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We consider the problem of recovering elements of a low-dimensional model from under-determined

linear measurements. To perform recovery, we consider the minimization of a convex regularizer subject

to a data fit constraint. Given a model, we ask ourselves what is the “best” convex regularizer to perform

its recovery. To answer this question, we define an optimal regularizer as a function that maximizes a

compliance measure with respect to the model. We introduce and study several notions of compliance.

We give analytical expressions for compliance measures based on the best-known recovery guarantees

with the restricted isometry property. These expressions permit to show the optimality of the ℓ1-norm

for sparse recovery and of the nuclear norm for low-rank matrix recovery for these compliance measures.

We also investigate the construction of an optimal convex regularizer using the examples of sparsity in

levels and of sparse plus low-rank models.

Keywords: inverse problems, convex regularization, low dimensional modeling, sparse recovery, low rank

matrix recovery

1. Introduction

In a finite-dimensional Hilbert space H (with associated inner product 〈·, ·〉, and norm ‖ · ‖H), we con-

sider the observation model:

y = Mx0 (1.1)

where y is an m-dimensional vector of measurements, M is an under-determined linear operator (from

H=Cn, or Rn, to Cm), and x0 ∈H is the unknown vector we want to recover. The problem of recovering

x0 from y is typically ill-posed. It is thus necessary to use prior information on x0 to recover it with a

guarantee of success.

In this work, we suppose that x0 belongs to a low-dimensional cone Σ (a positively homogeneous

set, i.e., for every x ∈ Σ and λ > 0, λ x ∈ Σ ) that models known properties of the unknown. Examples of

such models include sparse as well as low-rank models and many of their generalizations. Note that in

these examples the models belong to the slightly less general class of models that are (finite or infinite)

unions of subspaces (homogeneous sets).

To recover x0, a classical method is to solve the constrained minimization problem

x∗ ∈ arg min
Mx=y

R(x) (1.2)

where R is a function – the regularizer – that aims to enforce some structure on the solution x∗.

Many works [11, 12, 18, 31] give practical regularizers ensuring that x∗ = x0 for several low-

dimensional models (in particular sparse and low-rank models, see [22] for a most complete review
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of these results). A practical regularizer is a function that permits the effective calculation of x∗. With-

out computational constraint, the best possible regularizer would be R = ιΣ : the characteristic function

of Σ defined by ιΣ (x) = 0 if x ∈ Σ , ιΣ (x) = +∞ otherwise (see Section 2 for a review of this fact).

Unfortunately, this function is generally not convex (unless Σ itself is a convex set) and can lead to an

intractable optimization problem in general, even though recent works show that using R = ιΣ and a

dedicated minimization technique is a possible route for certain particular low-dimensional models that

can be smoothly embedded in Rn [16, 36, 37].

In this work, we focus on continuous convex regularizers that guarantee the existence of a minimizer

x∗ and the existence of practical optimization algorithms to perform minimization (1.2) such as the

primal-dual method [13] (provided their proximity operators can be calculated). Note that convexity in

itself is not sufficient to guarantee the practical feasibility of minimization (1.2) (R(x) could be NP-hard

to calculate, e.g., the nuclear norm for tensors [23], and/or the proximal operator of R could be NP-hard

to compute).

Under conditions on the measurement operator M that typically involve the number of measurements

and its structure (e.g., random for compressed sensing), the fact that x0 ∈ Σ permits to give recovery

guarantees when the convex regularizer R is well-chosen. For example, when Σ = Σk is the set of k-

sparse vectors in Rn and R(·) = ‖·‖1 (ℓ1-norm), or when Σ = Σr is the set of matrices of rank lower than

r in Rp×p and R(·) = ‖ ·‖∗ (nuclear norm), x0 can be recovered as long as the number of measurements

is of the order of the dimension of the model (up to some log factors) : m > O(k log(n/k)) for sparse

recovery or m > O(rp) for low rank recovery.

The conventional approach to provide these results is to exhibit a regularizer R for a given model

set Σ and to give the best possible recovery guarantees for the pair (R,Σ). Recent works aim at giving

guidelines to obtain guarantees as tight as possible for general sparse models and convex regularizers

[2, 3, 14, 27, 38, 43]. With such frameworks, it becomes possible to compare the performance of

different regularizers. This leads naturally to the following question which we address in this work:

what is the “best” convex regularizer to recover a given low-dimensional model Σ?

To tackle this problem, it is necessary to define the notion of “best” based on recovery guarantees.

We propose different possibilities and follow one route that permits us to give optimality results in

the sparse and low-rank cases and shows the difficulties that arise when considering more complex

generalized sparsity models. This work can be viewed as a way to give meaning to the expression

“convexification” of a low-dimensional model, that is often used and rarely defined.

1.1 Related works

LOW-COMPLEXITY MODELS INDUCED BY CONVEX REGULARIZATION. Many regularizers encoun-

tered in signal processing and machine learning are known to induce a specific type of model. Without

aiming for exhaustivity, the use of the ℓ1 norm [15] induces a sparse pattern in the solution, while group

regularization with mixed ℓ1 − ℓ2 norms restricts this sparse pattern to satisfy a specific block struc-

ture [44]. More advanced model sets, such as low-rank matrices are linked to the use of the nuclear

norm [20]. For a wide class of regularizers, including decomposable norms [10], decomposable M-

estimator [28], atomic norms [14] and partly smooth functions [41, 42], the connection between non-

smooth convexity and model space can be made explicit. Note that all these works take the following

stance: given a convex regularizer R, what is the model set Σ induced by minimizing R(x)? Conversely,

in this paper, we study the question of finding the best regularizer for a given low-dimensional model Σ .
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CONVEXIFICATION OF COMBINATORIAL FUNCTIONS. Given a real function f , it is known that its

biconjugate f ∗∗ is a convex and closed function, whatever the initial properties of f . For instance, if f is

the constant function equal to 1 except in 0 – that is the counting function ℓ0 in dimension 1 – restricted

to [−1,1], i.e.,

f (x) =







1 if x ∈ [−1,1]\ {0},
0 if x = 0,

+∞ otherwise,

then its biconjugate is the absolute value | · | restricted to [−1,1]. Unfortunately, this construction is

harder to generalize on an unbounded domain or in higher dimension. For instance, the biconjugate of

the ℓ0 counting function not restricted to a bounded set is the constant 0. Of interest, we can mention

convex closures of submodular functions (functions of {0,1}p) that can be calculated explicitly using

the Lovász extension [5] and convex closure of almost convex functions [25].

CONVEXIFICATION OF OBJECTIVE FUNCTION Many works intent to find a convex proxy to a non-

convex objective function. In [7], adding a Lagrangian term to the regularization of a constrained

non-convex minimization permits to build an equivalent minimization problem that is convex locally.

Another possibility is to try to perform a regularization by infimal regularization [8] for lower semicon-

tinuous objective functionals. In [29], in a function space setting, Pock et al. propose a high dimensional

lifting of the Lagrangian formulation of (1.2) where the data-fit functional is non-convex. In the context

of non-convex polynomial optimization, Lasserre’s hierarchies [26] are used to recast the original prob-

lem in a hierarchy of convex semi-definite positive problems which provide global convergence results.

The drawback of this method is the computational cost that makes it impractical for high-dimensional

problems. Finally, convex closure of submodular functions also permits to cast sparsity inducing objec-

tive functions (where the regularizer is a submodular function of the support) into convex problems [5].

Note that if one aims to find a non-convex, but continuous, regularization, several works of interest may

be cited, such as the use of ℓp minimization [21], SCAD [19], or CEL0 [33]. Nevertheless, in this paper,

we focus on convex functions.

1.2 Contributions

In this paper, we define notions of compliance measures between a low-dimensional model and a regu-

larizer in finite dimension. The compliance of a function R for a model Σ is a function

R 7→ AΣ (R) (1.3)

that quantifies the recovery capabilities of Σ with R and minimization (1.2).

An optimal regularizer for a model Σ is defined as a regularizer that maximizes the compliance

measure. In this article, we focus on the maximization of compliance measures on the set C of coercive

continuous convex regularizers over H. Note that this idea was first mentioned in the preliminary work

[40] where optimal regularizers for sparse recovery were considered among weigthed ℓ1-norms.

• We introduce compliance measures in Section 2 using tight recovery guarantees: a good regular-

izer is a regularizer that permits the recovery of Σ as often as possible. We discuss the elementary

properties of these measures and show that optimal coercive continuous convex regularizers can

be found in the smaller class of atomic norms with atoms included in the model set. While such

compliance measures can be optimized in basic toy examples, they require to be approximated in

order to deal with sparse and low-rank models.
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• We propose in Section 3 compliance measures exploiting best known uniform recovery guar-

antees based on the restricted isometry property (RIP). We give explicit formulations of such

recovery guarantees and show that, indeed, the ℓ1-norm and the nuclear norm are optimal for

sparse and low-rank recovery (respectively) among coercive continuous convex regularizers.

• We study the case of two generalized sparsity models in Section 4: sparsity in levels and sparse

plus low-rank models. We show how an optimal regularizer can be explicitly constructed in a

small family of convex regularizers (ℓ1-norm weighted by levels and mixed weighted ℓ1-nuclear

norm respectively). While giving optimal weighting schemes for mixed regularizations, these

examples also show the difficulty of calculating optimal regularizers for new low-dimensional

models and opens many questions for the study of optimal regularizers.

We give an overview of the different compliance measures and the nature of results considered in this

paper in Table 1.

1.3 Notations

In H, we denote S(1) := {z ∈ H : ‖z‖H = 1} the unit sphere with respect to ‖ · ‖H. Given a linear

operator M : H→ Cm, we denote MH its Hermitian adjoint.

For Σ ⊆ H an arbitrary set, we denote ιΣ its characteristic function defined by ιΣ (x) = 0 if x ∈ Σ ,

ιΣ (x) = +∞ otherwise. We denote E(Σ) := R+ · conv(Σ), where conv(Σ) is the closure of the convex

hull of Σ . We define R̄ := R∪{+∞}. Given a function f : H → R̄, we denote by dom( f ) its domain,

i.e., the set dom( f ) := {x ∈H : f (x) <+∞}.

