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This paper presents experimental results on the fragmentation of a low meting point liquid metallic
alloy jet into water. The liquid is Field’s metal whose melting point is 62◦C. Data are obtained using
high-speed camera acquisition and the solidified particles are sieved, a size Probability Distribution
Function (PDF) is obtained from their mass distribution. These results are compared to separate
data acquisitions obtained using a phase Doppler anemometer (PDA used in reflexion regime).
Injection diameter range from 1 mm to 5 mm and injection velocity from 2.28 m/s to 4.97 m/s
resulting in a (carrier phase) Weber number ranging from 15 to 281 and a (carrier) Reynolds number
ranging from 2500 to 24000. The conclusion is that for these intermediate Weber and Reynolds
numbers, the size of the droplets can mainly be related to a cascading instability mechanism: first
Entov & Yarin bending instability which is then closely followed by a Rayleigh-Taylor instability.
Moreover, the Mass Probability Distribution Function (PDF) can be approximated by a log-stable
laws whose parameters can be computed using wavelengths stemming from the cascade of instability
scenario. However, the smallest droplets or ligaments can eventually reach the turbulent dissipation
length-scales where they are re-agglomerated by the turbulent movements. This results now in a
Number PDF that also follows a log-stable law. For this part of the distribution, it is also possible
to compute the parameters of the distribution without using any fitting parameter, by estimating
the different turbulent scales. In this setting, atomization looks like a competition between a direct
”cascade” of fragmentation instability and an inverse ”cascade” of turbulent re-agglomeration

PACS numbers: May be entered using the \pacs{#1} command.

I. INTRODUCTION

Atomization and Sprays have a wide range of ap-
plications. The present paper is dedicated to the
study of liquid-liquid fragmentation with high density
ratio. Its main application is the understanding of se-
vere nuclear accident where molten corium can inter-
act with surrounding water. The residual heat of al-
most 3000◦C hot Corium makes this interaction mostly
water vapour/corium; nevertheless, the use of low(er)-
melting point alloy is a classical way of recovering both
the high-density density ratio and the high surface ten-
sion of the melt while working in simpler and safer con-
ditions [1–4]. The present study goes one step further
in the simplification as overheating of the molten metal
is low enough so that no vapour is ever produced. This
allows for the combined use of optical methods (shad-
owgraphy, Phase Doppler Anemometer...etc.) and tradi-
tional sieving methods [5]. The strategy is to use these
more accurate and non-intrusive optical diagnostics to
build more precise models that could eventually be used
on the real case.

As far as atomization modelling is concerned, recent
advances on the modelling of this topic, mostly concerns
the influence of ligament intermediate in the fragmenta-
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tion process [6], though not really new (see [7] for in-
stance). The main result of the authors, here, is that it
leads to a Gamma distribution of the daughter droplets.
However, no leads to how-to compute parameters of the
Gamma distribution has been found in the general case
up to now. This seems to compete with Kolmogorov anal-
ysis [8] leading to log-normal distribution which has been
recently modernized [9–12]. In this case also, the com-
putation of the parameters in the general case is difficult
though some models do exist. Last, competition between
classical instabilities such as Rayleigh-Taylor instability
(often associated to bag-breakup) or Kelvin-Helmholtz
instabilities (often associated to boundary layer strip-
ping) is known to be fundamental, at least near the in-
stability threshold. This led to quite intricate models
such as [13] which are still used nowadays in commercial
Computer Fluid Dynamics codes. There are however a
large quantity of other instability models that pertain to
this field (see for instance [14] for a partial review).

