 1 < i,5 < N. For the sake of shortness, we remark that
each partial differential equation in this proof associates with Neumann boundary condition and we will not

remark it in each equation. Assume (I T ) 1<ij<N to be the solution of
2 -~ .
5 = —ml; + pEI"T" z; (x,7) z; (x, 7) + eALj, 1<4,j<N (3.24)

Then, for each 79 > 0 and T > 79,

P2 L (x’ g) — 1 (xv E) H2 = O(/e) for any 7 € [, T].

Indeed, by the property of solutions of (2.16) and ([3.24)), we have that

a;;j (x7 E) = —myjl;; (SE, %) + Bjki;1; (m, %) Jj (:E, %) + Al (m, E) 55
8;1{] (l“, E) =—mlj; (x, E) + BkI" Tz (x,7) zj (x,T) + Al (m, %)

which implies

5 0 () =1 () = (1 () 1 (5. ) = (0 () -1 ()
- <ﬁjkijli (I’ E) Ji (x Z) BRI"T" 2 (2, 7) 2 (2, 7')) — eyuijlLi (x,g) '
(3.26)
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4 MODELS WITH FAST DIFFUSION

Then for all 1 <4,j < N, using the Theorem @, we observe that

Iij <SC,

T

)1 ()], -0 oo

€

Kk

Note that, & = D~ it suffices to compute the solution I];, which satisfies ||IZTJ — D*z; (et) z; (et)H2 =

O (yfe) for all 1 < i,5 < N, by the Theorem 11.19 in [29] again. Combining with (3.27) implies that
[Lij — D"z (et) zj (et) ||, = O (Ve).

Combine the results in three above steps, we get the conclusion of the lemma [9] O

4  Models with fast diffusion

4.1 The general model and the Central Manifold Theorem

Keeping the same notations of the previous sections, we now study the following system, where the rates of
diffusion are large.

oS a d
a +ZPYZ I + jzl’)/i] 1j 75261(]1 +EAS ’
ol d . (4.1)
o =08 = (r(@) +yi(@) I = I kaﬁj +-AL 1<i<N,
0l;; d o
5 =kij(x)Bi1iJ; — (r(x) + i (x)) Lij + EAIz‘Jn 1<4,j <N,
98 oI, oI,

with the Neumann boundary conditions =0 for all 1 <+7,57 < N on the boundary of 2 and

] o o on  On on
given initial conditions.
Accordingly, this system (4.1)) can be shortly written as

%W (x,t) = F (2, W (z,t)) + EKW (2,1),
€ (4.2)

0

where
W (x,t) = (S, I1,...,In,11,.. ., INN)
dA- ... 0
and K is the operator : .
0 ... dA
We set the notation A = dA. When seen as an operator on L? (Q), the operator A? with the formula of A,
accompanied with homogeneous Neumann boundary conditions, is defined as follows, see [9].

D(A2):{UeHl(Q):HVeL2(Q),v¢eH1 /VU YV (x :—d/V } (43)
A*U:=V, UeD(A%.
In order to obtain uniform estimates, we prefer to focus on the operator A> := A acting on C°(Q) with sup
norm. Hence, we define ~ ~
D(A®):={UeD(A)nC(Q),A’UecC (D)},

4.4
AU = A*U, U € D(A®). (“4.4)

Then we have that

Ey :=ker (A*°) = span(1) =R and Im (A*°) C {U € CO(Q)7/QU = 0} = Fy. (4.5)

_ _ 2
One gets C° (Q) = ker A*° @ Im A*°. Now we define the Banach space (CO (Q))N N together with the norm

IO Unzgn 1) oo = 10 lloe + -+ 1UN2 4 N1l (4.6)
17



4 MODELS WITH FAST DIFFUSION

2 _ 2
and the operator (A=) TN T acting on each coordinate of (C° (Q))N NF! The kernel and the range of this
operator are respectively

E::ker<(A°°)N2+NH>:RN2+N+1 and  F = (Fp)V VL (4.7)

N24N+1 N24N+1

Hence we have (C° (Q2)) = E @ F. The projection of (C° (2)) on E and F, denoted by Ilg

and Il respectively, given explicit by

1
HE(%)"'?VN2+N+1):|(2|< Q%,...,/QVN2+N+1>; HF:Id—HE (48)

_ 2
For all u € (CO (Q))N TN e rewrite it into u = X + Y with X € F and Y € F. We change the

system (4.1) on an equivalent slow-fast form by projecting (4.1)) on F and F respectively. The slow variable
X :=1Ig (W) € E is the vector

1 1 1 1 1 2
X = 7/5,—/1,...,—/@,—/1 ,...,/INN) e RV FN+L
<|Q| o 1l Jo TRl Jo TRl ST Il g

and the fast variable is Y := IIpyW = W — X € F. Projecting the system (4.1)) on E and F yields to the
equivalent system

d

9X(0) =5 (x,Y)
%Y(t) — (X, Y) + %KY
(Se) : (%X =0 (4.9)
dy—o

on =

X(0) = I1g(W(0))

Y(0) = r(W(0))

For the end of this section, we state the Central Manifold Theorem [I2/and the Theorem of convergence towards
the central manifold. These theorems may be proved in [8,[9]. Let us begin by a version of the central manifold
Theorem for an elliptic operator K. This Theorem claims the existence of an invariant manifold for the slow-fast
system which allows to defined several reduced systems.

Theorem 12. (Central Manifold Theorem) Let E and F be two Banach spaces. Defines f(X,Y) €
CY(Ex F;E) and g(X,Y) € C*(E x F; F). Assume that f and g are uniformly bounded as well than there
first derivatives. Let K be an operator with domain D (K) C F. Assume that K generates an analytical
semi-group exp (tK) of linearly operators on F and that there exists p1 > 0 such that

t
exp (K) Y
€

For all initial condition (zg,y0) € E X F and for all € € (0,1], one defines X (t,x0,y0) = X(t) and
Y€ (t,xo,y0) = Y(¢t) the solution, for t > 0, of the differential system

d € _ € €
%X (t) - f(X (t)vY 76)3
(Se) : %Ye(t) _ g(XE(t),YE,E) + %KYC(tL (4.11)

X(0) = 20, Y(0) = yo.

vt > 0; Ve € (0, 1],

t
< C Y| pexp <—u6> . (4.10)

F

Then there exists eg > 0 such that, for all € € (0,€p), the system (S¢) admits a central manifold C. in the
following sense.