2. Optimal regularizer for a low dimensional model

In this section, starting from the characterization of exact recovery of a model Σ , we introduce the notion

of compliance measure and associated optimal convex regularizer.

2.1 Characterization of exact recovery using descent cones

Before defining an optimal regularizer, we must characterize when Σ can be recovered by solving (1.2).

The fact that a given x0 ∈ Σ is recovered by solving (1.2) with regularizer R (i.e., that the solution

x∗ of (1.2) is unique and satisfies x∗ = x0 when y := Mx0) is equivalent to the fact that R(x0 + z) >
R(x0) for every z ∈ ker(M)\ {0} (see e.g., [14]). To summarize this, we use the following definition of

symmetrized descent cones.

DEFINITION 2.1 ((Symmetrized) descent cones.) Consider a regularizer R : H → R̄. For any x ∈
dom(R), the descent cone of R at x is

TR(x) := {γz : γ ∈R,z ∈H,R(x+ z)6 R(x)} . (2.1)

For any set Σ ⊂ dom(R), we define TR(Σ) :=
⋃

x∈Σ TR(x).

Other definitions of descent cones (e.g., non-symmetric like in [14]) could be used. The symmetriza-

tion facilitates technical derivations in the following and permits to characterize recovery as well. For

ease of reading, in the following, symmetrized descent cones will be referred to as descent cones.

Recovery guarantees with a regularizer R for a linear operator M generally come in two flavors (recall

that x∗ is the result of minimization (1.2)):
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Compliance

(type of recovery)
Definition Section Results

Based on descent cone

(uniform)
f (TR(Σ)) Sec. 2

Optimality of atomic norms (Th 2.4);

Equivariance (Lem. 2.5);

Invariance (Cor. 2.1)

AU
Σ (R): Volume

(uniform)
1− vol(TR(Σ)∩S(1))

vol(S(1))
Sec. 2

Monotonicity (Lem. 2.2);

Invariance (Cor. 2.2)

δ suff
Σ (R): Sufficient RIP

(uniform)

1
√
√
√
√ sup

z∈TR(Σ )\{0}

‖z−PΣ (z)‖2
Σ

‖PΣ (z)‖2
2

+1

Sec. 3

Characterization (Lem. 3.5, Cor. 3.2);

Optimal sparse reg. and optimal

low-rank reg. (Th. 3.8, Th. 3.9);

Sharp bound for near-optimal reg. for

sparsity in levels (Th. 4.3)

δ nec
Σ (R): Necessary RIP

(uniform)
infz∈TR(Σ)\{0} δΣ (I −Πz) Sec. 3

Characterization (Lem. 3.3, Cor. 3.1);

Optimal sparse reg. and optimal

low-rank reg. (Th. 3.6, Th. 3.7);

Opt. weights for sparsity in levels (Th. 4.2);

Opt. weights for sparse+low-rank (Th. 4.4)

δ
sharp

Σ (R): Sharp RIP

(uniform)
infM:kerM∩TR(Σ)6={0} δΣ (M) Sec. 3

Characterization (Prop. 3.4);

Invariance (Lem. 3.2);

Bound by δ nec and δ suff
Σ (R) (Eq. 3.5)

ANU
Σ (R): Volume

(non-uniform)
1− supx∈Σ

vol(TR(x)∩S(1))
vol(S(1))

. Sec. 2 -

Kinematic formula

(non-uniform)

supx∈Σ P
(
kerM∩TR(x) 6= {0}

)
,

M Gaussian
Sec. 2 -

Statistical dimension

(non-uniform)

supx∈Σ statdim(TR(x)) Sec. 2 -

Table 1. A summary of different compliances measures and results. Compliances for which some results are given in this article

are in bold (we focused on uniform recovery guarantees). Explicit maximization is performed on compliances based on necessary

and sufficient conditions with the restricted isometry property (RIP) yielding bounds on sharp RIP-based compliances.

• Non-uniform recovery: If x0 ∈ Σ , then x∗ = x0 is equivalent to TR(x0)∩kerM = {0}.

• Uniform recovery: “For all x0 ∈ Σ , x∗ = x0” is equivalent to

TR(Σ)∩kerM = {0}. (2.2)

In the literature, recovery guarantees are obtained when the measurement operator M fulfills suffi-

cient conditions that imply these characterizations. Distinguishing these two types of recovery guaran-

tees especially makes sense in the context of compressed sensing when M is chosen at random. Typical

results are then of the form:

• Non-uniform recovery: Given x0 ∈ Σ , with high probability on the draw of M, x∗ = x0.

• Uniform recovery: With high probability on the draw of M, x∗ = x0 for all x0 ∈ Σ .
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The main techniques to obtain recovery guarantees using a condition on the number of measurements

differ largely between these two cases (see Section 3). In this work, we mostly focus on uniform

recovery guarantees to stay in a fully deterministic setting. For such uniform recovery guarantees, we see

that the only interactions that matter between the model set Σ , the regularizer R, and the measurement

operator M are summarized by equation (2.2).

2.2 Compliance measures and optimal regularization

To define a notion of optimal regularizer, we simply propose to say that an optimal regularizer is a

function that optimizes a (hopefully well-chosen) criterion. We call such a criterion, a compliance

measure and specifically aim at defining it such that it should be maximized. The objective is to define

a compliance measure that quantifies the recovery capabilities of a given regularizer R given a model

set Σ .

Starting from the characterization of exact recovery, we can make the following remark. If the

descent sets of a regularizer R1 are included in the descent sets of another regularizer R2, then the

recovery capability of R1 are greater in the following way: success of recovery with R2 implies success

of recovery with R1. Any “reasonable” compliance measure quantifying recovery capabilities needs to

fulfill the following axiom:

A compliance measure must be monotonously decreasing with respect to the inclusion of descent sets.

We also see that the kernel of M heavily influences the recovery capability of R. If we had some

knowledge that M ∈M where M is a set of linear operators, we would want to define a compliance

measure AΣ ,M(R) that tells us how good is a regularizer in these situations and to maximize it. Such

maximization might yield a function R∗ that depends on M (e.g., in [33], when looking for tight con-

tinuous relaxation of the ℓ0 penalty a dependency on M appears). In the following, we propose a more

universal notion of optimal convex regularizer that does not depend on a particular class of linear oper-

ators M: we propose compliance measures AΣ (R) that depend only on the set Σ and on the regularizer

R, and consider their maximization on some set of convex functions C (that are coercive and continuous,

see Section 2.4):

sup
R∈C

AΣ (R). (2.3)

Of course, the existence of a maximizer of AΣ (R) is in itself a general question of interest: we could ask

ourselves what conditions on AΣ (R) and C are necessary and sufficient for the existence of a maximizer,

which is out of the scope of this article – we notably expect potential difficulties when normalized

atoms defining the model set are not a compact set. In the sparse recovery and low-rank matrix recovery

examples studied in this article, the existence of a maximizer of the considered compliance measures

will be verified.

To build a compliance measure that does not depend on M, we define the optimal regularizer as the

regularizer which guarantees recovery of Σ in as many situations as possible, i.e., for “as many linear

operators M as possible”. Intuitively, a regularizer R is “good” if the set TR(Σ) “leaves a lot of space”

for kerM to not intersect it (trivially), see Figure 1. Among non-convex regularizers, the optimal one is

the characteristic function of the model set Σ .

LEMMA 2.1 (Optimality of the characteristic function.) Consider an arbitrary non-empty set Σ ⊆ H
and denote ιΣ its characteristic function. The corresponding descent cone is

TιΣ (Σ) = {γz : γ ∈ R,z ∈ Σ −Σ} ⊇ Σ −Σ
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FIG. 1. A representation of recovery guarantees based on descent cones of a convex function. Recovery of x ∈ Σ fails if ker(M)
intersects TR(x) non trivially. The bigger is the descent cone (red) the more likely recovery will fail. The bigger the space left by

the descent cone (blue), the more likely recovery will succeed

where Σ −Σ is the so-called secant set of Σ . For any regularizer R such that Σ ⊆ dom(R) we have

TιΣ (Σ)⊆ TR(Σ). Finally, if Σ is positively homogeneous then TιΣ (Σ) = Σ −Σ .

Proof. See Appendix A.2 �

This Lemma shows that ιΣ is at least as successful as any regularizer R for the exact recovery of Σ
(without any consideration of compliance measure). Moreover, TιΣ (Σ) is the smallest possible descent

cone with respect to inclusion. Hence ιΣ can be considered as the ideal regularizer [9] and indeed the

optimal one with respect to any compliance measure defined as AΣ (R) = f (TR(Σ)) where f is some

function on subsets of H that is monotonic with respect to set inclusion. This is why the search for

optimal regularizers only makes sense under some constraint on R.

2.3 A first compliance measure

As a first concrete example, we define here a theoretical compliance measure that reflects the idea

that smaller descent cones are better. However, this compliance measure does not lead to analytical

expressions for the general study of sparse recovery. Our core results in the next sections rely on

compliance measures based on best known uniform recovery guarantees using the restricted isometry

property (RIP).

For convex functions, first, observe that, as only the directions of the descent cones and the kernel

play a role in recovery guarantees, the size of descent cones can be measured by considering only their

intersection with the unit sphere S(1). Choosing the norm ‖ · ‖H to define the unit sphere is natural

(although also somewhat arbitrary) as this is the only metric introduced so far in the considered setting.

It will also appear to define RIP constants soon. Second, if we want to consider a measure that is

invariant by rotation, the uniform measure on the unit sphere S(1) comes somewhat naturally. It is

indeed the unique Haar measure. The uniqueness is essentially guaranteed when it is a measure in the

sense of measure theory (additive, non-negative function over a σ -algebra). In our setting, using this

measure is a way of considering that we do not have prior information on the orientation of the kernel

of M, or on the orientation of the model set Σ .
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Using this measure, given a convex function R, the “amount of space left for the kernel of M” can

be quantified by the “volume” of the intersection TR(Σ)∩S(1) of the descent cone with the unit sphere.