In the wake of these works, Rimbert & Séro-Guillaume
[11], developed an extension of Kolmogorov’s work to
log-stable law and applied it successfully to high-Weber
number (third party) spray Mass Probability Distribu-
tion Function (PDF). These laws are generalizations of
log-normal laws and are sometimes known as universal
multifractals [15, 16]. However, in this first work, the pa-
rameter were fitted and no explanation about their value
was given. Building on Kida's work [17, 18], Rimbert [19]
gives a possible explanation (self-avoiding vortex tangles
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related to angular momentum conservation) for the im-
portance of log-stable law in the modelling of fine-scale
structure of turbulence, but most importantly, also gives
a way to compute several parameters of the dissipation
distribution. This allows Rimbert & Castanet [20] to pro-
pose a model to compute the fine-size droplet PDF in a
fan-spray based on the following assumptions: (i) insta-
bilities do govern the triggering of the fragmentation pro-
cess and the size of the largest fragments; (ii) formation
of the final droplet is mediated by transitory ligament-
shaped blobs of liquids; (iii) final size of the droplet is
governed by interaction of the ligaments with surround-
ing turbulence. This results in a fine-size droplet Num-
ber PDF that can also be approximated by a log-stable
law. There is therefore a discrepancy between these two
approaches, [11] presents a self-similar Mass PDF cas-
cading mechanism valid for high Weber number while
[20] presents a turbulent re-agglomeration mechanism of
small ligaments valid for intermediate Weber number and
leading to a Number PDF.

The purpose of present work is to show how both these
previous models allows for the computation of the droplet
PDF in present liquid-liquid case. The large size PDF has
been found to be mainly driven by large scale instabilities
in a successive manner: first Entov & Yarin bending in-
stability [21] and then more classically Rayleigh-Taylor
instability. However, small scales, sensitive to turbu-
lent agitation, seems also governed by a re-agglomeration
mechanism. It will also tentatively show how to compute
all the relevant parameters of the distributions.

II. EXPERIMENTAL SET-UP

The experimental set-up is a modification of the drop-
on-demand set-up used in Hadj-Achour et al. [5], himself
derived from Amirzadeh et al. [22]. The liquid metal
injector is represented on figures 1 and 2. It uses Field's
metal, a eutectic alloy of Tin, Bismuth and Indium,
whose melting temperature is 62◦C. The temperature of
the melt (85◦C) is kept by a double-boiler (”bain-marie”)
technique. The measured density of Field's metal is
7994kg/m3, its viscosity is approximately 10 mPa.s (and
very sensitive to oxidation when tested in a Couette vis-
cosimeter) and its surface tension is 0.41 N/m when com-
pared to water (it has been measured by the ADSA tech-
nique [5]).

The GaLaD (for ”Goutte à La Demande” i.e. Drop-
On-Demand) experimental setup (cf. figure 1) has been
modified to include an electro-magnet (cf. figure 2) that
allows for the opening of the stem-valve for a longer time
thereby generating a jet (henceforth named JaLaD for
”Jet à La Demande” i.e. Jet-On-Demand). The velocity
of the jet is controlled by varying the pressure of the
Nitrogen gas-supply. The new set-up as well as the set-
up of the Dantec Phase Doppler Anemometer (PDA) is
shown on figure 3.

The size of the water pool is 50cm×50cm×40cm and is

Figure 1. GaLaD experimental Set-up.

Figure 2. JaLaD experimental Set-up.

heated to 40◦C. This choice stems from the initial liquid
metal temperature set to 85 ◦C. To limit solidification
impact during fragmentation, the pool temperature has
been increased from ambient temperature to the limit
where droplets were still liquid when they touched the
bottom (50 ◦C). Therefore a lower value, of 40 ◦C, has
been used for the pool temperature in most experiments
to ensure that the fragments do not coalesce on the bot-
tom (this value is actually limited by the height (40cm) of
the pool as using a deeper pool would allow for a higher
bath temperature). This corresponds to a contact tem-
perature TC of 75 ◦C, obtained by the following equation
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(neglecting convection),

TC =
ELTL + ECTC
EL + EC

(1)

where EL and EC are respectively the thermal effusivity
(
√
λρCp) of the Field's metal liquid droplet and ambient

carrying water, TC is the ambient carrying water pool
temperature and TL is the Field's metal liquid droplet
temperature. Therefore it can be assumed that the jet
disintegrates in the water but that the droplets solidify
before they hit the bottom of the vessel where they will
be eventually collected to be sieved.

