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Abstract  

Reducing carbon emissions and electricity costs in industry is a major challenge to ensure competitiveness and compliance with new 

climate policies. Photovoltaic power offers a promising solution but also brings considerable uncertainties and risks that may endanger 

the continuity and quality of supply. From an operational point of view, large-scale integration of solar power could result in unmet 

demand, electrical instabilities and equipment damage. The performance and lifetime of conventional fossil equipment are likely to 

be altered by repeated transient operations, making it necessary to adopt specific modeling tools. Control strategies and sizing 

methodologies must be adapted to account for the strong reliability constraint while dealing with significant production uncertainties. 

In addition, conventional mitigation technologies, such as storage and load flexibility, have limited potential in these applications and 

may result in high investments or penalties if they are not properly assessed. This study provides an overview of these challenges by 

providing a transversal analysis of the scientific literature from fossil engine thermodynamics to control system theory applied to 

industrial systems. The main characteristics of reliability-constrained microgrids are identified and a conceptual definition is proposed 

by analyzing state-of-the art studies of various industrial applications and taking oil-and gas microgrids as an enlightening example. 

Then follows a review of the challenges of accounting for dynamical behavior of fossil equipment, PV and storage systems, ending 

with the identification of several research gaps. Finally, applicable control strategies and sizing techniques are presented.  
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• The concept of industrial microgrids is defined and existing applications are reviewed. 

• The challenges of dynamical modeling of fossil generation and PV systems are presented. 
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1 Introduction 
The beginning of the 2020 decade, subject to a combination of climate change mitigation and poverty 

alleviation, faces the world with a double challenge that needs to be tackled as fast as possible [1], [2]. 

Establishing an efficient low-carbon industry is a priority to support socio-economic development while 

meeting Paris Agreement targets.  

In 2016, the industry sector accounted for 36% of global CO2 emissions, mainly due to its high energy-

intensive processes [3]. The IEA continues to highlight that power facilities operating with low-carbon 

electricity constitute one of the three main levers to achieve a sustainable transition [4].  

Facilities located in developed countries can substantially reduce their GHG emissions using process 

electrification with green electricity purchase agreements [5]. However, in numerous applications, plants are 

either connected to an unreliable grid or totally isolated from it [6]. In these applications, microgrids will play 

a key role. 

One of the main advantages of microgrids is undoubtably the ability to manage renewable energy resources 

as well as storage and conventional fossil generation to ensure the right trade-off between costs, reliability and 

sustainability [7], [8]. Microgrids now cover a wide variety of uses, from grid-connected systems able to sell 

and buy electricity depending on the market price, to robust and isolated systems ensuring continuous power 

for mining or military facilities. Examples of such systems can be found in [9] and [10]. 

Microgrid studies mainly focus on either investment planification or operational management with an 

optimization philosophy in order to find a compromise between three main objectives [11]: providing 

electricity at the lowest cost or carbon footprint possible; ensuring the safe supply of electricity to deliver all 

consumers at the required time; and guaranteeing the quality of supply at the delivery point. 

This optimization paradigm is the cornerstone of a microgrid’s performance, from early developments to the 

plant’s real-time management, and must be able to handle phenomena that take place at various time-scales. 

The long-term planning (or sizing) of micro-grids involves several development steps and aims at finding the 

optimal architecture to optimize the plant in the long run (typically 20 years) [12]–[18]. Energy management 

aims at balancing energy flows between producers and consumers. Different strategies may be used to 

minimize the costs under constraints of reliability or environmental footprint. This is typically carried out 

within intervals of 10 minutes to several days [19]–[21]. Controlling power ensures good quality of supply and 
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safe operation, and prevents large fluctuations and instabilities by balancing power flows in real time. This is 

generally assessed with a timescale from a few milliseconds to seconds [22]–[24]. 

Due to the relatively small size of microgrids compared to utility grids, their sensitivity to power fluctuations 

is significantly increased, with the result that developers now have to account for power dynamics, flexibility 

and production uncertainties [25], [26]. Since microgrids are local energy systems, technological choices may 

differ from one user case to another, such as commercial, residential, military or industrial plants. Unlike for 

commercial and residential applications, the literature only scantly covers industrial microgrids [27], [28]. 

However, specific constraints on industrial power systems modify the above-mentioned optimization 

paradigm and call for a deeper understanding of the dynamic behavior of their components, such as 

renewable systems and fossil generation. This brings considerable research challenges to the microgrid field 

involving numerous problematics, varying from classic control system theory to fossil generator 

thermodynamics and renewable resource signal treatment. 

1.1 The concept of industrial off-grid microgrids 

1.1.1 General definition 
It is difficult to establish a proper definition, since needs, size and resources may substantially differ from one 

case to another. Based on a review of existing projects, studies and industrial surveys, it is possible to propose 

some general characteristics: 

- Size: The installed power capacity or total load served generally exceeds several hundreds of kW 

(and kWh) and often reaches several MW (and MWh). 

- Types of consumer: Consumers are mainly operators of industrial equipment such as electric drivers 

for torque production, pumping and compression. The proportion of resistive load may be slightly 

lower than on the residential microgrid. The daily profile follows the production schedule and 

therefore differs significantly from a residential and tertiary load profile. 

- Ownership and operation: The generating units and transmission system within the industrial 

microgrid can be financed, owned and operated by different entities, but assets are rarely separated 

or managed individually. Consuming equipment is considered as a single client.  

 

Table 1 Examples of studies and projects focusing on industrial microgrids 

Reference [29] [30] [31] [32] [33] [34] 

Application Mining Offshore 

oil 

Industry Industry Water 

treatment 

Manufacturi

ng 

Energy Electricity Electricity Heat/ 

Electricit

y 

Electrici

ty 

Electricity Electricity 

Power 26 MW 40 MW 14 MW MW-

scale 

3.2 MW 20-40MW 

On grid/ off grid Off-grid Off-grid On-grid Not 

specifie

d 

On grid On grid 

Renewable 

resource 

Solar Wind -  Wind – 

Solar 

Wind Solar Wind Solar 
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Fossil generation Diesel CCGT
†

 Not 

specified 

Diesel Diesel - 

Storage - - -  -  -  Yes 

Comment Installed 

plant 

Study Study Study Study Study 

 

1.1.2 Reliability as a watchword for planning and operation 
 

It is needless to say that ensuring the continuity of electricity supply is a matter of profitability for industrial 

facilities, but it can also be a matter of safety. Loss of electricity supply can cause leakage in pipes, tanks and 

even process bolting in reactors. This is confirmed in numerous accident reports (such as [35]), proving that 

the power system must be resilient and carefully designed. 

The reliable design of power systems has been extensively covered in [36] with definitions of concepts as well 

as golden rules for planning, operation and maintenance. The overall reliability of a power plant refers to its 

ability to continuously supply electricity. Power plant unavailability causing electricity outage is mainly due to 

(1) the unavailability of power producers, (2) their disconnection due to electrical instability or (3) the loss of 

the whole grid supply after a large instability. 

To ensure a power plant’s highest availability,  the mean time between failures of power suppliers and the 

mean time to recover normal operation must be evaluated [37]. One part of the problem consists in 

optimizing the maintenance planning of each power device. However, unplanned events, measured by the 

failure rate of equipment (probability of unexpected loss), need to be minimized. In conventional fossil-based 

systems, the major risk is fossil generator breakdown, but the integration of PV systems introduces new 

parameters into the reliability assessment: 

- Risk of equipment failure in the PV power plant (PV strings, inverters) 

- Loss of transmission system (lines and converters) between the main bus and the PV plant. 