Hence, a compliance measure for uniform recovery can be defined as

AU
Σ (R) := 1− vol(TR(Σ)∩S(1))

vol(S(1))
. (2.4)

Here, the volume vol(E) of a set E is the measure of E with respect to the uniform measure on the

sphere S(1) (i.e., the n−1-dimensional Hausdorff measure of TR(Σ)∩S(1), when H is n-dimensional).

This measure is well-defined as the descent cones of convex functions are symmetrized convex cones.

When looking at non-uniform recovery for random Gaussian measurements, the quantity defined by
vol(TR(x0)∩S(1))

vol(S(1))
represents the probability that a randomly oriented kernel of dimension 1, defined as the

span of a random vector uniformly distributed on the sphere S(1), intersects (non trivially) TR(x0). The

highest probability of intersection with respect to x0 quantifies the lack of compliance of R, hence we

could define:

ANU
Σ (R) := 1− sup

x∈Σ

vol(TR(x)∩S(1))

vol(S(1))
. (2.5)

This can be linked with the Gaussian width and statistical dimension theory of non-uniform sparse

recovery [2, 14]. Indeed, if M is a random Gaussian matrix of size (n− 1)× n, we have

P
(
kerM∩TR(x0) 6= {0}

)
=

vol(TR(x0)∩S(1))

vol(S(1))
. (2.6)

As shown in [2], for a random Gaussian matrix M of size m× n with any number of measurements m,

the probability P
(
kerM∩TR(x0) 6= {0}

)
can be guaranteed to be small if m is greater than the statistical

dimension of the descent cones. The kinematic formula (Crofton’s formula in this case) gives the exact

value

P
(
kerM∩TR(x0) 6= {0}

)
=

n

∑
j=m+1, j even

v j(TR(x0)) (2.7)

where v j(K) is the j-th intrinsic volume of a cone K. For a polyhedral cone it is the probability that

the orthogonal projection on K of a Gaussian vector lies in a j-dimensional face of K. The statistical

dimension of a descent cone T is defined by [2, Definition 2.2]

statdim(K) =
n

∑
j=0

jv j(K). (2.8)

As it is used to bound the number of measurements in the non uniform case, its supremum over all the

descent cones K = TR(x0),x0 ∈ Σ could be used as a compliance measure. Moreover, it was shown that

the statistical dimension is a measure of the “size” of the convex cones that is additive, invariant by

rotation, and monotonous.

The above compliance measures are completely dependent on the metric defining S(1) (here the

Hilbert norm ‖ ·‖H), other choices could be considered especially if measurement operators M showing

a particular structure were considered.

In this article, we concentrate on compliance measures based on uniform recovery guarantees.

REMARK 2.1 These compliance measures implicitly force Σ ⊂ dom(R), unless AΣ (R) = 0. Indeed,

suppose there exists x ∈ Σ such that R(x) = +∞, then for all z ∈ H, we have R(x+ z) 6 +∞ = R(x).
This implies TR(x) =H and AU

Σ (R) = ANU
Σ (R) = 0.
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REMARK 2.2 When studying convex regularization for low dimensional recovery in infinite dimen-

sional separated Hilbert spaces, the noiseless recovery only depends on the behavior of the regularizer

R on E(Σ) (defined in Section 1.3). The behavior of R outside E(Σ) is only studied to obtain properties

of robustness to modeling error [38]. In many examples of generalized sparsity and low-dimensional

modeling in infinite dimension, the space E(Σ) has a finite dimension [1]. Our framework still applies

in this case.

It is an open question to generalize our framework for low-dimensional recovery in more general

settings such as Banach spaces (e.g., for off-the-grid super-resolution).

REMARK 2.3 In the uniform recovery case, the compliance measure AU
Σ defined in (2.4) is monotonous

with respect to the partial ordering of descent cones defined by the inclusion property. However, it

does not (at least explicitly) take into account potential effects of the dimension of the kernel of M,

which may be higher than one. For a given dimension ℓ of the kernel of M, the uniform measure on

the corresponding Grassmanian manifold (of all subspaces of dimension ℓ) would be more natural as it

would directly quantify the probability of intersection with a random kernel of fixed dimension. This

measure for kernels of dimension ℓ and a descent cone K is the following:

Vℓ(K) := µO(n) ({Q ∈ O(n) : (QE)∩K 6= {0}}) (2.9)

where µO(n) is the uniform measure on the orthogonal group and E is an arbitrary fixed ℓ-dimensional

subspace. The measure Vℓ is invariant by rotation and for ℓ = 1 it matches the Haar measure used

in (2.4)-(2.5).

Given a set Σ , and assuming the existence of a maximizer R∗ of AU
Σ (within a prescribed family of

possible regularizers), there are only two possibilities: either all maximizers of AU
Σ (R) also minimize

Vℓ(TR(Σ)), or not. In this last case, it would mean that there is R∗ maximizing AU
Σ and not minimizing

Vℓ. It is an interesting challenge, left to future work, to understand whether this case can indeed happen.

We remind the reader that compliances considered in this article are summarized in Section 1.2.

2.4 Coercive continuous convex functions

As mentioned before we look for practical regularizers. We define C the set of all functions R : H→ R

(i.e., with dom(R) =H) that are convex, continuous, and coercive.

The coercivity condition is typical in the context of convex regularization in order to avoid constant

functions.

With any proper lower semi-continuous regularizer (hence, with any regularizer in C) the conver-

gence of the primal dual algorithm is guaranteed [13]. This guarantees the existence of practical algo-

rithms (for the problem minx
1
2
‖Mx− y‖2+λ R(x) ) when the proximity operator

y 7→ proxλ R(y) := argmin 1
2
‖u− y‖2

H+λ R(u) (2.10)

can be approximated efficiently.

2.5 Elementary properties and reduction to atomic “norms”

As compliance measures based on uniform recovery guarantees can be written as functions of descent

cones TR(Σ), we have the following immediate Lemma.

LEMMA 2.2 (The compliance measure AU
Σ is monotonic.) Let R1,R2 be two functions such that

TR1
(Σ) ⊂ TR2

(Σ) then AU
Σ (R1)> AU

Σ (R2).
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In other words, the compliance measure is decreasing with respect to the inclusion of descent cones.

We also verify that multiplying a regularizer by a scalar does not change the compliance measure which

is consistent with recovery guarantees.

LEMMA 2.3 (The compliance measures AU
Σ and ANU

Σ are 0-homogeneous.) Let λ > 0. Then,

AU
Σ (λ R) = AU

Σ (R),

ANU
Σ (λ R) = ANU

Σ (R).
(2.11)

Proof. Let x ∈ Σ . We remark that, the tangent cone is invariant by scalar multiplication:

Tλ R(x) = {γz : γ ∈ R,λ R(x+ z)6 λ R(x)}
= {γz : γ ∈ R;R(x+ z)6 R(x)}
= TR(x).

(2.12)

This shows directly that ANU
Σ (λ R) = ANU

Σ (R). This also implies that Tλ R(Σ) = TR(Σ) and AU
Σ (λ R) =

AU
Σ (R).

�

More generally, any operation on R that leaves TR(Σ) invariant does not change the compliance

measure. This is typically the case of the post-composition of R with an increasing function.

We now recall the notion of atomic “norm” and show that optimal regularizers can be found in a set

of atomic norms.

DEFINITION 2.2 (Atomic norm.) The atomic “norm” induced by a set A is defined as:

‖x‖A := inf{t ∈ R+ : x ∈ t · conv(A)} (2.13)

where conv(A) is the closure of the convex hull conv(A) in H. This “norm” is finite only on

E(A) := R+ · conv(A) = {x = t · y, t ∈ R+,y ∈ conv(A)} ⊂H. (2.14)

It is extended to H by setting ‖x‖A =+∞ if x /∈ E(A).

Classical convex regularizer for sparse and low rank models are atomic norms:

• The ℓ1-norm ‖ · ‖1 is the atomic norm induced by signed canonical basis vectors.

• The nuclear norm ‖ · ‖∗ is the atomic norm induced by unitary rank-one matrices.

Atomic norms are convex gauges induced by the convex hull of atoms. Their properties can be linked

with the properties of the set A with classical results on convex gauge functions (see Appendix A.1).

It is possible to define an atomic norm, denoted ‖ · ‖Σ , specifically induced by the model Σ .

DEFINITION 2.3 (Atomic norm induced by the model.) Given a cone Σ , we define the atomic norm

induced by Σ as

‖ · ‖Σ := ‖ · ‖Σ∩S(1). (2.15)

This norm is known as the k-support norm for sparse model, it is not adapted to perform uniform

recovery. In particular, it cannot recover 1-sparse vectors.

In [38, Lemma 2.1], it was shown that there is always an atomic norm with smaller descent cones

than the descent sets of a proper coercive continuous function with convex level sets. We give a version

of this result for our definition of cones and specify the properties of the obtained atomic norm.
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LEMMA 2.4 (Optimality of atomic norms for a given model.) Let Σ be a cone such that E(Σ) =H and

R be a coercive continuous convex function. Then there exists A⊂ Σ such that:

T‖·‖A(Σ)⊆ TR(Σ). (2.16)

and ‖ · ‖A is a coercive, continuous, positively homogeneous convex function.

Proof. See Appendix A.2.2. �

With Lemma 2.4, for all coercive continuous convex functions R (i.e. elements of C), it is possible

to find an atomic norm R′ with atoms included in Σ such that TR′(Σ) ⊂ TR(Σ). We define CΣ as the set

of coercive continuous positively homogeneous atomic “norms” whose atoms A are included in Σ :

CΣ := {‖ · ‖A : A⊂ Σ ,‖ · ‖A ∈ C,∀x ∈H,λ > 0,‖λ x‖A = λ‖x‖A}. (2.17)

Note that positive homogeneity is guaranteed if 0 is in the interior of conv(A) (see Appendix A.1). As

a consequence of this Lemma, we have the following immediate result.

THEOREM 2.4 (Optimization of compliance measures over CΣ .) Let Σ be a cone such that E(Σ) =H.

Suppose AΣ is a compliance measure that is a decreasing function of TR(Σ) with respect to set inclusion.

