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Abstract

This paper studies dynamical system of coinfected strains with spatial diffusion, under a quasi similarity
assumption. Such coinfection systems have been studied in several articles without spatial structure. In the
present study, we add a spatial structure to comprehend the impact of spatial heterogeneity on the inter-
action between similar strains. The SIS model is then a reaction-diffusion system in which the coefficients
are spatially heterogeneous. Two limiting cases are considered: the case of an asymptotically slow diffusion
coefficient and the case of an asymptotically fast diffusion coefficient. In the case of small diffusion rates,
we show that the slow system is a semilinear system of type ”replicator equations,” describing the spatio-
temporal evolution of the strains’ frequencies. This system is of the reaction-advection-diffusion type, in
which the additional advection term explicitly involves the heterogeneity of the associated neutral system.
In the case of fast diffusion, classical methods of aggregation of variables are used to reduce the spatialized
SIS problem to a homogenized SIS system on which we can directly apply the results of the non-spatial model.

Keywords. spatial quasi-Neutral dynamics, spatial SIS multi-strain dynamics, co-infection system with
diffusion, slow-fast dynamics, Tikhonov’s Theorem, Central Manifold Theorem

1 Introduction

Heterogeneity is a common feature of real world infections. Heterogeneous susceptibilities may arise, for in-
stance, through individuals having differing histories of prior exposure to infection or vaccination. Thus, it
remains challenging to accurately describe diffusion process of bacteria/virus and investigate the transmission
dynamics of free-living bacteria/virus in the contaminated environment on disease infection. There are many
studies the mathematical framework on the predator-prey models within heterogeneous environment [26, 27].
In particular, many studies deeply solution for compartmental models in epidemiology with diffusion terms.
For instants, [31, 30] studies the existence and non-existence of travelling wave solutions for a general class of
diffusive KermackMcKendrick SIR models with nonlocal and delayed disease transmission. However, there is a
lack of a comprehensive theoretical framework for spatial models of co-infection though it frequently appears in
models with migration, evolution, and heterogeneous environment. It is known that co-infection dynamics have
received considerable attention [1, 2, 21], because of their importance to biology, especially in the outbreaks
of infectious diseases. For instance, [20, 32] studied different co-infection models to help diagnose and treat
infectious diseases.

Even without a spatial structure, the interactions between traits and strains yield complex consequences on
the population dynamics [19, 17]. However, under a quasi-neutral hypothesis, this complexity is decoded into a
replicator equation. In a heterogeneous environment, the dynamics surely become a PDE system, which is more
complex to studies. In this study, with diffusion terms and under appropriate conditions, the dynamical system
of co-infection, now becomes a reaction-advection-diffusion system, will be coded again through a replicator
equation, with or without diffusion, depending on the rate of diffusion.

In this article, we describe and study the spatial version of dynamics considered in [17], i.e. the quasi-neutral
SIS model between similar strains, with diffusion and zero flux assumption on the boundaries, in two cases,
including slow (ε∆) and fast diffusions ( 1

ε∆). The choice of terms presenting heterogeneity depends on the
type of population considered. For the case of a large population in a bounded domain, which leads to a large
density, diffusion is a good approach to model spatial movement because organisms are assumed to have random
motions. In a mathematical sense, the term diffusion-presented by the Laplacian operator is a strongly elliptic
operator. Hence, most of results of this paper may be extended for other elliptic operators.

We focus on modeling the host-to-host transmission of different strains using the SIS (susceptible-infected-
susceptible) modeling approach. Despite the assumption on compactness and smoothness of domain, the main
difficulty is to take into account the impact of strain traits under propagation in space. It is useful to take
the viewpoint of reaction-diffusion equations, which are studied deeply in [7]. Moreover, the assumptions of
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2 GENERAL AND SEMI-NEUTRAL SYSTEMS WITH SLOW DIFFUSION

zero total flux on the boundary make our system isolated. An important point is that, in the case of slow
diffusion, we assume that whole the considered domain is at high risk of infection, which means at any point
in the considered domain, the transmission rate of either is larger than the sum of the clearance rate and
the mortality rate. This assumption leads to the existence, the uniqueness and the stability of the endemic
equilibrium. When low risk site, the set of all points in which the transmission rate is less than the clearance
rate, is non empty as well, we also have a disease-free equilibrium, which is studied concretely in [3].

For each type of diffusion, we present a specific method to approximate the solutions under a quasi-neutral
assumption on the parameters. In the case of slow diffusion, we first consider the reaction-diffusion model with
symmetric interactions, which is the neutral system with diffusion. Similar to [17], and Kf , Kg are operators
which are computed later, we find how to rewrite the original system in the form ∂

∂tf(x, t) = F (f, g, x, t, ε)+Kff

and ∂
∂tg(x, t) = εG (f, g, x, t, ε) + εKgg, where f describes the fast dynamics and g the slow dynamics. The

Tikhonov’s theorem used in [17] now is improved to a Tikhonov-like theorem applied for PDEs model with

appropriate assumptions. Accordingly, at the slow time scale τ =
t

ε
, we obtain the slow dynamics on the slow

manifold.
For the case of fast diffusion, the Central Manifold Theorem [8] is applied directly on the original SIS

system under an appropriate rewriting, yielding to an ordinary differential (ODE) SIS system under the mean
variables. In this system, we invoke the quasi-neutral assumptions on the traits to use the main result of [17].
For a clearer view, this theorem plays the main role in [8, 9].

Analogously to the non-spatial models in [17], we obtain the diffusion replicator system at the end and they
are in different types due to the distinguished kinds of diffusions. The replicator system with diffusion attracts
much attention and be studied in [6]. Comparing two cases of diffusion, the Tikhonov-like approximates the
slow-fast form to the replicator system, in which variables are prevalences of strains. Meanwhile, the Central
Manifold Theorem leads us to equations of total masses over the domain of susceptible, infected and coinfected
strains. Although, both of them claim that the original system’s solution can be approached based on the
solution of a simpler system in any bounded time interval as ε → 0. Despite the distinction in variables of
system in slow-manifold, error estimates in both cases are computed in L2 and L1 norms, respectively.

This article is organized as follows. Sections 2 and 3 are dedicated to the case when the coefficients of diffusion
are ε. In the beginning of section 2, we present the model and state some general results including the existence
of a unique solution and the introduction of new variables. Next, we analyzes the semi-neutral system and the
slow-fast form to prepare for application the approximation theorems. Similarly to [17], we solve the system
with slow diffusion in each elementary sub-case in which only one trait depends on the strains. For this sake,
a lemma showing of to combine the elementary cases is presented, starting section 3. With these sufficient
materials, the replicator system with diffusion follows with proofs and finalizes the case of small diffusion rates.
The model with fast diffusion ( 1

ε∆) is studied in section 4. We refer the Central Manifold Theorem in [9] and
make some conventions at the beginning to apply this result. As mentioned after the application of the Central
Manifold Theorem, we invoke the quasi-neutral assumptions on traits. These ingredients are combined and used
to derive the replicator system, by the main result in [17], in which the variables are total masses over domain
of strains. Section 5 is to compare the two cases of diffusion in some respects including the relations with
basic reproduction ratio R0 and three examples for different behaviors. Section 6 draws remarkable results and
concluding. The final section Appendix A closes this article with the proofs of the theorems stated in section
2.

2 General and Semi-neutral Systems with Slow Diffusion

2.1 The general N-strain model

The dynamics studied in this article groups the pathogen types in N subsets, indexed by i, 1 ≤ i ≤ N . With
a set of ordinary differential equations, we then track the proportion of hosts in 1 + N + N2 compartments:
susceptible: S (x, t), hosts colonized by strain-i: Ii (x, t), hosts co-colonized by strain-i then strain-j: Iij(x,t).
Notice that we include also same strain coinfection, as argued in [17].

We formulate the general model based on the same structure as that in [17] but here allow for strains to
vary in their transmission rates βi (x), clearance rates of single infection γi (x) (or duration of carriage 1/γi (x)),
clearance rates from mixed co-colonization γij (x), within-host competition reflected in relative transmissibilities
from mixed coinfected hosts (piij (x) and piji (x)), as well as co-colonization vulnerabilities kij (x), already studied

in [17]. In a compact domain Ω ⊂ Rd with smooth boundary Γ, we consider the general SIS dynamics in a
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2 GENERAL AND SEMI-NEUTRAL SYSTEMS WITH SLOW DIFFUSION

coinfection system with diffusion as follows

∂S

∂t
=r(1− S) +

N∑
i=1

γiIi +

N∑
i,j=1

γijIij − S
N∑
i=1

βiJi+ ε∆S,

∂Ii
∂t

=βiJiS − (r + γi)Ii − Ii
N∑
j=1

kijβjJj+ ε∆Ii, 1 ≤ i ≤ N,

∂Iij
∂t

=kijIiβjJj − (r + γij)Iij+ ε∆Iij , 1 ≤ i, j ≤ N,

(2.1)

where Ji is proportion of all hosts transmitting strain i, including singly- and co-colonized hosts and has the
explicit formula

Ji = Ii +

N∑
j=1

(
piijIij + pijiIji

)
.

We will assume no-flux boundary conditions, i.e. the Neumann boundary conditions ∂nS = ∂nIi = ∂nIij = 0
on the boundary Γ of Ω and the given initial values.

Note that βiJi is the infection force of strain i, for all i. In (2.1), for 1 ≤ i, j ≤ N , parameters (that all
depend on space) are interpreted as follows

Table 1: Conventions and notations of parameters

Parameter Interpretation Under strain similarities
1. βi (x) Strain-specific transmission rates βi (x) = β (x) (1 + εbi (x))
2. γi (x) Strain-specific clearance rates of single colonization γi (x) = γ (x) (1 + ενi (x))
3. γij (x) Clearance rates of co-colonization with i and j γij (x) = γ (x) (1 + εuij (x))

4. psij (x) Transmission capacity of the strain s ∈ {i, j} by a host co-

colonized by strain-i then strain-j,
(
piij (x) + pjij (x) = 1

) psij (x) =
1

2
+ εωsij (x)

5. kij (x) Relative factor of altered susceptibility to co-colonization
between colonizing strain i and co-colonizing strain j

kij (x) = k (x) + εαij (x)

r (x) Susceptible recruitment rate (Equal to natural mortality)

Assumption 1. We assume the regularity for the intial values and parameters as follows.

• Initial values S (x, 0), Ii (x, 0), and Iij (x, 0) are smooth enough in x ∈ Ω, for 1 ≤ i, j ≤ N .

• All the parameters in (2.1), which are included in Table 1, are all smooth enough in x ∈ Ω.

It is classical that this systems conserved the positive quadrant and then we consider only positive solutions.
For the sake of simplicity, we denote the inverse duration of a carriage episode by strain i with mi = r+ γi,

of a co-carriage episode by strains i and j with mij = r+γij and the corresponding inverse duration of carriage
if all strains were equivalent with m = r + γ.

In this paper, we use the notation ∇u and ∆u when u (x, ·) =
(
u1 (x, ·) u2 (x, ·) . . . uk (x, ·)

)
, for k ∈ N,

with the meaning

∇u =
(
∇u1 ∇u2 . . . ∇uk

)
, and ∆u =

(
∆u1 ∆u2 . . . ∆uk

)
.

Such a very general pattern of considered system forms
∂X

∂t
= F̃ (X,x, ε) + ε∆X with Neumann boundary

condition, where X = (X1, X2, . . . , Xn) ∈ Rn and is equivalent to
∂X

∂t
= F (X,x) + O(ε) + ε∆X after some

algebraic transformations. The part
dX

dt
= F (X,x) + ε∆X is called as the semi-neutral system, consistently

stays unaltered and be investigated in the subsection 3.1. It is important to note that this system is structurally
unstable. Then, the part O (ε) is a slow perturbation of the neutral system. To treat such an emergence by a
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2 GENERAL AND SEMI-NEUTRAL SYSTEMS WITH SLOW DIFFUSION

Tikhonov-liked theorem, it’s essential to rewrite
∂X

∂t
= F (X,x) +O(ε) + ε∆X into equivalent slow-fast form



dU

dt
= f (U, V, x) +O(ε) + ε∆U

dV

dt
= ε (g (U, V, x) +O(ε) + ∆V )

∂U

∂n
=

∂V

∂n
= 0, on ∂Ω

(2.2)

where U ∈ RN is the slow variable and V ∈ RN is the fast variable. This step is achieved thanks to the ansatz
(3.2) will be yielded from the study of the semi-neutral system.
This subsection makes a change of variables then allows to rewrite the system in an equivalent structure ex-
plicitly dependent on ε. Then, we study the important semi-neutral system which is obtained for ε = 0 except
in diffusion terms. The study on the semi-neutral system leads to the definition of the appropriate slow and
fast variables (zi, vi). These variables together with the ansatz (3.2) are the key for the slow-fast study of the
next section.

• Initially, sum up all the equations of (2.1), we have that

∂

∂t

S +

N∑
i=1

Ii +

N∑
i,j=1

Iij

 = r (1− S)− r

 N∑
i=1

Ii +

N∑
i,j=1

Iij

+ ε∆

S +

N∑
i=1

Ii +

N∑
i,j=1

Iij


∂n

S +

N∑
i=1

Ii +

N∑
i,j=1

Iij

 = 0 on Γ.

Denoting

T =

N∑
i=1

Ii +

N∑
i,j=1

Iij , (2.3)

we have the following equation

∂

∂t
(S + T ) = r [1− (S + T )] + ε∆ (S + T ) .

with the Neumann boundary condition. The assumed smoothness of ∂Ω implies that ε∆ generates a C0 semi
group of contraction on C0

(
Ω̄
)
, see [5].

Note that S + T = 1 are the solution of r [1− (S + T )] + ε∆ (S + T ) = 0 and the linearized operator be-
comes ε∆ − r which has spectrum lies in the left-half plane (since the Laplacian has the negative spectrum
and r(x) > 0). By the Theorem 11.20 in [29], we deduce that S + T = 1 is asymptotically stable, which

implies that S +
∑N
i=1 Ii +

∑N
i,j=1 Iij → 1 as t → ∞ asymptotically for all x. Therefore, we can assume that

S +
∑N
i=1 Ii +

∑N
i,j=1 Iij = 1 in this article.

From this convention, we deduce that, (2.1) has unique solution for every ε > 0. Indeed, (2.1) can be rewritten
in the form of

∂

∂t
u (x, t) = F (u (x, t) , x, ε) + ε∆u (x, t) , x ∈ Ω (2.4)

with u =
(
S I1 . . . IN I11 . . . INN

)T
. We state the following result on the unique existence of solution

of (2.4). The proof is given in Appendix A.1.

Theorem 2. Given compact domain Ω ∈ Rd and u : Ω × [0,+∞) → Rn, (x, t) 7→ u (x, t). Assume that
F : Rn × Ω× R+ is continuous in x ∈ Ω and F : Rn × Ω× R+ → Rn is a Lipschitz map in u ∈ Rn, i.e. there
is a constant L such that

‖Fu− Fv‖ ≤ L ‖u− v‖ , ∀u, v ∈ Rn, ∀x ∈ Ω.

Then (2.4) admits a solution in C2 (Ω× ·,Rn) ∩ C1 (· × [0,∞) ,Rn), and this solution is unique.

For the sake of clarify later, we now make conventions for the norms used in this article.

Definition 3. Let v : Ω× R+ → Rn and v ∈ L2 (Ω) for each t ≥ 0, we define.
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2 GENERAL AND SEMI-NEUTRAL SYSTEMS WITH SLOW DIFFUSION

• The norm |·|1 for v (x, t) ∈ Rn for each x ∈ Ω and t ∈ R+:

|v (x, t)|1 :=

n∑
i=1

|vi (x, t)| (2.5)

with v (x, t) =
(
v1 (x, t) v2 (x, t) . . . vn (x, t)

)
.