1. There exists a function h (X, €) € C* (E x [0, €] ; F) such that, for alle € (0, ¢, Cc = {(X,h(X,¢€)); X € E}
is invariant under the semi flow generated by Se fort > 0. Moreover, we have that [[h (-, €)|| e (g, 7) = O (€)
as € — 0.

2. The function h (x,€) satisfies the partial differential equation

Dyh(z,€) f (z,h(x,€),€) = %h (x,€) + g (x,h(z,€),€), (4.12)
18



4 MODELS WITH FAST DIFFUSION

Dh - ~ ~
where D h stands for Do On top of that, any bounded function h such that HhHL , ’th ’L <1, and
such that we have
- - K- -
D, h(x,€) f (x, h(z,e), e) = —h(z,e)+g (m, h(x,e), 6) + 0 (e) (4.13)
€
in L, also necessarily satisfies
Hh—ﬁHLw —0(e). (4.14)

This Theorem provides the existence of a manifold C¢ which is invariant for the system and parametrized
by the slow variable X¢ € E In our application, F is finite dimensional so that the system on C€ is a finite
dimensional system. After showing that the solutions are close to the central manifold, up to an exponentially
small error term, we can reduce the study to a system on the invariant manifold C¢. This finite dimensional
system approach the original problem in a sense that is specified below.

More precisely, let us define the following reduced system. We do not precise the initial data at this step.

(s=1) - %X“[O"] () = £ (X0, n (X0, ) 6], velde) = (X)) . (4.15)

When the original data belongs to this manifold, that is if Y¢(0) = h(X¢(0),0), (4.15) describes the exact
dynamics of (4.11). In general, if Y¢(0) # h (X< (0),€) and the solutions do not belong to C.. However, the
initial data can be slightly modified so that the solution of (4.11]) are exponentially close to the solution of (4.15)).

Note that, h (X, e) admits an asymptotic expansion of the form h(X,e) = Z;: e*hy (X) + O (¢"), which
is explicitly calculable provided the functions f and f have C" smoothness. The approximate h (X, ¢) =
> ko1 €°hi (X) leads to the writing of reduced systems of order r (see [8]). This paper focus only on the case
r = 1. By this assumption, we obtain the following reduced system

(5@01): %XE’[O](t): f(XE’[O](t),O,e>, YE’[O](t):h(XE7[O](t),e). (4.16)

An important fact in the sequel is that the dynamic of Se[oo] is completely determined by its first equation: the

following O.D.E system
d

(S¢) : at

Xe) = £ (x)0), 0 (x50, )

and S¢ can be seen as a regular perturbation of the first equation of SS[O], that is
d
c 2 x0lg) — [0]
(85), =X = £ (x),0).

4.2 Application of the Central Manifold Theorem and main results

In order to apply the Central Manifold Theorem and related results, we need that the operator K define a
C? semi-group of contraction on F. Note that, the assumed smoothness of 9€) implies that the operator A>

_ 2
generates a C” semi group of contraction on (C (Q))N +N+1, see [B]. Denoting exp (tA3°) this semi-group, we
deduce that

W0, flexp (7)ol < ol (4.17)
Lemma 13. The restriction of A of A% to the subspace Fy = {u eC® (Q) : fQ U= O} is the generator of a

C° semi-group of strict contraction exp (tfi) on Fy verifying for some p > 0
Yo € R, Hexp (t!x) UH < et lo|, . (4.18)
o0

Proof. Fy is closed in C° (Q) and is clearly invariant under exp (tA>) by its definition. It follows (from [25] p.

123) that A is the generator of a C° semi-group of contraction on Fp. -
On the other side, it is well known that the the Laplacian operator on C° (Q) has the discrete spectrum

o (A) which totally lies in the negative half line. Since o (fl) Co(A®)and 0 ¢ o (A), one has that o (1[12) C
(=00, —=A1] (for some Ay > 0). Apply the Theorem 4.3 (p.118) in [25], we have the conclusion of the lemma. [

We have the following result.
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4 MODELS WITH FAST DIFFUSION

Proposition 14. K is the generator of a C° semi group exp (tK) on F verifying
llexp (LK) v[| o < e™"*[|v]] p. (4.19)

Now, we need to show that the function f = I[IgF and g = I[IpF are smooth enough. By the same arguments
of Lemma 4.3 in [9] and note that F is the vector-valued function whose each component is a multi-variable
polynomial. This result can be stated as follows.

Lemma 15. The function f and g have C' smoothness when acting on E x F.

By the Central Manifold Theorem, there exists a manifold M¢ = {(z, h(z,€)),z € E} € E x F which is
invariant for (S€). It verifies moreover h (z€,¢) = O (€) and M*® attracts any trajectory exponentially fast in
time.

1 _

Recalling Ey defined in (4.5)) and denoting g, (U) = o] Jo U, forall U € C° ().
Setting that ,S_' = HEO (S), L = HEO (Iz) and jij = HEO (Iij), for all 1 < i,j < N.

0X
Since h (z€,e) = O (€) as € — 0, one obtains the approximation of the slow manifold to be — = f(X,0) as

ot
follows

N
d - _ _ L
=8 =gy (r) (1= 8) + T, (%) L + g, (7i5) Ly = S > g, (8::)

i=1
d N N )
i =lle (s Ji) S — (g, (r) 4+ Mg, () Ii — Z o (Bikiz) Z g, (Bjpi;kij) Lij + g, (Bipjikis) Lji)
d - _ N , _ . _ _
ol =l (HEO Biki) I+ (HE'O (ij;ﬂ%j) Tji + g, (ﬂjpfjkz‘j) fzj')> = (Mg, (r) + g, (7i5)) Ly

=1

(4.20)
Now, we make a quasi neutral assumption as in Table [I|and wish to transform (4.20) to apply result in [I7]. It
suffices to write the parameters Il g, (8;ki;), Iz, (8;p;;kij), etc, in ([4.20) as the forms in [I7].
Indeed, we first denote

F:l_IE()(r)7 B:HEU(/B)J ﬁ:HEo(’y)7
_ Mg, (B6:)  _ Hg, (ywa) g, (yusy) - (4.21)
- HEO (5) 9 v = HEO (’Y) 9 ul] - HEO ('}/) ) 1 S Za] S N

then HEO (ﬁz) = B (1 + 661) = BZ‘, HEO (’yi) =79 (1 + 651') :=7; and HEO (’Yij) =79 (1 + Gﬂij) = Yij- Next, we set

that ( )
s . ) o g, (Biw;;
Dij = 3 + ew;;, with  @;; = 1_10137(6-)];
0 K3
and
. = . - g, (Bk) _ 1 [HE (Bikij) 5
kij =k + eq;;, with k= —="2"" and a;; =- |—=2LY_[|. 4.22
i g Mz, (5) 7= | s, (5) “22)