Additionally, PV power fluctuations due to cloud passage can cause considerable power quality fluctuation 

that has the same impact as loss of equipment. This is a new aspect in the reliability assessment as it is not 

related to the reliability of the equipment, but to the site’s weather conditions. This will therefore be addressed 

in detail in this paper. 

When such events occur, load shedding can be triggered to maintain frequency and voltage (see part 3.1.1),  

which impacts the profitability of the system since some equipment is not fed. However, if the system becomes 

unstable, generators and load may disconnect in cascade to protect themselves from overspeed, leading to a 

complete blackout of the system [38] and therefore potentially an industrial accident. Figure 1 illustrates the 

reliability aspects of industrial microgrids. 

                                                      
† Combined Cycle Gas Turbine 
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Figure 1 Summary of reliability aspects of industrial microgrids from risks to consequences. 𝜆 refers to the failure rate (see [36]) 

and 𝛥𝑃 refers to the probability of power variation in the equipment. 

If the facility is connected to a stable grid, switching from off-grid to on-grid configuration may be sufficient. 

However, both in weak-grid (subject to outages) and off-grid configurations, the continuity of supply relies 

only on the self-producing capacity of the plant [39], [40]. This motivates integrating redundancy constraints 

in fossil generation planning [41] and installing storage capacity to boost the flexibility of the plant. The 

reliability challenges of integrating more and more renewable resources into large-scale systems have been 

covered by island microgrid studies [42] such as those performed for the islands of La Réunion [43] and El 

Hierro [44]. In [45], [46] it is shown that a stochastic variation of renewable resources and a reduction of the 

mechanical inertia reduce the system’s resiliency to power fluctuations. However, the literature only scantly 

covers this aspect of industrial microgrids, despite the fact that it remains critical for their long-term 

development [47, p. 58], [48]. When planning and operating their systems, developers must now evaluate the 

maximum allowable PV penetration that will still satisfy the reliability target.  

1.1.3 Focus on oil and gas applications 
Oil and gas applications (O&G) offer a wide variety of examples for industrial microgrids, since O&G has 

used on-site isolated electrical generation for decades. Many operating facilities, studies and future projects 

can provide useful feedback on experience, operational data, and even methodological insights. Some key 

characteristics and challenges are shared with numerous other applications, such as hospitals, military 

facilities, high-tech manufacturing (manufacture of electronic chips), and highly sensitive urban areas. 

Due to the level of reliability required and the isolated location of O&G facilities, fossil generation is generally 

the only solution to produce electricity, and this participates in “well-to-wheels” emissions [49]. The increasing 

Risks

Fossil unit
Breakdown
𝜆      

PV component breakdown
𝜆       𝜆    𝜆    

PV cloud passing
 𝑃  

Power imbalance
Frequency and voltage shift

Enough flexibility in the system ? (ramping, 
reserve, inertia and storage) 

yes

No

No impact on power 
supply

Small power variation 
& power quality fluctuations

Cascade disconnection of generators and 
consumers

Limited impact on continuity of supply
Impact on profitability due to partial process interruption

Large power variation
& power quality fluctuations

Partial disconnection of less critical consummers
(load shedding)

Significant impact on continuity of supply
- Large economic impact due to total  shutdown of processes
- Potential safety  issues and industrial accident
- Degradation of equipment (higher future failure rate)

Consumer unit
Breakdown

𝜆    

Consumer load
impact
 𝑃    
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pressure of global warming has led the O&G industry to study renewable integration in its power generation 

units [50].  

Table 2 gives an overview of studies addressing the problem of hybrid fossil-renewable power for O&G. Wind 

integration and offshore platforms are the most widely covered subjects, while fewer studies have addressed 

the problem of onshore facilities and solar PV systems from a technical point of view. The studies highlight 

that electrical instabilities due to renewable resources constitute the main technical limiting factor and that 

storage is generally necessary to allow large-scale integration. Design optimization, such as carried out by [30], 

shows the interest of renewable integration for fuel and CO2 reductions. However, no parametric study 

including storage has been proposed to date and it is expected that the additional capital expenditure would 

reduce the financial benefits. Furthermore, [51] concludes that renewables will impact the fatigue and lifetime 

of fossil generation, which could be a major issue when reliability is a key factor. 

 

Table 2 Review of recent studies addressing O&G microgrids  

Reference [52], [53] [30] [54] [51], [55] [56],[57], [58] 

      

Scope  Upstream & 

downstream 

Offshore oil Offshore oil Offshore oil Offshore oil 

Energy Electricity, Heat Electricity Electricity Electricity Electricity 

Power 

range 

 40 MW 40 MW MW  

On grid/ off 

grid 

 Off-grid Off-grid Both Off-grid 

Renewable 

resource 

Solar  Wind Wind Wind Wind 

Fossil 

generation 

- CCGT CCGT Gas turbine Gas turbine 

Storage  - - Battery Battery 

Focus area Large-scale potential 

for solar 

Method for 

optimizing 

design 

Power quality 

challenges. 

Example with 

Hywind 

project 

Operational 

& energy 

optimization 

Electrical 

stability study 

 

Based on this brief literature review, the following specificities of O&G facilities can be identified: 

• Isolated location: O&G rigs are often located in isolated areas or in developing countries with an 

unreliable grid. Facilities can be located either onshore or offshore. 

• High power demand: The power delivered is rarely below 10 MW and can exceed hundreds of MW. 

• Low fuel price: As the fuel is available on-site and sometimes not valued for business, its financial 

value is very low (until recently, CO2 emissions usually incurred no cost).  

• Proportion of torque, electricity and thermal demand: except for refineries, which consume more 

heat than electricity, O&G facilities almost exclusively use torque and electricity.  

• Reliability and quality specifications: Strict limitations are established for frequency and voltage 

fluctuations as well as equipment availability. 
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• Low load flexibility: For safety and economic reasons, demand must be met at all times and no shift 

in load can occur during the day due to unavailability of renewable resources.  

• Fossil generation to ensure continuous power: The architecture features gas turbines or internal 

combustion engines with redundancy constraints to prevent generator loss from causing a system 

failure.  

This overview shows the interest of O&G microgrids to identify the challenges and to highlight success stories 

of other industrial applications in isolated areas. In a research perspective, O&G microgrids provide 

interesting case studies and make it possible to compare results and validate them in a similar environment 

before considering their adaptation to other applications.  

1.2 Research challenges and paper summary 
From the review presented above, the following research challenges are identified: 

- Due to their relatively small size compared to large grids, industrial power systems are more 

vulnerable to electrical instabilities[54]. However, industrial facilities cannot afford unplanned 

blackouts and electricity shortages. This calls for the development of a method to ensure an 

equilibrium of active and reactive power with a high degree of reliability.  

- Reliability constraints make it necessary to consider unplanned power fluctuations brought about by 

the integration of PV systems. Equipment breakdowns can easily be integrated in the reliability 

assessment process by following the same procedure as fossil generation breakdown. However, the 

impact of short-term stochastic solar variation on continuity of supply is much more challenging to 

evaluate. 

- At short time-scales, the variability of PV power remains subject to significant uncertainties, and is the 

main reason for power imbalances in the grid. Methods for quantifying and forecasting short-term 

ramps are still under development, as well as models that account for the effect of a plant’s geographic 

dispersion.  As the impact of solar variability increases with the penetration rate, accurate models are 

an absolute necessity to reliably plan industrial microgrids. 