• The norm |·|2 for v (x, t) ∈ Rn for each x ∈ Ω and t ∈ R+:

|v (x, t)|2 :=

(
n∑
i=1

|vi (x, t)|2
)1/2

(2.6)

with v (x, t) =
(
v1 (x, t) v2 (x, t) . . . vn (x, t)

)
.

However, for the sake of simplicity, we only write |·| instead of |·|2.

• The norm for v (·, t) ∈ L2 (Ω) for each t ∈ Rn:

‖v (·, t)‖2 :=

(∫
Ω

|v (x, t)|2 dx
)1/2

. (2.7)

Note that in (2.4), u (x, t) ∈ RN2+N+1 and in this finite-dimensional space, the norms |·| and |·|1 are equiv-

alent, we recall our previous convention S +
∑N
i=1 Ii +

∑N
i,j=1 Iij = 1. Then, thanks to the positivity of the

solutions, |u (·, t) |1 = S+
∑N
i=1 Ii+

∑N
i,j=1 Iij = 1 and satisfies the Theorem 2. Hence, the system (2.1) always

has unique solution.

• Secondly, for the sake of simplicity, we denote mi = r + γi, mij = r + γij and m = r + γ. Then, we
define total mass of single infected I, the total mass of double infected D and and the total mass of infected T ,
as in [17], which reads

I =

N∑
i=1

Ii, D =

N∑
i=1

Iij , T = I +D. (2.8)

(2.8) yields
∑N
i=1 Ji = T . For later computations, remark that

∑N
i=1 βiJi = βT + ε

∑N
i=1 biJi. Thanked to the

new variables, the systems for (S, T ), (Ii, Ji) and (Iij)1≤i,j≤N reads

∂S

∂t
=r(1− S) + γT + εγ

 N∑
i=1

νiIi +

N∑
i,j=1

uijIij

− βST − εβS N∑
i=1

biJi + ε∆S

∂T

∂t
=βST −mT + εβS

N∑
i=1

biJi − εγ

 N∑
i=1

νiIi +

N∑
i,j=1

uijIij

+ ε∆T

∂Ii
∂t

=β (1 + εbi) JiS − (m+ εγνi)Ii − βIi
N∑
j=1

(k + εαij) (1 + εbj) Jj + ε∆Ii

∂Ji
∂t

=β (1 + εbi) JiS − βIi
N∑
j=1

(k + εαij) (1 + εbj) Jj − εγ

νiIi +

N∑
j=1

((
1

2
+ εωiij

)
uijIij +

(
1

2
+ εωiji

)
νjiIji

)
−mJi + β

N∑
j=1

((
1

2
+ ωiij

)
(k + εαij) (1 + εbj) IiJj +

(
1

2
+ εωiji

)
(k + εαji) (1 + εbi) IjJi

)
+ ε∆Ji

∂Iij
∂t

=β (k + εαij) (1 + εbj)IiJj − (m+ εγuij)Iij + ε∆Iij , 1 ≤ i, j ≤ N.
(2.9)
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2 GENERAL AND SEMI-NEUTRAL SYSTEMS WITH SLOW DIFFUSION

2.2 The semi-neutral system

Take ε = 0 in (2.9) except the diffusion rates, we obtain the semi-neutral system1 for (S, T, I, Ii, Ji), which
reads 

∂S

∂t
=m (1− S)− βST +ε∆S

∂T

∂t
=βST −mT +ε∆T

∂I

∂t
=βTS − (m+ βkT ) I +ε∆I,

∂Ii
∂t

=βJiS −mIi − βkIiT +ε∆Ii, 1 ≤ i ≤ N

∂Ji
∂t

= (βS −m) Ji − βkIiT +
βk

2
(IiT + JiI) +ε∆Ji, 1 ≤ i ≤ N

∂Iij
∂t

=βkIiJj −mIij +ε∆Iij

(2.10)

with the Neumann boundary condition and the initial condition
∂S

∂n
=
∂T

∂n
=
∂Ii
∂n

=
∂Iij
∂n

= 0 on ∂Ω

S(x, 0) = S0(x), T (x, 0) = T0(x), I(x, 0) = Ii,0(x), Iij(x, 0) = Iij,0(x).

• Firstly, we consider the semi-neutral equation for (S, T ), that reads

∂S

∂t
=m (1− S)− βST + ε∆S

∂T

∂t
=−mT + βST + ε∆T.

S(x, 0) =S0(x), T (x, 0) = T0(x),

∂S

∂n
|∂Ω =

∂T

∂n
|∂Ω = 0.

(2.11)

By the Theorem 2 that (2.11) has the unique solution.
Before analyzing, similar to [3], we say that x is a low-risk site if the local disease transmission rate β (x)

is lower than the local disease recovery rate (which is the sum of clearance rate and mortality rate) m (x). A
high-risk site is defined in a similar manner. Let

H− = {x ∈ Ω : β (x) < m (x)} and H+ = {x ∈ Ω : β (x) > m (x)} (2.12)

denote the set of these low- and high-risk sites, respectively. Accordingly, the term R0 (x) is the local repro-
duction number at x ∈ Ω. Then R0(x) < 1 for low-risk sites x ∈ H− and R0(x) > 1 for high-risk sites x ∈ H+.
It is well-known that without movement, the disease can persist at high-risk sites but not at low-risk sites. We
say that, a domain Ω′ is a low-risk domain if

∫
Ω′
β <

∫
Ω′
m and a high-risk domain if

∫
Ω′
β >

∫
Ω′
m.

In this case of slow diffusion, i.e. in sections 2 and 3, we make an assume that

Assumption 4. The domain Ω is high-risk everywhere, i.e. β(x) > m(x) for all x ∈ Ω.

Denoting S∗(x) =
m(x)

β(x)
=

1

R0(x)
and T ∗(x) = 1 − S∗(x), then 0 ≤ S∗, T ∗ ≤ 1 for all x ∈ Ω, which is

well-defined. At each x ∈ Ω, consider the differential equations of variables
(
S̃ (·, t) , T̃ (·, t)

)

dS̃

dt
= m (x)

(
1− S̃

)
− β (x) S̃T̃

dT̃

dt
= −m (x) T̃ + β (x) S̃T̃

, (2.13)

with initial condition
(
S̃ (0) , T̃ (0)

)
= (S (x, 0) , T (x, 0)). It is claimed that

(
S̃ (x, t) , T̃ (x, t)

)
→ (S∗ (x) , T ∗ (x))

for each x ∈ Ω and t→∞, see [17].

1The name semi-neutral system comes from the fact that if ε = 0, except the coefficients of diffusion terms, then the parameters
do not depend on the strains as in the neutral theory.
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2 GENERAL AND SEMI-NEUTRAL SYSTEMS WITH SLOW DIFFUSION

Furthermore, noting that
∣∣∣S̃(x, t)− S∗(x)

∣∣∣2 ≤ 2 for all (x, t) ∈ Ω × R+ and Ω is compact, by Dominated

Convergence Theorem, for all sequence (tn)n satisfying t0 < t1 < · · · < tn < . . . , tn → +∞, we obtain that∥∥∥S̃(x, t)− S∗(x)
∥∥∥

2
→ 0 as t→∞.

Another important point is that, for any t ∈ R+, S̃ (x, t) is smooth enough with respect to x. Indeed, we
have the differential equation for S̃ (x)− S̃ (x′) as follows

d

dt

(
S̃ (x)− S̃ (x′)

)
=
(
S̃ (x)− S̃ (x′)

) [
− (m+ β) + β

(
S̃ (x) + S̃ (x′)

)]
.

Noting that S̃ (x) + S̃ (x′) ≤ 2 for all t ∈ R+ and x, x′ ∈ Ω, applying the Gronwall’s inequality, we deduce that
|S̃(x)−S̃(x′)|
|x−x′| can be controlled at each t, since S̃ (0) is smooth enough with respect to x.

Analogously, we observe x 7→ T̃ (x, t) is smooth enough as well.
Alternatively, we have that

∂

∂t

(
S − S̃

)
=
[
F (S)−F

(
S̃
)]

+ ε∆S, with F (X) = F (X, ·) = m (·) (1−X (·))− β (·)X (·) (1−X (·))

then F(X) is Lipschitz continuous with coefficient C > 0. We have the following transformations(
S − S̃

) ∂

∂t

(
S − S̃

)
=
(
S − S̃

) [
F (S)−F

(
S̃
)]

+ ε
(
S − S̃

)
∆S

=⇒1

2

∂

∂t

∣∣∣S − S̃∣∣∣2 ≤ C ∣∣∣S − S̃∣∣∣2 + ε
(
S − S̃

)
∆
(
S − S̃

)
+ ε
(
S − S̃

)
∆S̃

=⇒1

2

∂

∂t

∫
Ω

∣∣∣S − S̃∣∣∣2 ≤ C ∫
Ω

∣∣∣S − S̃∣∣∣2 + ε

∫
Ω

(
S − S̃

)
∆S̃

By the definition of S̃ and max
∣∣∣S − S̃∣∣∣ ≤ 2 then by the Gronwall’s inequality we have that∥∥∥S − S̃∥∥∥

2
= O

(√
ε
)
, since S (·, 0) = S∗ (·, 0) ,

which leads to ‖S − S∗‖2 → O (
√
ε) as t→∞ since Ω is compact.

Recalling that S + T = 1 then ‖T − T ∗‖2 → O (
√
ε) when t→∞.

• Secondly, we consider the semi-neutral equation for I(x, t) which reads
∂I

∂t
= βTS − (m+ βkT ) I + ε∆I

∂I

∂n
|∂Ω = 0

Similarly to the previous proof for the stability of (S(x, t), T (x, t)), we consider the equation for Ĩ (·, t) at
each x ∈ Ω

∂Ĩ

∂t
= βT ∗S∗ − (m+ βkT ∗) Ĩ , Ĩ (·, 0) = I(x, 0),

which implies Ĩ (x, t)→ I∗ (x) :=
mT ∗

m+ βkT ∗
at each x ∈ Ω as t→∞, as proved in [17].

By the same arguments for
∥∥∥S̃(x, t)− S∗(x)

∥∥∥
2
→ 0 as t→∞ previously, we also obtain that

∥∥∥Ĩ(x, t)− I∗(x)
∥∥∥

2
→

0 as t→∞.
Similarly to the proof of the smoothness of x 7→ S̃ (x, t), we can prove that x 7→ Ĩ (x, t) is smooth enough

as well, for all t ∈ R+.
Accordingly, we deduce the equation

∂

∂t

(
I − Ĩ

)
=
[
G (I)− G

(
Ĩ
)]

+ ϕ (S, T, S∗, T ∗) + ε∆I,

where G (X) = βT ∗S∗ − (m+ βkT ∗)X and

ϕ (S, T, S∗, T ∗) = β [(T − T ∗)S∗ + (S − S∗)T ∗ + (T − T ∗) (S − S∗)]

which means G is Lipschitz continuous and ‖ϕ‖2 = O (
√
ε). We make the similar process as before, then

combining the Holder’s inequality, we deduce that

1

2

∂

∂t

∫
Ω

∣∣∣I − Ĩ∣∣∣2 ≤ (C + ε)

∫
Ω

∣∣∣I − Ĩ∣∣∣2 + ε

∫
Ω

(
I − Ĩ

)
∆Ĩ

7



2 GENERAL AND SEMI-NEUTRAL SYSTEMS WITH SLOW DIFFUSION

which implies
∥∥∥I − Ĩ∥∥∥

2
= O (

√
ε) by applying the Gronwall’s inequality with noting that I (·, 0) = Ĩ (·, 0). Thus,

we have that ‖I − I∗‖2 → O (
√
ε) as t→∞.

For later reference, we also write

S∗ =
m

β
, T ∗ = 1− m

β
, I∗ =

mT ∗

m+ βkT ∗
, D∗ = T ∗ − I∗ =

βkT ∗2

m+ βkT ∗
. (2.14)

Hence, for (S, T, I) satisfying the semi-neutral system (2.10), we have that

‖S − S∗‖2 → O
(√
ε
)
, ‖T − T ∗‖2 → O

(√
ε
)
, ‖I − I∗‖2 → O

(√
ε
)
. (2.15)

when t→∞.

• Thirdly, the N2 equations for Iij in (2.10) yields that, for 1 ≤ i ≤ N ,

∂Iij
∂t

= βkIiJj −mIij + ε∆Iij . (2.16)

Whose dynamics is trivial once Ii and Ji are known. Indeed, assume that for each i, there exists
(
Ĩi (x, t) , J̃i (x, t)

)
such that

∥∥∥Ii − Ĩi∥∥∥
2

= O (
√
ε) and

∥∥∥Ji − J̃i∥∥∥
2

= O (
√
ε), then we can rewrite (2.16) into

∂Iij
∂t

= −mIij + βkĨiJ̃j + βk
[(
Ii − Ĩi

)
J̃j +

(
Jj − J̃j

)
Ĩi +

(
Ii − Ĩi

)(
Jj − J̃j

)]
+ ε∆Iij .

At each x ∈ Ω, we consider the equation of Ĩij (·, t)

∂Ĩij
∂t

= −mĨij + βkĨiJ̃j , Ĩij (·, 0) = Iij (x, 0)

Once again, by the same argument for the smoothness of x 7→ S̃ (x, t), we obtain that x 7→ Ĩij (x, t), for all
1 ≤ i, j ≤ N .

Then we can obtain the differential equation for
(
Iij − Ĩij

)
∂

∂t

(
Iij − Ĩij

)
= −m

(
Iij − Ĩij

)
+βk

[(
Ii − Ĩi

)
J̃j +

(
Jj − J̃j

)
Ĩi +

(
Ii − Ĩi

)(
Jj − J̃j

)]
+ε∆

(
Iij − Ĩij

)
+ε∆Ĩij .

Denoting

φ (x, t) = βk
[(
Ii − Ĩi

)
J̃j +

(
Jj − J̃j

)
Ĩi +

(
Ii − Ĩi

)(
Jj − J̃j

)
+ ε∆Ĩij

]
then ‖φ‖2 = O (

√
ε). By the same process as previous, we have that

1

2

∂

∂t

∫
Ω

∣∣∣Iij − Ĩij∣∣∣2 = −m
∫

Ω

∣∣∣Iij − Ĩij∣∣∣2 +

∫
Ω

φ (x, t)
(
Iij − Ĩij

)
− ε
∫

Ω

∣∣∣∇(Iij − Ĩij)∣∣∣2 .
Using the Holder’s inequality for the term

∫
Ω
φ (x, t)

(
Iij − Ĩij

)
then applying the Gronwall’s inequality again,

note that Iij (·, 0) = Ĩij (·, 0), we have that
∥∥∥Iij − Ĩij∥∥∥

2
→ O (

√
ε) as t→∞, for all 1 ≤ i, j ≤ N .

2.3 The slow-fast form and approximations theorems

Next, we consider the semi-neutral system for

(
Ii
Ji

)
for all 1 ≤ i ≤ N


∂Ii
∂t

= βJiS −mIi − βkIiT +ε∆Ii

∂Ji
∂t

= (βS −m) Ji − βkIiT +
βk

2
(IiT + JiI) +ε∆Ji

. (2.17)

Denoting D∗ = T ∗ − I∗, we set

A (x) =

(−(m+ βkT ∗) m

−βkT
∗

2

βkI∗

2

)
,

8



2 GENERAL AND SEMI-NEUTRAL SYSTEMS WITH SLOW DIFFUSION

and

P =

(
2T ∗ I∗

D∗ T ∗

)
, P−1 =

1

|P |

(
T ∗ −I∗
−D∗ 2T ∗

)
. (2.18)

We have

A (x) = P (x)

(
−ξ(x) 0

0 0

)
P−1 (x)

where ξ = m+ βkT ∗ − 1

2
βkI∗ > 0 and |P (x) | = 2T ∗2 − I∗D∗ > 0.