Emission optics

Reception optics

JaLaD

Measurement Volume

Figure 3. JaLaD experimental set-up for liquid metal jet into
water.

As mentioned, three measurement techniques are used
to study the jet disintegration. The first technique is
high speed shadowgraphy. Imaging is obtained thanks
to a LED back lighting (PRIOLITE LED 400 equivalent
to 400W halogen light) and a phantom V701 high speed
camera. The second is a Dantec PDA system whose con-
figuration is given on table III. The third system is the
simpler: it consists in a Retsch vibratory sieve shaker AS
200 which is used to separate the fragments according to
their size. Each bin is thereafter weighted and the results
recorder (in table II).

A. Non dimensional numbers

The four non dimensional parameters governing the
hydrodynamics of the fragmentation are: the (carrier)
Weber number We, the Ohnesorge number Oh,

We = WeC =
ρCU

2
0D0

γ
, Oh =

µL√
D0ρLγ

, (2)

the density ratio ρR and the viscosity ratio µR,

ρR =
ρL
ρC

, µR =
µL
µC

(3)

where ρ is the density, µ is the dynamic viscosity, γ is
the surface tension, D0 is the jet nozzle diameter and U0

the jet initial velocity; subscript C indicates the property
of the carrier phase (water) while subscript L indicates
the property of the liquid metal phase (Field's metal). In
the present case, the Weber number is the main hydro-
dynamic parameter.

Other important non dimensional parameters can be
deduced from the four above, they are: the Reynolds
numbers (for the carrier and the liquid)

ReC =
ρCU0D0

µC
, ReL =

ρLU0D0

µL
(4)

and the liquid Weber number

WeL =
ρLU

2
0D0

γ
. (5)

Note that Oh =
√
WeL/ReL.

B. High Speed Shadowgraphy

Figure 4. Shadowgraph images for D2P6 experiment.

Figure 4 shows a sample shadowgraph. The pressure is
imposed in the gas tank and measure of the tip penetra-
tion speed gives us an estimate of the jet velocity U0. Ta-
ble I indicate the four different experimental conditions
for the combined shadowgraph/sieving experiments.

Test D0 Pressure U0 (m/s) We Oh SMD/D0

D2P6 2 mm 6 bar 2.3 26.45 0.47
D2P10 2 mm 10 bar 2.8 39.2 0.29
D5P6 5 mm 6 bar 4.3 225 0.15
D5P10 5 mm 10 bar 4.8 281 0.11

Table I. Experimental conditions for the high-speed shadowg-
raphy and the sieving experiments.
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We 20 µm 50 µm 100 µm 500 µm 1 mm 2 mm Total
26.45 0.3 g 0.9 g 10.9 g 34.7 g 60.7 g 13.4 g 120.4 g
39.2 0.6 g 1.2 g 24.7 g 59.2 g 23.9 g 45.8 g 132.9 g
225 0.4 g 1.7 g 15.5 g 23.2 g 60.7 g 30.6 g 132.1 g
281 1.1 g 2.4 g 19.2 g 33.0 g 57.3 g 11.6 g 124.6 g

Table II. Mass measurements by sieving. Note that the 100
µm sieve corresponds approximately to the resolution of the
high-speed camera

C. Sieving Results

Table II indicate the resulting of the sieving of the so-
lidified fragments for four separate cases (summarized by
their Weber number) and the corresponding Mass PDF
is given on figure 5 (Note that it is the Mass PDF for
the logarithm of the diameter 1

Mtot

dM
dlog10(D) that is rep-

resented).
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Figure 5. Mass Distribution

The values of Sauter Mean Diameter (SMD) given in
table I are computed from table II using equations (6).