- Flexibility levers used to compensate renewable power variations are crucial to ensure grid reliability. 

Storage systems are the subject of increasing investigation, while less attention is being paid to fossil-

fuel technologies due to their apparent maturity. But their response to successive ramps remains 

unknown and may significantly alter their lifetime and fuel consumption. Very few models account 

for their dynamical behavior or integrate it in a long-term assessment. 

- A large number of studies now address the control and management of microgrids to smartly 

interconnect all power devices on the grid. This involves making the right trade-off between economic 

performance and robustness. Reviews of existing technologies should take this point of view in order 

to identify the appropriate strategies to implement.  

This paper intends to contribute to filling these gaps as follows. First, we present research questions related 

to the integration of renewables into reliability-constrained industrial microgrids. For the sake of succinctness, 

only solar-PV applications are covered in this paper. We then provide a review of the short-term dynamical 

assessment of PV systems and fossil generation. Next follows an investigation of real-time control strategies 

that ensure reliability and power quality within industrial microgrids. Fourthly, we  propose a discussion of 

the main findings and compare them with previous literature review studies. The final section concludes and 

suggests future avenues for research. 
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2 Review on power supply technologies 

2.1 The challenge of solar-power variability 
Integrating PV systems in industrial power plants brings additional risks for the continuity of supply and may 

therefore reduce the reliability of the power plant. Reference [59] provides an overview of reliability 

assessment methods for PV inverters, modules, transmission systems, and overall distribution systems based 

on fault analysis. Insights on the impact of aging and weather conditions on reliability over the lifetime of a 

plant are provided in [60], showing that high average ambient temperature is likely to increase failure rates 

(almost 10% after 5 years in the case of a PV system in Arizona against 0% in Denmark). This factor must 

therefore be considered in reliability analyses. In [59], solar variability is mentioned as one of the main future 

challenges for distribution systems; however no insights are given on its impact on reliability. This is why a 

special focus on solar variability assessment is provided in this study. 

Solar photovoltaic (PV) power is traditionally assessed with a quasi-static framework, as only hourly variations 

are of interest for economic evaluation [15]. As previously mentioned, the vulnerability of large-scale isolated 

power systems motivates a study of sub-hourly phenomena that might impact electrical stability. Hence, short-

term variability is a key element to ensure the balance between production and consumption and therefore a 

high level of reliability. Eq. 1 shows the relationship between the power produced by a PV panel and the solar 

irradiance[61]. 

 

 
𝑃  = 𝑃         ∗

𝐺𝐻𝐼𝑝            𝑦

1000
∗ [1 − 𝐾𝜃(𝜃 − 25)] 

Eq. 1 

 

 

where 𝐾𝜃 is the temperature sensitivity coefficient, 𝑃          the rated capacity of the panel in ISO conditions, 

and 𝐺𝐻𝐼𝑝            𝑦 the Global Horizontal Irradiance calculated in the plane of the panel. The actual 

amount of energy collected by the panel will depend on additional factors [62] such as the clearness of the 

sky, the performance of the PV panel (efficiency, temperature sensitivity, aging etc.), shade and fouling due 

to the surrounding environment, etc. However, only GHI variation significantly impacts the system at short 

time-scales. 

Cloud passage is the main contributor to short-term variability and needs to be addressed carefully. Figure 2 

shows an example of solar irradiance variability over two days with a 1-second time-step. 

 

Figure 2 Two irradiance profiles captured with 1-second sampling [63]. 

The following sub-sections will focus on the approaches implemented to explain, measure and forecast short-

term solar variability in order to integrate the risk of power imbalance in an industrial microgrid. 
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2.1.1 Different approaches to address PV variability 
Solar variability affects the irradiance measured by sensors as well as the power produced by one or several 

PV panels. Two time-scales are important for microgrid operation and planning:  

- Solar power range: difference between the minimum and maximum solar power output within a time 

interval (typically 15 minutes to 1 hour). 

- Solar ramps: the change in solar power or irradiance in a short time interval (within the range of the 

sampling interval: 1 second to 1 min) that dispatchable units will have to instantly compensate. 

Solar range and solar ramps are necessary to calculate the amount of spinning reserve, the ramping capacity 

of dispatchable units, and the storage capacity requirements. In high-reliability applications like industrial 

systems, extreme ramp events are also of interest to make a robust assessment. 

A variability indicator to accurately account for perturbations 

It is possible to assess the level of variability over an entire day in order to determine the frequency and 

magnitude of perturbations. The variability index as defined in [64] is the ratio between the length of global 

irradiance series and the length of clear sky irradiance over a defined time interval (the study proposes to 

calculate the variability index over 1 day). In [65], 6 metrics are compared to evaluate the solar variability on 

31 test days. The study proposes a new indicator based on integrating the cumulative density function of solar 

increment. According to the study, these metrics can be used to characterize the variability at both high and 

low frequencies and classify days depending on the perturbations.  

Climate-dependent variability 

Location plays a role in solar variability due to climate type, orography and vegetation (large forests also 

generate clouds during daylight). A solar variability map of the US drawn up using high-resolution production 

data [66] shows significant differences between desertic-arid areas and islands like the Lau islands and Hawaii 

where the highest level of variability is observed. In [67], the author studied the relationship between the 

clearness index and solar variability for locations in different climate zones. The authors concluded that 

climate zone and weather-driven clouds may have less impact on variability that the orography of a site. It is 

expected that the small, fast-moving clouds formed by the relief may have a bigger impact on short-term 

variability. 

Impact on PV systems 

A PV system’s short-term variability is different from the irradiance variability observed from a single sensor. 

In [68] it is concluded that the power profile entirely follows the irradiance profile for time ranges greater 

than 10 minutes. However, short-term variability is affected by the size, shape and distribution of a plant. For 

plants of several megawatts, 1-s, 10-s, and 1-min ramps can be approximately 60%, 40%, and 10% smaller, 

respectively, than those measured by a pyranometer. These results are confirmed in [69] and [70].  

2.1.2 Modeling solar system variability 
Smoothing irradiance data to obtain PV Power 

Since PV power transients are smoother than irradiance transients, considerable work has been done to obtain 

a realistic power output from the data employing a single irradiance sensor. A dispersion factor is used in [71] 

to characterize different types of layout (crowded or spacious), and the irradiance variability is smoothed to 

obtain the power production in several configurations. In [72], this concept is used to calculate the extreme 

ramp rate of a power plant. In [70], the authors proposed a transfer function with empirical coefficients to 

address variability smoothing and compare the results with six multi-megawatt power plants. 
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A Wavelet Variability Model (WVM) is proposed in [73] to obtain a PV power time-series from irradiance 

data. The WVM is compared to three other methods: linear scaling, moving average, and averaging on every 

sensor available. When compared to the 2MW output power, the WVM outperformed the three methods, 

especially when evaluating the maximum ramp rates.  

Modeling solar variability by generating stochastic time series 

Assessing solar variability is a big challenge if no high-resolution irradiance data are available on-site. One 

solution is to generate an irradiance profile based on numerical weather prediction or satellite predictions. In 

[75], methodologies based on Markov chains are proposed to generate irradiance and a clear-sky index 

profile. [76] reproduces high-frequency patterns of historical data to increase the temporal resolution of 

satellite prediction. However, these methodologies require a representative training dataset of high-resolution 

ground measurements, which requires to have closely located sensors available. Recently, [77] paved the way 

for generating 1 min data without ground measurements, but concluded that additional research needs to be 

carried out in order to obtain finer resolution. 