In the equations for (Ii, Ji) in (2.17), we substitute (S, T, I) by (S∗, T ∗, I∗) and note that

‖S − S∗‖2 = O
(√
ε
)
, ‖T − T ∗‖2 = O

(√
ε
)
, ‖I − I∗‖2 = O

(√
ε
)
.

Now, we have the semi-neutral system of equations for (Ii, Ji)1≤i≤N , in the sense of norm ‖·‖2 of L2 (Ω):

∂

∂t

(
Ii
Ji

)
= A (x)

(
Ii
Ji

)
+O

(√
ε
)(Ii

Ji

)
+ ε

(
∆Ii
∆Ji

)
. (2.19)

Applying Theorem 6, we have that∥∥∥Ii − Ĩi∥∥∥
2

= O
(√
ε
)
,

∥∥∥Ji − J̃i∥∥∥
2

= O
(√
ε
)
, (2.20)

where (Ii, Ji)1≤i≤N are solutions of the semi-neutral system (2.17) and
(
Ĩi, J̃i

)
1≤i≤N

are solutions of

∂

∂t

(
Ii
Ji

)
= A (x)

(
Ii
Ji

)
+ ε

(
∆Ii
∆Ji

)
(2.21)

Hence, it suffices to consider the system (2.21). For every 1 ≤ i ≤ N , set(
vi
zi

)
= P−1

(
Ii
Ji

)
(2.22)

From (2.21) we infer an equation for

(
zi
vi

)
for each 1 ≤ i ≤ N :

∂

∂t

(
vi
zi

)
=

(
−ξ (x) 0

0 0

)(
vi
zi

)
+ ε

[
P−1 (x)

(
∆ 0
0 ∆

)
P (x)

](
vi
zi

)
(2.23)

This step of changing to (zi, vi) plays an important role. Since under these new variables, we can rewrite into
the slow-fast form. It allows us to apply the approximation theorem introduced in the next subsection.

When vi = 0 - which will be asymptotically true - then zi is exactly Ii
I∗ = Ji

T∗ the prevalence of strain i in
the total of infected, see the proof in [19].

∂vi
∂t

=− ξvi +O (ε) + ε∆vi + ε
1

|P |
[(2T ∗∇T ∗ − I∗∇D∗)∇vi + (T ∗∇I∗ − I∗∇T ∗)∇zi]

∂zi
∂t

=O (ε) + ε∆zi + ε
1

|P |
[(−D∗∇T ∗ + 2T ∗∇D∗)∇vi + (−D∗∇I∗ + 2T ∗∇T ∗)∇zi]

. (2.24)

Next, by setting τ = εt, (2.24) can be read as the slow time scale
ε
∂vi
∂τ

=− ξvi +O (ε) + ε
1

|P |
[(2T ∗∇T ∗ − I∗∇D∗)∇vi + (T ∗∇I∗ − I∗∇T ∗)∇zi] + ε∆vi

∂zi
∂τ

=O (1) +
1

|P |
[(−D∗∇T ∗ + 2T ∗∇D∗)∇vi + (−D∗∇I∗ + 2T ∗∇T ∗)∇zi] + ∆zi.

(2.25)

We need to compute explicitly the perturbation O(1) in (2.24). This computation is quite complex especially
when involving perturbation in each parameters, so its worthwhile of dividing this progress into five sub single
cases wherein only one perturbation at the time occurs.

After that, we will treat the slow-fast form by a Tikhonov-like theorem, that is presented in the Theorem

9



2 GENERAL AND SEMI-NEUTRAL SYSTEMS WITH SLOW DIFFUSION

5. This result is for the parameter-dependent reaction-diffusion system with Neumann boundary condition as
following, 

∂

∂t
f(x, t) = F (f(x, t), g(x, t), x, t) +Kff(x, t)

ε
∂

∂t
g(x, t) = G (f(x, t), g(x, t), x, t) + εG1(x) · ∇f (x, t) + εKgg(x, t)

∂

∂n
f (x, t) =

∂

∂n
g (x, t) = 0, x ∈ ∂Ω,

f (x, 0) = f0 (x) , g (x, 0) = g0 (x)

(2.26)

in which,

• f : Ω× R→ Rn and g : Ω× R→ Rm,

• G1 : Ω→ Rm is continuously differentiable and · denotes the scalar product,

• the operators Kf ,Kg defined on C∞ (Ω× [0, t1]) by Kfu := af (x)∇u+ ∆u, Kgu := ag (x)∇u+ ∆u, in
which af (x) is an n×n diagonal matrix and ag (x) is an m×m diagonal matrix, in which entries of each
matrix depends on x ∈ Ω. We assume that af (x) and ag (x) are differentially continuous in x.

Theorem 5. Let f0(x, t) : Ω × [t0, t1] 7→ Rn, g0(x, t) : Ω × [t0, t1] 7→ Rm be continuous functions satisfying
equations 

∂

∂t
f(x, t) =F (f(x, t), g(x, t), x, t) +Kff(x, t)

0 =G (f(x, t), g(x, t), x, t)

∂

∂n
f(x, t) =

∂

∂n
g (x, t) = 0, x ∈ ∂Ω

(2.27)

where F : Rn × Rm × R 7→ Rn and G : Rn × Rm × R 7→ Rm are continuous functions. We make an addition
assumption that g0 ∈ C1 (Ω× R).

For any (x, t) ∈ Ω × R+ and f (x, t) ∈ Rn, we denote A (x, t) is the Jacobian matrix of G (f (x, t) , ·, x, t)
with respect to the second variable.

Alternatively, we assume that F,G are continuously differentiable with respect to their first two arguments
in a neighborhood of the trajectory f0(x, t), g0(x, t), and that A (x, t) is a Hurwitz matrix, i.e. every eigenvalue
of it has strictly negative real part, for all t ∈ [t0, t1] and x ∈ Ω.

Then there exists ε0 > 0 and C > 0 such that inequalities
∫

Ω

|f0(x, t)− f(x, t)|2dx ≤ Cε, ∀t ∈ [t0, t1]∫
Ω

|g0(x, t)− g(x, t)|2dx ≤ Cε, ∀t ∈ [t0, t1]

(2.28)

for all solutions of (2.26) with
∫

Ω
|f0(x, t0)− f(x, t0)|2dx ≤ ε,

∫
Ω
|g0(x, t0)− g(x, t0)|2dx ≤ ε and ε ∈ (0, ε0).

The conclusion of this theorem means that, for the initial values closed enough to f0 (x, t0) and g0 (x, t0) in the
sense of L2 (Ω) norm, we have the approximation for the solution of (2.26). Explicitly, this can be rewritten as
follows

‖f0(x, t)− f(x, t)‖2 = O
(√
ε
)
, ‖g0(x, t)− g(x, t)‖2 = O

(√
ε
)
, ∀t ∈ [t0, t1]

for all solutions of (2.26) with ‖f0(x, t0)− f(x, t0)‖2 = O (
√
ε), ‖g0(x, t0)− g(x, t0)‖2 = O (

√
ε) and ε ∈ (0, ε0).

Next, we claim a result that allows us approximate the original system by the semi-neutral system. The
following error estimate gives a more precise description of these limits.

Theorem 6. Given Ω ∈ Rn compact domain with smooth boundary. Let F and G be two continuously differ-
entiable functions on Ω × [0,∞) and suppose that F is Lipschitz continuous. Assume there exists a bounded
function u satisfies the reaction diffusion equation with Neumann boundary condition

∂u

∂t
= F (u, x) + εG (u, x) + ε∆u,

u (x, 0) = u0 (x) , x ∈ Ω,

∂u

∂n
|∂Ω = 0.

(2.29)
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Then for every fixed T > 0, ∀t < T , we have that
∫

Ω
|u (x, t)− v (x, t) |2dx = O (ε), i.e. ‖u (x, t)− v (x, t)‖2 =

O (
√
ε), with v (t) is the solution of the problem

∂v

∂t
= F (v) + ε∆v,

v (x, 0) = u0 (x) , x ∈ Ω, ∀x ∈ Ω.

∂v

∂n
|∂Ω = 0.

(2.30)

3 Approximation theorems, derivations of original dynamics and
main results for the case of slow diffusion

3.1 Lemmas and derivation of non-semi neutral dynamics

Next we develop a lemma showing allowing to linearly combine all the relevant simple cases directly into the
slow equation. For this purpose, we use the following notations in system (2.1).

βi = β (1 + χ1εbi) ; γi = γ (1 + χ2ενi) ; γij = γ (1 + χ3εuij) ;

psij =
1

2
+ χ4εω

s
ij , s ∈ {i, j},

(
ωiij + ωjij = 0

)
; kij = k + χ5εαij ,

(3.1)

where χd ∈ {0, 1} for d = 1, 2, 3, 4, 5.

Any combination of axes of trait variation among strains, can be captured via A where A is a subset of
{1, 2, 3, 4, 5}, and for some fixed initial values given, denote CA be the system (2.4) with χd = 1 if d ∈ A and
χd = 0 if d /∈ A. For simplicity, we note also C{d} by Cd for d ∈ {1, 2, 3, 4, 5} denote the absence/presence of
perturbations in that parameter among strains.

Remark 7. If A = ∅ then there is no trait perturbation and the system C∅ is exactly the semi neutral model
(2.10).

In order to capture all the perturbations of order 1 in the equation of the zi we need these additional changes
of variables:

S(x, t) = S∗ − εX(x, t) +O
(
ε2
)

; T (x, t) = T ∗ + εX(x, t) +O(ε2); I(x, t) = I∗ + εY (x, t) +O
(
ε2
)

(3.2)

where S∗, T ∗ and I∗ are defined in (2.14), and for i = 1, · · · , N :

Li(x, t) =
1

2

N∑
j=1

(uijIij(x, t) + ujiIji(x, t)) . (3.3)

With these notations, CA reads

∂X

∂t
=− βT ∗X + χ1βS

∗
N∑
i=1

biJi − χ2γ

N∑
i=1

νiIi − χ3γ

N∑
i=1

Li + ε∆X +O (ε)

∂Y

∂t
=β(S∗ − T ∗ − kI∗)X − (m+ βkT ∗)Y + χ1β(S∗ − kI∗)

N∑
i=1

biJi − χ2γ

N∑
i=1

νiIi − χ5β

N∑
i,j=1

αijIiJj + ε∆Y +O (ε)

∂Li
∂t

=−mLi + χ3
1

2
βγkIi

N∑
j=1

uijJj + χ3
1

2
γβkJi

N∑
j=1

νjiIj + ε∆Li +O (ε)

(3.4)
together with

∂

∂t

(
Ii
Ji

)
=

(
−(m+ βkT ∗) m

−βkT
∗

2
βkI∗

2

)(
Ii
Ji

)
+ ε

(
∆Ii
∆Ji

)
− ε
[
β

(
k 1
k
2 1

)(
Ii
Ji

)
X +

βk

2

(
0 0
0 1

)(
Ii
Ji

)
Y +MA

(
Ii
Ji

)
− χ3γ

(
0
Li

)] (3.5)

where MA is the matrix −χ1βk
N∑
i=1

biJi − χ2γνi − χ5β
N∑
j=1

αijJj χ1βbiS
∗

β
N∑
j=1

(
χ4kω

i
ij − χ5

αij

2

)
Jj − χ1

βk
2

N∑
i=1

biJi − χ2γνi χ1βbi

(
S∗ + kI∗

2

)
+ β

N∑
j=1

(
χ4kω

i
ji + χ5

αji

2

)
Ij

 (3.6)
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In order to apply the Theorem (5), we rewrite system CA using the changes of variables

(
vi
zi

)
= P−1

(
Ii
Ji

)
with P−1 in (2.18). Let us note

L = (Li)i, v = (vi)i, z = (zi)i,

and −ξ = −(m+ βkT ∗) +
βkI∗

2
< 0. The system CA reads now as the slow-fast form



∂X

∂t
=− βT ∗X + χ1F

1
X (v, z) + χ2F

2
X (v, z) + χ3F

3
X (L) + ε∆X +O(ε)

∂Y

∂t
=β(S∗ − T ∗ − kI∗)X − (m+ βkT ∗)Y + χ1F

1
Y (v, z) + χ2F

2
Y (v, z) + χ5F

5
Y (v, z) + ε∆Y +O(ε)

∂Li
∂t

=−mLi + χ3FLi
(v, z) +O (ε) + ε∆Li

∂vi
∂t

=− ξvi +O(ε) + ε∆vi + ε
1

|P |
[(2T ∗∇T ∗ − I∗∇D∗)∇vi + (T ∗∇I∗ − I∗∇T ∗)∇zi]

∂zi
∂t

=ε (Fzi(X,Y,L,v, z) +O(ε)) + ε∆zi + ε
1

|P |
[(−D∗∇T ∗ + 2T ∗∇D∗)∇vi + (−D∗∇I∗ + 2T ∗∇T ∗)∇zi]

.

(3.7)
For i = 1, · · · , N , the functions F iX , F iY , FLi

are obviously deduced from the right term of (3.4) and are linear
in theirs variables, X,Y,L, respectively. The function F 5

Y is quadratic in (v, z). Finally, Fzi is given by the
second line of the right term of (3.6) after the linear change of variables (2.22):

Fzi (X,Y,L,v, z) =
(
0 1

)
P−1

(
β

(−k −1

−k
2
−1

)
X +

βk

2

(
0 0
0 1

)
Y +M

)
P

(
vi
zi

)
+
(
0 1

)
P−1χ3γ

(
0
Li

)
.

(3.8)

Lemma 8. Let ε = 0 in (3.11). Then there exist a function Φ(z) = (X∗(z), Y ∗(z), χ3L
∗(z), 0) such that the

solution (X,Y,L,v, z) of (3.7) with any initial condition

(X,Y,L,v, z)(0) = (X0, Y0,L0,v0, z0) ∈ R× R× (Rn)
3

verifies z(t) = z0 for all t ≥ 0 and
lim

t→+∞
(X,Y,L,v)(t) = Φ(z0)

exponentially. Moreover, X∗ and Y ∗ are linear function of the χi.

Proof. First, in (3.11), we can write the system for X,Y,L,v when ε = 0 in the following form

0 = G (z, (X,Y,L,v))

with function G (x1, x2) : RN × R2N+2 → R2N+2, x1 = z, x2 = (X,Y,L,v).
The Jacobian matrix of G respected to

(
X Y L v

)
reads as as follows

A (x, t) =



−βT ∗ 0 ∗ ∗ . . . ∗ ∗
β (S∗ − T ∗ − kI∗) − (m+ βkT ∗) 0 . . . 0 ∗

0 0 −m 0 . . . 0 ∗
0 0 0 −m . . . 0 ∗

. . .

0 0 0 0 . . . −m ∗
0 0 0 0 . . . 0 −ξ 0 . . . 0
0 0 0 0 . . . 0 0 −ξ . . . 0

. . .

0 0 0 0 . . . 0 0 0 . . . −ξ


. (3.9)

Since A (x, t) is block-diagonal matrix, it is easy to find the characteristic polynomial

(λ+ βT ∗) (λ+m+ βkT ∗) (λ+m)
n

(λ+ ξ)
n

which implies that all the eigenvalue of A have the negative real part.

Using the triangular structure of (3.11) the idea is to compute the limits when ε → 0 step by step of v,

12
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L, X and Y in this order. Here we make a quick formal computation by simply plugging the limits obtained
at one step into the equation of the next step.
Indeed, since (3.11) is equivalent to (3.7) but in the slow motion, we take ε = 0 in (3.7). We have directly
z(t) = z0 for all t ≥ 0 and vi = e−ξtvi(0) → 0 exponentially as t → +∞. Remark that taking vi = 0 in
the others equations leads to the simple change of variables : Ii = I∗zi and Ji = T ∗zi that we can plug in
(3.4)-(3.5)-(3.6) to simplify the explicit computations.
Now we have the following exponential limits

Li(t)→ χ3
1

m
FLi(0, z0) = χ3L

∗
i (z0),

Denoting L∗ = (L∗i )i and plugging this into the equation of X we have that exponentially:

X(t)→ − 1

βT ∗
(
χ1F

1
X (0, z0) + χ2F

2
X (0, z0) + χ3F

3
X (χ3L

∗(z0))
)

= X∗(z0).