SMD =
1

Ns∑
i=0

xi/D̄i

(6)

where xi is the mass fraction of sieve number i and
D̄i = Di+Di+1

2 is the average bin sieve diameter and
Ns the number of sieves used. Note that for the largest
(2mm) sieve, the i+1th sieve size has been set to 1.8×D0

to account for droplets eventually generated by Rayleigh-
Plateau instability. This has low impact on the SMD
which gives more weight to the small droplets however.
Figure 6 shows the evolution of SMD/D0 ratio with We-
ber number. There appears to be a scaling

SMD

D0
∝We−1/2 (7)

This suggests that Rayleigh-Taylor instability may have
its part to play in the present fragmentation mechanism.
This is, however, left to next section.
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Figure 6. Sauter Mean Diameter as a function of Weber num-
ber

As in [5], equation (8)

C =
1

12

ρC
ρL

D0

SMD

1

We
(8)

gives an estimate of the ratio between surface energy cre-
ated during fragmentation to the kinetic energy of the
spray. This ratio is given in percentage on figure 7 and is
quite low, showing that powder production would need a
lot of energy in this setup.
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Figure 7. Kinetic to surface energy conversion ratio C as a
function of Weber number
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D. PDA Measurements

In order to study the small scale dynamics, we decided
to use a Phase Doppler Anemometer that allows for the
measurement of the joint size-velocity distribution. The
number of bins in the PDF can be selected arbitrarily and
we should have therefore a more precise determination of
the shape of the PDF. However as it is based on droplet
counting, this leads now to a Number PDF.

Parameter Value
Green laser wavelength 514.5 (nm)
Blue laser wavelength 488 (nm)

Laser Beam Waist Radii 1.35 (mm)
Distance between separated laser beams 60 (mm)

Emission focal length 1200 (mm)
Reception focal length 500 (mm)

Observation angle 80◦

Measurement angle (between beams) 0.05◦

Green measurement volume 23.3mm × 0.58mm
Blue measurement volume 22.1mm × 0.55mm

Table III. Configuration of the Dantec PDA system.

Due to the opacity of Field’s metal, the PDA system was
set in reflection mode. Unfortunately, it was not possible
to use the 2mm and 5mm nozzle quantitatively in the
PDA case, as they resulted in too short jets. Actually as
JaLaD experiment is a converted drop-on-demand appa-
ratus, it can only contain roughly 120g of liquid metal.
Therefore, it empties quite quickly and a 1 mm nozzle was
needed for this special case to make the jet last longer.
Also related to small size of the container and the impos-
sibility to make long sample, the setting of all parameters
of the PDA (cf. table III) was previously done using glass
beads in order to simplify the process. Injection pressure
was set to 6 bar. The results in an injection velocity close
to 2.5 m/s and a jet Weber number close to 15 and a car-
rier Reynolds number equals to roughly 2500 (as stated
we had to slow down the jet to increase the experiment
duration and reach a representative sample size). Figure
8 shows the joint size - vertical velocity PDF that has
been measured out of 10,000 droplets. The measurement
point is located 10cm below the nozzle (i.e. 100D0) and
1cm off axis. It can therefore be supposed that all the
atomization process has stopped when the droplets are
caught in the measurement volume. It is interesting to
see that all the droplets seem to have the same velocity
(close to 1m/s, cf. figure 9) independently from their size
when this happens. It can also be seen that the fluctu-
ations around this average velocity are great and can be
evaluated to be also of the order of 1 m/s (therefore gen-
erating 100% turbulence intensity as usual in turbulent
jets).

As their vertical velocity seems to be constant and in-
dependent from their size, it is therefore possible to com-
pute the marginal size PDF of the droplet independently

Size-Velocity binning (Number)
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Figure 8. Size - Vertical Velocity measurements obtained from
the PDA analysis. Measurement point is located 10cm below
the injector, 1cm slightly off axis.

from their velocity. This is what is done on figure 10.
Note that the cut-off of the PDA related to the shape of
the measurement volume can be evaluated to be around
565µm if taking the average of the green and blue bands
(cf. table III. Note that log10(0.565) = −0.25 if reported
on figure 10) while the measurements can be estimated
to be precise until 316µm (log10(0.316) = −0.5).
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Figure 9. Number of droplets collected by the PDA according
to the logarithm of their size. We ≈ 15
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Figure 10. Number of droplets collected by the PDA accord-
ing to the logarithm of their size. We ≈ 15