Then

sup
R∈C

AΣ (R) = sup
R∈CΣ

AΣ (R). (2.18)

In particular

sup
R∈C

AU
Σ (R) = sup

R∈CΣ

AU
Σ (R). (2.19)

Proof. Let R ∈ C, with Lemma 2.4, there exists ‖ · ‖A ∈ CΣ such that T‖·‖A(Σ) ⊂ TR(Σ). This implies

T‖·‖A(Σ)∩S(1)⊂ TR(Σ)∩S(1) and AΣ (R)6 AΣ (‖ · ‖A).
�

Theorem 2.4 shows that we can limit ourselves to atomic norms if our only objective is to maximize the

compliance measure.

With such measures, we can calculate optimal regularizers for elementary linear transformations of

models.

LEMMA 2.5 (Compliance measures as functions of descent cones are equivariant to linear transforma-

tions.) Consider a compliance measure defined as: AΣ (R) := f (TR(Σ)) with f some scalar valued

function defined on non-empty subsets of H. For any invertible linear map F on H, any model set Σ
and any regularizer R, we have

TR(FΣ) = F(TR◦F(Σ)) (2.20)

AFΣ (R) = f [F(TR◦F(Σ))]. (2.21)

Proof. First γz ∈ TR(FΣ) if, and only if, there exists x ∈ Σ such that R(Fx+ z)6 R(Fx), i.e., such that

(R◦F)(x+F−1z) 6 (R◦F)(x). This is in turn equivalent to γF−1z ∈ TR◦F(Σ), i.e., γz ∈ F(TR◦F(Σ)).
Second, it follows that AFΣ (R) = f (TR(FΣ)) = f [F(TR◦F(Σ))]. �

Thanks to Lemma 2.5, we can build optimal regularizers from other optimal regularizers when the

model set is obtained from another one by applying a linear isometry.

COROLLARY 2.1 (Compliance measures as functions of descent cones are invariant under invariant

maps.) Consider a compliance measure defined as: AΣ (R) := f (TR(Σ)) with f some scalar valued
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function on subsets of H. Assume that f is invariant to a family F of invertible linear maps on H,

i.e., for any F ∈F and any non-empty set T ⊆H, f (FT ) = f (T ). Then, for any F ∈F , any regularizer

R and any model set Σ , we have

AFΣ (R◦F−1) = AΣ (R). (2.22)

Proof. By Lemma 2.5, AFΣ (R◦F−1) = f [F(T(R◦F−1)◦F(Σ))] = f (FTR(Σ)) = f (TT (Σ)) = AΣ (R).
�

COROLLARY 2.2 (Compliance measures AU
Σ are invariant by isometries.) Consider F an isometry on

H, R a regularizer and Σ a model set. We have

AU
FΣ (R◦F−1) = AU

Σ (R). (2.23)

Proof. The volume is invariant to isometries, hence AU
Σ (R) = fU (TR(Σ)) where fU(·) is invariant to

isometries.

�

2.6 An exact result in 3D: the most we can do?

Compliance measures AU
Σ (R) and ANU

Σ (R) were effectively optimized [40] in the case of 1-sparse recov-

ery in dimension 3, i.e., for Σ = Σ1 the set of 1-sparse vectors in R3. In this case, CΣ = {‖·‖A :A⊂ Σ1}.

It was shown that for the set C ′
Σ = {‖ · ‖A : A ⊂ Σ1,A = −A} (which is the set of weighted ℓ1-norms)

that

arg max
R∈C′

Σ

AU
Σ (R) = arg max

R∈C′
Σ

ANU
Σ (R) = {λ‖ · ‖1 : λ > 0}. (2.24)

To show this, the solid angles of all descent cones of arbitrary weighted ℓ1-norms were calculated

exactly, and their size minimized with respect to the weights.

FIG. 2. Solid angle of a half descent cone of a weighted ℓ1-norm

Unfortunately, calculating exactly these solid angles in dimension d seems out of reach for any spar-

sity and atomic norm in CΣ even if some progress in bounds of these quantities [27] in some particular

cases (non-uniform recovery with ℓ1-norm in probability with random matrices). To the best of our

knowledge, no general bound is available for the volume of descent cones of arbitrary atomic norms in

CΣ for sparse recovery. To build a compliance measure that we could optimize, we would need to first

to establish such general bounds with some tightness.
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In the next section, we propose to build compliance measures based on best-known uniform recovery

guarantees that have some “tightness” properties. This will enable us to manipulate analytical expres-

sions and give results for sparse recovery and low-rank recovery.

3. Compliance measures based on the restricted isometry property

The most used tool for the study of uniform recovery is the restricted isometry property (RIP). This

property is adequate for multiple models [38], to be tight in some sense [17] for sparse and low-rank

recovery, to be necessary in some sense [9], and to be well adapted to the study of random operators [30].

In [38], given a regularizer R, an explicit constant δΣ (R) is given, such that δΣ (M) < δΣ (R) guarantees

the exact recovery of elements of Σ by minimization (1.2). Hence, using δΣ (R) as a compliance measure,

the higher the value of δΣ (R), the less stringent the RIP condition on M to ensure recovery of all elements

of Σ using R as a regularizer.

To formalize further this idea, we start by recalling definitions and results about RIP recovery guar-

antees then apply our methodology. We also give results that emphasize the relevant quantity (depending

on the geometry of the regularizer and the model) to optimize.

DEFINITION 3.1 (RIP constant.) Consider an arbitrary non-empty set Σ ⊂H and M a linear map from

H to Cm. The RIP constant of M is defined as

δΣ (M) = sup
x∈Σ−Σ

∣
∣
∣
∣

‖Mx‖2
2

‖x‖2
H

− 1

∣
∣
∣
∣
, (3.1)

where Σ −Σ (differences of elements of Σ ) is called the secant set. For brevity, we will simply denote

δ (M) when the model set Σ is clear from context.

This coincides with the usual notion of RIP for sparse recovery when Σ = Σk is the set of vectors with

at most k nonzero entries (and Σ −Σ = Σ2k); and with the RIP for low-rank recovery when Σ = Σr is

the set of matrices of rank at most r (then, Σ −Σ = Σ2r).

A natural and sharp RIP-based compliance measure is A
RIP,sharp
Σ (R) = δ

sharp

Σ (R) defined as:

δ
sharp

Σ (R) := inf
M:ker M∩TR(Σ) 6={0}

δΣ (M). (3.2)

This is the smallest RIP constant of measurement operators where uniform recovery fails [17], hence

the following immediate theorem.

THEOREM 3.2 (The compliance measure δ
sharp

Σ (R) is sharp.) Consider an arbitrary non-empty set

Σ ⊆H. Suppose M has RIP with constant δΣ (M) < δ
sharp

Σ (R), then for all x0 ∈ Σ and x∗ the result of

minimization (1.2) satisfies

x∗ = x0. (3.3)

Conversely, there exists M with δΣ (M) > δ
sharp

Σ (R) and x0 ∈ Σ such that x∗ 6= x0.

Despite this sharp property with respect to recovery, δ
sharp

Σ (R) is not endowed with any known

analytic expression more explicit than its definition, and it is an open question to derive closed-form

formulations of this constant for a general R, even for the particular case of sparse or low-rank mod-

els. This limits the possibility to conduct an exact optimization with respect to R, and motivates the

investigation of more explicit RIP-based compliance measures, with two flavors:
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• Compliance measures δ nec
Σ (R) based on necessary RIP conditions [17] which yield sharp recovery

constants for particular set of operators M, e.g.,

δ nec
Σ (R) := inf

z∈TR(Σ)\{0}
δΣ (I −Πz). (3.4)

where Πz is the orthogonal projection onto the one-dimensional subspace span(z) (other interme-

diate necessary RIP constants can be defined). Such measures upper bound δ
sharp

Σ (R) (δ nec
Σ (R)

characterizes RIP recovery guarantees of measurement operators having the shape I −Πz).

• Compliance measures δ suff
Σ (R) based on sufficient RIP constants for recovery (e.g., the explicit

sufficient RIP constant δΣ (R) from [38], which is explained in Section 3.3), which are lower

bounds to δ
sharp

Σ (R).

Note that we have the relation

δ suff
Σ (R)6 δ

sharp

Σ (R)6 δ nec
Σ (R). (3.5)

The next sections aim at showing that the ℓ1-norm (resp. the nuclear norm) maximizes the (best

known) upper and lower bounds of δ
sharp

Σ (R) for k-sparse model (resp. low rank models).

First, in Section 3.1, we recall that when Σ is a non-trivial cone, the compliance measures associated

to RIP constants can be cast to equivalent compliance measures associated to a restricted conditioning

(RC), which can be written more explicitly.

Second, in Section 3.2, we use the expression of the RC-based compliance measure associated to

δ nec
Σ (·) (from Equation (3.4)) to show that the ℓ1 norm (resp. the trace-norm) optimizes δ nec

Σ (·) for

k-sparse vectors (resp. for matrices of rank at most r), with δ nec
Σ (R⋆)≈ 1/

√
2 when n is large enough.

Finally, in Section 3.3, we give a characterization of δ suff
Σ (R) and show the optimality of the ℓ1-norm

(resp. the nuclear norm) with δ suff
Σ (R⋆) = 1/

√
2.

3.1 Restricted conditioning as a compliance measure

When working with a model set Σ that is a cone, instead of working with actual RIP constants, it is

easier to use (equivalently) the restricted conditioning.

DEFINITION 3.3 (Restricted conditioning.) Consider a cone Σ ⊂H and a linear operator M from Rn to

Cm. We define the restricted conditioning of M as

γΣ (M) :=
supx∈(Σ−Σ)∩S(1) ‖Mx‖2

2

infx∈(Σ−Σ)∩S(1) ‖Mx‖2
2

∈ [1,∞] (3.6)

where by convention here a/0 =+∞ for any a > 0. For brevity we will simply denote γ(M) when Σ is

clear from context.

As shown below, the RIP constant δΣ (M) is a monotonically increasing function of γΣ (M). The

advantage of the latter is that it is invariant by rescaling M (rescaling leaves unchanged the recovery

properties when measuring x0 with M).