Remark that by linearity of the F iX and the fact that χ2
d = χd for each d, we have the simpler formula

X∗(z0) = − 1

βT ∗
(
χ1F

1
X (0, z0) + χ2F

2
X (0, z0) + χ3F

3
X (L∗(z0))

)
. (3.10)

Finally, using the same arguments we get

Y (t)→ Y ∗(z0) exponentially

wherein we have note

Y ∗(z0) =
1

m+ βkT ∗
(
β(S∗ − T ∗ − kI∗)X∗(z0) + χ1F

1
Y (0, z0) + χ2F

2
Y (0, z0) + χ4F

4
Y (0, z0)

)
.

The next step is to change the time scale. Taking τ = εt in (3.7) we obtain2 the following system which is
equivalent to (3.7) but in the slow motion τ

ε
∂X

∂τ
=− βT ∗X + χ1F

1
X (v, z) + χ2F

2
X (v, z) + χ3F

3
X (L) +O(ε) + ε∆X

ε
∂Y

∂τ
=β(S∗ − T ∗ − kI∗)X − (m+ βkT ∗)Y + χ1F

1
Y (v, z) + χ2F

2
Y (v, z) + χ5F

5
Y (v, z) +O(ε) + ε∆Y

ε
∂Li
∂τ

=−mLi + χ3FLi (v, z) +O (ε) + ε∆Li

ε
∂vi
∂τ

=− ξvi +O(ε) + ε
1

|P |
[(2T ∗∇T ∗ − I∗∇D∗)∇vi + (T ∗∇I∗ − I∗∇T ∗)∇zi] + ε∆vi

∂zi
∂τ

=Fzi(X,Y,L,K,v, z) +O(ε) +
1

|P |
[(−D∗∇T ∗ + 2T ∗∇D∗)∇vi + (−D∗∇I∗ + 2T ∗∇T ∗)∇zi] + ∆zi

(3.11)
Using the notation of the Theorem 5, we see that the fast variables is y(τ) = (X,Y,L,v) and the slow variable
is x(τ) = z(τ). The first step in applying the Theorem 5 is to take ε = 0 in (3.11) and to show that the fast
variable converge exponentially to an attractor φ(z) which is parametrized by the slow variable.

Now, we take ε = 0 in (3.11) and
(X,Y,L,v)(τ) = Φ(z(τ)), (3.12)

the 2N + 2 first equations are satisfied and the N last equations give the slow system

dzi
dτ

= Fzi(X
∗(z), Y ∗(z),L∗(z), 0, z) +

1

|P |
(−D∗∇I∗ + 2T ∗∇T ∗)∇zi + ∆zi. (3.13)

It’s important to note that, since v = 0 then (3.13) gives
∑N
i=1 zi = 1. This is plausible because zi reflects the

frequency of strain i by the formula Ii = I∗zi for all i.
The Theorem 5 imply that the solutions of (3.13) together with (3.12) gives a good approximation of the original
system (3.11) for a small enough but positive ε. Coming back to the original variables of the SIS system, we
deduce the following result on error estimate, whose proof will be given in section 3.2.

2We use the usual notation abuse. Rigorously speaking, we have to define X̃(τ) = X
(
τ
ε

)
and the same for each variables. Here

we remove the˜for simplicity.
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Lemma 9. Let T > 0 be fixed. There exists ε0 > 0 and CT > 0 such that for any ε ∈ (0, ε0) we have for any
solution of (S, (Ii)i, (Iij)ij)i,j of (2.1) and (zi)i of (3.13)

∫
Ω

∣∣∣S (τ
ε

)
− S∗

∣∣∣2 +

N∑
i=1

∫
Ω

∣∣∣Ii (τ
ε

)
− I∗zi(τ)

∣∣∣2 +

N∑
i,j=1

∫
Ω

∣∣∣D∗zi (τ) zj (τ)− Iij
(τ
ε

)∣∣∣2 ≤ εCT , (3.14)

Proof. See section 3.2

It remains to compute explicitly the slow system (3.13). The following lemma shows that it suffices to
compute independently each perturbation, that is A = {d} for d = 1, · · · , 5. The case of a general A being just
a sum of each simple case thanked to the following result.

Lemma 10. Let A ⊂ {1, · · · , 5}. Recall that χd = 1 if d ∈ A and χd = 0 if d /∈ A. The functions Fzi for
i = 1, · · · , N in (3.13) read

Fzi(X
∗(z), Y ∗(z),L∗(z), 0, z) =

5∑
d=1

χdzif
d
zi (z) ,

where the functions fdzi do not depend on χd.
In particular, if A = {d} for some d ∈ {1, 2, 3, 4, 5}, then

Fzi(X
∗(z), Y ∗(z),L∗(z), 0, z) = zif

d
zi (z) .

Proof. Taking vi = 0 in (3.8) we see that there is two constant CX and CY such that

Fzi(X
∗(z), Y ∗(z),L∗(z), 0, z) = zi

(
CXX

∗(z),+CY Y
∗(z) +

(
0 1

)
PMAP−1

(
0
1

))
+ χ3γ

(
0 1

)
P

(
0

L∗i (z)

)
.

Firstly, as it is show in the proof of the lemma 8, the expression of X∗ and Y ∗ are both a linear combination
of the χd.

Secondly, recalling that we have at this step Ii = I∗zi, Ji = T ∗zi, Li = χ3L
∗ and χ2

d = χd, for d = 3
and d = 5 particularly. Plugging this in (3.7), we see that the matrix MA is also a linear combination of the
χd which yields for some functions md (z) which do not depend on χd :(

0 1
)
PMAP−1

(
0
1

)
=

∑
d∈{1,2,3,4,5}

χdmd (z) . (3.15)

Thirdly, plugging Ii = I∗zi and Ji = T ∗zi, for all i in (3.4) we prove that

L∗i (z) =
1

2m
βkI∗T ∗zi

N∑
j=1

(uij + uji) zj .

The result follows directly from three previous points.

In the next section 3.2, these functions fdzi are explicitly compute for any d.

3.2 Main results and proofs

We reuse the computations in [17], in each case of A = {d}, d ∈ {1, 2, 3, 4, 5}. We set that

~ϑ =
1

|P |
(−D∗∇I∗ + 2T ∗∇T ∗) .

Note that ~ϑ = 0 if I∗ and T ∗ do not depend on x.
In each following case of perturbation, by the similar argument, we obtain the slow system (3.13), respec-

tively.

• Perturbations in transmission rates, A = {1}
∂zi
∂τ

=
2βS∗T ∗2

|P |
zi

bi − N∑
j=1

bjzj

+ ~ϑ · ∇zi + ∆zi,

∂zi
∂n
|∂Ω = 0,

1 ≤ i ≤ N.

14
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• Perturbations in clearance rates γi, A = {2}
∂zi
∂τ

=
γI∗ (I∗ + T ∗)

|P |

νi − N∑
j=1

νjzj

 zi + ~ϑ · ∇zi + ∆zi,

∂zi
∂n
|∂Ω = 0, 1 ≤ i ≤ N.

• Perturbations in co-infection clearance rate γij , A = {3}
∂zi
∂τ

=
γT ∗D∗

|P |

 N∑
j=1

(uij + uji) zj −
N∑

j,l=1

(ujl + ulj) zlzj

 zi + ~ϑ · ∇zi + ∆zi,

∂zi
∂n
|∂Ω = 0, 1 ≤ i ≤ N.

• Perturbations in perturbations in transmission coefficients from mixed carriage piij , A = {4}
∂zi
∂τ

=
2mT ∗D∗

|P |
zi

N∑
j=1

(
ωiij − ω

j
ji

)
zj + ~ϑ · ∇zi + ∆zi,

∂zi
∂n
|∂Ω = 0,

1 ≤ i ≤ N.

• Perturbations co-colonization interaction kij , A = {5}
∂zi
∂τ

=
−βT ∗I∗D∗

|P |
zi

 N∑
j=1

(
T ∗

D∗
αji −

I∗

D∗
αij

)
zj −

N∑
j,l=1

αjlzjzl

+ ~ϑ · ∇zi + ∆zi,

∂zi
∂n
|∂Ω = 0,

1 ≤ i ≤ N.

Let A ⊂ {1, 2, 3, 4, 5}. Using the notations in the previous section, (3.13) reads.

dzi
dτ

=Θ1zi

bi − N∑
j=1

bjzj

+ Θ2zi

−νi +

N∑
j=1

νjzj

+ Θ3zi

− N∑
j=1

(uij + uji)zj +

N∑
j,l=1

(ujl + ulj)zlzj


+ Θ4zi

N∑
j=1

(
ωiij − ω

j
ji

)
zj + Θ5zi

 N∑
j=1

(
T ∗

D∗
αji −

I∗

D∗
αij

)
zj −

N∑
j,l=1

αjlzjzl

+ ~ϑ · ∇zi + ∆zi

(3.16)
where Θi, i = 1, 2, 3, 4, 5, are given by

Θ1(x) = χ1
2βS∗T ∗2

|P |
, Θ2(x) = χ2

γI∗ (I∗ + T ∗)

|P |
, Θ3(x) = χ3

γT ∗D∗

|P |
, Θ4(x) = χ4

2mT ∗D∗

|P |
, Θ5(x) = χ5

βT ∗I∗D∗

|P |
(3.17)

because all the parameters β, γ, m and the values S∗, T ∗, I∗, D∗ depend on x ∈ Ω.
It is useful to rewrite (3.16) using the pairwise invasion fitness between strains. Define

Θ (x) = Θ1 (x) + Θ2 (x) + Θ3 (x) + Θ4 (x) + Θ5 (x) and θi (x) =
Θi (x)

Θ (x)
. (3.18)

we see that θi (x) > 0 for each i = 1, 2, 3, 4, 5 and θ1 + θ2 + θ3 + θ4 + θ5 = 1 for all x. For completeness, if A = ∅
then we set Θ = 1. Using these notations, we obtain our main result.

Theorem 11. Consider the system of equations
∂zi
∂τ

= Θzi
(
(Λ(x)z)i − zTΛ(x)z

)
+ ~ϑ · ∇zi + ∆zi, i = 1, · · · , N,

z1 + z2 + · · ·+ zN = 1.
(3.19)

15
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where Λ (x) is the square matrix of size N × N whose coefficient (i; j) are the pairwise fitness λji (x) which
satisfy

λji (x) = θ1 (bi − bj) + θ2 (−νi + νj) + θ3 (−uij − uji + 2ujj) + θ4

(
ωiij − ω

j
ji

)
+ θ5 (µ (αji − αij) + αji − αjj) .

(3.20)

with µ =
I∗

D∗
.

Then, for any initial values of (2.1), for each τ0 > 0, T > τ0 arbitrarily and independent on ε, there is ε0 > 0,

C > 0 and a vector of positive coefficients z0 ∈ RN verifying
∑N
i=1 z0,i = 1, such that ∀ε < ε0∫

Ω

∣∣∣S∗(x)− S
(
x,
τ

ε

)∣∣∣2+

N∑
i=1

∫
Ω

∣∣∣I∗zi(x, τ)− Ii
(
x,
τ

ε

)∣∣∣2+

N∑
i,j=1

∫
Ω

∣∣∣D∗zi(x, τ)zj(x, τ)− Iij
(
x,
τ

ε

)∣∣∣2 ≤ εC, ∀τ ∈ (τ0, T ) .

where S, (I1, I2, . . . , IN ), (Iij)i,j∈{1,...,N} is the solution of (2.1) and (z1, z2, . . . , zN ) is the solution of reduced

system (3.19) together with z(0) = z0.

This system (3.19) is a general replicator system with diffusion, which is studied in [6]. We back to the
proof of Theorem 9.

Proof. We separate this proof into three steps, in which, we respectively show the approximation for S, Ii,
i = 1, . . . , N using the theorems 5, 6, then prove the approximation holds for Iij , i, j = 1, . . . , N .

• Firstly, use the Theorem 6,we have that

‖S (x, t)− S∗(x)‖2 = O
(√
ε
)
. (3.21)

On the other side, we note that the algebraic linear transformations to the new variables (zi, vi)1≤i≤N ; and
vi → 0 when ε→ 0 (by the Theorem 5), which deduces that

‖S (x, t)− S∗(x)‖2 +

N∑
i=1

‖Ii (x, t)− I∗zsi (x, t)‖2 = O
(√
ε
)
, (3.22)

where (zs1, z
s
2, . . . , z

s
N ) are solution of slow-fast system (3.7), noting that and changing time scale yielding the

equivalent system .

• Secondly, by the lemma 8 and the same arguments in [17], we can verify the exponential stability con-
dition of the Theorem 5. Hence, the solution of system (3.11) after changing time scale τ = εt tends to the
solution of (3.19) as ε→ 0 on [τ0, T ], with τ0 > 0, T > τ0. arbitrary and independent on ε.
Combine with the previous claim (3.22), we obtain that∥∥∥S (x, τ

ε

)
− S∗

∥∥∥
2

+

N∑
i=1

∥∥∥I∗zi(x, τ)− Ii
(
x,
τ

ε

)∥∥∥
2

= O
(√
ε
)
. (3.23)

• Thirdly, we make a result for solutions Iij (x, t), 1 ≤ i, j ≤ N . For the sake of shortness, we remark that
each partial differential equation in this proof associates with Neumann boundary condition and we will not
remark it in each equation. Assume

(
Irij
)

1≤i,j≤N to be the solution of

∂Iij
∂t

= −mIij + βkI∗T ∗zi (x, τ) zj (x, τ) + ε∆Iij , 1 ≤ i, j ≤ N (3.24)

Then, for each τ0 > 0 and T > τ0, we claim that
N∑

i,j=1

∥∥∥Iij (x, τ
ε

)
− Irij

(
x,
τ

ε

)∥∥∥
2

= O(
√
ε) for any τ ∈ [τ0, T ].

Indeed, by the property of solutions of (2.16) and (3.24), we have that

∂Iij
∂t

(
x,
τ

ε

)
=−mijIij

(
x,
τ

ε

)
+ βjkijIi

(
x,
τ

ε

)
Jj

(
x,
τ

ε

)
+ ε∆Iij

(
x,
τ

ε

)
∂Irij
∂t

(
x,
τ

ε

)
=−mIrij

(
x,
τ

ε

)
+ βkI∗T ∗zi (x, τ) zj (x, τ) + ε∆Irij

(
x,
τ

ε

) (3.25)

which implies

∂

∂t

(
Iij

(
x,
τ

ε

)
− Irij

(
x,
τ

ε

))
=ε∆

(
Iij

(
x,
τ

ε

)
− Irij

(
x,
τ

ε

))
−m

(
Iij

(
x,
τ

ε

)
− Irij

(
x,
τ

ε

))
+
(
βjkijIi

(
x,
τ

ε

)
Jj

(
x,
τ

ε

)
− βkI∗T ∗zi (x, τ) zj (x, τ)

)
− εγuijIij

(
x,
τ

ε

)
.

(3.26)
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Then for all 1 ≤ i, j ≤ N , using the Theorem 6, we observe that∥∥∥Iij (x, τ
ε

)
− Irij

(
x,
τ

ε

)∥∥∥
2

= O(
√
ε). (3.27)

Note that, k
I∗T ∗

S∗
= D∗, it suffices to compute the solution Irij , which satisfies

∥∥Irij −D∗zi (εt) zj (εt)
∥∥

2
=

O (
√
ε) for all 1 ≤ i, j ≤ N , by the Theorem 11.19 in [29] again. Combining with (3.27) implies that

‖Iij −D∗zi (εt) zj (εt)‖1 = O (
√
ε).