III. MODELING OF THE EXPERIMENTAL
RESULTS

A. ”Direct Cascade” on Instability Scales

1. Possible Instability Mechanisms

We λEY /D0 λKH/D0 λR/D0 λT /D0 η/D0 ε(m2/s3)
26 0.37 0.411 0.2 0.0351 1.8 × 10−3 6083.5
39 0.35 0.277 0.135 0.0261 1.5 × 10−3 10976
225 0.22 0.047 0.023 0.0055 4.48 × 10−4 39753
281 0.21 0.038 0.018 0.0047 4.12 × 10−4 55296

Table IV. Instability and turbulence characteristic length
scales in the experiments

In this section, we propose to review some classical in-
stability mechanisms and compare their most amplified
wavelength to the size of the fragment hoping to be able
to identify the underlying mechanisms. This is then ex-
tended to classical turbulence length scales. Therefore,
the following characteristic length scale are computed:
firstly, the wavelengths associated to the planar Kelvin-
Helmholtz (cf. equation (9).

λKH =
3πγ (ρC + ρL)

U2
0 ρCρL

(9)

Secondly, Rayleigh-Taylor instability most amplified
wavelengths [23] are given by equation (10).

λRT = 2π

√
3γ

g (ρL − ρC)
(10)

where g is gravity acceleration. This results in a mag-
nitude of λRT ≈ 2.6cm which can be ruled out (except
maybe at the tip of the jet (cf. figure 4 for t = 140 ms).
Acceleration g could replaced by the jet deceleration but
its value is not easy to determine precisely (being a sec-
ond order time derivative of the jet position, it gives very
noisy results) and is therefore not included here (but this
idea will be used in the following).

Thirdly, in order to address quickly Sterling & Sleicher
[24] or Lin & Kang [25] instability theory in cylindri-
cal coordinates (that therefore involves Bessel functions,
wind effect and the viscosity of the liquid), Reitz [26] de-
veloped an algebraic formula that interpolates efficiently
Sterling & Sleicher results and allows for quick computa-
tions. It reads

λR
D0

= 18.04

(
1 + 0.45Oh0.5

) (
1 + 0.4T 0.7

)
(1 + 0.87We1.67C )

0.6 (11)

where

T = Oh
√
WeC (12)

Results from Reitz, Sterling & Sleicher or Lin & Kang
are, as expected, quite close and only values using Reitz
method are actually reported here. Note that they pre-
dict wavelengths roughly half the value of planar Kelvin-
Helmholtz instability as can be seen on table IV, showing
that 2D axisymmetric correction has some importance.

Fourthly, Entov & Yarin [21] developed a slender jet
analysis of the fragmentation mechanism where the jet
is assumed to be a linear body submitted to a force and
a torque generated by the surrounding fluid allowing for
the bending of the jet. This leads to the following maxi-
mum amplified wave-number kEY

kEYD0 = 2

(
2

9

ρLD
2
0

µ2
L

(
ρCU

2
0 −

2γ

D0

))1/6

(13)

Lastly, it is also interesting to compare these length
scales with characteristic turbulent length scale. However
the average turbulent kinetic energy dissipation rate ε is
needed. It is estimated as usual [27] through equation
(14)

ε ∼=
u′3

Lint
, (14)

where u′ represents the fluctuating velocity around the
statistical average (using Reynolds decomposition). This
allows for the computation of Taylor's characteristic
turbulent length scale and Kolmogorov's length scale
through equation (15) and (16).

λT =

√
20ν

k

ε
(15)

η ∼=
(
ν3

ε

)1/4

(16)
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In either eq. (14) or eq. (15), the kinetic energy of
turbulence k is computed assuming that u′ ≈ U which is
usually assumed true for turbulent jets (and in agreement
with the PDA results).