LEMMA 3.1 (The RIP constant δΣ (M) is monotone in γΣ (M).) Consider a cone Σ ⊆ H. For any M

such that γΣ (M)< ∞, there is a unique λ > 0 such that

γΣ (M) =
1+ δΣ(λ M)

1− δΣ(λ M)
(3.7)
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or equivalently

δΣ (λ M) =
γΣ (M)− 1

γΣ (M)+ 1
. (3.8)

Proof. See Appendix A.3. �

Thus, for cones, RIP-based compliance measures have equivalent RC-based compliance measures

such that

γΣ (R) =
1+ δΣ(R)

1− δΣ(R)
and δΣ (R) =

γΣ (R)− 1

γΣ (R)+ 1
. (3.9)

The sharp RIP constant (3.2), the necessary RIP constant (3.4) and the sufficient RIP constant δ suff
Σ (R)

of [38] are associated to

γ
sharp

Σ (R) := inf
M:kerM∩TR(Σ) 6={0}

γΣ (M) =
1+ δ

sharp

Σ (R)

1− δ
sharp

Σ (R)
, (3.10)

γnecΣ (R) := inf
z∈TR(Σ)\{0}

γΣ (I−Πz) =
1+ δ nec

Σ (R)

1− δ nec
Σ (R)

, (3.11)

γsuffΣ (R) :=
1+ δ suff

Σ (R)

1− δ suff
Σ (R)

. (3.12)

We deduce from (3.5) the inequalities

γsuffΣ (R)6 γ
sharp

Σ (R)6 γnecΣ (R). (3.13)

The following result shows that γ
sharp

Σ (R) can be simplified.

PROPOSITION 3.4 (Explicit expression of γ
sharp

Σ (R).) Consider a cone Σ ⊆ H. Let P be the set of

symmetric positive semi-definite (PSD) linear operators on H: N ∈ P if and only if NH = N and N � 0.

For z ∈H\{0} define

f RC
Σ (z) := inf

N∈P:kerN=span(z)
γΣ (N) (3.14)

and for any non-empty set T ⊆H such that T 6= {0} define

f RC
Σ (T ) := inf

z∈T \{0}
f RC
Σ (z). (3.15)

We have

inf
M:kerM∩T 6={0}

γΣ (M) = f RC
Σ (T ). (3.16)

Proof. This is an immediate consequence of Lemma A.1 in Appendix A.3.

�

Using T = TΣ (R), the sharp RC (or RIP) constant is the smallest RC constant of positive symmetric

definite PSD operators with kernels of dimension 1 for which recovery of Σ fails:

γ
sharp

Σ (R) = f RC
Σ (TR(Σ)). (3.17)

Since I−Πz ∈ P for any nonzero z, we have f RC
Σ (z)6 γΣ (I−Πz) hence we recover the inequality

γ
sharp

Σ (R)6 inf
z∈TR(Σ)\{0}

γΣ (I −Πz) = γnecΣ (R),
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however it is an open question to determine whether this is an equality in particular cases or in general.

The constant γnecΣ is already sharp in the following sense: for sparse recovery with the ℓ1-norms, as well

as for low-rank recovery with the nuclear norm, it is the biggest possible RIP constant (δ suff
Σ (R) = 1√

2
)

that guarantees uniform recovery with ‖ ·‖1 (respectively with the nuclear norm) for all sparsities k (for

all rank levels r respectively) [17].

Similarly, to the compliance measures from Section 2, we can deduce an optimal regularizer after

an isometric linear transformation of the model.

LEMMA 3.2 (Invariance of γ
sharp

Σ (R) under linear isometries.) Consider a cone Σ ⊆ H, an arbitrary

regularizer R such that Σ ⊆ dom(R), and a (linear) isometry F . We have

γ
sharp

FΣ (R◦F−1) = γ
sharp

Σ (R). (3.18)

Hence, for any class C ′ of regularizers,

R∗ ∈ argmax
R∈C′

γ
sharp

Σ (R)⇔ R∗ ◦F−1 ∈ arg max
R′∈C′

γ
sharp

FΣ (R′). (3.19)

Proof. See Appendix A.3. �

3.2 Compliance measures based on necessary RC conditions

In this section, we characterize the compliance measure

γnecΣ (R) = inf
z∈TR(Σ)\{0}

γΣ (I −Πz). (3.20)

To show optimality of the ℓ1-norm for sparse recovery and of the nuclear norm for low-rank recovery,

we will use the following characterization of γnecΣ (R) when Σ is a cone.

LEMMA 3.3 (Characterization of γnecΣ (R) for a cone.) Consider a cone Σ ⊆H such that Σ 6= {0} and R

an arbitrary regularizer such that Σ ⊆ dom(R).

1. If there is x ∈H such that Σ ⊆ span(x), then

γnecΣ (R) =

{

+∞ if TR(Σ)⊆ Σ ,

1 otherwise.
(3.21)

2. If Σ ( span(x) for every x ∈H, then

γnecΣ (R) =
1

1− infz∈TR(Σ)\{0} supx∈(Σ−Σ)∩S(1)
〈x,z〉2

‖z‖2
H

. (3.22)

Proof. See Appendix A.4. �

To go further, we exploit two assumptions related to orthogonal projections on certain sets.

DEFINITION 3.5 (Orthogonal projection.) For any set E we define, for all z ∈H

PE(z) = argmin
y∈E

‖z− y‖H. (3.23)

This is a set-valued operator is called the orthogonal projection, and PE(z) may be empty if the mini-

mum is not achieved.
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Some assumptions on E ensure that PE(z) is not empty for any z.

LEMMA 3.4 (Existence of the projection.) Consider a union of subspaces E ⊆ H, and assume that

E ∩ S(1) is compact. Then for every z ∈ H, PE(z) 6= /0. Moreover, for every x,x′ ∈ PE(z) we have

‖z− x‖2
H = ‖z− x′‖2

H and 〈z,x〉= ‖x‖2
H = ‖x′‖2

H = 〈z,x′〉, hence the notations ‖z−PE(z)‖2
H, 〈z,PE(z)〉

and ‖PE(z)‖2
H are unambiguous. We also have ‖z‖2

H = ‖z−PE(z)‖2
H+ ‖PE(z)‖2

H and

〈z,PE(z)〉= ‖PE(z)‖2
H = sup

x∈E∩S(1)

|〈x,z〉|2.

Proof. See Appendix A.4. �

Even if E is a union of subspaces and E∩S(1) is compact, PE(z) may not always be a singleton. For

example, consider E the set of k-sparse vectors and z the vector with all entries equal to one.

Thanks to Lemma 3.4, we have the following characterization of the maximizers of δ nec
Σ .

COROLLARY 3.1 (Characterization of δ nec
Σ .) Consider a cone Σ ⊂H and assume that Σ −Σ is a union

of subspaces, (Σ −Σ)∩S(1) is compact, and Σ 6= span(x) for each x∈Σ . For any class C ′ of regularizers

such that Σ ⊆ dom(R) for every R ∈ C ′, the set of maximizers of δ nec
Σ (·) satisfies (whether this set of

maximizers is empty)

argmax
R∈C′

δ nec
Σ (R) = arg min

R∈C′
BΣ (R) with BΣ (R) := sup

z∈TR(Σ)\{0}

‖z−PΣ−Σ(z)‖2
H

‖PΣ−Σ(z)‖2
H

. (3.24)

For any regularizer R we have

δ nec
Σ (R) = (1+ 2BΣ(R))

−1. (3.25)

Proof. See Appendix A.4. �

We now have the tools to study optimality for sparse and low rank models.

OPTIMAL REGULARIZATION FOR SPARSE RECOVERY AND FOR LOW-RANK RECOVERY Consider

now Σ = Σk the set of k-sparse vectors in H = Rn (associated with the canonical scalar product 〈·, ·〉
and the ℓ2-norm ‖ · ‖H = ‖ · ‖2), where 1 6 k 6 n/2, n > 3. We have Σ − Σ = Σ2k (for n 6 2k, in

particular for n6 2 and any k > 1, uniform recovery is not possible for non-invertible M: as Σ −Σ =Rn,

by Lemma 2.1 we have TR(Σ) = Rn for any regularizer, thus TR(Σ)∩ kerM = {0} implies kerM =
{0}). It is well-known that Σ and Σ −Σ are both unions of subspaces (hence Σ is a cone), and it is

straightforward that (Σ −Σ)∩S(1) is compact and Σ is not reduced to a single line. Moreover, for any

nonzero z ∈ Rn, PΣ−Σ(z) contains the restriction zT2
of z to any set T2 = T2(z) ⊆ {1, . . . ,n} of size 2k

such that mini∈T2
|zi| > max j∈T c

2
|z j |. Hence, we can invoke Corollary 3.1 to replace the maximization

of δ nec
Σ (R) by the minimization of

BΣ (R) = sup
z∈TR(Σ)\{0}

‖zT c
2
‖2

2

‖zT2
‖2

2

. (3.26)

Similarly, We consider Σ = Σr the set of matrices of rank at most r in the Hilbert space H of

n× n symmetric matrices (we study the symmetric case for simplicity, but conjecture that our result

can be extended to the non-symmetric case) with ‖ · ‖H = ‖ · ‖F (the Frobenius norm). We have again

Σ −Σ =Σ2r and all conditions are satisfied such that Corollary 3.1 can be invoked. Denoting ∆ = eig(z)
the vector of eigenvalues of matrix z ∈ H sorted by decreasing absolute value, so that z = UT ∆U for
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some unitary matrix U , and defining zT := z = UT ∆TU for every index set T , we have PΣ−Σ (z) = zT2

and z−PΣ−Σ(z) = zT c
2

where T2 = T2(z) ⊆ [1,n] is any index set containing the 2k largest eigenvalues

(in magnitude) of z, i.e., such that mini∈T2
|∆i| > max j∈T c

2
|∆ j|. With these observations and notations,

we are again left to optimize (3.26).

Specializing to the class C of convex, coercive, continuous regularizers, we obtain the following

theorems.