2.1.3 Forecasting of solar irradiance and variability 
Solar forecasting has been a growing topic in recent years since it provides valuable information for microgrid 

operations and is used for various purposes, such as market trading, reserve scheduling, genset planning, and 

storage management [78]. Its potential to optimize battery sizing and lower the LCOE of ramp-constrained 

multimegawatt power plants is highlighted in [79]. Capturing solar variability with forecasts may consist in 

providing either very short-term production estimations or an indicator of the variability to be expected for a 

large horizon (15 mn to 1 h) [80], [81]. As an example, [82] proposes a methodology to estimate the largest 

ramp rate by analyzing cloud shadow velocity and irradiance sensor measurements. 

Satellite irradiance forecasts and numerical weather predictors are now widely used and can be accessed 

online [83]. Due to their large time and space resolutions, a downscaling approach is necessary to predict the 

variability at 10-second or 1-minute scales. Such solutions are proposed in [84]–[86], but due to the 

geographical dependency of the variability, no generic method has been proposed to downscale satellite 

prediction without high-resolution data at the specific location.   

Sky imagers have been developed and commercialized in recent years with the intention of providing very 

short-term predictions for spinning reserve management (diesel load margin, storage capacity, etc.) [87], [88]. 

The development of these techniques will be a key factor of success for the reliable management of industrial 

microgrids. 

Finally, in-situ measurements can enable forecast processing with a very high resolution [89][90]. One 

criticism of this technique is that the sensor network has to map a large area or be carefully placed depending 

on the general cloud cover. If not, clouds may be inaccurately described and, consequently, solar variability 

and ramp events will be misevaluated. 

2.2 Fossil generation 
With the penetration of variable and uncertain renewable power, fossil generation (mainly gas turbines and 

internal combustion engines) is about to dramatically change from a steady-state operational paradigm with a 

fixed load and a well-known production plan to a constantly changing demand subject to stochastic 

perturbation. This obliges manufacturers and users to ensure operational flexibility [91] with an increasing 

number of start-ups, shut-downs and fast load changes, and increases the need for power-quality control. 

Meanwhile, cost-effectiveness, reliability and emission regulations compliance need to be guaranteed.  
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As an example, Northern Ireland has identified the need for flexibility as a major issue for a large-scale 

renewable integration [92]. The potential wind curtailment was assessed using hourly wind ramp analysis. The 

study shows the great potential of thermal generation flexibility for guaranteeing energy balances.  

The main objectives for thermal generation in industrial applications can be summed up as follows:  

1. Adapt the power output to match the power needs. 

2. Provide enough primary response to ensure frequency and voltage stability. 

3. Maintain the highest level of availability when operated in extended transient mode. 

4. Ensure cost-efficiency in the long run with regards to O&M costs and aging. 

5. Guarantee compliance with emission regulations in transient operations. 

As performed in [93], numerous commercial studies attempt to compare fossil generation flexibility for hybrid 

generation purposes. To ensure that such comparisons are creditable and accurate, performance assessment 

needs shift from steady-state, off-design correlations to dynamic modeling at a short time-scale. 

For project developers, making a choice based on a generator’s dynamical performance is not an easy task: 

• Ramp-up capacities are rarely provided by manufacturers for small time-scales (seconds). 

• Manufacturers usually provide ramp-up capacities for fast start-ups and shut-downs, which are meant 

to be occasional.  

• There is no guarantee that the thermodynamic parameters (pressure, temperature, etc.) will remain 

within acceptable limits. 

• No insights are provided on the machine’s performance: fuel consumption, emission, fatigue. 

These reasons call for a deeper understanding of fossil generator dynamics and more detailed modeling. The 

next part presents some theoretical aspects as well as the state-of-the-art on dynamic modeling of fossil assets. 

2.2.1 Gas turbine  

2.2.1.1 Working principles 
Gas turbine (GT) theory has been widely developed in past decades and detailed in a large number of 

references [94]–[96]. GT performance predictions have been one of the main concerns in order to evaluate 

differences between ISO parameters provided by manufacturers and user’s operating conditions. Figure 3 

and Figure 4 show the main components of single-shaft and twin-shaft gas turbines. 

 

Figure 3 Single-shaft gas turbine [94]. 
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Figure 4 Twin-shaft turbine [94] 

As shown in Figure 5, the compressor crosses iso-efficiency lines during transient operation and therefore 

increases the turbine’s fuel consumption and particle emissions and impacts its mechanical fatigue [95, p. 

268]. Acceleration and deceleration are also constrained by surge and flameout limits that need to be taken 

into account to assess the ramping capacity of the turbine.  

 

Figure 5 Compressor transient running line. 

2.2.1.2 Representation of dynamical behavior 
The thermodynamic relationships of the components can be used to simulate the steady-state “off-design” 

points due to part-load operations, special weather conditions, etc. This methodology can be found in the 

literature and is used by commercial software like ThermoFlow [97] and Proosis [98] but only represents 

static conditions. 

The development of dynamic models for the performance prediction of gas turbines is still the subject of 

considerable research. Various methodologies with a growing degree of complexity can be used [99]. 

Computational-Fluid-Dynamics (CFD) models are probably the most accurate, but the level of complexity 

may go beyond the needs of renewable integration studies. Moreover, these models require large computing 

capacities and perfect knowledge of the components’ geometry. 

Some studies propose “black-box” models based on artificial intelligence in order to learn and reproduce the 

behavior of an asset based on operational data [100]. Zero-D (0-D) modeling appears to be a good trade-off 

between a comprehensive approach and complex calculations. Several levels of complexity exist here as 
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detailed in reference [101], which compares different modeling techniques for power quality studies. The 

paper shows that significant differences are obtained if physical parameters are ignored, such as ambient 

temperature. 

 

Figure 6 The GAST model as presented in [101]. The capacity of the generator to provide power as a function demand is 

modeled using time constants Ti and saturations V. 

A similar 0-D representation is introduced in [102] [103] and [104] (which also introduces the inter-

component volumes method). Blocks are obtained by implementing a Laplace transformation of 

thermodynamic equations. 

Reference [102] proposes a MATLAB/Simulink model of a dual-shaft turbine. This reference provides a 

control scheme for Gas Turbines (GT) for the purpose of a wind-GT hybrid power plant and simulates 10 

hours of operation. The same modeling technique is applied in [105] to perform a gas turbine diagnostic 

under transient operation. Reference [103] proposes a dynamic modeling of a single-shaft turbine featuring 

VIGV (Variable Inlet Guide Vanes). The simulation time is typically 10 minutes.  

 

Figure 7 Dynamic model of the engine and its regulation system [102] 

In references [102], [103], a model is calibrated with steady-state data using an advanced iterative technique 

to minimize the error between the model’s results and a benchmark provided by verified data (e.g. PROOSIS 

or ThermoFlow software). These methodologies may provide tools to represent the behavior of gas turbines. 

The parameters vary from one turbine to another. For a 0-D representation, a compressor map and a turbine 

map are necessary. This information has to be made available by manufacturers, which creates a strong barrier 

to study and compare their performances.  

Two references point to an interesting compromise between data requirements and accuracy, with a 

“component-based” approach using the Modelica environment [106], [107]. The models should be easy to 

adapt from one gas turbine to another, and results show good accuracy compared to experimental data. 

To date, gas turbines have rarely been used for renewable microgrids despite their significant potential [108]. 