It is necessary to note that p;; # Ilg, (pfj) and k;; # g, (kij) to not make mistakes.
Then, we have that,

g, (Bip};) = Bib;, g, (Bkij) = Bjkij, V1<i,j<N. (4.23)
We will show that &;; = O (1), indeed,

[fﬂ B+ ebj) (k + eay;) fgﬁk]
JoB+efob; Jo B8

[( fQBk _f95k>+ fQ (kb, +ﬂo‘w)+ 2 beaU
fﬂﬁ""efﬂ j fﬂﬁ fQﬁ—’_GfQ fQB+6fQ

Jabi

_ fszﬁk Jo B n Jo (kbj + Baij) Le Jo bicvi;
Jo B ?Q JoB+efob; fQB+€fQ

QB

a | =

Qij =

A | =

20



4 MODELS WITH FAST DIFFUSION

Combining this with direct calculations, we have that
HHEO (ﬂjkljpfrm) - le;ijﬁfnnn =0 (6) , S€ {mvn}v V1< t,5,m,n < N.

Indeed, for s € {m,n}, for all 1 <i,j,m,n < N, denote that €3 to be Ilg, (Bjki;jpS.,) — BikijDi, then

,(/)s = |:; (HEO (kbj) - El;]) + (HEO (ﬁkwrsnn) - Bkafrm)

1 _ __
3 (Mg, (Baijws,,) — Baijwy,,) + (Mg, (kbjws,,) — kb;s,,)

+¢* Mg, (vijbjws,,) — Qijbwn,, ] -

1 _
+e? {2 (g, (aijbs) — @ijb;) +

For the sake of applying the result in [I7], we make an assumption that

Assumption 16. p;; does not depend on z for all 1 <i,j < N and s € {i,7}

Hence, g, (8jkijpS.,) = BikiiDs,, and the system (.20 becomes

45 N N N
o’ =7’(1—S)+;%Ii+i;1 z_:
dr; :g,j.g_(er—.)j,_ii;;,.‘.i 1<i<N (4.24)
dt iJi Vi) Li 1;‘:1 iP5 5> =10,
dl; _
o =ki;5;1iJ; — (F + ij) Lij, 1<i,7<N,

where

Bi=B1+eb), v=7vA+ew), 3j=71+1uy), ﬁfj:%Jrfww kij = k + edu;
and

i

N
Z pz]I’Lj +p]z ]Z) b v:l S Z S N

Before applying the result in [I7], we make the following assumption on the basic reproduction ratio.

fQ B () dz

Assumption 17. Assume that [, 8 (z)dz > [, m () dz, which means f
Q

Applying the result in [I7] for (4.24)), we have the following theorem. Initially, we define that

- T
o= proq_g, p=_""__ pr_pr_ (4.25)
B m + BkT*
and
0;

©O=01+065+03+0,+65 and 91':6 (426)

where

235’*T*2 AT+ (I* + T*) ~T™* D* 2mIT™* D* BT*I*D*
Ol=x1————, Og=yp—-—— 2 O3=x3———, Oy=y4y——, O5=yz———.

1= X1 P ) 2 = X2 P ) 3= X3 P ) 4= X4 P ) 5 =X |P|(427)

We see that 6; > 0 for each i = 1,2,3,4,5 and 61 4+ 65 + 05 + 64 + 05 = 1. Using these notations, we obtain our
main result.

Theorem 18. Consider the system of equations

le' — _ .
dr :@Zi((Az)i—zTAz)7 i=1,---,N,

21+z20+-+2zy =1

(4.28)
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where A is the square matriz of size N x N whose coefficient (i;7) are the pairwise fitness 5\5 which satisfy

N =0y (b; — bj) + 02 (—; + ;) + 05 (—ts; — Uji + 2Uj5) + 04 (w;fj - wjfi) + 05 (u(aj; — qij) + aji — ajj) -
(4.29)

*

with p = —.

Then, for any initial values of (4.1), for each 79 > 0, T > 19 arbitrarily and independent on €, there is €9 > 0,
C > 0 and a vector of positive coefficients zg € RN werifying vazl Zo,; = 1, such that Ve < e

N
()5

where S, (I, I, ..., In), (jij)i e Ny e the mean values over Q of the solution for (4.1) and (21,22, ...,2N)
is the solution of reduced system (4.28]) together with z(0) = zg.

I*zi(1) — I; (%)‘ + XN: ‘D*Zi(T)Zj(T) —I;; (E)‘ <eC, Vre(nT). (4.30)

)=

5 Comparison between two cases of slow and fast diffusions

Initially, we recall the two replicator system used to approximate in both cases

Case 1. Slow diffusion €A:

8zi
or
21+ zo+---+2zy=1.

=0z (A(2)2), —2TA(z)2) +0-Vz + Az, i =1,--- N, 51)

= 1
where 9 (z) = 7] (=D*VI* 4 2T*VT*) and A (z) is the square matrix of size N x N whose coefficient

(i;j) are the pairwise fitness )\g which satisfy

N () = 01 (bi = bj)+02 (=i + 1) +03 (—uij — wji + 2u;;)+0s (wfj - Wﬁl) +05 (1 (i — aij) + aji — ;) -
(5.2)

Case 2. Fast diffusion 1A:
‘ dz;
dr
Zl+22++21\[:1

N, (5.3)

= 0z; ((Az)i szf\z) ,i=1,---

)

where A is the square matrix of size N x N whose coefficient (i; j) are the pairwise fitness ;\z which satisfy

N = 01 (b = bs) + 02 (=23 + 03) + 03 (—aij — 1 + 2005) + 04 (@fj - @51) +05 (1 (@i — qvig) + Qi — @) -
(5.4)

We first note that, in Case 1, the replicator system is partial differential equations, in which, its variables are
prevalences of strains depending in space z €  and time (in slow time scale) 7 € RT. Moreover, it is not
actually the same type of replicator equations with diffusion studied in [6] since there is a term of gradient in
each equation, which is interesting. The parameters in the replicator system of this case, including the pairwise

invasion fitness matrix ()\f) and ¥ = ﬁ (=D*VI* 4 2T*VT*), are taken from the parameters of the

1<i,j<N
neutral equations then depends on space. In Case 2, meanwhile, the replicator system is ordinary differential
equations, in which, its variables are total masses over the domain of strain frequencies. Thus, the system’s
parameters- the pairwise invasion fitness matrix, can be taken directly from original model’s ones, but their

mean values over domain 2.