Combine the results in three above steps, we get the conclusion of the lemma 9.

4 Models with fast diffusion

4.1 The general model and the Central Manifold Theorem

Keeping the same notations of the previous sections, we now study the following system, where the rates of
diffusion are large.

∂S

∂t
=r(x)(1− S) +

N∑
i=1

γi(x)Ii +

N∑
i,j=1

γij(x)Iij − S
N∑
i=1

βiJi +
d

ε
∆S ,

∂Ii
∂t

=βiJiS − (r(x) + γi(x)) Ii − Ii
N∑
j=1

kijβjJj +
d

ε
∆Ii, 1 ≤ i ≤ N,

∂Iij
∂t

=kij(x)βjIiJj − (r(x) + γij(x)) Iij +
d

ε
∆Iij , 1 ≤ i, j ≤ N,

(4.1)

with the Neumann boundary conditions
∂S

∂n
=
∂Ii
∂n

=
∂Iij
∂n

= 0 for all 1 ≤ i, j ≤ N on the boundary of Ω and

given initial conditions.
Accordingly, this system (4.1) can be shortly written as

∂

∂t
W (x, t) = F (x,W (x, t)) +

1

ε
KW (x, t) ,

∂

∂n
W (x, t) = 0, x ∈ ∂Ω

(4.2)

where
W (x, t) = (S, I1, . . . , IN , I11, . . . , INN )

and K is the operator

d∆· . . . 0
...

. . .
...

0 . . . d∆

.

We set the notation A = d∆. When seen as an operator on L2 (Ω), the operator A2 with the formula of A,
accompanied with homogeneous Neumann boundary conditions, is defined as follows, see [9].

D
(
A2
)

=

{
U ∈ H1 (Ω) : ∃V ∈ L2 (Ω) ,∀φ ∈ H1 (Ω) ,

∫
∇U (x)∇φ (x) dx = −d

∫
V (x)φ (x) dx

}
,

A2U := V, U ∈ D
(
A2
)
.

(4.3)

In order to obtain uniform estimates, we prefer to focus on the operator A∞ := A acting on C0(Ω̄) with sup
norm. Hence, we define

D (A∞) :=
{
U ∈ D

(
A2
)
∩ C

(
Ω̄
)
, A2U ∈ C

(
Ω̄
)}
,

A∞U = A2U, U ∈ D (A∞) .
(4.4)

Then we have that

E0 := ker (A∞) = span(1) = R and Im (A∞) ⊂
{
U ∈ C0(Ω̄),

∫
Ω

U = 0

}
= F0. (4.5)

One gets C0
(
Ω̄
)

= kerA∞⊕ImA∞. Now we define the Banach space
(
C0
(
Ω̄
))N2+N+1

together with the norm

‖(U1, . . . , UN2+N+1)‖∞ = ‖U1‖∞ + · · ·+ ‖UN2+N+1‖∞ (4.6)
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4 MODELS WITH FAST DIFFUSION

and the operator (A∞)
N2+N+1

acting on each coordinate of
(
C0
(
Ω̄
))N2+N+1

. The kernel and the range of this
operator are respectively

E := ker
(

(A∞)
N2+N+1

)
= RN

2+N+1 and F := (F0)
N2+N+1

. (4.7)

Hence we have
(
C0
(
Ω̄
))N2+N+1

= E ⊕ F . The projection of
(
C0
(
Ω̄
))N2+N+1

on E and F , denoted by ΠE

and ΠF respectively, given explicit by

ΠE (V1, . . . , VN2+N+1) =
1

|Ω|

(∫
Ω

V1, . . . ,

∫
Ω

VN2+N+1

)
; ΠF = Id−ΠE . (4.8)

For all u ∈
(
C0
(
Ω̄
))N2+N+1

we rewrite it into u = X + Y with X ∈ E and Y ∈ F . We change the
system (4.1) on an equivalent slow-fast form by projecting (4.1) on E and F respectively. The slow variable
X := ΠE (W) ∈ E is the vector

X =

(
1

|Ω|

∫
Ω

S,
1

|Ω|

∫
Ω

I1, . . . ,
1

|Ω|

∫
Ω

IN ,
1

|Ω|

∫
Ω

I11, . . . ,
1

|Ω|

∫
Ω

INN

)
∈ RN

2+N+1

and the fast variable is Y := ΠFW = W − X ∈ F . Projecting the system (4.1) on E and F yields to the
equivalent system

(Sε) :



d

dt
X(t) = f (X,Y)

d

dt
Y(t) = g (X,Y) +

1

ε
KY

∂

∂n
X = 0

∂

∂n
Y = 0

X(0) = ΠE(W(0))

Y(0) = ΠF (W(0))

(4.9)

For the end of this section, we state the Central Manifold Theorem 12 and the Theorem of convergence towards
the central manifold. These theorems may be proved in [8, 9]. Let us begin by a version of the central manifold
Theorem for an elliptic operator K. This Theorem claims the existence of an invariant manifold for the slow-fast
system which allows to defined several reduced systems.

Theorem 12. (Central Manifold Theorem) Let E and F be two Banach spaces. Defines f (X,Y ) ∈
C1 (E × F ;E) and g (X,Y ) ∈ C1 (E × F ;F ). Assume that f and g are uniformly bounded as well than there
first derivatives. Let K be an operator with domain D (K) ⊂ F . Assume that K generates an analytical
semi-group exp (tK) of linearly operators on F and that there exists µ > 0 such that

∀t ≥ 0; ∀ε ∈ (0, 1],

∥∥∥∥exp

(
t

ε
K

)
Y

∥∥∥∥
F

≤ C ‖Y ‖F exp

(
−µt

ε

)
. (4.10)

For all initial condition (x0, y0) ∈ E × F and for all ε ∈ (0, 1], one defines Xε (t, x0, y0) ≡ Xε(t) and
Y ε (t, x0, y0) ≡ Y ε(t) the solution, for t ≥ 0, of the differential system

(Sε) :


d

dt
Xε(t) = f (Xε(t), Y ε, ε) ,

d

dt
Y ε(t) = g (Xε(t), Y ε, ε) +

1

ε
KY ε(t),

Xε(0) = x0, Y
ε(0) = y0.

(4.11)

Then there exists ε0 > 0 such that, for all ε ∈ (0, ε0), the system (Sε) admits a central manifold Cε in the
following sense.

1. There exists a function h (X, ε) ∈ C1 (E × [0, ε0] ;F ) such that, for all ε ∈ (0, ε0], Cε = {(X,h (X, ε)) ;X ∈ E}
is invariant under the semi flow generated by Sε for t ≥ 0. Moreover, we have that ‖h (·, ε)‖L∞(E,F ) = O (ε)
as ε→ 0.

2. The function h (x, ε) satisfies the partial differential equation

Dxh (x, ε) f (x, h (x, ε) , ε) =
K

ε
h (x, ε) + g (x, h (x, ε) , ε) , (4.12)
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4 MODELS WITH FAST DIFFUSION

where Dxh stands for
Dh

Dx
. On top of that, any bounded function h̃ such that

∥∥∥h̃∥∥∥
L∞

,
∥∥∥Dxh̃

∥∥∥
L∞
≤ 1, and

such that we have

Dxh̃ (x, ε) f
(
x, h̃ (x, ε) , ε

)
=
K

ε
h̃ (x, ε) + g

(
x, h̃ (x, ε) , ε

)
+O (ε) (4.13)

in L∞, also necessarily satisfies ∥∥∥h− h̃∥∥∥
L∞

= O (ε) . (4.14)

This Theorem provides the existence of a manifold Cε which is invariant for the system (4.11) and parametrized
by the slow variable Xε ∈ E In our application, E is finite dimensional so that the system on Cε is a finite
dimensional system. After showing that the solutions are close to the central manifold, up to an exponentially
small error term, we can reduce the study to a system on the invariant manifold Cε. This finite dimensional
system approach the original problem in a sense that is specified below.
More precisely, let us define the following reduced system. We do not precise the initial data at this step.(

S[∞]
ε

)
:

d

dt
Xε,[∞](t) = f

(
Xε,[∞](t), h

(
Xe,[∞](t), ε

)
, ε
)
, Y ε,[∞](t) = h

(
Xε,[∞](t), ε

)
. (4.15)

When the original data belongs to this manifold, that is if Y ε(0) = h (Xε(0), 0), (4.15) describes the exact
dynamics of (4.11). In general, if Y ε (0) 6= h (Xε (0) , ε) and the solutions do not belong to Cε. However, the
initial data can be slightly modified so that the solution of (4.11) are exponentially close to the solution of (4.15).

Note that, h (X, ε) admits an asymptotic expansion of the form h (X, ε) =
∑r−1
k=1 ε

khk (X) + O (εr), which
is explicitly calculable provided the functions f and f have Cr smoothness. The approximate h (X, ε) ≈∑r
k=1 ε

khk (X) leads to the writing of reduced systems of order r (see [8]). This paper focus only on the case
r = 1. By this assumption, we obtain the following reduced system(

S[0]
ε

)
:

d

dt
Xε,[0](t) = f

(
Xε,[0](t), 0, ε

)
, Y ε,[0](t) = h

(
Xε,[0](t), ε

)
. (4.16)

An important fact in the sequel is that the dynamic of S
[∞]
ε is completely determined by its first equation: the

following O.D.E system

(Scε ) :
d

dt
Xε,[∞](t) = f

(
Xε,[∞](t), h

(
Xε,[∞](t), ε

))
and Scε can be seen as a regular perturbation of the first equation of S

[0]
ε , that is

(Sc0) ,
d

dt
X [0](t) = f

(
X [0](t), 0

)
.

4.2 Application of the Central Manifold Theorem and main results

In order to apply the Central Manifold Theorem and related results, we need that the operator K define a
C0 semi-group of contraction on F . Note that, the assumed smoothness of ∂Ω implies that the operator A∞

generates a C0 semi group of contraction on
(
C
(
Ω̄
))N2+N+1

, see [5]. Denoting exp (tA∞2 ) this semi-group, we
deduce that

∀t ≥ 0, ‖exp (tT∞) v‖∞ ≤ ‖v‖∞ . (4.17)

Lemma 13. The restriction of Ã of A∞ to the subspace F0 =
{
u ∈ C0

(
Ω̄
)

:
∫

Ω
u = 0

}
is the generator of a

C0 semi-group of strict contraction exp
(
tÃ
)

on F0 verifying for some µ > 0

∀v ∈ F0,
∥∥∥exp

(
tÃ
)
v
∥∥∥
∞
≤ e−µt ‖v‖∞ . (4.18)

Proof. F0 is closed in C0
(
Ω̄
)

and is clearly invariant under exp (tA∞) by its definition. It follows (from [25] p.

123) that Ã is the generator of a C0 semi-group of contraction on F0.
On the other side, it is well known that the the Laplacian operator on C0

(
Ω̄
)

has the discrete spectrum

σ (A) which totally lies in the negative half line. Since σ
(
Ã
)
⊂ σ (A∞) and 0 /∈ σ

(
Ã
)

, one has that σ
(
Ã2

)
⊂

(−∞,−λ1] (for some λ1 > 0). Apply the Theorem 4.3 (p.118) in [25], we have the conclusion of the lemma.

We have the following result.

19



4 MODELS WITH FAST DIFFUSION

Proposition 14. K is the generator of a C0 semi group exp (tK) on F verifying

‖exp (tK) v‖F ≤ e
−µt‖v‖F . (4.19)

Now, we need to show that the function f = ΠEF and g = ΠFF are smooth enough. By the same arguments
of Lemma 4.3 in [9] and note that F is the vector-valued function whose each component is a multi-variable
polynomial. This result can be stated as follows.

Lemma 15. The function f and g have C1 smoothness when acting on E × F .

By the Central Manifold Theorem, there exists a manifold Mε = {(x, h(x, ε)) , x ∈ E} ∈ E × F which is
invariant for (Sε). It verifies moreover h (xε, ε) = O (ε) and Mε attracts any trajectory exponentially fast in
time.

Recalling E0 defined in (4.5) and denoting ΠE0 (U) =
1

|Ω|
∫

Ω
U , for all U ∈ C0

(
Ω̄
)
.

Setting that S̄ = ΠE0
(S), Īi = ΠE0

(Ii) and Īij = ΠE0
(Iij), for all 1 ≤ i, j ≤ N .

Since h (xε, ε) = O (ε) as ε → 0, one obtains the approximation of the slow manifold to be
∂X

∂t
= f (X, 0) as

follows

d

dt
S̄ =ΠE0 (r)

(
1− S̄

)
+ ΠE0 (γi) Īi + ΠE0 (γij) Īij − S̄

N∑
i=1

ΠE0 (βiJi)

d

dt
Īi =ΠE0

(βiJi) S̄ − (ΠE0
(r) + ΠE0

(γi)) Īi − Īi
N∑
j=1

ΠE0
(βjkij) Īi +

N∑
j=1

(
ΠE0

(
βjp

i
ijkij

)
Īij + ΠE0

(
βjp

i
jikij

)
Īji
)

d

dt
Īij =Īi

(
ΠE0 (βjkij) Īj +

N∑
l=1

(
ΠE0

(
βjp

j
jlkij

)
Ījl + ΠE0

(
βjp

j
ljkij

)
Īlj

))
− (ΠE0 (r) + ΠE0 (γij)) Īij

(4.20)
Now, we make a quasi neutral assumption as in Table 1 and wish to transform (4.20) to apply result in [17]. It
suffices to write the parameters ΠE0

(βjkij), ΠE0

(
βjp

i
ijkij

)
, etc, in (4.20) as the forms in [17].

Indeed, we first denote

r̄ = ΠE0
(r) , β̄ = ΠE0

(β) , γ̄ = ΠE0
(γ) ,

b̄i =
ΠE0

(βbi)

ΠE0
(β)

, ν̄i =
ΠE0 (γνi)

ΠE0
(γ)

, ūij =
ΠE0 (γuij)

ΠE0
(γ)

, 1 ≤ i, j ≤ N
(4.21)

then ΠE0
(βi) = β̄

(
1 + εb̄i

)
:= β̄i, ΠE0

(γi) = γ̄ (1 + εν̄i) := γ̄i and ΠE0
(γij) = γ̄ (1 + εūij) := γ̄ij . Next, we set

that

p̄sij =
1

2
+ εω̄sij , with ω̄sij =

ΠE0

(
βiω

s
ij

)
ΠE0 (βi)

;

and

k̄ij = k̄ + εᾱij , with k̄ =
ΠE0

(βk)

ΠE0 (β)
and ᾱij =

1

ε

[
ΠE0

(βjkij)

ΠE0 (βj)
− k̄
]
. (4.22)

It is necessary to note that p̄sij 6= ΠE0

(
psij
)

and k̄ij 6= ΠE0
(kij) to not make mistakes.

Then, we have that,

ΠE0

(
βip

s
ij

)
= β̄ip̄

s
ij , ΠE0

(βjkij) = β̄j k̄ij , ∀1 ≤ i, j ≤ N. (4.23)

We will show that ᾱij = O (1), indeed,

ᾱij =
1

ε

[∫
Ω

(β + εbj) (k + εαij)∫
Ω
β + ε

∫
Ω
bj

−
∫

Ω
βk∫

Ω
β

]
=

1

ε

[( ∫
Ω
βk∫

Ω
β + ε

∫
Ω
bj
−
∫

Ω
βk∫

Ω
β

)
+ ε

∫
Ω

(kbj + βαij)∫
Ω
β + ε

∫
Ω
bj

+ ε2
∫

Ω
bjαij∫

Ω
β + ε

∫
Ω
bj

]

=

∫
Ω
βk∫

Ω
β
·
−
∫

Ω
bj∫

Ω
β

1 + ε

∫
Ω
bj∫

Ω
β

+

∫
Ω

(kbj + βαij)∫
Ω
β + ε

∫
Ω
bj

+ ε

∫
Ω
bjαij∫

Ω
β + ε

∫
Ω
bj
.
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4 MODELS WITH FAST DIFFUSION

Combining this with direct calculations, we have that∥∥ΠE0 (βjkijp
s
mn)− β̄j k̄ij p̄smn

∥∥ = O (ε) , s ∈ {m,n}, ∀1 ≤ i, j,m, n ≤ N.