Based on their model, [102] show that hybrid gas/wind power plants can reduce both fuel consumption and 

NOx emissions by at least 40%. However, NOx reduction is debatable, as pointed out in [109], where an 

increase in NOx emissions from large-scale, gas-fired power plants has been observed for shares of renewables 

below 30%. Due to increasing pressure from emissions regulations, the question of emissions modeling for 



Preprint accepted for publication in Renewable and Sustainable Energy Reviews in Novermber 2022 
 

15 

 

transient operations and the integration of selective catalytic reduction will undoubtably be a key challenge 

for researchers in the future. 

2.2.2 Internal combustion engines 

2.2.2.1 Working principle 
Research on diesel engine modeling has mainly focused on propulsion applications [110] and only a few 

references study its behavior in power systems [111], [112]. The principle of a diesel generator is basically the 

same as an automotive diesel engine: combustion within the pistons drives the crank shaft, which provides 

mechanical torque to the electric generator. This process follows the Carnot thermodynamic cycle. 

 

Figure 8 Principle of ICE  power conversion from combustion to electricity supply. 

2.2.2.2 Representation of dynamical behavior 

Unlike for gas turbines, manufacturers tend to provide more insights on the short-term dynamical behavior 

of their engines since this is a key selling argument. Nevertheless, the impact of a repeated load increase 

remains unknown and a detailed thermodynamic modeling is necessary. 

 

 

Figure 9 Recommended load increase of Wartsila W32 according to the product guide [113] 

Thermodynamic approach 

The thermodynamics of the transient operation of ICE are widely covered in references [114] and [115]. Two 

main modeling approaches can be used considering either a continuous phenomenon (mean-value model) 

or discrete events for combustions within the pistons (discrete-event models).  
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Both methods aim at describing the change in the pistons’ input parameters (air mass, fuel mass and exhaust 

gas recirculation) when a torque command is given to the system as described in Figure 10. 

 

Figure 10 Principle of torque regulation 

In [112, p. 748], several modeling approaches are described, many of which are based on highly complex 

fluid mechanics. However, a lack of data on the engine’s geometry makes it impossible to implement such a 

model. Moreover, this study intends to be adaptable to multiple types of engine.  

Reference [116] presents a simple mathematical model of an engine based on thermodynamic expressions, 

enabling a fairly accurate study of the engine’s step load response. The parameters needed for the simulation 

are generally not available in the literature and the author recommends calibrating the model using 

experimental data. 

Finally, reference [117] provides a simple methodology to model the transient behavior of a diesel engine. 

The model is calibrated with experimental data and requires accurate turbocharger parameters to run. 

Reduction to a time constant  

From a control-science perspective, the transient modeling of a diesel engine mainly consists in describing 4 

main components: the regulator (controller), the actuator, the engine’s combustion, and the synchronous 

generator. In ref [118], [119] dynamic models are proposed for the frequency control (taking actions on the 

angular velocity) and therefore represent the short-term transient response of the engine. 

 

Figure 11 Conventional diesel engine representation[118]. 

The above-mentioned references are based on a mathematical modeling of the machine’s processes and 

components. Other modeling techniques consist in “learning” the engine’s response using neuro-computing. 

In ref [120], an HIL test bench is combined with a real diesel engine in order to learn the frequency’s transient 

behavior and control. A dynamic model is then built to conduct stability analysis. However, this approach 

gives a very poor understanding of the machines, which makes it very difficult to adapt to other engines with, 

for example, a different number of pistons.  

Studies [121], [122] implement a promising methodology using GT-SUITE software with a good 

understanding of components and available component libraries for dynamic modeling.  

The different methods implemented for assessing the engine’s flexibility potential have many advantages. 

Firstly, they extend comprehension of the engine and may allow more accurate stability studies. For example 
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in [123], a sensitivity analysis of the engine injection delay is carried out. The results show that a short time 

delay significantly improves the grid’s frequency stabilization. The study recommends a low injection time 

delay (mostly found in high rotational speed engines) in order to improve the penetration rate of renewables.  

A good comprehension of the thermodynamical limitation is also a very important factor in renewable 

integration. In [124]–[126], it is shown that a high penetration rate can be enhanced by low-loading engines 

featuring dedicated pre-heating and clutching systems.  

2.2.3 Aging and maintenance considerations related to PV variability smoothing  
Is has been observed that fossil generators will increasingly be operated in a transient state with rapid variation 

to smooth out solar variability. The evolution of fatigue and fault probability due to transient operation is still 

poorly addressed by the scientific community.  [127] evaluates the impact of an extended dynamic operation 

of CCGT, and indicates that the lifetime reduction may be up to 10% greater than in reference steady-state 

cases. Further analysis would be necessary to evaluate the failure rates of typical fossil technologies in industrial 

microgrids. Solar variability modeling may once again prove crucial for such an evaluation. 

2.3 Storage systems  
Storage systems may achieve two different objectives in microgrids: energy shifting and system services. System 

services are applications dedicated to enhancing a system’s reliability when subject to unplanned events. For 

example, a storage system can provide power fast if the renewable output suddenly decreases or if a fossil 

generator trips (Figure 13). The storage device is therefore used as a buffer to compensate for the start time 

and ramp of the replacing unit. 

 

 

Figure 12 Peak-shaving storage system 

 

 

Figure 13 Buffer storage system 
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Depending on its objectives, a storage system will have technical specifications that require carefully choosing 

the technology. [128] gives an outstanding overview of storage technologies in microgrids and provides 

examples for the five main types of storage technology listed in Figure 14. 

Thanks to the variety of storage technologies available, numerous applications are covered, from very small 

uninterruptible power systems to utility scale systems such as pumped hydro. Figure 15 shows the general 

trends of technologies according to their rating capacities and discharge times (additional features for 

technology comparison can be found in [129]).  

Considering the characteristics of industrial microgrids and their production units, storage systems must 

contain several MWs in order to provide services with reaction times varying from a few seconds to several 

hours. Li-Ion batteries, flywheels and supercapacitors seem to be the most suitable options for these 

applications [129], [130], depending on the final use of the energy (for instance, heat storage may be the best 

option if the final service requires heat). 

 

Figure 14 Categories of storage technology [129]. 

 

Figure 15 Discharge time and power ratings of storage technologies[128], [131] 
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Table 3 Review of the most relevant technologies for reliability-constrained industrial microgrids 

Technology References Advantages Drawback Comment 

Li-ion batteries [128], [132], [133] High energy 

density, high 

cycling efficiency, 

rapid response 

time, low self-

discharge 

 

Applicable to 

other uses (energy 

shifting) 

Lifecycle 

degradation due to 

cycling and 

thermal effects. 

 

Market leader. 

Drawn by 

synergies with 

automotive 

applications 

 

Recent economies 

of scale. 

Flywheels [134], [135]. Quasi-infinite 

number of cycles 

Low energy 

density 

High self-

discharging rate 

Low maturity, high 

costs  

Supercapacitors [136]–[138] High power 

density, long 

lifetime and 

limited aging. 

High self-discharge 

rate (up to 40% a 

day). 

 

 

Suitable only for 

very short-term 

applications. Low 

maturity in large-

scale applications 
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3 Operation of industrial microgrids 
Most studies of microgrids tackle the problem of operation and planning by handling a single aspect of the 

microgrid (control, energy management or sizing). However, due to the specific characteristics of industrial 

microgrids, each should be subject to careful attention. As a matter of fact, the size of a facility impacts power 

quality problems and endangers the continuity of operations. Secondly, operational costs are part of product 

profitability and must be optimized. Finally, as industrial power plants require huge investments, reliable sizing 

is crucial. Control, energy management, and sizing are three steps in a single process that aims at finding the 

best operational scenario for the microgrid. Figure 16 shows the different time-scales for the main actions and 

phenomena that take place during the microgrid’s lifetime. 