One point need to note is the basic reproductive ratio Ry. In Case 1, we assume in Assumption [4] that all

domain 2 is high-risk site, i.e. S(x) > m(z) for all z € Q. Hence, the equilibrium of susceptible S* = Z((I))
x
is well-defined and proved to be stable as in section [2] In this case, we denote spatial basic reproductive ratio
Ry(z) = B((x))’ which exceeds 1, leading to the equilibrium of endemic mentioned in the Introduction.
m(x
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However, in Case 2, we make a slighter assumption that € is a high-risk domain, i.e. [, 8(z) > [,m(x).
Hence, there can exist non empty low risk site, i.e. the set H~ in is non empty. Next, we make some
analyzing on the basic reproductive ratio for the quasi-neutral SIS system with fast diffusion (i.e. Case 2).
First, we assume that

Assumption 19. 1. fQT(x,O) dxr > 0, i.e. at the beginning, the total mass of infected and coinfected
individuals is positive.

2. H* and H~ are nonempty, with H+, H~ are in (2.12)).

Thank the singular perturbation in transmission rates §; = 8 (1 + €b;) and clearance rates v; = v (1 + ev;),
vij = v (1 4+ ui;), we now define a basic reproductive ratio Ry for (4.1), recalling m = v +r.

Theorem 20. Similarly in [3], for each € > 0, let

2
Ry= sup Jo 9 . (5.5)

1 1 2 2
sein@. | o (L190F +me?)

Then, we have that
Jo B
Jom

Note that, our variational characterization of the basic reproduction number Ry is in keeping with the
next generation approach for heterogeneous populations [I0] which occupy a continuous spatial habitat. It is

interesting that f“i is the basic reproductive ratio Ry of (4.24)).
Q

Ry — as €— 0.

Proof. Firstly, we recall the semi-neutral system for (S,7") in Case 2

8—S:mT—BTS+1AS

oT 1 ' ’
— =-—mT + ST + -AT

ot €

with the same initial value condition of (4.1) and Neumann boundary condition.

By similar proof for Theorem [6] we have that the solution (S,T) of (4.1} can be approximated by the
solution (S,T) of (5.6) with error O (e).
Jo 8
Jom

Next, we come to three following examples, to see more detailed comparison between two cases.

Apply the Theorem 2 in [3], we have that Ry — as € — 0. O

Example 21. Firstly, we consider the simplest example of an N-strain system and compact domain 2, when
all the parameters in Table [1| do not depend on x. In addition in this example, we consider the perturbations
are only in the transmission rates 3;, i.e. v;, u;5, w;; and a;; are all zeros, for all 4,7 and s € {i,7}. Without
loss of generality, we assume that by > by > b3 > --- > by.
In the Case 2, when diffusion is fast %A, apply the result in [17], the strain with biggest transmission rate, in
this case is strain 1, becomes the unique survivor.
Meanwhile, in the Case 2, when diffusion rates are singular €A, we have the replicator equation system as
follows
82’1'
or

N
=012z b —bj)z; + Az, i=1,... N
1 ;( ]) J (5.7)

z1+z+--+ay=1

. 25T Oz .
with ©; = P which can be regarded as 5 = f(z) + Az. We can compute the linearized operator
T
df|z + A with stable state z = (1,0,...,0) as follows
A Oy (b —by) O1(by—bs) ... O(by—by)
0 A 0 e 0
df|z + A = 0 0 A 0
0 0 0 e A
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which has the negative spectrum, since by — b; > 0 for all j # 1 and the Laplacian has negative spectrum.
Apply Theorem 11.20 in [29], the state (1,0,...,0) is linearly stable, implying the unique survival of strain 1.
In this example, the survival outcomes in two strain are the same.

When perturbations are only in single-infection clearance rates 7;; or transmission capacity of the strain
s by a co-colonized host by strain-i then strain-j pj;, we can have the similar results by applying the same
arguments.

Roughly speaking, it can happen that, in both cases: slow diffusion and fast diffusion, the unique survivors
are the same.
To close this section, we consider two other examples, in which, the longtime behaviors of strains distinguish

in two cases of diffusions.

Example 22. We consider in two cases the systems of two strains N = 2 and Q = [0, 1] when the neutral
values of parameters as follows

3 (¥ —0.36) + 3/¢ (¢ — 0.8) i 1
= k=0.1 = th = — 1]. 5.8
B=3, 0L m ey W v@ = e el 69
It can be verified directly that m < 8 for all x, which satisfies our assumption
1
From (3.17)), we recall that y = ———— and
kE(Ry—1)
O o2 (s 12 (Ry - 1). (5.9)
Osp
Substituting (5.8)) into (5.9), by direct calculation, we can verify that
(C] 1 1
T (5.10)

(S21 3 2
In this case, we consider perturbations in transmission rates 3; and co-colonization interaction k;;, which are

given as follows
11—z

hi@)=3.  b(e)=—5.

Q12 = T, a1 =1—um, Q] = 2, Qo = Qot,

(5.11)

for all z € [0,1].
In the case of fast diffusion %A, using (5.3)) and (5.4)), we only need to compute the pairwise-invasion fitness

for the slow-system to determine the unique survivor. From (5.11)), we have that Iol bidx = fol bodz, leading to
by = by and (1 = B2. From the definition of a;; in ([4.22)), we deduce that A\? + A} < 0, indeed, we recall the
formula (5.4]) in this case

X =0 Qo1 — Q1) + Qg — &
{ 1 5(#( 21 12) 21 22) (5'12)

Ay =05 (p(G1g — @a1) + g — a1q)

Then we have that
1
05

L
€ fol Bidx

1 9 1 1 2
= #/ (eqia1 — €ar1a) (eby — €bo) dx = —176/ (x _ ) da
e Jo Brdz Jo 300 (1+¢by) Jo 2

18 [y (1 +eby)

1
(AT +2A3) = (G2 — an1) + (1 — @o2) = / (k21 — k12) (B1 — B2) dz
0

Moreover, we observe that

_ _ 1 [fol Baki2dx fol 51]€21d$] 1
Q12 — Q21 = — 1 - 1 = T

€1 [y Pedx Jo Budz €y Brdx
which implies a9 = @21. From (5.12)), we have that

[/1(3—|—e(1—x))(O.l—l—ez)da:—/1(3+ex)(0.1—|—e(1—x))dz ‘
0 0

1
5\1 — 5\2 = Qoo — Q1] = ;/ (b2a21 - b1a12) dx = 0.
2 fol (14 €by)dx Jo
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5 COMPARISON BETWEEN TWO CASES OF SLOW AND FAST DIFFUSIONS