THEOREM 3.6 (Optimality of ℓ1-norm for k-sparse vectors for δ nec
Σ .) With k-sparse vectors, Σ = Σk ⊆

H= Rn, k < n
2
, and R⋆(·) = ‖ · ‖1, we have

δ nec
Σ (R⋆) = sup

R∈C
δ nec

Σ (R) = (2B⋆
k,n + 1)−1 with B⋆

k,n := max
16L6n−2k

L/k

(L/k+ 1)2 + 1
. (3.27)

Moreover, for k = 1, the unique functions R ∈ CΣ maximizing δ nec
Σ are of the form R(·) = λ‖ · ‖1 with

λ > 0.

THEOREM 3.7 (Optimality of the nuclear norm for rank-r matrices for δ nec
Σ .) With the set of rank-r

matrices, Σ = Σr, in the space H of symmetric n×n matrices, r < n
2
, and with R⋆(·) = ‖ ·‖∗ (the nuclear

norm), we have

δ nec
Σ (R⋆) = sup

R∈C
δ nec

Σ (R) = (2B⋆
r,n + 1)−1 with B⋆

r,n := max
16L6n−2r

L/r

(L/r+ 1)2 + 1
. (3.28)

The proofs of these two theorems exploits technical lemmas that we detail in Appendix A.4.1 and

Appendix A.4.2.

Proof. We give the proof for the case of sparse recovery. To express it for low-rank recovery simply

replace the notation k by r. For 1 6 s 6 n and any regularizer R we define

Bs
Σ (R) := sup

z∈TR(Σ)\{0},z∈Σs

‖zT c
2
‖2

2

‖zT2
‖2

2

. (3.29)

For s 6 2k and any z ∈ Σs we have zT c
2
= 0 hence Bs

Σ (R) = 0, thus BΣ (R) = max16L6n−2k B2k+L
Σ (R).

First consider R ∈ CΣ . Since R is positively homogeneous and subadditive, by Lemma A.4 for Σk /

Lemma A.8 for Σr,

B2k+L
Σ (R)>

L
k

(
L
k
+ 1
)2
+ 1

, for each 1 6 L 6 n− 2k.

For R⋆ and 1 6 L 6 n− 2k we also have (Lemma A.6 / Lemma A.9, inspired by [17]) that

BΣ (R
⋆) = max

16L6n−2k

L
k

(
L
k
+ 1
)2
+ 1

.

As a result,

BΣ (R)> BΣ (R
⋆) = max

16L6n−2k

L
k

(
L
k
+ 1
)2
+ 1

=: B⋆
k,n
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Finally, remark that BΣ (R) is an increasing function of TR(Σ). Using Lemma 2.4, for any R ∈ C
there is R′ ∈ CΣ such that

BΣ (R)> BΣ (R
′)> B⋆

k,n.

For k = 1, uniqueness comes from the fact that on a given orthant for R ∈ CΣ , R is a weighted ℓ1

norm: R((x1, . . . ,xn)) = ∑i wi|xi| and the equality case in Lemma A.4 forces wi = maxi wi.

�

Because of the uniqueness result for k = 1, the ℓ1-norm is the unique convex regularizer in ∩CΣk
that

jointly maximizes δ nec
Σk

for all k < n
2

(the proof of Theorem 3.6 is valid for CΣk′ , with k 6 k′ < n
2
). It is

an open question to determine if we have uniqueness model by model. As the result might change for

tighter compliance measures, we leave this question for future work.

In the next section, we will see that the optimization of the sufficient RIP constant leads to very

similar expressions.

3.3 Compliance measures based on sufficient RC conditions

When Σ is a union of subspaces and R is an arbitrary regularizer, an “explicit” RIP constant δ suff
Σ (R) is

sufficient to guarantee reconstruction [38]. The expression of this constant [38][Eq. (5)] is recalled in

the Appendix (Equation (A.42)) and can be used as a compliance measure. It gives rise to the following

lemma, which is proved in Appendix A.5.

LEMMA 3.5 (Equality case of the sufficient conditions.) Assume that Σ = ∪V∈VV is a union of sub-

spaces and that Σ ∩S(1) is compact. Consider R any regularizer such that Σ ⊆ dom(R). We have

δ suff
Σ (R)>

1
√

sup
z∈TR(Σ)\{0}

‖z−PΣ (z)‖2
Σ

‖PΣ (z)‖2
2

+ 1

=: δ suff2
Σ (R).

(3.30)

Further, assume that PΣ (z)⊆ argminx∈Σ ‖x−z‖Σ for every z ∈H and that, for every V ∈V and every

u ∈ Σ , PV⊥(u) ∈ Σ . Then, there is equality in (3.30).

Proof. See Appendix A.5. Note that the assumption PΣ (z)⊆ argminx∈Σ ‖x− z‖Σ could be replaced by

the slightly weaker PΣ (z)∩ argminx∈Σ ‖x− z‖Σ/‖x‖2 6= /0.

�

We get an immediate corollary of the first claim in the above lemma.

COROLLARY 3.2 (Expression of a sufficient condition.) Assume that Σ = ∪V∈VV is a union of sub-

spaces and that Σ ∩ S(1) is compact. For any class C ′ of regularizers such that Σ ⊆ dom(R) for every

R ∈ C ′, the set of maximizers of δ suff2
Σ (·) satisfies (whether this set of maximizers is empty)

argmax
R∈C′

δ suff2
Σ (R) = arg min

R∈C′
DΣ (R) with DΣ (R) := sup

z∈TR(Σ)\{0}

‖z−PΣ(z)‖2
Σ

‖PΣ(z)‖2
H

. (3.31)

For any optimal regularizer R⋆ we have

δ suff2
Σ (R⋆) = (1+DΣ(R

⋆))−1/2. (3.32)

Note the subtle difference in the norm at the numerator in BΣ (R) and DΣ (R).
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OPTIMAL REGULARIZATION FOR SPARSE RECOVERY AND LOW-RANK RECOVERY When consid-

ering sparse recovery or low-rank recovery, there is indeed equality δ suff
Σ (R) = δ suff2

Σ (R) thanks to the

following Lemma.

LEMMA 3.6 The assumptions for the equality case of Lemma 3.5 hold for Σ = Σk the set of k-sparse

vectors in H= Rn, as well as for the set Σ = Σr of symmetric matrices of rank at most r in H the set of

symmetric n× n matrices.

Proof. See Appendix A.5. �

Consider Σ := Σk, and regularizers in CΣ . Similarly to the necessary case, from Lemma 3.5, we have

(when Σ is a union of subspace and Σ ∩S(1) is closed)

DΣ (R) = sup
z∈TR(Σ)\{0}

‖zT c‖2
Σ

‖zT‖2
2

(3.33)

where T denotes the support of the k largest coordinates of z.

We obtain similar results as in the necessary RIP constant case.

THEOREM 3.8 (Optimality of ℓ1-norm for k-sparse vectors for δ suff
Σ .) With k-sparse vectors, Σ = Σk ⊆

H= Rn, k < n
2
, and R⋆(·) = ‖ · ‖1, we have

δ suff
Σ (R⋆) = sup

R∈C
δ suff

Σ (R) =
1√
2
. (3.34)

Moreover, for k = 1, the unique functions R ∈ CΣ maximizing δ suff
Σ are of the form R(·) = λ‖ · ‖1 with

λ > 0.

THEOREM 3.9 (Optimality of the nuclear norm for rank-r matrices for δ suff
Σ .) With the set of rank-r

matrices, Σ = Σr, in the space H of symmetric n×n matrices, r < n
2
, and with R⋆(·) = ‖ ·‖∗ (the nuclear

norm), we have

δ suff
Σ (R⋆) = sup

R∈C
δ suff

Σ (R) =
1√
2
. (3.35)

Proof. We give the proof for the case of sparse recovery. To express it for low-rank recovery simply

replace the notation k by r. For 1 6 s 6 n and any regularizer R we define

Ds
Σ (R) := sup

z∈TR(Σ)\{0},z∈Σs

‖zT c‖2
Σ

‖zT‖2
2

.

For s 6 k and any z ∈ Σs we have zT c = 0 hence Ds
Σ (R) = 0, thus DΣ (R) = max16L6n−k Dk+L

Σ (R).
First consider R ∈ CΣ . Since R is positively homogeneous and subadditive, by Lemma A.13 for Σk /

Lemma A.15 for Σr,

Dk+L
Σ (R)> min(1,

L

k
), for each 1 6 L 6 n− k.

For R⋆ and 1 6 L 6 n− k we also have (with Lemma A.12 / Lemma A.14) that

Dk+L
Σ (R⋆) = min(1,

L

k
).
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As a result,

DΣ (R)> DΣ (R
⋆) = max

16L6n−k
min(1,

L

k
) = 1.

Finally, remark that DΣ (R) is an increasing function of TR(Σ). Using Lemma 2.4, for any R ∈ C
there is R′ ∈ CΣ such that

DΣ (R)> DΣ (R
′)> 1.

�

3.4 Discussion

Even without an analytic expression of the sharp RIP constant, it would have been possible to show that

R⋆ optimizes δ
sharp

Σ if it were simultaneously optimizing its lower and upper bound, i.e., if we had

sup
R∈C

δ suff
Σ (R) = δ suff

Σ (R⋆) = δ nec
Σ (R⋆) = sup

R∈C
δ nec

Σ (R). (3.36)

Unfortunately, this is not the case in the sparse and low rank examples. We observe that for fixed

k,n we have in both cases
1√
2
= δ suff

Σ (R⋆)< δ nec
Σ (R⋆). (3.37)

Because of this fact, we cannot conclude on the optimality of R⋆ for δ
sharp

Σ . However, indexing all

objects of the problem by n the dimension of H (respectively the dimension of the diagonals): the set of

regularizers C(n), the models Σ
(n)
k and the corresponding R⋆,(n) (independent of k for k < n/2 as we saw

previously). We have (see Remark A.1)

inf
n>3

inf
k∈{1,...,⌊n/2⌋}

sup
R∈C(n)

δ nec

Σ
(n)
k

(R) =
1√
2
= δ suff

Σ
(n)
k

(R⋆,(n)). (3.38)

We deduce

inf
n>3

inf
k∈{1,...,⌊n/2⌋}

sup
R∈C(n)

δ
sharp

Σ
(n)
k

(R) =
1√
2
. (3.39)

and

inf
n>3

inf
k∈{1,...,⌊n/2⌋}

∣
∣
∣
∣
∣
δ
sharp

Σ
(n)
k

(R⋆,(n))−
[

sup
R∈C(n)

δ
sharp

Σ
(n)
k

(R)

]∣
∣
∣
∣
∣
= 0. (3.40)

This shows that the functions R⋆,(n) are optimal as a family with respect to a family of models Σ
(n)
k

and the worst case of their associated compliance measures δ
sharp

Σ
(n)
k

(R).