 

Figure 16 Different time-scales for planning and operation of power systems inspired by [139] 

 

3.1 Short-term power control 
The performance of a microgrid is closely related to its control scheme since it is supposed to execute the 

production plan, while protecting the power system and devices when instabilities occur. Microgrids ensure a 

reliable electricity supply by following power quality specifications and protect the devices from going out of 

their operational range. In industrial microgrids, special attention is paid to the frequency and voltage control.  

3.1.1 Fundamentals of frequency and voltage regulation 
In a synchronous electricity network, the value of the frequency needs to be the same at every point to avoid 

generator de-synchronization and allow proper use of the equipment. This means that all of the synchronous 

generators feeding the system must share the same rotor angle velocity 𝜔 as this is directly linked to the 

frequency (Eq. 2). When a global imbalance of active power occurs in the system, the swing equation (Eq. 3) 

expresses the fluctuation of the frequency [140]. 

 ω = 2 π f  Eq. 2 
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2𝐻
 

Eq. 3 

 

Similarly, local voltage fluctuation can occur due to reactive power imbalances. The network’s topology plays 

a major role and stability assessments require more information on the system. The general sensitivity of the 

voltage and rotor angle ( 𝑉  𝜃) on active and reactive power ( 𝑃  𝑄)is expressed as follows [140] ( J is the 

Jacobian matrix expressing the sensitivity of the system): 

 
[
 𝑃
 𝑄

] = [
𝐽 𝜃 𝐽  
𝐽𝑄𝜃 𝐽𝑄 

] [
 𝜃
 𝑉

] 
Eq. 4 

 

Voltage stability can be handled at relatively low costs with available commercial technologies. In addition, 

reactive power compensation capacities (such as capacitor banks) are more affordable than active power 

compensation capacities (which are new production units, such as storage or fast fossil generation). This 

means that the techno-economic balance will be less impacted by making adjustments to reactive capacities 

through the successive sizing steps. Finally, unlike for active power, reactive power can be produced by all 

devices, which gives more flexibility to the system. This is why assessing the impact of variable energy resource 

penetration on voltage stability can be considered less important than assessing frequency stability problems 

[141], [142].  

 

Figure 17 Evolution of frequency after a sudden load step [143]. 

The role of inertia in passive regulation 

As seen in Figure 17, the kinetic energy delivered in the first few seconds is much greater than the primary 

reserve and frequency-dependent load reduction. When a sudden power imbalance occurs, mechanical 

torque takes place as both sides of the alternator shafts cause a deceleration. The inertia softens the shaft’s 

deceleration by returning the kinetic energy stored in the rotating mass [140]. The inertia constant 𝐻 (sec) 

accounts for the kinetic energy stored in the synchronous machine. It is calculated as a function of the angle 

velocity 𝜔 (rad/sec), moment of inertia 𝐽 (kg/m²) and power rating of the unit (MVA).  
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1

2
∗

𝐽𝜔2 ∗ 10−6

𝑀𝑉𝐴𝑝𝑢       
 

Eq. 5  

 

The inertia constant of a system is the sum of the individual inertia constant H of each generating unit 𝑖 

(𝐻     = ∑ 𝐻  ). Due to the increasing penetration rate of renewables, industrial microgrids tend to have 

less inertia in their systems. This is due to the fact that the inertia values of diesel generators and gas turbines 

are lower than those of large conventional fossil units (see Table 4), and because units may be shut down 

when renewable power feeds the system. 

 

Table 4 Value of inertia constant for several production units[143]. 

 Type of production unit Inertia constant 

(s) 

600 MW steam turbine 13.7 

11 MW average speed diesel engine 3 

21 MW average speed diesel engine 5.2 

30 MW gas turbine 2.5 

Photovoltaic generator  0 

 

In a microgrid, maintaining enough inertia is crucial to ensure the grid’s stability. This aspect must be 

considered with the same care as active control actions. This is pointed out in [144], where a microgrid’s 

frequency response is evaluated for different inertia constant values. 

Although PV systems do not provide inertia to the grid, power electronics and a fast response storage system 

may help to synthetize inertia and therefore improve the system’s resiliency [23], [145]. 

Control actions on dispatchable units 

Typical control strategies for microgrids under various conditions are detailed in [7], [146] and an outstanding 

review is provided by [23]. Figure 17 shows the typical three-layer hierarchical control used in most systems 

to adjust the power and correct any deviations. 

Among all of the primary controls developed in the literature, the droop-control method is by far the most 

commonly used and the easiest to implement. In large power systems, it is used to control units involved in 

primary regulation [140], [143]. Its use in microgrids is justified and detailed in [22], [147].  

Any power imbalance is automatically compensated by the generation proportionally to the difference in 

active power  𝑃 =  (𝑃    − 𝑃    ). Each generator participates proportionally to its droop value 𝑅    and 

its contribution is therefore  𝑃   = 𝑅   ∗    𝑓 (note that the generation remains limited by its ramp rate). 

Figure 18 shows how two units with different droop characteristics participate in the frequency regulation. 
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Figure 18 Control of two units with different droop characteristics [140]. 

The active power control is a common rule applied by all units that takes place in the primary response. 

However, controllers must embed additional features in order to prevent the equipment from going out of 

their operational range. This will be presented in the next sections. 

3.1.2 Control of fossil engines 
Fossil engines are naturally the main actors of power quality regulation. In most stability studies, the regulation 

potential is solely addressed using droop 𝑅   . But fossil units remain limited by their flexibility in terms of 

ramp and load factor (which justifies the study of their dynamical behavior as presented in part 2.2).  

The control of fossil units and its simulation for stability studies will depend on the availability of information 

regarding the unit’s transient behavior as well at its technical limitations (ramping range, power range, 

maximum fuel mass-flow, temperature limits, emissions limits, etc.). In order to model and study the electrical 

stability, only a high level of abstraction is generally possible due to lack of public information (see Figure 19). 

 

Figure 19 Principle of a multi-constrained fossil generation frequency controller 

The control scheme may consist of a succession of saturation and time delays accounting for constraints and 

transient behavior, such as in the reduced order system frequency response model in [148] shown in Figure 

20. This accounts for communication and injector time delays as well as the physical limits of minimum and 

maximum power. 
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Figure 20 Reduced order frequency model accounting for gas turbine constraints and dynamics [148] 

In Figure 20, and similarly to the control of conventional large-scale units, the power output is only driven by 

the droop characteristics and the frequency shift. However, in normal operations, the fossil generator needs 

to supply the power required by the user. The control signals of the load demand and frequency regulation 

are therefore summed to obtain the final power need by the generator[140]. 

 

Figure 21 Coupled frequency-load setpoint regulation 

Control of gas turbines 

In ref [95], it is highlighted that a gas turbine’s control system adjusts the power output while protecting the 

engines from excessive exhaust gas temperatures (turbine overheating), excessive speed and stress of rotating 

parts, and stalling and surging due to a high compressor ratio. Figure 19 gives a direct example for gas turbines: 

the fuel command depends on the frequency deviation, and is then saturated by the surge limit and flameout 

limit. This is applied in [102] to control the mass flow, which is a good methodology to include the physical 

limits of components in gas turbine power control. However, as pointed out in part 2.2, the knowledge 

required for modeling such control is rarely available and sometimes a simplified model has to be 

implemented (e.g., use of maximum and minimum ramp rates). 