Then A\? = AJ. Combining with A2 + A} < 0 then A\? = A} < 0, which leads to the bistability.
When the diffusion is slow €A, we compute the pairwise invasion fitnesses of both strains at each z € [0, 1].
From (j5.2)), we have the explicit formulas for pairwise invasion fitness in this case as follows

N3 (z) = 0y (b — by) + Osp1 (az — r2) (5.13)
=60, |

Ay(z) (b2 = b1) + Osp (12 — a21)

It is easy to see that A\? (x) + A (z) = 0 for all z € [0,1]. We claim that \? > 0 for all z € [0,1]. Indeed, we
will show that

€]
by — by > —H (12 — az1). (5.14)
S
Because 3 (b — ba) = @13 — ag; = 22 — 1 and %"1“ = f%x + %, we have that

(C]
(bl — bz) — ﬂ (alg — 0421) = (25(} — 1)2 Z O7

©1

Wl =

implies the inequality (5.14)). According to the formulas for pairwise invasion fitnesses (5.13]), this means that,
at every point x € ), strain 1 excludes strain 2 in the case of asymptotically small diffusion.

Roughly speaking, it can happen that, when the diffusion rates are singular, a strain is the unique survivor
at each point of domain; meanwhile, in the case of large rates of diffusion, the longtime behavior is bistability.

The following example is similar to the Example In which, strain 1 is the unique survivor at each point
of domain in the case of slow diffusion, but strain 2 excludes strain 1 when the diffusion is asymptotically fast.

Example 23. We consider in two cases the systems of two strains N = 2 and Q = [0, 1] when the neutral
values of parameters as follows

B2 k=02 m=Y" 0'64128%/(}1/’ —16)  Gith v = — e (5.15)

1 1
3 2
It can be verified directly that m < f for all , which satisfies our assumption [4
Analogously to the previous Example by direct calculation, we can verify that
(“)5/1, 1 1

__1.1 5.1
o, 3x+2 (5.16)

In this case, we consider perturbations in transmission rates 3; and co-colonization interaction k;;, which are
given as follows
1—2
by (z) = 5 b (z) = )
(@) =3 2 (@) 5
app=z(r+1), agn=(1—-2z)(x+1), a1l = a2, Q2 = 0,

(5.17)

for all z € [0,1].
When the diffusion rates are singular €A, we compute the pairwise invasion fitnesses of both strains at each
x € [0,1]. From (5.2)), we have the explicit formula for pairwise invasion fitnesses in this case as follows

A} (@) = 01 (by — ba) + 05t (21 — v12) (5.18)
— 0, |

Ay(2) (b2 — 1) + Osp (12 — a21)

It is easy to see that A\? (x) + A (z) = 0 for all z € [0,1]. We claim that \? > 0 for all z € [0,1]. Indeed, we

will show that

by — by > % (12 — az1). (5.19)

1

Because 2 (by — by) =22 — 1, a1a — a1 = (22 — 1) (x + 1) and %”1” = —iz+ 1, we have that

(C) 1
(b1 —b2) — =k (12 —v91) = - (22 — 1)2 >0,
71 6

implies the inequality (5.19)). According to the formulas for pairwise invasion fitnesses (5.18]), this means that,
at every point x € €, strain 1 excludes strain 2 in the case of asymptotically slow diffusion.
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6 CONCLUSION

Meanwhile, in the case of fast diffusion %A, using (5.3) and (5.4), we only need to compute the pairwise-
invasion fitness for the slow-system to determine the unique survivor. From (5.17)), we have that fol bidx =
fol bodzx, leading to by = by and (1 = Bs. ) )

From the definition of a7; in (4.22)), we deduce that A} + A} — 0 as € — 0, indeed, we recall the formula
(5.4) in this case

A = 05 (p (Q21 — G12) + Qo1 — Aa2) (5.20)
Ay =05 (1 (Gag — @21) + dag — @11) .
Then we have that

1
05

1
€ fol Brdx

B - 2 1( _1)2
_efolﬂldx/o (caz = carz) (b =)o = f01(1+eb1)/o vog) @Hbde
Be

:717%0 when € — 0.
4f0 (1+6b1)

1
(AT +X3) = (@12 — a11) + (@21 — aigp) = /O (ka1 — k12) (B1 — B2) dx

Moreover, we observe that

fol Pokrodr fol ﬁlk21d$]
fol Bodz fol Brdz

_ _ 1
Q12 — Q21 = —
€

1 1
flﬁldx[/o (2+e(1fx))(0.2+ex(a?+1))da:f/0 (2+e:17)(0.2+6(1x)(l’+1))d4
0 P1
1 ! 1
= [ @Qe-1)@r+18)dr=—">0
folﬂldz/o e e L8d 3]0151d:c>
From ([5.20), we have that
S1 %2 L _ B 1 2u+1 ,1,i - 1 Ho€
A=Al = (ut 1) (@2 = GG a11)7f01(1+ebl)da: K 6 ) 6 12}f01(1+6b1)dx(3 12)>0

for € small enough. Then A\? < 0 < A} for e small enough, since A} — A2 = O(1). Therefore, when the diffusion
is fast, strain 2 excludes strain 1 in long time.

Roughly speaking, it can happen that, when the diffusion rates are singular, a strain, denoted by strain 1, is
the unique survivor at each point of domain; meanwhile, in the case of large rates of diffusion, the other strain,
denoted strain 2, will exclude strain 1 over the domain.

6 Conclusion

Epidemiology for homogeneous environment receives many intention so far [4] because invasion of disease is
now an international public health problem. In reality, populations tend not to be homogeneous and there are
nonlocal interactions. Hence, people investigate more theory on the geographical spread of infectious diseases.
The mechanisms of invasion of disease to new territories may take many different forms and there are several
ways to model such problems [12, [16] 18 23], in which, the equilibrium behavior has been studied. This math-
ematical study provides a fundamental advance in understanding analytically quasi-neutral dynamics between
multiple strains in a co-infection diffusion system. Until now, explicit and general derivations of coinfection
dynamics among N strains are very rare in the literature, especially models with diffusion. Nevertheless, many
models have been proposed to investigate effect of diffusion of disease infection [24] [14] [13] 28].