Table IV summarizes the results of such order of mag-
nitude computations. It can be seen on figure 5, that
most of the mass is located in the range [0.2, 0.5], showing
that Entov & Yarin instability is the most likely candi-
date to explain the initial mass transfer along new scales
in this fragmentation experiment. Actually, turbulence
scales are so small that they do not seem to have an influ-
ence on the mass distribution at these Weber numbers.

2. Fitting the Mass Distribution

It can be seen on figure 5 a fit to the mass distribution
with a log-stable law.

1

Mtot

dM

dlog10(D)
↪→ pα(x;β, σ, δ) (17)

Let us recall that Lévy stable laws are defined from their
Fourier transform [28]:

”A random variable X is said to have a stable distri-
bution denoted pα(x;β, σ, δ) if there are real parameters
0 < α ≤ 2, 0 < σ, −1 ≤ β ≤ 1 and δ such that its
characteristic function has the following form:

p̂α(k;β, σ, δ) = exp (ikδ − σα|k|α [1 + i(sign(k))βω(|k| , α)])
(18)

where

ω(|k| , α) =

{
tan(απ/2)ifα 6= 1
−(2/π)log |k| ifα = 1

(19)

”
Simply put, the four parameters are respectively, α,

the stability index governing the tail of the distribution,
β the skewness parameter governing the symmetry of the
law, δ the shift parameter governing the position of the
maximum of the distribution and σ the scale parameter
governing the width of the distribution. Gaussian laws
are special cases of Lévy laws with parameter α = 2, β
being indifferent, δ being the average and σ the stan-
dard deviation. Except in the Gaussian case, Lévy laws
are not square integrable, the standard deviation can-
not usually be defined, hence the name scale parameter.
Note that present modeling generalizes log-normal laws
and not Gaussian laws as it is applied to the distribution
of the logarithm of the diameter and not directly to the
diameter. Rimbert [19] shows theoretically that the value
that should be used to describe turbulence intermitten-
cies are α = 1.7, β = −1 (note that the distribution are
said ”totally skewed to the left” when β = −1). In order
to keep the number of fitting parameters low, this value
β = −1 has been kept as it is the only value that leads
to finite moments of all positive orders. Moreover the
value α = 1.7 is related to angular momentum conser-
vation and it has also been chosen to consider it set to

this value. Therefore only the shift parameter and the
scale parameters need to be fitted. The shift parameter
has been set so that the maximum of the log-stable dis-
tribution coincides with the experimental PDF leading
to the value δ = −0.55 for the We = 281 case. Lastly
the scale parameter has been varied leading to the value
σ = 0.24. It therefore seems that log-stable distribution
are adequate to describe the mass distribution in this
intermediate Weber number spray.

3. ”Computing” the Mass Distribution

The goal of this section is to tentatively show how these
two fitting parameters can be computed. Using equation
(13), it can be seen that for the We = 281 case, the ratio
λEY /D0 equals 0.21 whose decimal logarithm is -0.67
close to the value used in the fit for the shift parameter δ.
However, there is a stretch from comparing a wavelength
and a final droplet size, so we will let this approximate
result pending, for so far...

In order to compute the scale parameter, we have to
consider that it sets the size of the ”multiplier” in the
cascade model and hints are that the first step should be
governed by Entov & Yarin instability while the last step
should be governed by Rayleigh-Taylor instability. The
hint for this last assertion can be found on the scaling
for the SMD/D0 ratio of figure 6 is close to what can
expected from Rayleigh-Taylor instability (cf. equation
(23)). Let us review this more thoroughly: we consider a
secondary droplet, whose diameter will be assumed to be
D1, and supersede its deceleration f = dUr/dt (where Ur
is the relative velocity between the droplet and the sur-
rounding fluid) to the gravity acceleration g in equation
(10), using the classical approximation

πD3
1

6
ρL
dUr
dt

= −ρCy2
πD2

1

4
CdU

2
r (20)

where y is the droplet extension due to its deformation
by the flow (cf. [29] for instance) which yields

f ≈ 3

2

ρC
ρL

y2

D1
CdU

2
0 (21)

assuming Ur ≈ U0. We then get

λRT
D1
≈ π 1

y

√
16γ

CdρCU2
0D1

(22)

or

λRT
D1
≈ π 1

y

√
8

CdWeD1

(23)