Indeed, for s ∈ {m,n}, for all 1 ≤ i, j,m, n ≤ N , denote that εψs,ijmn to be ΠE0 (βjkijp
s
mn)− β̄j k̄ij p̄smn then

εψs,ijmn = ε

[
1

2

(
ΠE0

(kbj)− k̄b̄j
)

+
(
ΠE0

(βkωsmn)− β̄k̄ω̄smn
)]

+ε2
[

1

2

(
ΠE0 (αijbj)− ᾱij b̄j

)
+

1

2

(
ΠE0 (βαijω

s
mn)− β̄ᾱijω̄smn

)
+
(
ΠE0 (kbjω

s
mn)− k̄b̄jω̄smn

)]
+ε3

[
ΠE0

(αijbjω
s
mn)− ᾱij b̄jω̄smn

]
.

For the sake of applying the result in [17], we make an assumption that

Assumption 16. psij does not depend on x for all 1 ≤ i, j ≤ N and s ∈ {i, j}.

Hence, ΠE0
(βjkijp

s
mn) = β̄j k̄ij p̄

s
mn and the system (4.20) becomes

dS̄

dt
=r̄
(
1− S̄

)
+

N∑
i=1

γ̄iĪi +

N∑
i,j=1

γ̄ij Īij − S̄
N∑
i=1

β̄iJ̄i

dĪi
dt

=β̄iJ̄iS̄ − (r̄ + γ̄i) Īi − Īi
N∑
j=1

k̄ij β̄j J̄j , 1 ≤ i ≤ N,

dĪij
dt

=k̄ij β̄j ĪiJ̄j − (r̄ + γ̄ij) Īij , 1 ≤ i, j ≤ N,

(4.24)

where

β̄i = β̄
(
1 + εb̄i

)
, γ̄i = γ̄ (1 + εν̄i) , γ̄ij = γ̄ (1 + ūij) , p̄sij =

1

2
+ εω̄sij , k̄ij = k̄ + εᾱij

and

J̄i = Īi +

N∑
j=1

(
p̄iij Īij + p̄ijiĪji

)
, ∀1 ≤ i ≤ N

Before applying the result in [17], we make the following assumption on the basic reproduction ratio.

Assumption 17. Assume that
∫

Ω
β (x) dx >

∫
Ω
m (x) dx, which means

∫
Ω
β (x) dx∫

Ω
m (x) dx

> 1.

Applying the result in [17] for (4.24), we have the following theorem. Initially, we define that

S∗ =
m̄

β̄
, T ∗ = 1− S∗, I∗ =

m̄T ∗

m̄+ β̄k̄T ∗
, D∗ = T ∗ − I∗ (4.25)

and

Θ = Θ1 + Θ2 + Θ3 + Θ4 + Θ5 and θi =
Θi

Θ
(4.26)

where

Θ1 = χ1
2β̄S∗T ∗2

|P |
, Θ2 = χ2

γ̄I∗ (I∗ + T ∗)

|P |
, Θ3 = χ3

γ̄T ∗D∗

|P |
, Θ4 = χ4

2m̄T ∗D∗

|P |
, Θ5 = χ5

β̄T ∗I∗D∗

|P |
.

(4.27)
We see that θi > 0 for each i = 1, 2, 3, 4, 5 and θ1 + θ2 + θ3 + θ4 + θ5 = 1. Using these notations, we obtain our
main result.

Theorem 18. Consider the system of equations
dzi
dτ

= Θzi
((

Λ̄z
)
i
− zT Λ̄z

)
, i = 1, · · · , N,

z1 + z2 + · · ·+ zN = 1.
(4.28)
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where Λ̄ is the square matrix of size N ×N whose coefficient (i; j) are the pairwise fitness λ̄ji which satisfy

λ̄ji = θ1

(
b̄i − b̄j

)
+ θ2 (−ν̄i + ν̄j) + θ3 (−ūij − ūji + 2ūjj) + θ4

(
ω̄iij − ω̄

j
ji

)
+ θ5 (µ (ᾱji − ᾱij) + ᾱji − ᾱjj) .

(4.29)

with µ =
I∗

D∗
.

Then, for any initial values of (4.1), for each τ0 > 0, T > τ0 arbitrarily and independent on ε, there is ε0 > 0,

C > 0 and a vector of positive coefficients z0 ∈ RN verifying
∑N
i=1 z0,i = 1, such that ∀ε < ε0

∣∣∣S̄ (τ
ε

)
− S∗

∣∣∣+

N∑
i=1

∣∣∣I∗zi(τ)− Īi
(τ
ε

)∣∣∣+

N∑
i,j=1

∣∣∣D∗zi(τ)zj(τ)− Īij
(τ
ε

)∣∣∣ ≤ εC, ∀τ ∈ (τ0, T ) . (4.30)

where S̄, (Ī1, Ī2, . . . , ĪN ),
(
Īij
)
i,j∈{1,...,N} are the mean values over Ω of the solution for (4.1) and (z1, z2, . . . , zN )

is the solution of reduced system (4.28) together with z(0) = z0.

5 Comparison between two cases of slow and fast diffusions

Initially, we recall the two replicator system used to approximate in both cases

Case 1. Slow diffusion ε∆: 
∂zi
∂τ

= Θzi
(
(Λ (x) z)i − zTΛ (x) z

)
+ ~ϑ · ∇zi + ∆zi, i = 1, · · · , N,

z1 + z2 + · · ·+ zN = 1.
(5.1)

where ~ϑ (x) =
1

|P |
(−D∗∇I∗ + 2T ∗∇T ∗) and Λ (x) is the square matrix of size N ×N whose coefficient

(i; j) are the pairwise fitness λji which satisfy

λji (x) = θ1 (bi − bj)+θ2 (−νi + νj)+θ3 (−uij − uji + 2ujj)+θ4

(
ωiij − ω

j
ji

)
+θ5 (µ (αji − αij) + αji − αjj) .

(5.2)

Case 2. Fast diffusion
1

ε
∆: 

dzi
dτ

= Θzi
((

Λ̄z
)
i
− zT Λ̄z

)
, i = 1, · · · , N,

z1 + z2 + · · ·+ zN = 1.
(5.3)

where Λ̄ is the square matrix of size N×N whose coefficient (i; j) are the pairwise fitness λ̄ji which satisfy

λ̄ji = θ1

(
b̄i − b̄j

)
+ θ2 (−ν̄i + ν̄j) + θ3 (−ūij − ūji + 2ūjj) + θ4

(
ω̄iij − ω̄

j
ji

)
+ θ5 (µ (ᾱji − ᾱij) + ᾱji − ᾱjj) .

(5.4)

We first note that, in Case 1, the replicator system is partial differential equations, in which, its variables are
prevalences of strains depending in space x ∈ Ω and time (in slow time scale) τ ∈ R+. Moreover, it is not
actually the same type of replicator equations with diffusion studied in [6] since there is a term of gradient in
each equation, which is interesting. The parameters in the replicator system of this case, including the pairwise

invasion fitness matrix
(
λji

)
1≤i,j≤N

and ~ϑ = 1
|P | (−D

∗∇I∗ + 2T ∗∇T ∗), are taken from the parameters of the

neutral equations then depends on space. In Case 2, meanwhile, the replicator system is ordinary differential
equations, in which, its variables are total masses over the domain of strain frequencies. Thus, the system’s
parameters- the pairwise invasion fitness matrix, can be taken directly from original model’s ones, but their
mean values over domain Ω.

One point need to note is the basic reproductive ratio R0. In Case 1, we assume in Assumption 4 that all

domain Ω is high-risk site, i.e. β(x) > m(x) for all x ∈ Ω. Hence, the equilibrium of susceptible S∗ =
m(x)

β(x)
is well-defined and proved to be stable as in section 2. In this case, we denote spatial basic reproductive ratio

R0(x) =
β(x)

m(x)
, which exceeds 1, leading to the equilibrium of endemic mentioned in the Introduction.
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5 COMPARISON BETWEEN TWO CASES OF SLOW AND FAST DIFFUSIONS

However, in Case 2, we make a slighter assumption that Ω is a high-risk domain, i.e.
∫

Ω
β(x) >

∫
Ω
m(x).

Hence, there can exist non empty low risk site, i.e. the set H− in (2.12) is non empty. Next, we make some
analyzing on the basic reproductive ratio for the quasi-neutral SIS system with fast diffusion (i.e. Case 2).
First, we assume that

Assumption 19. 1.
∫

Ω
T (x, 0) dx > 0, i.e. at the beginning, the total mass of infected and coinfected

individuals is positive.

2. H+ and H− are nonempty, with H+, H− are in (2.12).

Thank the singular perturbation in transmission rates βi = β (1 + εbi) and clearance rates γi = γ (1 + ενi),
γij = γ (1 + uij), we now define a basic reproductive ratio R0 for (4.1), recalling m = γ + r.

Theorem 20. Similarly in [3], for each ε > 0, let

R0 = sup
φ∈H1(Ω),
φ 6=0


∫

Ω
βφ2∫

Ω

(
1
ε |∇φ|

2
+mφ2

)
 . (5.5)

Then, we have that

R0 →
∫

Ω
β∫

Ω
m

as ε→ 0.

Note that, our variational characterization of the basic reproduction number R0 is in keeping with the
next generation approach for heterogeneous populations [10] which occupy a continuous spatial habitat. It is

interesting that
∫
Ω
β∫

Ω
m

is the basic reproductive ratio R0 of (4.24).

Proof. Firstly, we recall the semi-neutral system for (S, T ) in Case 2
∂S

∂t
= mT − βTS +

1

ε
∆S

∂T

∂t
= −mT + βST +

1

ε
∆T

. (5.6)

with the same initial value condition of (4.1) and Neumann boundary condition.
By similar proof for Theorem 6, we have that the solution (S, T ) of (4.1) can be approximated by the

solution (S, T ) of (5.6) with error O (ε).

Apply the Theorem 2 in [3], we have that R0 →
∫

Ω
β∫

Ω
m

as ε→ 0.

Next, we come to three following examples, to see more detailed comparison between two cases.

Example 21. Firstly, we consider the simplest example of an N -strain system and compact domain Ω, when
all the parameters in Table 1 do not depend on x. In addition in this example, we consider the perturbations
are only in the transmission rates βi, i.e. νi, uij , ω

s
ij and αij are all zeros, for all i, j and s ∈ {i, j}. Without

loss of generality, we assume that b1 > b2 ≥ b3 ≥ · · · ≥ bN .
In the Case 2, when diffusion is fast 1

ε∆, apply the result in [17], the strain with biggest transmission rate, in
this case is strain 1, becomes the unique survivor.
Meanwhile, in the Case 2, when diffusion rates are singular ε∆, we have the replicator equation system as
follows 

∂zi
∂τ

= Θ1zi

N∑
j=1

(bi − bj) zj + ∆zi, i = 1, . . . , N

z1 + z2 + · · ·+ zN = 1

(5.7)

with Θ1 =
2βS∗T ∗2

|P |
which can be regarded as

∂z

∂τ
= f (z) + ∆z. We can compute the linearized operator

df |z̄ + ∆ with stable state z̄ = (1, 0, . . . , 0) as follows

df |z̄ + ∆ =


∆ Θ1 (b1 − b2) Θ1 (b1 − b3) . . . Θ1 (b1 − bN )
0 ∆ 0 . . . 0
0 0 ∆ . . . 0
...

...
...

. . .
...

0 0 0 . . . ∆


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5 COMPARISON BETWEEN TWO CASES OF SLOW AND FAST DIFFUSIONS

which has the negative spectrum, since b1 − bj > 0 for all j 6= 1 and the Laplacian has negative spectrum.
Apply Theorem 11.20 in [29], the state (1, 0, . . . , 0) is linearly stable, implying the unique survival of strain 1.

In this example, the survival outcomes in two strain are the same.

When perturbations are only in single-infection clearance rates γij or transmission capacity of the strain
s by a co-colonized host by strain-i then strain-j psij , we can have the similar results by applying the same
arguments.

Roughly speaking, it can happen that, in both cases: slow diffusion and fast diffusion, the unique survivors
are the same.

To close this section, we consider two other examples, in which, the longtime behaviors of strains distinguish
in two cases of diffusions.

Example 22. We consider in two cases the systems of two strains N = 2 and Ω = [0, 1] when the neutral
values of parameters as follows

β = 3, k = 0.1, m =
3 (ψ − 0.36) + 3

√
ψ (ψ − 0.8)

2 (1.62 + ψ)
, with ψ (x) =

1

− 1
3x+ 1

2

,∀x ∈ [0, 1]. (5.8)

It can be verified directly that m < β for all x, which satisfies our assumption 4.

From (3.17), we recall that µ =
1

k (R0 − 1)
and

Θ1

Θ5µ
= 2k2 (µ+ 1)

2
(R0 − 1) . (5.9)

Substituting (5.8) into (5.9), by direct calculation, we can verify that

Θ5µ

Θ1
= −1

3
x+

1

2
. (5.10)

In this case, we consider perturbations in transmission rates βi and co-colonization interaction kij , which are
given as follows

b1 (x) =
x

3
, b2 (x) =

1− x
3

,

α12 = x, α21 = 1− x, α11 = α12, α22 = α21,
(5.11)

for all x ∈ [0, 1].
In the case of fast diffusion 1

ε∆, using (5.3) and (5.4), we only need to compute the pairwise-invasion fitness

for the slow-system to determine the unique survivor. From (5.11), we have that
∫ 1

0
b1dx =

∫ 1

0
b2dx, leading to

b̄1 = b̄2 and β̄1 = β̄2. From the definition of ᾱij in (4.22), we deduce that λ̄2
1 + λ̄1

2 < 0, indeed, we recall the
formula (5.4) in this case {

λ̄2
1 = θ5 (µ (ᾱ21 − ᾱ12) + ᾱ21 − ᾱ22)

λ̄1
2 = θ5 (µ (ᾱ12 − ᾱ21) + ᾱ12 − ᾱ11)

. (5.12)

Then we have that

1

θ5

(
λ̄2

1 + λ̄1
2

)
= (ᾱ12 − ᾱ11) + (ᾱ21 − ᾱ22) =

1

ε
∫ 1

0
β1dx

∫ 1

0

(k21 − k12) (β1 − β2) dx

=
β

ε
∫ 1

0
β1dx

∫ 1

0

(εα21 − εα12) (εb1 − εb2) dx = − 2ε

3
∫ 1

0
(1 + εb1)

∫ 1

0

(
x− 1

2

)2

dx

= − βε

18
∫ 1

0
(1 + εb1)

< 0.

Moreover, we observe that

ᾱ12 − ᾱ21 =
1

ε

[∫ 1

0
β2k12dx∫ 1

0
β2dx

−
∫ 1

0
β1k21dx∫ 1

0
β1dx

]
=

1

ε
∫ 1

0
β1dx

[∫ 1

0

(3 + ε (1− x)) (0.1 + εx) dx−
∫ 1

0

(3 + εx) (0.1 + ε (1− x)) dx

]
.

which implies ᾱ12 = ᾱ21. From (5.12), we have that

λ̄1
2 − λ̄2

1 = ᾱ22 − ᾱ11 =
ε∫ 1

0
(1 + εb1) dx

∫ 1

0

(b2α21 − b1α12) dx = 0.
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5 COMPARISON BETWEEN TWO CASES OF SLOW AND FAST DIFFUSIONS

Then λ̄2
1 = λ̄1

2. Combining with λ̄2
1 + λ̄1

2 < 0 then λ̄2
1 = λ̄1

2 < 0, which leads to the bistability.
When the diffusion is slow ε∆, we compute the pairwise invasion fitnesses of both strains at each x ∈ [0, 1].