Motivated by the dynamics without diffusion in [I7], we formulate an SIS-type reaction diffusion equations
among similar strains, in both cases of slow and fast diffusions. Naturally in this present model, infectious strains
compete for susceptible and singlycolonized hosts, which are the only resources that can favor their growth and
propagation. The different traits provide each strain with variable fitness advantages or disadvantages in
exploiting such dynamic resources in the system, and interact together to shape multi-strain selection. We
aim to simplify the dynamics when small perturbations arise in the clearance rates, transmission rates, within-
host competitiveness coefficients, as well as co-colonization susceptibility interaction factors between strains.
However, with spatial structure, it requires us to add some appropriate assumptions, especially, the assumption
of high-risk site 2 with slow diffusion and the assumption of

26



REFERENCES

When diffusion rates are singular (eA), we base on the framework in [I7] and adapt for our current system,
including proving a Tikhonov-like Theorem. The details of this framework are not mentioned again here. We
derive the corresponding slow-fast form for the global dynamics, with the system of strain frequencies completely
explicit, and provide the formal approximation for solutions of all epidemiological variables by quantifying
error estimates. We reduce the complexity of N? + N + 1 equations of the original SIS compartmental model
to the N-equations of replicator dynamics with diffusion, which reduces substantially time for computation.
Meanwhile, for the case of fast diffusion (%A)7 we apply the Central Manifold Theorem to obtain an SIS system
for total masses of susceptible, infected and coinfected individuals, which allows us to use the main result in
[I7]. Accordingly, the reduced system in this case is the replicator equation, which is studied widely [I5]. A
similar point in both approaches is that, the error in approximation is estimated for total masses of susceptible,
infected and coinfected strains.

When the diffusion is fast, we can use the result about survival outcome of strains in [I7] to study the
longtime behavior of total mass of each strain. However, there is not much study on the replicator equations
with diffusion and gradient, so there is no general theory for the long time phenomena of individuals in the case of
slow diffusion. Though, it is exciting to envision how this approach could be extended to other epidemiological
models of multi- strain dynamics with diffusion or even more with general spatial structure. Like the non-
spatial model, an essential requirement is that their embedded neutral system admits a central manifold which
is globally stable. The challenge would then be to identify the equations governing slow motion on this manifold
in each specific model. It is essential to note that we use strong assumption of high-risk site {2 in Case 1 and
high-risk domain 2 in Case 2, which lead to the endemic equilibrium. In general, without these assumption,
people are interested in the theory of disease-free equilibrium and endemic equilibrium, [3] [33].

In Case 1, when diffusion rates are singular, without the assumption of high risk site , i.e. H~ # (), there
are points z’s at which S* = 1, that may not allow the smoothness of S* in «. Then, our approach may not
work because ||S — S*[|, = O (v/€) may not hold anymore.

One more thing, until now we have not considered a spatial component of intermediate diffusion (dA, d > 0)
to the multi-strain dynamics. A further perspective is considering the application of the Central Manifold The-
orem to this model.

Acknowledgment: We would like to thank Professor Boris ANDREIANOV, Laboratory of Mathematics
and Theoric Physics, University of Tours. Professor Andreianov helped us with several techniques in the proof
of Theorem [
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A APPENDIX: PROOF FOR THEOREMS

A  Appendix: Proof for theorems

A.1 Proof for theorem 2

In this proof, we will show that equation, recalling €2 compact,

Ou = F(u(z,t),z) + dAu,

gz (A1)
a—n:O on 09, u (z,0) = up ()

has unique solution u : Q x [0, 00) — R", satisfying u € C? (Q x ,R")NC* (- x [0,00) ,R™) when F : R" x Q —

R™ is a Lipschitz map with respect to the first variable, i.e. there exists a constant L such that

|Fii— Fo|| < L|la—o|, Vi, deR”, Vaeq. (A.2)

First, we denote that Q7 = Q x [0,00) and Q7 = Q x [0,00) and u (z,t) € R" for (x,t) € Q7. When seen
the Laplacian as an operator on L? (), the operator A% with homogeneous Neumann boundary conditions is
defined as

D (A% = {U6H1 (Q):3V e L*(Q),Vp € H' (Q),/VU(x)VgZ)(x)dz_—d/V(:z:)qﬁ(x)dx}, (A.3)

A’U:=V, UceD(A%.

In order to obtain uniform estimates, we prefer to focus on the operator A := A acting on C?(£2). Denoting
by operator A to be the Laplacian A acting on (C? (€2 x -))". Hence, we define

D(4%):={U e D(4)NC(Q). AU cC(Q)},

) (A.4)
A®U = AU, U € D(A%).
Firstly, by Duhamel’s formula and [25], implies that
t
u(z,t) = etug —|—/ A (u(x,5), x) ds, V(z,t) € Qr (A.5)
0

where exp (At) is the semi-group generated by the operator A with the Neumann boundary condition. We
consider the operator T' defined by

¢
Tu (z,t) := etugy —|—/ A (u(x,5), x) ds, Y (z,t) € QT
0

Given k > 0, to be fixed later, set

X ={ueCH(Qx[0,400),R");supe* ||ju(z,t)|| < +oo

>0

zEQ
We can check that X is a Banach space for the norm

—k
lull x = sup e™ [lu (z, 8)]] -

t>0
zeQ

For every u € X, the T'u also belongs to X. To prove this, using the argument in the beginning of subsection
We first recall that A is the generator of a C° semi-group exp (tA) on C? (Q x -) verifying |lexp (tA) v|| <
exp (—put) ||v||, for u > 0.

Then we observe that

t
6fkt ||Tu|| < e(Afch)tuO +6fkt/
0

A= (u(x, 5) ,x)” ds

t
< [|eMA=kDty, || + e_kt/ e =) |\ F (u(x,5),2)| ds
0

t
< [leMA=RDty, +e*kt/ (L ||u (2, s) — uol|| + || Fuol|) ds
0
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A APPENDIX: PROOF FOR THEOREMS

according to (A.2). Hence, we deduce that
¢
Tl < [ o+ €L ] + 1Pl + L (o, 5) s
0

Alternatively, we have that

¢ ¢ ¢
e_ktL/ ||w(z,s)| ds = e_ktL/ e 7 |ju (x, 8)|| - e*¥ds < e *'L ||uHX/ ek ds
0 0 0

which implies
_ _ _ 1 _
e Tl < ([ Dtug | 4+ e (L fuo | + 1 Puoll) + 3 L ull (1= ™),

leading to Tu € X whenever u € X.
Moreover, for all u,v € X, we have that

t
ITu— Tl x < e*kf/ |4 F (u(a,s),0) = F (v(,5), )] ds
0

t
< e_kt/ e M=) || F (u(x, s),x) — F (v(x,s),2)| ds
0
¢ L
< Le‘““**‘)t/ W RS o=k |1y (2, 5) — v (,5)| ds < —— (1 - e‘“‘*’“’t) [u—v|x -
0 p+k

Fixing k > 0 such that k 4+ p > L then applying the Banach fixed point theorem, we obtain that (A.1)) has at
least one solution.