These results can be interpreted in terms of number of measurements needed to recover uniformly

sparse or low rank objects with convex regularization. Under the best known (RIP-based) uniform

recovery conditions, it is guaranteed that using the optimal regularization with respect to RIP-based

compliance measures will enable the use of fewer measurements. In particular in the case of an oper-

ator M built from m random Gaussian measurements, it has been proven (see e.g. [22]) that there is a

universal constant C such that if m > C
k log(k/n)

δ 2 then M satisfies a prescribed RIP constant δ with high

probability. Hence, the larger the required RIP constant is, the lower the number of measurement needs

to be. Such results on the required number of measurement to verify the RIP have been extended to

more general low dimensional models (see e.g. [30]), making RIP-based optimal regularizers tools of

choice to optimize the number of random measurements of elements of a given low dimensional model.
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4. Towards the construction of optimal convex regularizers? The examples of sparsity in levels

and beyond.

In the previous Section, optimality was shown by exhibiting the optimal regularizer (ℓ1-norm and

nuclear norm). The only constructive part in these results is given by Theorem 2.4 that shows that

we can look for optimal regularizers in the set of atomic norms CΣ constructed using the model set Σ .

Ideally, given a compliance measure, we would like to be able to construct for any model Σ , an optimal

regularizer R⋆ ∈ CΣ . As such an objective seems out of reach with the tools we have developed so far,

we study on an example (the case of sparsity in levels) the simpler problem of looking for the optimal

regularizer in a smaller set of regularizers. We consider a set of weighted ℓ1-norms and explore the

explicit construction of an optimal regularizer for the compliance measure δ nec
Σ . We then extend this

result to the similar setting of Cartesian product of sparse and low-rank models.

4.1 Sparsity in levels

Sparsity in levels is a possible extension of plain sparsity, which is useful for the precise modeling of

signals such as medical images [1, 6]. It is also useful for simultaneous modeling of sparse signal and

sparse noise [34, 39].

DEFINITION 4.1 (Sparsity in levels.) In H= Rn1 ×Rn2 × . . .×RnL , given sparsity levels k1, . . . ,kL, we

define the sparsity in levels model with

Σk1,...,kL
:= {x = (x1, . . . ,xL) : xi ∈ Σki

} (4.1)

where Σki
is the ki-sparse model in Rni .

While the ℓ1-norm was shown to be is a candidate to perform regularization for models that are

sparse in levels [1], it was also shown that it is possible to obtain better sufficient RIP recovery guaran-

tees when weighting the ℓ1 norm by
√

ki in each level [38]. The following theorem permits to show that

this weighting scheme is close to optimal for the compliance measure δ nec
Σ by giving explicit expressions

for the calculation of optimal weights.

Given weights w = (w1, . . . ,wL) ∈ RL
+, we define the ℓ1-norm weighted by levels.

‖(x1, . . . ,xL)‖w =
L

∑
i=1

wi‖xi‖1. (4.2)

We have the following result.

THEOREM 4.2 (Optimal weighted ℓ1 norms for δ nec
Σ for sparsity in levels.) Consider two integers

k1,k2 > 2 and the model set Σ = Σk1,k2
in H=Rn1 ×Rn2 where we assume that n1 > 4k1, n2 > 4k2. Let

ã = 2
√

3− 3. We define

B⋆
Σ := min

ν1∈[ã,1−ã]

ν2=1−ν1

max
i∈{1,2}

max
xi∈{⌊ki

√
1+1/νi⌋;⌈ki

√
1+1/νi⌉}

xi/ki

νi(xi/ki + 1)2 + 1
(4.3)

where ⌊·⌋ and ⌈·⌉ denote the lower and upper integer part and (ν∗
1 ,ν

∗
2 ) minimizing this expression.

Then

w∗ ∈ argmax
w

δ nec
Σ (‖ · ‖w) (4.4)
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if and only if w∗ = (w∗
1,w

∗
2) where w∗

1,w
∗
2 > 0 satisfy

w∗
2

w∗
1

=

√

k1

k2

(1/ν∗
1 − 1). (4.5)

Moreover, denoting w0 = w0(k1,k2) := (1/
√

k1,1/
√

k2) we have

BΣ (‖ · ‖w∗) = B⋆
Σ 6 BΣ (‖ · ‖w0

)6 (
√

3− 1)/2

δ nec
Σ (‖ · ‖w∗) = (1+ 2B⋆

Σ)
−1 > δ nec

Σ (‖ · ‖w0
)> 1/

√
3.

(4.6)

Finally, we have

inf
k1,k2>1

inf
n1>4k1,n2>4k2

δ nec
Σ (‖ · ‖w0(k1,k2)) = 1/

√
3. (4.7)

Proof. See Appendix A.6.

�

This theorem comes from the fact that (see proof) the quantity defined in (3.26) satisfies

BΣk1,k2
(‖ · ‖(w1,w2)) = max

L1,L2

B
L1,L2
Σk1,k2

((w1,w2)) (4.8)

where B
L1,L2
Σk1,k2

(‖ · ‖(w1,w2)) can be computed explicitly (similarly to B2k+L
Σ from (3.29) for sparsity).

Thanks to the expression of BΣ (‖ · ‖w∗) from Theorem 4.2, it becomes tractable to evaluate numer-

ically optimal weights. We simply perform the minimization over ν1 ∈ [ã,1− ã] over a regular grid

(of 106 points in our experiment) and take the minimum. The value of w∗
1/w∗

2 is returned according

to (4.5). Let w0 = w0(k1,k2) = (1/
√

k1,1/
√

k2). In Figure 3, we show a representation of the two

criteria C1(k1,k2) = |1− 〈w∗,w0〉
‖w∗‖2‖w0‖2

| and C2(k1,k2) = |δ nec
Σ (‖ · ‖w∗)− δ nec

Σ (‖ · ‖w0
)| for different pairs

(k1,k2). The case C1(k1,k2) =C2(k1,k2) = 0 occurs if and only if w0 is optimal).

We observe numerically that for 2 6 k1,k2 6 200, C1(k1,k2) 6 10−5 and C2(k1,k2) 6 5 · 10−3 and

that the error tends to decrease for greater k1,k2. This comes from the fact that the result of the discrete

optimization over the integers Li in (4.8) gets closer to the result of a continuous optimization that yields

w∗
2/w∗

1 =
√

k1/
√

k2 (obtained by dropping the integer parts in Theorem 4.2).

For the “asymptotically optimal” weighting scheme w0 = w0(k1,k2) =
(

1√
k1
, 1√

k2

)

, we find

inf
k′1,k

′
2>1,n′1>4k′1,n

′
2>4k′2

δ nec
Σ

k′
1
,k′

2

(‖ · ‖w0
)

(4.7)
=

1√
3

(∗)
6 δ suff

Σk1,k2
(‖ · ‖w0

)6 δ
sharp

Σk1,k2
(‖ · ‖w0

)6 δ nec
Σk1,k2

(‖ · ‖w0
). (4.9)

The inequality (*) is shown in Theorem 4.3 below (improving for L = 2 the lower bound 1√
2+L

=

1/
√

4 = 1/2 for sparsity in L levels previously given in [38, Theorem 4.2]), and the last inequalities are

generic, cf (3.5).

The double-sided bound (4.9) confirms that the weighting scheme
(

1√
k1
, 1√

k2

)

is close to an optimal

choice (w.r.t the maximization of δ
sharp

Σk1,k2
) when the sparsities are known.
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FIG. 3. Then quantities log10(C1(k1,k2)) := log10

(

|1− 〈w∗ ,w0〉
‖w∗‖2‖w0‖2

|
)

(left) and log10(C2(k1,k2)) := log10(|δ nec
Σ (‖·‖w∗ )−δ nec

Σ (‖·
‖w0

)|) (right) where w∗ = (w∗
1,w

∗
2) is obtained from Theorem 4.2 and w0 = (1/

√
k1,1/

√
k2) for different k1,k2 > 2 .

THEOREM 4.3 (Sufficient RIP condition for near-optimal ℓ1 norms for sparsity in levels.) Consider two

integers k1,k2 > 2 and the model set Σ = Σk1,k2
in H = Rn1 ×Rn2 with ni > ki, i = 1,2, and the norm

‖(x1,x2)‖w = ∑2
i=1

1√
ki
‖xi‖1. Then

δ suff
Σk1,k2

(‖ · ‖w)>
1√
3
. (4.10)

Proof. See Appendix A.6. �

4.2 Beyond sparsity in levels

Beyond sparsity in levels, we obtain exactly the same result for the Cartesian product of a sparse model

and a low-rank model. Consider Σk,r = Σk ×Σr ⊂ Rn ×Hp where Hp is the set of symmetric matrices

of size p× p. This model with n = p2 can be used to model sums of sparse and low rank matrices. To

address associated matrix reconstruction problems it was suggested in [35] to use a weighted sum of the

ℓ1-norm and the nuclear norm with weights ratio
√

k√
r
, ie ‖(z1,z2)‖w = 1√

k
‖z1‖1+

1√
r
‖z2‖∗. The following

Theorem guarantees that the previous numerical experiments hold with this model (by replacing k1 by

k and k2 by r). It thus confirms that this is a near optimal choice of weights.