From (5.2), we have the explicit formulas for pairwise invasion fitness in this case as follows{
λ2

1(x) = θ1 (b1 − b2) + θ5µ (α21 − α12)

λ1
2(x) = θ1 (b2 − b1) + θ5µ (α12 − α21)

(5.13)

It is easy to see that λ2
1 (x) + λ1

2 (x) = 0 for all x ∈ [0, 1]. We claim that λ2
1 > 0 for all x ∈ [0, 1]. Indeed, we

will show that

b1 − b2 ≥
Θ5µ

Θ1
(α12 − α21) . (5.14)

Because 3 (b1 − b2) = α12 − α21 = 2x− 1 and Θ5µ
Θ1

= − 1
3x+ 1

2 , we have that

(b1 − b2)− Θ5µ

Θ1
(α12 − α21) =

1

3
(2x− 1)

2 ≥ 0,

implies the inequality (5.14). According to the formulas for pairwise invasion fitnesses (5.13), this means that,
at every point x ∈ Ω, strain 1 excludes strain 2 in the case of asymptotically small diffusion.

Roughly speaking, it can happen that, when the diffusion rates are singular, a strain is the unique survivor
at each point of domain; meanwhile, in the case of large rates of diffusion, the longtime behavior is bistability.

The following example is similar to the Example 22. In which, strain 1 is the unique survivor at each point
of domain in the case of slow diffusion, but strain 2 excludes strain 1 when the diffusion is asymptotically fast.

Example 23. We consider in two cases the systems of two strains N = 2 and Ω = [0, 1] when the neutral
values of parameters as follows

β = 2, k = 0.2, m =
ψ − 0.64 +

√
ψ (ψ − 1.6)

1.28 + ψ
, with ψ (x) =

1

− 1
3x+ 1

2

,∀x ∈ [0, 1]. (5.15)

It can be verified directly that m < β for all x, which satisfies our assumption 4.
Analogously to the previous Example 22, by direct calculation, we can verify that

Θ5µ

Θ1
= −1

3
x+

1

2
. (5.16)

In this case, we consider perturbations in transmission rates βi and co-colonization interaction kij , which are
given as follows

b1 (x) =
x

2
, b2 (x) =

1− x
2

,

α12 = x (x+ 1) , α21 = (1− x) (x+ 1) , α11 = α12, α22 = α21,
(5.17)

for all x ∈ [0, 1].
When the diffusion rates are singular ε∆, we compute the pairwise invasion fitnesses of both strains at each

x ∈ [0, 1]. From (5.2), we have the explicit formula for pairwise invasion fitnesses in this case as follows{
λ2

1(x) = θ1 (b1 − b2) + θ5µ (α21 − α12)

λ1
2(x) = θ1 (b2 − b1) + θ5µ (α12 − α21)

(5.18)

It is easy to see that λ2
1 (x) + λ1

2 (x) = 0 for all x ∈ [0, 1]. We claim that λ2
1 > 0 for all x ∈ [0, 1]. Indeed, we

will show that

b1 − b2 ≥
Θ5µ

Θ1
(α12 − α21) . (5.19)

Because 2 (b1 − b2) = 2x− 1, α12 − α21 = (2x− 1) (x+ 1) and Θ5µ
Θ1

= − 1
3x+ 1

2 , we have that

(b1 − b2)− Θ5µ

Θ1
(α12 − α21) =

1

6
x (2x− 1)

2 ≥ 0,

implies the inequality (5.19). According to the formulas for pairwise invasion fitnesses (5.18), this means that,
at every point x ∈ Ω, strain 1 excludes strain 2 in the case of asymptotically slow diffusion.
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6 CONCLUSION

Meanwhile, in the case of fast diffusion 1
ε∆, using (5.3) and (5.4), we only need to compute the pairwise-

invasion fitness for the slow-system to determine the unique survivor. From (5.17), we have that
∫ 1

0
b1dx =∫ 1

0
b2dx, leading to b̄1 = b̄2 and β̄1 = β̄2.
From the definition of ᾱij in (4.22), we deduce that λ̄2

1 + λ̄1
2 → 0 as ε → 0, indeed, we recall the formula

(5.4) in this case {
λ̄2

1 = θ5 (µ (ᾱ21 − ᾱ12) + ᾱ21 − ᾱ22)

λ̄1
2 = θ5 (µ (ᾱ12 − ᾱ21) + ᾱ12 − ᾱ11)

. (5.20)

Then we have that

1

θ5

(
λ̄2

1 + λ̄1
2

)
= (ᾱ12 − ᾱ11) + (ᾱ21 − ᾱ22) =

1

ε
∫ 1

0
β1dx

∫ 1

0

(k21 − k12) (β1 − β2) dx

=
β

ε
∫ 1

0
β1dx

∫ 1

0

(εα21 − εα12) (εb1 − εb2) dx = − 2ε∫ 1

0
(1 + εb1)

∫ 1

0

(
x− 1

2

)2

(x+ 1) dx

= − βε

4
∫ 1

0
(1 + εb1)

→ 0 when ε→ 0.

Moreover, we observe that

ᾱ12 − ᾱ21 =
1

ε

[∫ 1

0
β2k12dx∫ 1

0
β2dx

−
∫ 1

0
β1k21dx∫ 1

0
β1dx

]

=
1∫ 1

0
β1dx

[∫ 1

0

(2 + ε (1− x)) (0.2 + εx (x+ 1)) dx−
∫ 1

0

(2 + εx) (0.2 + ε (1− x) (x+ 1)) dx

]
=

1∫ 1

0
β1dx

∫ 1

0

(2x− 1) (2x+ 1.8) dx =
1

3
∫ 1

0
β1dx

> 0.

From (5.20), we have that

λ̄1
2−λ̄2

1 = (2µ+ 1) (ᾱ12 − ᾱ21)+(ᾱ22 − ᾱ11) =
1∫ 1

0
(1 + εb1) dx

[(
2µ+ 1

6

)
− 1

6
− ε

12

]
=

1∫ 1

0
(1 + εb1) dx

(µ
3
− ε

12

)
> 0

for ε small enough. Then λ̄2
1 < 0 < λ̄1

2 for ε small enough, since λ̄1
2 − λ̄2

1 = O(1). Therefore, when the diffusion
is fast, strain 2 excludes strain 1 in long time.

Roughly speaking, it can happen that, when the diffusion rates are singular, a strain, denoted by strain 1, is
the unique survivor at each point of domain; meanwhile, in the case of large rates of diffusion, the other strain,
denoted strain 2, will exclude strain 1 over the domain.

6 Conclusion

Epidemiology for homogeneous environment receives many intention so far [4] because invasion of disease is
now an international public health problem. In reality, populations tend not to be homogeneous and there are
nonlocal interactions. Hence, people investigate more theory on the geographical spread of infectious diseases.
The mechanisms of invasion of disease to new territories may take many different forms and there are several
ways to model such problems [12, 16, 18, 23], in which, the equilibrium behavior has been studied. This math-
ematical study provides a fundamental advance in understanding analytically quasi-neutral dynamics between
multiple strains in a co-infection diffusion system. Until now, explicit and general derivations of coinfection
dynamics among N strains are very rare in the literature, especially models with diffusion. Nevertheless, many
models have been proposed to investigate effect of diffusion of disease infection [24, 14, 13, 28].

Motivated by the dynamics without diffusion in [17], we formulate an SIS-type reaction diffusion equations
among similar strains, in both cases of slow and fast diffusions. Naturally in this present model, infectious strains
compete for susceptible and singlycolonized hosts, which are the only resources that can favor their growth and
propagation. The different traits provide each strain with variable fitness advantages or disadvantages in
exploiting such dynamic resources in the system, and interact together to shape multi-strain selection. We
aim to simplify the dynamics when small perturbations arise in the clearance rates, transmission rates, within-
host competitiveness coefficients, as well as co-colonization susceptibility interaction factors between strains.
However, with spatial structure, it requires us to add some appropriate assumptions, especially, the assumption
of high-risk site Ω with slow diffusion and the assumption of
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When diffusion rates are singular (ε∆), we base on the framework in [17] and adapt for our current system,
including proving a Tikhonov-like Theorem. The details of this framework are not mentioned again here. We
derive the corresponding slow-fast form for the global dynamics, with the system of strain frequencies completely
explicit, and provide the formal approximation for solutions of all epidemiological variables by quantifying
error estimates. We reduce the complexity of N2 +N + 1 equations of the original SIS compartmental model
to the N -equations of replicator dynamics with diffusion, which reduces substantially time for computation.
Meanwhile, for the case of fast diffusion ( 1

ε∆), we apply the Central Manifold Theorem to obtain an SIS system
for total masses of susceptible, infected and coinfected individuals, which allows us to use the main result in
[17]. Accordingly, the reduced system in this case is the replicator equation, which is studied widely [15]. A
similar point in both approaches is that, the error in approximation is estimated for total masses of susceptible,
infected and coinfected strains.

When the diffusion is fast, we can use the result about survival outcome of strains in [17] to study the
longtime behavior of total mass of each strain. However, there is not much study on the replicator equations
with diffusion and gradient, so there is no general theory for the long time phenomena of individuals in the case of
slow diffusion. Though, it is exciting to envision how this approach could be extended to other epidemiological
models of multi- strain dynamics with diffusion or even more with general spatial structure. Like the non-
spatial model, an essential requirement is that their embedded neutral system admits a central manifold which
is globally stable. The challenge would then be to identify the equations governing slow motion on this manifold
in each specific model. It is essential to note that we use strong assumption of high-risk site Ω in Case 1 and
high-risk domain Ω in Case 2, which lead to the endemic equilibrium. In general, without these assumption,
people are interested in the theory of disease-free equilibrium and endemic equilibrium, [3, 33].

In Case 1, when diffusion rates are singular, without the assumption of high risk site Ω, i.e. H− 6= ∅, there
are points x’s at which S∗ = 1, that may not allow the smoothness of S∗ in x. Then, our approach may not
work because ‖S − S∗‖2 → O (

√
ε) may not hold anymore.

One more thing, until now we have not considered a spatial component of intermediate diffusion (d∆, d > 0)
to the multi-strain dynamics. A further perspective is considering the application of the Central Manifold The-
orem to this model.

Acknowledgment: We would like to thank Professor Boris ANDREIANOV, Laboratory of Mathematics
and Theoric Physics, University of Tours. Professor Andreianov helped us with several techniques in the proof
of Theorem 5.
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A APPENDIX: PROOF FOR THEOREMS

A Appendix: Proof for theorems

A.1 Proof for theorem 2

In this proof, we will show that equation, recalling Ω compact,
∂u

∂t
= F (u (x, t) , x) + d∆u,

∂u

∂n
= 0 on ∂Ω, u (x, 0) = u0 (x)

(A.1)

has unique solution u : Ω× [0,∞)→ Rn, satisfying u ∈ C2 (Ω× ·,Rn)∩C1 (· × [0,∞) ,Rn) when F : Rn×Ω→
Rn is a Lipschitz map with respect to the first variable, i.e. there exists a constant L such that

‖Fũ− F ṽ‖ ≤ L ‖ũ− ṽ‖ , ∀ũ, ṽ ∈ Rn, ∀x ∈ Ω. (A.2)

First, we denote that QT = Ω × [0,∞) and Q̄T = Ω × [0,∞) and u (x, t) ∈ Rn for (x, t) ∈ Q̄T . When seen
the Laplacian as an operator on L2 (Ω), the operator A2 with homogeneous Neumann boundary conditions is
defined as

D
(
A2
)

=

{
U ∈ H1 (Ω) : ∃V ∈ L2 (Ω) ,∀φ ∈ H1 (Ω) ,

∫
∇U (x)∇φ (x) dx = −d

∫
V (x)φ (x) dx

}
,

A2U := V, U ∈ D
(
A2
)
.

(A.3)

In order to obtain uniform estimates, we prefer to focus on the operator A∞ := A acting on C2(Ω). Denoting
by operator A to be the Laplacian ∆ acting on

(
C2 (Ω× ·)

)n
. Hence, we define

D (A∞) :=
{
U ∈ D

(
A2
)
∩ C

(
Ω̄
)
, A2U ∈ C

(
Ω̄
)}
,

A∞U = A2U, U ∈ D (A∞) .
(A.4)

Firstly, by Duhamel’s formula and [25], (A.1) implies that

u (x, t) = eAtu0 +

∫ t

0

eA(t−s)F (u (x, s) , x) ds, ∀ (x, t) ∈ QT (A.5)

where exp (At) is the semi-group generated by the operator ∆ with the Neumann boundary condition. We
consider the operator T defined by

Tu (x, t) := eAtu0 +

∫ t

0

eA(t−s)F (u (x, s) , x) ds, ∀ (x, t) ∈ QT .

Given k > 0, to be fixed later, set

X =

u ∈ C1 (Ω× [0,+∞) ,Rn) ; sup
t≥0
x∈Ω

e−kt ‖u (x, t)‖ ≤ +∞


We can check that X is a Banach space for the norm

‖u‖X = sup
t≥0
x∈Ω

e−kt ‖u (x, t)‖ .

For every u ∈ X, the Tu also belongs to X. To prove this, using the argument in the beginning of subsection
4.2,we first recall that A is the generator of a C0 semi-group exp (tA) on C2 (Ω× ·) verifying ‖exp (tA) v‖ ≤
exp (−µt) ‖v‖, for µ ≥ 0.

Then we observe that

e−kt ‖Tu‖ ≤
∥∥∥e(A−kI)tu0

∥∥∥+ e−kt
∫ t

0

∥∥∥eA(t−s)F (u (x, s) , x)
∥∥∥ ds

≤
∥∥∥e(A−kI)tu0

∥∥∥+ e−kt
∫ t

0

e−µ(t−s) ‖F (u (x, s) , x)‖ ds

≤
∥∥∥e(A−kI)tu0

∥∥∥+ e−kt
∫ t

0

(L ‖u (x, s)− u0‖+ ‖Fu0‖) ds

30



A APPENDIX: PROOF FOR THEOREMS

according to (A.2). Hence, we deduce that

e−kt ‖Tu‖ ≤
∥∥∥e(A−kI)tu0

∥∥∥+ e−ktt (L ‖u0‖+ ‖Fu0‖) + e−ktL

∫ t

0

‖u (x, s)‖ ds.

Alternatively, we have that

e−ktL

∫ t

0

‖u (x, s)‖ ds = e−ktL

∫ t

0

e−ks ‖u (x, s)‖ · eksds ≤ e−ktL ‖u‖X
∫ t

0

eksds

which implies

e−kt ‖Tu‖ ≤
∥∥∥e(A−kI)tu0

∥∥∥+ e−ktt (L ‖u0‖+ ‖Fu0‖) +
1

k
L ‖u‖X

(
1− e−kt

)
,

leading to Tu ∈ X whenever u ∈ X.
Moreover, for all u, v ∈ X, we have that

‖Tu− Tv‖X ≤ e
−kt

∫ t

0

∥∥∥eA(t−s) [F (u (x, s) , x)− F (v (x, s) , x)]
∥∥∥ ds

≤ e−kt
∫ t

0

e−µ(t−s) ‖F (u (x, s) , x)− F (v (x, s) , x)‖ ds

≤ Le−(k+µ)t

∫ t

0

e(µ+k)s · e−ks ‖u (x, s)− v (x, s)‖ ds ≤ L

µ+ k

(
1− e−(µ+k)t

)
‖u− v‖X .