For the uniqueness, assume there exists functions v and v, which satisfy for (A.5). For any given T > 0,
we have that

lu(z, 1) — v, )] < [|e* (uo — vo)|| + /0 | A F (ua, 5),0) = F (v, ), 2)]| ds
SML/t|u(a:,s)v(ac,s)||ds, VO<t<T
0

By the Gronwall’s inequality and the same initial value of « and v, we have that u (,t) = v (x,t), for all x € Q
and 0 <t¢ < 7. This holds for all 7 > 0, which yields the uniqueness of solution.
Therefore, the equation (2.4 has the unique solution.

A.2 Proof for theorem [5l

The idea of our proof bases on the technique mentioned in [22].

Proof. Firstly, we make a convention for the norm using in this proof. For each t € RT, for every fi, fo €
L? (2 x R,R") we denote

<hm=4ﬁ@ﬂﬁ@ﬁm

where the f; - fo representing for the usual scalar product > ., fif4 in R". This scalar product (-,-) induces
the norm

fwmzujmwmwmf2

For the sake of convenience in this proof, we only write ||-|| instead of ||||,.

We do the same convention for (g1, gs) and ||g (-, ¢)|| for all g1, g2,9 € C* (Q x R,R™).

Because in the finite dimensional space, all norms are equivalent, we then denote | - | to be the usual 2-
Euclidean norm. Moreover, we recall the notation A < 0 for a symmetric matrix A if A is definitely negative,
and A > 0 for definitely positive symmetric matrix.

First, let us show that the interval [t,t;] can be subdivided into subinterval Ay = [15_1,7x], where k €
{1,2,...,N}and g =79 < 71 < --- < Ty = t1 in such a way that for every k, there exists a symmetric matrix
P, = PI' = 0 for which

PoA(x,t) + AT (2,t) Py < —1. (A.6)
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Indeed, since A(z,t) is a Hurwitz matrix for every ¢ € [to, t1], according to [11], there exists P(z,t) = PT(z,t) =
0 such that
P(x,t)A(z,t) + AT (2, t)P(z,t) < —1.

Since A depends continuously on ¢, there exists an open interval A(t) such that ¢ € A(t) and
P(x,t)A(z,7) + AT (z, 7)P(z,t) < =1, Y7 € A(t).

Now the open intervals A(t) with ¢ € [to,t1] cover the whole closed bounded interval [tg,t1] and taking a
finite number of 74, k = 1,..., N such that [tg,¢1] is completely covered by A(7y) yields the desired partition
subdivision.

We can note that a strictly negative upper bound is not required on the real parts eigenvalues uniformly in
space, because the spatial domain is supposed to be compact.
Note that, from , for all y € R™ we have that

T (PkA + ATPk) y<—yly. (A7)

Second, because F,G are continuously differential in x and ¢, then for every p > 0 there exists C,r > 0 such
that

HF (fo(x,t) + Sf (z,t), go(z,t) + 59 (z,t) 7ﬂv,t) - F(fo,go7x,t)’| <C (Hgf (@t)” + ||5g (:mt)”) (A.8)
for all t € R, ¢ (z,t) € R™, §, (z,t) € R™ satisfying
Yt € [to, t1],Vz € Q, |5f(:v,t)\ <, \5g(x,t)| <.

For the sake of simplicity, we write §; and d, instead of 6; (x,t) and &, (z,t). We now have the Taylor expansion
as follows, noting that G (fo(z,t), go(x,t),z,t) =0,

G (folw,t) + 05, go(,t) + by, 1) = A(x,1) 6y + B(z,1)d5 + 0 (|54]) + 0 (10,) , (A.9)

with B(z,t) is the Jacobian matrix of G (-, -,t) with respect to the first variable.

For each k = 1,...,N, and u € R™, set |u|x = (uTPku)1/2, then | - | is @ norm in R™. Indeed, because
Py > 0 then | - |, is well-defined, it suffices to check the condition |u 4 v|; < |u|k + |v|k, which is equivalent to

(uTka)Q < (uTPku) (UTka) .
It now becomes )
(L™ (7)) < ((7w)" (7)) ((70)" (£70)), (A.10)
thanks to the Cholesky’s factorization, which states that, if P, > 0, there exist a square matrix such that

P, = LT L;. Note that, (A.10) holds because of the inequality Cauchy-Schwarz. Hence, | - | is a norm in R™
and it is equivalent to an arbitrary norm in R™.

Then, for 0f(x,t) = f(x,t) — fo(z,t), 04(x,t) = g(x,t) — go(x,t), we have that

d
£H5f||2 < Cr (1051 + 1611 o1l
(A.11)

d 2 2 2
e 18,17 < —qlld e+ C1 (11371 +e) at

as long as dy, §, are sufficiently small, where C1, ¢ are positive constants which do not depend on k.
Initially, for the sake of simplicity, in the following arguments, we write f, g instead of f (x,t) and g (z,t),
respectively. Then, we have the equation for 67 (x,t) as follows

0
aéf = F(fo +5fag0 + 6gax7t) - F(fo,g(),.’lf,t) +K6f
By the convention of ||-||, we have that

d d 0
§||5f”2:$<5f75f> < 5fa5f>

= (F (fo+ 0,90 + 5g,x,t) — F (fo,90,2,t) + K&¢,0;)
= (F (fo+ 07,90 + 64,2, t) = F (fo, 90, %,t) ,05) + (K5, 05)
<|IF (fo+6f,90 + 6g,2,t) = F (fo, 9oz, D) |07 ]| + (K7, 0p)
S CISsl + Nlogl) 10 + (Kdg,p)-
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On the other hand, recalling that Ky = af (z) V + A implies

(K 187.65) = (A6;.67) + lay (2) Vos.87) = / Ve + / a7 (2) Vo - byda

which leads to, when we apply the Young inequality for the term fQ x) Vs - dpdx,

(K;5,85) < /\vaf\ dr+ ma (a (2)) {mx(af/ V6,2 dx—i—C’(maX e >/|5f| da:},
€Q

where |as ()| is the matrix in which entries are absolute values of corresponding coordinates of ay (z).

d
Accordingly, we have the estimation for p l6 f||2 as follows

d
< 18717 < Cr 1871+ 18,1 11 (A.12)

Next, we come to control the growth of ||d,|,. We first observe that

0 0
6569 G(fo(x,t)+5f,go(x,t)+6g,x,t)+ng(59—|—e{Kggo(x,t)—i—atgo(x,t)—i—Gl(x).Vfo +€G1(z)-Viy.