Control of diesel engines 

Diesel control strategies and challenges regarding the plant’s protection are stated in [24]. Similarly to gas 

turbines, the power demand of a diesel unit must take into account its limitations, such as the minimum 

loading factor, or its maximum achievable ramp rate. [118], [119] propose a diesel engine frequency control 

and show how an engine’s characteristics may impact grid stability. In [118], the advantages of a highly flexible 

control for diesel allowing low loading are presented. The results show an improved stability margin for 

frequency and highlight the potential of low-load diesel technology to reduce storage capacity investments. As 

fossil units tend to be flexibility providers more than prime energy suppliers, low-load and highly flexible fossil 

unit control will probably be a key issue in the future. 

3.1.3 Control of storage systems 
Fast-discharging storage technologies are widely used for short-term regulation of power imbalances. An 

overview of control strategies for storage systems in given in [149]. In [150], an experimental study shows how 

droop-controlled storage can be used to regulate the system’s frequency. 



Preprint accepted for publication in Renewable and Sustainable Energy Reviews in Novermber 2022 
 

25 

 

As battery energy systems are increasingly common in microgrid applications, the literature covers a wide 

variety of control strategies. [149] introduce the concept of state-of-charge weighted droop control in order to 

adapt the regulation to the amount of energy remaining in the battery. Similarly to fossil engines, battery 

control systems include protections and saturation to take chemical dynamics and components’ electrical 

limitations into account  [151]. In [152], an ingenious control scheme is proposed to coordinate the frequency 

control of fossil units and storage systems.  

Since control schemes must take the specificities of each technology into account, specific strategies are 

developed for flywheels [153] and super-capacitors [154]. 

3.1.4 Control of load 
In high-reliability industrial applications, the continuity of supply is a priority. This leaves little potential for 

taking action on load in order to correct instabilities. Underfrequency load-shedding procedures must only 

be used in emergency situations in order to protect the grid from blackout [140]. It is however important to 

carefully design the load shedding to provide significant stability improvement [155]. If a significant share of 

load is considered as non-critical, it is possible to use it as a flexibility potential and regulate the frequency and 

voltage deviations [51], [156]. However, accurate load models are necessary to assess the potential of flexibility 

and stability improvements [157]. This solution is one of the most advantageous since no additional 

investment is necessary to integrate a large share of renewables.  

3.1.5 Participation of PV systems  
Unlike for wind generators, which have higher inertia and show some capacity for frequency and voltage 

regulation, PV generators are more limited when no storage is associated [158]. Depending on the inverter 

technology, the power factor can be adjusted and therefore participate in the voltage regulation. Using 

curtailment, it is also possible to regulate overfrequency events by lowering the power output of the inverter. 

This is detailed in [159], which presents an overview of the active power control of PV systems. The potential 

of PV plant curtailment has also been pointed out in [160] to lower the risks of short-term drops due to solar 

variability. By reducing the number of connected panels and therefore the available production, the potential 

solar drop is also reduced. This is however subject to high uncertainties related to the forecast of short-term 

variations. In addition, a significant part of the solar production is lost, which reduces the environmental and 

economic performance of the plant. This solution must therefore be put into perspective with other mitigation 

levers, such as storage systems, and should be evaluated at the sizing step. 

When associated with a sufficient energy buffer with a very fast response time, grid-forming inverters can 

enhance the grid’s stability with synthetic inertia. This also allows black start capability when a large share of 

renewables feed the system. An overview of grid-forming PV inverters from an operator, manufacturer and 

research perspective is provided in [161]. 

3.1.6 Modeling of short-term control and power quality 
Modeling the short-term power control is mandatory to accurately assess a system’s potential for renewable 

integration. Using voltage and frequency response modeling, the authors of [46] proved that the maximum 

renewable penetration limit to ensure grid reliability in Indonesia was 31%. In [162], a transient stability 

method is used to determine the maximum intermittent power penetration in an isolated system. Using swing 

equation equal area criteria, the ability of a system to properly control active power during transient events is 

studied in [163]. Numerous commercial software applications now allow stability studies featuring renewable 

technologies (ETAP, MATLAB, PSCAD, OPEN-DSS) and are widely used in both academic and industrial 

environments. Finally, research programs increasingly work on simulating systems in real time using hardware-

in-the loop techniques [164]. 
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By running simulations over a long period of time, it is possible to assess the performance of the microgrid 

in terms of quality of supply through reliability indicators [32] such as EENS, CAIDI, ASAI, and ASUI.  This 

study gives an example of how to assess the reliability level in several plant configurations (islanded vs grid-

connected, various sizes of PV systems and storage). Thanks to power quality simulation, probabilities of 

electricity outages (underfrequency load-shedding or grid blackouts) can be identified and thus integrated in 

the reliability assessment. This issue has been partly addressed in a previous work based on the duration of 

overfrequency and underfrequency regimes over one day [165]. Deeper investigations need to be carried out 

to propose a methodology to evaluate the reliability indicators related to power quality problems. Figure 22 

proposes such a procedure for the reliability assessment of an industrial microgrid with renewable integration. 

 

 

Figure 22 Example of a procedure for reliability assessment over a microgrid layout (where decisions are made on PV and storage 

capacities) 

 

3.2 The energy management approach 
Although power control is very important for grid stability and robustness, it does not deal with economic 

objectives or handle forecasts of load and renewable resources. The economic performance of the power 

system involves ensuring the global equilibrium of production and consumption while minimizing the overall 

operational costs and meeting important constraints such as emissions reduction. An Energy Management 

System (EMS) ensures the proper allocation of production units by monitoring data and collecting forecasts. 

Considering industrial microgrid characteristics, centralized EMS generally seems more convenient [8].  

The efficient performance of EMS lies in its ability to allocate the resources of each device at a minimal cost, 

which means that its dispatch algorithm is of paramount importance. In [19], [20], detailed surveys of energy 

management methods are proposed.  
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Table 5 Comparative review of energy management optimization techniques 

Optimization 

family 

Principle References Advantages  Drawbacks 

Rule-based & 

dynamic 

programming 

Logical decisions 

& flow diagrams 

[166], [167] Comprehensive 

framework 

Close description 

of expert 

knowledge 

Lack of flexibility 

and reproducibility 

Hard to implement 

for complex systems 

Artificial 

intelligence 

Machine learning 

based on large 

datasets 

[168], [169] Large number of 

situations 

handled 

No comprehensive 

description  

Lack of reliability 

certification 

Meta-heuristics Optimization 

using bee-colony, 

genetic algorithms, 

etc. 

[170]–[172] Comprehensive 

optimization 

framework with 

non-linear 

modeling 

capabilities 

No guarantee of 

optimality 

Linear 

programming  

Optimization 

based on linear 

description of 

objective functions 

and constraints 

[148], [173]–[179] Guarantee of 

optimality 

Easy 

implementation 

Fast-running 

commercial 

solvers 

 

Requires relatively 

high level of 

abstraction 

Lower performance 

of non-linear and 

non-convex 

description 

Multi-layer 

optimization 

Predictive control 

model 

[55], [180]–[185] Ability to enable 

different levels of 

abstraction with 

high fidelity 

model 

High modularity 

and flexibility to 

describe the 

problem 

 

Need to build a 

specific framework 

for each application 

 

Linear programming (LP) and multi-layer optimization techniques turn out to be very relevant to address 

reliability and power quality in industrial energy management problems. This is why a special focus is 

proposed in this paper. 