Now assume that D1 ≈ λEY , this leads to

λRT
λEY

≈ π

y

√
8

CdWeλEY

=
π

y

√
8

CdWe

√
D0

λEY
(24)
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Note that it is an important step in this ”cascade” mod-
eling: instead of computing the wavelength of Rayleigh-
Taylor instability on the jet diameter, it has been cho-
sen to use the Entov & Yarin primary instability wave-
length, thereby generating a (simplified) instability cas-
cade mechanism. Assuming y = 2 and Cd = 1.3 (like in
[20] except that here the drag coefficient of a flat plate is
used), this leads for the We = 281 case to

λRT
λEY

≈ 0.55 (25)

Now we make the hypothesis that the size of the step is
given by

σ = Log10(
λRT
λEY

) ≈ −0.25 (26)

and the result is close to the value obtained by fitting the
width of the distribution. Note that idea of relating some
parameters of the self-similar fragmentation equation to
the ratio of instability wavelengths, seen has the first
step of the ”cascade”, has been previously attempted by
Gorokhovski et al. [30] taking inspiration from the work
of Varga et al. [31]. It concerned only Kelvin-Helmholtz
and Rayleigh-Taylor instability however (which we at-
tempted here without success).

We can try, now, to improve our estimate of the shift
parameter δ. First, we can assume that the droplet size
D1 obtained from the Entov-Yarin step should be given
by

πD2
0λEY
4

=
πD3

1

6
(27)

assuming volume conservation between an unstable cylin-
der and a daughter spherical droplet, which leads to

D1

D0
= 3

√
3

2

λEY
D0
≈ 0.68 (28)

Then assuming bag breakup in the Rayleigh-Taylor step,
it can be assumed that first, 75% of the droplet volume
goes into the ring droplets [20], once rearranged, these
droplets are half the size of the initial ring volume (gen-
erating around 8 main daughters on the average), so

D2

D1
≈ 1

2

(
3

4

) 1
3

≈ 0.45 (29)

Therefore the shift parameter can be assumed to be

δ = Log10(
D2

D0
) ≈ −0.51 (30)

closer to the value obtained by fitting the PDF than our
initial guess.

To conclude this part, it seems that the log-stable Mass
PDF that has been found as an asymptotics to the self-
similar fragmentation is also valid in this two-step cas-
cade model (Entov & Yarin and Rayleigh-Taylor). Actu-
ally the self-similar fragmentation equation is also known

in chemical engineering as the homogeneous fragmenta-
tion equation (see [32] for instance) without resorting to
self-similarity arguments. This may explain why, in this
low Weber number case, the asymptotic result may still
be valid whereas the ”cascade” is actually quite short as
two steps are only required and high-speed video footage
do not show droplets breaking up again and again. Last,
let us precise that it was not possible to use this model
for the We = 39 case or lower as equation (24) leads to
value greater than one for the ratio between Rayleigh-
Taylor and Entov & Yarin wavelengths and there should
be, therefore, no second step. Likely the We = 225 case
gives value too close to the analyzed case to be of inter-
est. Moreover, though this part is entitled ”Computing”
the distribution, either the value of y or Cd (or both) can
be seen as fitting parameter(s) in the end (though the
values used are in the appropriate range).

B. ”Inverse Cascade” on Turbulent Length Scale

Though the smallest droplet does carry only a slight
part of the whole mass of the spray, they are quite nu-
merous. Moreover their size may be compatible with
turbulent length scale computed on table IV.

The log-stable model developed in [20] is a re-
agglomeration process of the ligaments driven by the
turbulence generated in the carrier phase. As such it
can also be seen as an ”inverse cascade” model as it ul-
timately generates scale larger than smaller size of the
initial ligaments. Result of this model is shown as a blue
line on figure 10.