Fixing k > 0 such that k + µ > L then applying the Banach fixed point theorem, we obtain that (A.1) has at
least one solution.

For the uniqueness, assume there exists functions u and v, which satisfy for (A.5). For any given T > 0,
we have that

‖u(x, t)− v(x, t)‖ ≤
∥∥eAt (u0 − v0)

∥∥+

∫ t

0

∥∥∥eA(t−s) [F (u(x, s), x)− F (v(x, s), x)]
∥∥∥ ds

≤ML

∫ t

0

‖u(x, s)− v(x, s)‖ ds, ∀0 ≤ t ≤ T

By the Gronwall’s inequality and the same initial value of u and v, we have that u (, t) = v (x, t), for all x ∈ Ω
and 0 ≤ t ≤ T . This holds for all T ≥ 0, which yields the uniqueness of solution.

Therefore, the equation (2.4) has the unique solution.

A.2 Proof for theorem 5

The idea of our proof bases on the technique mentioned in [22].

Proof. Firstly, we make a convention for the norm using in this proof. For each t ∈ R+, for every f1, f2 ∈
L2 (Ω× R,Rn) we denote

〈f1, f2〉 =

∫
Ω

f1 (x, t) · f2 (x, t) dx,

where the f1 · f2 representing for the usual scalar product
∑n
i=1 f

i
1f
i
2 in Rn. This scalar product 〈·, ·〉 induces

the norm

‖f (·, t)‖2 =

(∫
Ω

f (x, t) · f (x, t) dx

)1/2

For the sake of convenience in this proof, we only write ‖·‖ instead of ‖·‖2.
We do the same convention for 〈g1, g2〉 and ‖g (·, t)‖ for all g1, g2, g ∈ C1 (Ω× R,Rm).
Because in the finite dimensional space, all norms are equivalent, we then denote | · | to be the usual 2-

Euclidean norm. Moreover, we recall the notation A ≺ 0 for a symmetric matrix A if A is definitely negative,
and A � 0 for definitely positive symmetric matrix.

First, let us show that the interval [t0, t1] can be subdivided into subinterval ∆k = [τk−1, τk], where k ∈
{1, 2, . . . , N} and t0 = τ0 < τ1 < · · · < τN = t1 in such a way that for every k, there exists a symmetric matrix
Pk = PTk � 0 for which

PkA(x, t) +AT (x, t)Pk ≺ −I. (A.6)
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Indeed, since A(x, t) is a Hurwitz matrix for every t ∈ [t0, t1], according to [11], there exists P (x, t) = PT (x, t) �
0 such that

P (x, t)A(x, t) +AT (x, t)P (x, t) ≺ −I.
Since A depends continuously on t, there exists an open interval ∆(t) such that t ∈ ∆(t) and

P (x, t)A(x, τ) +AT (x, τ)P (x, t) ≺ −I, ∀τ ∈ ∆(t).

Now the open intervals ∆(t) with t ∈ [t0, t1] cover the whole closed bounded interval [t0, t1] and taking a
finite number of τk, k = 1, . . . , N such that [t0, t1] is completely covered by ∆(τk) yields the desired partition
subdivision.

We can note that a strictly negative upper bound is not required on the real parts eigenvalues uniformly in
space, because the spatial domain is supposed to be compact.
Note that, from (A.6), for all y ∈ Rm we have that

yT
(
PkA+ATPk

)
y ≺ −yT y. (A.7)

Second, because F,G are continuously differential in x and t, then for every µ > 0 there exists C, r > 0 such
that ∥∥F (f0(x, t) + δ̄f (x, t) , g0(x, t) + δ̄g (x, t) , x, t

)
− F (f0, g0, x, t)

∥∥ ≤ C (∥∥δ̄f (x, t)
∥∥+

∥∥δ̄g (x, t)
∥∥) (A.8)

for all t ∈ R, δ̄f (x, t) ∈ Rn, δ̄g (x, t) ∈ Rm satisfying

∀t ∈ [t0, t1],∀x ∈ Ω, |δ̄f (x, t)| ≤ r, |δ̄g(x, t)| ≤ r.

For the sake of simplicity, we write δ̄f and δ̄g instead of δ̄f (x, t) and δ̄g (x, t). We now have the Taylor expansion
as follows, noting that G (f0(x, t), g0(x, t), x, t) = 0,

G
(
f0(x, t) + δ̄f , g0(x, t) + δ̄g, x, t

)
= A (x, t) δ̄g +B(x, t)δ̄f + o

(
|δ̄g|
)

+ o
(
|δ̄g|
)
, (A.9)

with B(x, t) is the Jacobian matrix of G (·, ·, t) with respect to the first variable.

For each k = 1, . . . , N , and u ∈ Rm, set |u|k =
(
uTPku

)1/2
, then | · |k is a norm in Rm. Indeed, because

Pk � 0 then | · |k is well-defined, it suffices to check the condition |u+ v|k ≤ |u|k + |v|k, which is equivalent to(
uTPkv

)2 ≤ (uTPku) (vTPkv) .
It now becomes ((

LTu
)T (

LT v
))2

≤
((
LTu

)T (
LTu

))((
LT v

)T (
LT v

))
, (A.10)

thanks to the Cholesky’s factorization, which states that, if Pk � 0, there exist a square matrix such that
Pk = LTk Lk. Note that, (A.10) holds because of the inequality Cauchy-Schwarz. Hence, | · |k is a norm in Rm
and it is equivalent to an arbitrary norm in Rm.

Then, for δf (x, t) = f(x, t)− f0(x, t), δg(x, t) = g(x, t)− g0(x, t), we have that
d

dt
‖δf‖2 ≤ C1 (‖δf‖+ ‖δg‖) ‖δf‖ ,

ε
d

dt
‖δg‖2k ≤ −q ‖δg‖2k dt+ C1

(
‖δf‖2 + ε

)
dt

(A.11)

as long as δf , δg are sufficiently small, where C1, q are positive constants which do not depend on k.
Initially, for the sake of simplicity, in the following arguments, we write f , g instead of f (x, t) and g (x, t),
respectively. Then, we have the equation for δf (x, t) as follows

∂

∂t
δf = F (f0 + δf , g0 + δg, x, t)− F (f0, g0, x, t) +Kδf .

By the convention of ‖·‖, we have that

d

dt
‖δf‖2 =

d

dt
〈δf , δf 〉 = 2〈 ∂

∂t
δf , δf 〉

= 〈F (f0 + δf , g0 + δg, x, t)− F (f0, g0, x, t) +Kδf , δf 〉
= 〈F (f0 + δf , g0 + δg, x, t)− F (f0, g0, x, t) , δf 〉+ 〈Kδf , δf 〉
≤ ‖F (f0 + δf , g0 + δg, x, t)− F (f0, g0, x, t)‖ ‖δf‖+ 〈Kδf , δf 〉
≤ C (‖δf‖+ ‖δg‖) ‖δf‖+ 〈Kδf , δf 〉.
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On the other hand, recalling that Kf = af (x)∇+ ∆ implies

〈Kfδf , δf 〉 = 〈∆δf , δf 〉+ 〈af (x)∇δf , δf 〉 = −
∫

Ω

|∇δf |2 dx+

∫
Ω

af (x)∇δf · δfdx

which leads to, when we apply the Young inequality for the term
∫

Ω
a (x)∇δf · δfdx,

〈Kfδf , δf 〉 ≤ −
∫

Ω

|∇δf |2 dx+ max
x∈Ω

(|af (x)|)

 1

max
x∈Ω

(|af (x)|)

∫
Ω

|∇δf |2 dx+ C

(
max
x∈Ω

(|af (x)|)
)∫

Ω

|δf |2 dx

 ,
where |af (x)| is the matrix in which entries are absolute values of corresponding coordinates of af (x).

Accordingly, we have the estimation for
d

dt
‖δf‖2 as follows

d

dt
‖δf‖2 ≤ C1 (‖δf‖+ ‖δg‖) ‖δf‖ (A.12)

Next, we come to control the growth of ‖δg‖k. We first observe that

ε
∂

∂t
δg = G (f0 (x, t) + δf , g0 (x, t) + δg, x, t)+ εKgδg + ε

[
Kgg0 (x, t) +

∂

∂t
g0 (x, t) +G1(x) · ∇f0

]
+ εG1(x) ·∇δf .

We denote ε

[
Kgg0 (x, t) +

∂

∂t
g0 (x, t) +G1(x) · ∇f0

]
as O (ε), then

ε
∂

∂t
δg = G (f0 (x, t) + δf , g0 (x, t) + δg, x, t) + εKgδg +O (ε) + εG1(x) · ∇δf . (A.13)

Using the Taylor expansion for G in (A.9) and the equation (A.13), we obtain the following computations

ε
d

dt
‖δg‖2k = ε

d

dt
〈δg, Pkδg〉 = ε〈 ∂

∂t
δg, Pkδg〉+ ε〈δg, Pk

∂

∂t
δg〉

= (〈Aδg, Pkδg〉+ 〈δg, PkAδg〉) + 2B(x, t)〈δf , δg〉+ 〈o (|δg|) + o (|δg|) +O (ε) , Pkδg + δg〉
+ 2ε〈G1(x) · ∇δf , Pkδg + δg〉+ ε〈Kgδg, Pkδg + δg〉
= 〈δg,

(
ATPk + PkA

)
δg〉+ 2B(x, t)〈δf , δg〉+ 〈o (|δf |) + o (|δg|) +O (ε) , Pkδg + δg〉

+ 2ε〈G1(x) · ∇δf , Pkδg + δg〉+ ε〈Kgδg, Pkδg + δg〉

≤ −‖δg‖2 + 2C1 ‖δf‖ ‖δg‖+ 〈o (|δf |) + o (|δg|) +O (ε) , P δg + δg〉+ 2ε〈G1(x) · ∇, Pkδg + δg〉+ ε〈Kgδg, P δg + δg〉.
(A.14)

Using the Young inequality, we have the estimation for 〈o (|δf |) + o (|δg|) +O (ε) , P δg + δg〉 as follows

〈o (|δf |) + o (|δg|) +O (ε) , P δg + δg〉 ≤ O (ε) + C̃ ‖δg‖2 , with C̃ � 1. (A.15)

Alternatively, applying the Young inequality, we have that

〈G1(x) · ∇δf , Pkδg + δg〉 ≤ C (G1) ‖∇δf‖2 + ‖δg‖2 ≤ C (G1) + ‖δg‖2 (A.16)

since ∇δf is bounded in Ω.
For the term 〈Kgδg, P δg + δg〉, we get that

〈Kgδg, P δg + δg〉 = 〈∆δg, P δg〉+ 〈∆δg, δg〉+ 〈ag (x)∇δg, P δg〉+ 〈ag (x)∇δg, δg〉

=

∫
Ω

∆δg · Pδgdx+

∫
Ω

∆δg · δgdx+

∫
Ω

ag (x)∇δg · Pδgdx+

∫
Ω

ag (x)∇δg · δgdx

= −
∫

Ω

∇δg · ∇ (Pδg) dx−
∫

Ω

|∇δg|2 dx+

∫
Ω

ag (x)∇δg · Pδgdx+

∫
Ω

ag (x)∇δg · δgdx

= −
∫

Ω

∇δgP∇δgdx−
∫

Ω

∇δg · (∇P ) δgdx−
∫

Ω

|∇δg|2 dx+

∫
Ω

ag (x)∇δg · Pδgdx+

∫
Ω

ag (x)∇δg · δgdx.

Note that P � 0 then
∫

Ω
∇δgP∇δgdx ≥ λ ‖∇δg‖2. Applying the Young inequality once more for the terms∫

Ω

∇δg · (∇P ) δgdx,

∫
Ω

ag (x)∇δg · Pδgdx,
∫

Ω

ag (x)∇δg · δgdx,
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we have that
〈Kgδg, P δg + δg〉 ≤ − (1 + λ) ‖∇δg‖2 + (1 + λ) ‖∇δg‖2 + C (1 + λ) ‖δg‖2

which implies
〈Kgδg, P δg + δg〉 ≤ C (1 + λ) ‖δg‖2 , (A.17)

with C (1 + λ) denoting a constant depending on 1 + λ.
Combining these equations (A.14), (A.15), (A.16), and (A.17), and noting that two norms ‖·‖k and ‖·‖k are

equivalent, we observe that

ε
∂

∂t
‖δg‖2k ≤ (2ε+ εC (1 + λ)− 1) ‖δg‖2k + C1 ‖δf‖ ‖δg‖+ C1ε

which implies when ε small enough

ε
∂

∂t
‖δg‖2k ≤ −q ‖δg‖

2
k + C1 ‖δf‖ ‖δg‖+ C1ε (A.18)

Thus, combine (A.12) and (A.18) and we obtain that

d

dt

(
‖δf‖2 + ε

C1

q
‖δg‖2

)
≤ C1 ‖δf‖2 − ‖δg‖2k + C1ε. (A.19)

for some constant C1 independent of k.

By the Gronwall’s inequality for

(
‖δf‖2 +

εC1

q
‖δg‖2k

)
dx, for each k ≥ 1, we can regard τk−1 as the initial

value, and then deduce that

‖δf (τk−1 + τ)‖2 ≤ eC3τ

(
‖δf (x, τk−1)‖2 + ε

C1

q
‖δg (x, τk−1)‖2k

)
dx+ C1ε

for τ ∈ [0, τk − τk−1]. With the aid of this bound for the growth of |δf |, the second inequality of (A.11) implies
a bound for ‖δg‖k as following

‖δg (τk−1 + τ)‖2k dx ≤ e
−qτ/ε ‖δg (τk−1)‖2k + C4

(
‖δf (x, τk−1)‖2 dx+ ε

C1

q
‖δg (x, τk−1)‖2k

)
+ C4ε.

We already have that δf (x, t0) = δf (x, τ0) ≤ ε and δg (x, t0) = δg (x, τ0) ≤ ε0 for ε0 small enough. Then, by the

compactness of Ω, for τ ∈ [0, τ1 − τ0], ‖δf (τ)‖2 ≤ O (ε), for all x ∈ Ω. Make a process similarly and successively

for k = 1, 2, . . . , we have that ‖δf‖2 ≤ O (ε) for all x ∈ Ω. Analogously, we can also prove that ‖δg‖2 ≤ O (ε) .

Therefore,
∫

Ω
|f(x, t)− f0(x, t)|2 dx ≤ Cε and

∫
Ω
|g(x, t) − g0(x, t)|2dx ≤ Cε, and we have the conclusion

of the theorem.

A.3 Proof for theorem 6

Proof. Note that ‖F (u1, x)− F (u2, x)‖ ≤ C ‖u1 − u2‖ ,∀u1, u2 ∈ D (F ) and |G (u, x) v| is bounded, ∀u, v
bounded due to the continuous differentiability of G in a bounded domain. Consider

1

2

∂

∂t
|u− v|2 = (u− v)

∂

∂t
(u− v) = (u− v) [F (u, x)− F (v, x)] + ε (u− v)G(u, x) + ε (u− v) ∆ (u− v)

≤ C|u− v|2 +O (ε) + ε (u− v) ∆ (u− v) .
(A.20)

Taking the integral of (A.20) over Ω and using the Neumann boundary condition implies that

1

2

∂

∂t

∫
Ω

|u− v|2dx ≤ C
∫

Ω

|u− v|2dx+O (ε)− ε
∫

Ω

‖∇ (u− v)‖2 dx,

which leads to
∂

∂t

∫
Ω

|u− v|2dx ≤ C
∫

Ω

|u− v|2dx+O (ε) .

Apply the Gronwall’s in equality, we have that∫
Ω

|u− v|2dx ≤ O (ε) +O (ε) eCt,

which implies
∫

Ω
|u− v|2dx = O (ε) for all t < T with given T > 0, by the compactness of Ω.
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