Linear programming, robust and stochastic optimization 

 

EMS protects the grid from unexpected events (severe loss of renewable generation, a generator contingency 

or an increase in load) by implementing the concept of spinning reserve, the N+1 rule, or even an aggregated 

indicator for a frequency shift. In reference [148], the challenges of a frequency-constrained model are 
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developed. The possible options to directly integrate frequency shift mitigation lead to either a non-linear 

problem or a sub-optimal solution (use of minimum ramping capacity, minimum value of inertia, etc.). 

Deterministic LP approaches such as described above are easy to implement, yet insufficient to handle 

reliability and power quality, since transients are caused by unplanned renewable losses and generator 

contingencies. A stochastic approach can deal with probabilistic forecasts and is therefore convenient to 

address renewables’ prediction uncertainties. However, the complexity of the problem is significantly 

increased, and this approach does not guarantee a fully reliable solution. A stochastic approach is most 

relevant when a tradeoff can be made between reliability penalties and operational savings. The authors in 

[179] propose a two-stage stochastic MILP
‡

 formulation to calculate both unit commitment and reserve 

scheduling with 0-Hz and +/- 10 MHz of tolerance for frequency deviation. In [175], the frequency control is 

integrated into the EMS, but this significantly increases the complexity of the problem. A Benders 

decomposition is therefore used to solve the problem.  

A robust approach is useful when reliability constraints play an important role in the operation, and avoids 

the use of probabilistic forecasts thanks to an efficient selection of uncertainty scenarios [174]. Uncertainty is 

addressed from a conservative point of view involving a study of the historical performance of the forecast 

system. This can be a challenge if no historical data are available at the plant’s location. 

Model predictive control (MPC) for energy management systems 

As pointed out in [181], a fully-integrated MILP model problem accounting for uncertainties and reliability 

can be very hard to solve due to the number of variables and constraints. This justifies the use of model-

predictive control (or a multi-layer approach) to address both control and management of the microgrid.  

As presented in [183], model predictive control for energy management consists of a predictive model that 

plans optimal energy exchanges based on forecasts, and a system model that performs the dispatch and 

controls the power flux. The predictive model can be based on various management techniques such as 

presented above. The level of accuracy of the system model can be adapted to available information and may 

embed a very detailed control scheme. Finally, MPC reproduces the hierarchical relationship of the energy 

and power management system in real-life conditions.  
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Figure 23 Architecture of model predictive control for energy management 

The predictive model can be divided into two layers in order to perform a high-level economic evaluation 

and continuously track the optimal operation. In [185], MPC is used to model a DC low voltage microgrid. 

In [55], two-layer model predictive control is used to simulate an off-grid O&G platform fed by a wind farm, 

two gas turbines and battery storage.  

In [180], [181], [184], the high level optimization problem is addressed using linear programming and 

therefore reproduces the decision of an LP-based energy management system. The results show that the 

method is able to handle forecast uncertainties, simulate dynamic behavior with accuracy, and improve both 

renewable penetration and operational savings. 

4 Discussion and main findings 
In this paper, we detailed the concept of industrial microgrids along with some key characteristics. This brings 

a new field of application for microgrids to add to those previously detailed in [8], [27], [28]. Additionally, we 

provided a review of renewable integration studies in O&G systems to illustrate the main challenges of 

industrial microgrids, which is a topic that has not been addressed in existing review papers. 

The reliability of PV systems was found to be widely covered by previous literature reviews [59]. However, 

we identified gaps on the evaluation of solar variability. Based on previous work gathering studies on variability 

quantifiers [71], and solar forecasting [78], we presented state-of-the art techniques to evaluate PV power 

dynamics. Considering the size of industrial microgrids, we focused on large-scale PV systems, stressing the 

need for geographical smoothing models.  

The economic and environmental performances of industrial microgrids are closely related to the 

performances of fossil generators. However, while the review studies provide a wide variety of models and 

tools [101], [110], they do not focus on the assessment of fossil unit performances in dynamic operations and 

cloud passage. This paper therefore reviewed dynamical modeling techniques to improve the performance 

assessment. The impact of dynamic operation on reliability and lifetime reduction remains an open question 

after this study as this issue has been poorly addressed in the literature.  

Most of the review studies handle a single aspect of the performance of microgrids by covering either reliability 

aspects related to short-term power control [23]or energy management optimization [19]. In this study, both 

concepts have been addressed to draw attention to the link between these two operational layers. Similarly to 

[166], we put the focus on the control strategies of each component and also more deeply cover power quality 

aspects to provide pathways for a reliability assessment involving several microgrid configurations and 

renewable integration scenarios. Thanks to this analysis, the main goal of power quality simulation in industrial 

microgrids may be defined as follows: to evaluate the risks of loss of electricity supply given a certain level of 

PV penetration whilst properly considering the support role of fossil generators, storage, loads and inverters. 

Lastly, we identified the most relevant energy management techniques for industrial microgrids. Previous 

review studies have provided a complete overview of energy management techniques and mathematical 

formulations [19], [20]. Since reliability is a key aspect of industrial microgrids, this paper provided an 

overview of reliability and power quality constraints formulations, and robust energy management, and 

highlighted the potential of model predictive control for better ensuring the link between cost optimization 

and power quality control. 
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5 Conclusion 
This paper provided a review of the main challenges of solar PV integration into industrial microgrids under 

reliability constraints. The need for continuous operation of industrial power plants requires high availability 

of electrical generation. On the other hand, the electrical system is more vulnerable due to its low inertia and 

low flexibility compared to large grids or residential systems with electrical loads that are likely to be shed or 

delayed. The integration of highly variable and stochastic solar power challenges the performance and 

reliability of power plants as the rapid power losses involved can cause considerable electrical instabilities. 

This calls for a more extensive understanding of the short-term behavior of renewable systems to anticipate 

extreme events. Variability analysis techniques have been developed to quantify solar ramps and can be 

coupled with a geographic smoothing model in order to assess the power fluctuation of the overall solar plant. 

The availability of high resolution time-series remains a challenge, especially in isolated areas. In the future, 

techniques to increase the granularity of satellite observations and forecasts to capture local and short-term 

variability will be key factors of success for isolated microgrids.   

A particular feature of large-scale microgrids is their use of fossil generators. The integration of renewable 

energy sources therefore requires a change in the operational approach. Consequently, conventional 

modeling and optimization tools that were designed for static operations need to evolve, as fuel consumption, 

fatigue and emissions could significantly diverge from historic benchmarks. The development of tools to 

model fossil generation dynamics is crucial to carry out a proper techno-economic analysis of a plant and 

ensure availability.  

Control and management schemes must be chosen in order to correspond to this highly constrained 

framework. The large number of non-linearities (solar ramps, electrical instabilities, fuel consumption, etc.) 

as well as the role of the control scheme call for the integration of a detailed description of the electrical 

system in future techno-economic studies. Optimization techniques should therefore integrate these 

phenomena into their equations while maintaining the ability to identify the most economical solution. Model 

predictive control coupled with linear programming tends to be the best compromise considering the current 

state-of-the-art. 

Finally, the sizing of microgrids is also a topic of paramount importance and has already been the focus of 

numerous studies. Sizing that addresses reliability constraints is studied in references [186]–[188] along with 

the uncertainty of solar production [189]–[192], but a deeper study is necessary to identify the most suitable 

techniques for industrial micro grids. Such an analysis remains a perspective for this work. 
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