We denote € | Kgg0 (z,t) +

0
3¢90 (,t) + Gi(x) - Vfo} as O (e€), then

9
ot

Using the Taylor expansion for G in (A.9) and the equation (A.13]), we obtain the following computations

dg = G (fo(z,t) + 67,90 (z,t) + 0g,2,t) + €K g0 + O (€) + €G1(z) - Vs, (A.13)

0 0
SN2 = 6 Pb) = el 560, Puby) + 5y, Pey6y)
= (<Aég, Piég) + (89, PrAdg)) + 2B(x,t)(d5,64) + (0 (|64]) + 0 (|64]) + O (€) , Pudg + dg)
+2e(G1(x) - Vg, Pudg + 04) + €(Ky0g, Prdg + dg)

= (64, (AT Py + Py A) 64) + 2B(2,t) (87, 64) + (0 (|6]) + 0 (|04]) + O (€) , Prby + 84)
+2e(G1(x) - Vs, Ppdy 4 0g) + (K404, Prog + &)

< —[18611% +2C1 184 18]l + (0 (16]) + 0 (I85]) + O (€) , PSy + 8g) + 26(G1(w) - V., Py + 8g) + €(K 46y, PGy + 6g).

Using the Young inequality, we have the estimation for (o (|0f|) + 0 (|04]) + O (€), P4 + d4) as follows S
(O (|07) +0(|64]) + O (€) , Pdg + d4) SO(6)+C'||59||2, with C < 1. (A.15)

Alternatively, applying the Young inequality, we have that
(G () - Vo5, Pudy + 85) < C(G) V852 + 8,117 < € (Gh) + 15, (A.16)

since Vi is bounded in €.
For the term (K 04, Pdg + d4), we get that

(K¢0g, Pdg + 0g) = (Adg, Pég) + (Adg, d4) + (ag (z) Vg, Pdg) + (ag (x) Vg, dg)
= / Adg - Péydr + / Adg - dgdx + / ag () Vég - Pégdx + / ag () Vég - 0gdx
Q Q Q Q

—/ Vi, -V (Pé,) da — / V6, da +/ ag (2) Vi, - Péyda +/ ay (z) Vi, - 8,dx
Q Q Q Q
- / V5,PV6,dr / Vs, - (VP)§,de — / V6,2 de + / 4y (2) V6, - P3,dr + / 4y (2) V6, - 5,da.
Q Q Q Q Q
Note that P > 0 then [, VogPVi dx > X ||V(59||2. Applying the Young inequality once more for the terms
/ Vg - (VP)dgdx, / ag () Vég - Pégdx, / ag () Vég - dgdx,
Q Q Q
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we have that
(Kyg, Poy +34) < = (L+2) VO, 1%+ (1+ 1) [V]|* + O (1 +X) 15|
which implies
(Ky0g, POy +0,) < C(1+ )]0, (A.17)
with C' (1 4+ \) denoting a constant depending on 1+ A.

Combining these equations (A.14)), (A.15), (A.16]), and (A.17), and noting that two norms ||-||, and ||-||, are
equivalent, we observe that

€5 ||5 Iy < (¢ +eC (L+X) = 1) |5 + C1 187111, + Cre

which implies when € small enough

0
e57 196l < —alldglly + Crllos ] 18]l + Cae (A.18)

Thus, combine (A.12)) and (A.18) and we obtain that

d 2, 1 2 2 2
pr (|5f|| te s 165117 ) < Collofl1™ = ll0g]l}, + Cre. (A.19)
for some constant C; independent of k.

C
By the Gronwall’s inequality for <||5f|| + =2 10y |k) dx, for each k > 1, we can regard 7,_1 as the initial
q

value, and then deduce that
C
167 (ri1 + 1) < eCo7 (||6f (i) et 1, <z,rk_1>||i> @+ Cre

for 7 € [0, 7, — T,—1]. With the aid of this bound for the growth of |§|, the second inequality of (A.11) implies
a bound for ||d,]|, as following

C
165 (i1 + )15 dx < =0/ ||6, (1)l + Ci <5f (@, 7o) || d + 6?1 14 (l‘ﬁk—l)lli) + Cae.

We already have that 65 (x,t9) = ¢ (z,70) < € and 64 (z,t0) = 04 (z,70) < € for €y small enough. Then, by the
compactness of Q, for 7 € [0, 7 — 7o), ||d¢ (T)|I> < O (e), for all z € Q. Make a process similarly and successively
for k=1,2,..., we have that ||§;]|> < O (e) for all z € . Analogously, we can also prove that [|d,]* < O () .

Therefore, [, |f(z,t) — folz,t)? dz < Ce and Jo lg(@,t) — go(z,t)[dz < Ce, and we have the conclusion
of the theorem. O
A.3 Proof for theorem

Proof. Note that ||F (u1,x) — F (u2,x)|| < Cllug —usg|,Yui,uz € D(F) and |G (u,x)v| is bounded, Yu,v
bounded due to the continuous differentiability of G in a bounded domain. Consider

10 0
ia\u—vﬁ (u—v) = o (u—2v)=(u—2)[F(u,z) — F(v,2)] + € (u—v)Glu,z) + € (u—v) A(u—0)
<Clu—v2+0(e) +e(u—v)A(u—u).
(A.20)
Taking the integral of (A.20)) over Q and using the Neumann boundary condition implies that
_vl?dx < _ _ _
28t/|u v[fde < C/|u v|?dz + O (e €/||Vu v)||? da,
which leads to 9
8t/ = o] dx<C/ lu— vf2dz + 0 (e).
Apply the Gronwall’s in equality, we have that
/ lu — v|?dz < O (€) + O (¢)
Q

which implies fQ |u — v|?dx = O (¢) for all t < T with given T > 0, by the compactness of €. O
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