In this model, the scale and shift parameter of the
Number log-stable PDF, σlnd and δlnd, can be computed
from the turbulent length scales using first equation (31)
and then equations (36) and (37). Equation (31) allows
to compute the scale parameter σlnε of the turbulence
dissipation log-stable PDF.

σαln ε = ln
λT
η

= 3.43, (31)

where α still equals 1.7 and Taylor and Kolmogorov scales
have been previously defined in eq. (15) and (16). Tur-
bulence dissipation rate and length scales are estimated
by eq. (32,33,34).

ε ∼=
u′3

Lint

∼=
13

1.10−3
∼= 1000m2/s3 (32)

λT =

√
20ν

1, 5

1000
' 173µm (33)

η ∼=
(
ν3

ε

)1/4

∼= 5.6µm (34)
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Let us note that Log10(0.173) = −0.76 while
Log10(0.0056) = −2.255. These values correspond re-
spectively to the mode and the low end of the blue
PDF depicted on figure 10. Also note that the Kelvin-
Helmholtz wavelength and other instability related wave-
lengths are not in the PDA measurement range as, for
instance:

λKH = 3π
0.41 (1000 + 7994)

2.52 × 1000× 7994
≈ 695µm (35)

and Log10(0.695) = −0.15.
The shift and scale parameter of the distribution can

be computed using

δln d = Log10

(
λT
D0

)
= −0.76 (36)

σln d =
1

2
σln ε =

1

2
(3, 43)

1
1.7 ≈ 1.0 (37)

Figure 10 shows the result of the superposition of Lévy
stable laws with parameters α = 1.7, β = −1, δ = δlnd,
σ = σlnd. No fitting is made and only the vertical axis
(i.e. the number of droplets obeying to the proposed law)
is varied. More details of the model can be found in [20].

IV. CONCLUSION

In this work, it has been shown, by sieving solidi-
fied fragments, that for a moderately low Weber num-
ber spray, the mass distribution follows a log-stable law.
These laws were introduced [11] as asymptotic solution
to the self-similar fragmentation equation. This equa-
tion is usually believed to be a mathematical transla-
tion of the recurrent ”cascade” models (stemming from
Richardson’s idealization of turbulence) whereas, in the
present case, the cascade seems to be far from devel-
oped: no drops seems to divide more than once or twice
on the video footage that we examined. Nevertheless, it
seems possible to compute all the parameters of the dis-
tribution (or rather an approximation of their value) by
considering a self-similar cascade of instability: the first
step being given by Entov & Yarin bending instability
and the second step being given by Rayleigh-Taylor in-
stability. This is valid however only for the large scales
(i.e. droplet size) that contains most of the initial mass.
These scale are much larger than the characteristic tur-
bulent length scale of the jet.

To look at the small scale sensitive to turbulent agita-
tion, we had to slow down the jet and use a phase Doppler
anemometer. The resulting Number PDF still seems to
follow a log-stable law but only from the Taylor scale
to the Kolmogorov scale. The process at works being a
process of turbulent re-agglomeration of the smallest lig-
aments, it has been described as an ”inverse cascade”.
Note that, in the present case, while it concerns a huge
number of small droplet, their mass is completely negli-
gible.

It therefore seems that turbulent atomization seems to
be a competition between several processes. This may
explain the lack of universality observed in this field of
study as the process may vary from one spray system
to another (it is quite likely that air-blast atomizers are
more sensitive to Kelvin-Helmholtz like instability than
to Entov & Yarin bending instability for instance, or that
swirl should have an impact...etc.). Moreover, it seems
that, in present study, we have been lucky to observe
sufficient scale separation between these effects; but this
may not always be the case.

Lastly, due to the limited number of experiments and
the difference in the experimental methods used (sieving
vs. phase Doppler velocimetry), it has not been possi-
ble to precisely measure the competition (i.e. the mass
ratio) between the ”direct” and the ”inverse” cascade
to determine, experimentally, for instance, predominance
regimes. This will need however a whole new (and larger)
experimental setup (currently under development) that
will allow to reach higher Weber numbers while main-
taining converged statistics.
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