THEOREM 4.4 (Optimal mixed norms for δ nec
Σ for sparse plus low-rank models.) Consider two integers

k,r > 2 and the model set Σ = Σk ×Σr in H=Rn ×Hp where we assume that n > 4k, p > 4r. Consider

ã = 2
√

3− 3, B⋆
Σ and (ν∗

1 ,ν
∗
2 ) from Theorem 4.2 with k1 = k and k2 = r. Then, with ‖(z1,z2)‖w :=

w1‖z1‖1 +w2‖z2‖∗, we have:

w∗ ∈ argmax
w

δ nec
Σ (‖ · ‖w) (4.11)

if and only if w∗ = (w∗
1,w

∗
2) where w∗

1,w
∗
2 > 0 satisfy

w∗
2

w∗
1

=

√

k

r
(1/ν∗

1 − 1). (4.12)
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Moreover, denoting w0 = w0(k,r) := (1/
√

k,1/
√

r) we have

BΣ (‖ · ‖w∗) = B⋆
Σ 6 BΣ (‖ · ‖w0

)6 (
√

3− 1)/2

δ nec
Σ (‖ · ‖w∗) = (1+ 2B⋆

Σ)
−1 > δ nec

Σ (‖ · ‖w0
)> 1/

√
3.

(4.13)

Finally, we have

inf
k,r>1

inf
n>4k,p>4r

δ nec
Σ (‖ · ‖w0(k,r)) = 1/

√
3. (4.14)

Proof. See Appendix A.6. �

The resulting weighting scheme for the sparse + low-rank model has been used practically in [24].

In the context of structure-texture decomposition of images, the structure is modeled by images with

sparse gradients and the texture is modeled by images having patches with low-rank structure. In this

work, a heuristic based on the weigthing scheme
w∗

2
w∗

1
=
√

k
r

is proposed and permits to automatically

set regularization parameters for local sparse + low rank models. These results for sparsity in levels

and beyond show that even with a simple model and parametrized family of functions, optimization

might lead to complicated expressions. We also remark that we could perform the optimization because

restricting to weighted atomic norms leads to an analytical description of atoms generating the regular-

izers. This in turn leads to an analytical description of descent cones. The question of optimality within

more general sets of atomic norms remains. Unfortunately the lack of analytical description of descent

cones in the general case makes the direct extension of our proof technique difficult.

5. Discussion and future work

We gave a general way of defining compliance measures between a regularizer R and a low dimensional

model set Σ , and described some elementary properties of such measures. This opens questions on

conditions on compliance measures that guarantee the existence of an optimal convex regularizer. Also,

the question of manipulating compliance measures for transformations and combinations of models

(intersections, unions, sums, ...) is a wide and challenging potential area of research.

We considered noiseless observations instead of the classical noisy model y = Mx0 + e where e is

a measurement noise with finite energy ‖e‖2 because of the following remark. Suppose we define an

optimal regularizer for a given noise level ‖e‖2. There are two possible cases, either the regularizer is

also optimal for ‖e‖2 = 0 or it is not. In the second case, it means that we would need to trade exact

recovery capability for improved stability to noise. This is a possible route to follow especially if there is

some latitude on the design of the measurement operator M, i.e., it is possible to increase measurements

to improve stability to noise. The analysis of such trade-offs is out of the scope of this article and left

for future work.

We have shown that the ℓ1-norm is optimal among coercive continuous convex functions for sparse

recovery for compliance measures based on necessary and sufficient RIP conditions. This result had

to be expected due to the symmetries of the problem. The important point is that we could explicitly

quantify the notion of good regularizer. We obtained the same expected results with the nuclear norm

for low-rank matrix recovery.

It must be noted that we did not use constructive proofs (we exhibited the candidate maximum of

the compliance measure) for the sparsity and low-rank cases. A full constructive proof, i.e., an exact

calculation and optimization of the quantities BΣ (R) and DΣ (R) would be intellectually more satisfying

as it would not require the prior knowledge of the candidate optimum, which is our ultimate objective.

We saw in the case of sparsity in levels and beyond that we can construct the regularizer that achieved
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optimality among a simple parametrized family of convex functions (weighted ℓ1-norms in levels). It is

an open question to obtain more general constructions.

We used compliance measures based on (uniform) RIP recovery guarantees to give results for the

sparse recovery case, it would be interesting to do such analysis using (non-uniform) recovery guaran-

tees based on the statistical dimension or on the Gaussian width of the descent cones [2, 14]. One would

need to precisely lower and upper bound these quantities, similarly to our approach with the RIP, to get

satisfying results.

Finally, while these compliance measures are designed to make sense with respect to known results

in the area of sparse recovery, one might design other compliance measures tailored for particular needs,

in this search for optimal regularizers.
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A. Appendices

This section describes the tools and proofs used to obtain our results.

A.1 Summary of properties used in proofs

From [38, Table 1] (which summarizes results from [32] ), the function x ∈ E(A) 7→ ‖x‖A is always

non-negative, lower semi-continuous and subadditive (i.e., it satisfies the triangle inequality). It is fur-

thermore positively homogeneous as soon as 0 ∈ conv(A), continuous as soon as 0 is in the interior

of conv(A), and coercive as soon as conv(A) is bounded. Finally, it is indeed a norm if conv(A) =
−conv(A).

We refer the reader to [38][Section 2.2] and [4] for properties of the atomic norm ‖ · ‖Σ (cf Theo-

rem 2.3). We will use the following two properties of ‖ · ‖Σ (defined in Section 2.5).

Fact A.1 (From e.g. [38]) For all x ∈ Σ , ‖x‖Σ = ‖x‖H.

Fact A.2 (From [38][Fact 2.1] applied to ‖ · ‖Σ ) For all z ∈H

‖z‖Σ = inf

{√

∑λi‖ui‖2
H

: λi ∈ R+,∑λi = 1,ui ∈ Σ ,z = ∑λiui

}

. (A.1)

A.2 Proofs for Section 2

A.2.1 Proof of Lemma 2.1. Consider x ∈ Σ , and z ∈ H. We have ιΣ (x+ z)6 ιΣ (x) = 0 if and only

if x+ z ∈ Σ , i.e., if there is x′ ∈ Σ such that z = x′ − x. Hence, TιΣ (x) = {γ(x′ − x) : γ ∈ R,x′ ∈ Σ}.

It follows that TιΣ (Σ) = {γz : γ ∈ R,z ∈ Σ − Σ} ⊇ Σ −Σ . When Σ is positively homogeneous, for

any z = x′ − x ∈ Σ −Σ and γ ∈ R we have: if γ > 0 then γz = γx′ − γx ∈ Σ −Σ ; if γ < 0 then γz =
(−γ)x− (−γ)x′ ∈ Σ −Σ ; if γ = 0 then γz = 0 = x− x ∈ Σ −Σ , hence indeed TιΣ (Σ) ⊆ Σ −Σ .

Now consider y ∈ TιΣ (Σ) and write it as y = γ(x1 − x2) where x1,x2 ∈ Σ and γ ∈ R. Since Σ ⊆
dom(R) we have max(R(x1),R(x2)) < ∞. We will prove that y ∈ TR(Σ). We distinguish two cases: if

R(x1) 6 R(x2) then R(x2 +(x1 − x2)) = R(x1) 6 R(x2) hence y = γ(x1 − x2) ∈ TR(x2), and as x2 ∈ Σ
it follows that y ∈ TR(Σ); otherwise R(x2) < R(x1) hence R(x1 + (x2 − x1)) = R(x2) < R(x1) hence

y = (−γ)(x2 − x1) ∈ TR(x1) and therefore y ∈ TR(Σ).

A.2.2 Proof of Lemma 2.4 . Given t > R(0), the level set L(R, t) = {y ∈H : R(y)6 t} is nonempty,

convex and closed (by convexity and lower semi-continuity of R), and bounded (by coercivity of R). We

define A := L(R, t)∩Σ = {x ∈ Σ : R(x)6 t}.
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Consider z ∈ T‖·‖A(Σ). If z = 0 then clearly z ∈ TR(Σ). Let us prove that the same holds when z 6= 0.

By definition, there exists γ ∈ R\ {0} and x ∈ Σ such that

‖x+ z/γ‖A 6 ‖x‖A.

On the one hand we have R(0 · x) = R(0) < t. On the other hand, since R is coercive, we have

R(λ x) →
λ→+∞

+∞. Since R is continuous, by the mean value theorem, there is λ0 > 0 such that

R(λ0x) = t.

Since Σ is a cone, the vector x′ = λ0x belongs to Σ and, since R(x′) = t, by definition of A we

have indeed x′ ∈ A, hence ‖x′‖A 6 1. Furthermore, since ‖ · ‖A is positively homogeneous (because

0 ∈ conv(A)), we have

‖x′+λ0z/γ‖A = λ0‖x+ z/γ‖A 6 λ0‖x‖A = ‖x′‖A.

We now observe that, on the one hand, the level set L(‖·‖A,1) = conv(A) is the smallest closed convex

set containing A; on the other hand A ⊂ L(R, t) and L(R, t) is convex and closed. Thus L(‖ · ‖A,1) ⊂
L(R, t) and the fact that ‖x′+λ0z/γ‖A 6 ‖x′‖A 6 1 therefore implies

R(x′+λ0z/γ)6 t = R(x′). (A.2)

This shows that z ∈ TR(Σ) and establishes that T‖·‖A(Σ)⊆ TR(Σ).
Let us now prove that ‖ · ‖A is continuous, convex, coercive and positively homogeneous. First,

from the property of gauges (see Appendix A.1), ‖ · ‖A is always convex and lower semi-continuous.

Second, since R is coercive, its level sets are bounded, hence conv(A) is bounded and ‖ ·‖A is coercive.

Finally, as R(0) < t and R is continuous, 0 is in the interior of L(R, t). There exists ε > 0 such that

an open ball O of radius ε centered on 0 is included in L(R, t). This implies O∩Σ ⊂ L(R, t)∩Σ =A
which in turns imply conv(O∩Σ) ⊂ conv(A) ⊂ conv(A). Remark that E(O∩Σ) = E(Σ) =H. Now

we need to find O′ an open ball of radius ε ′ such that O′ ⊂ conv(O∩Σ). In each orthant Ωr, we can

find a normalized basis E = (ei) ∈ Σ such that Ωr ⊂ E(E). We define the norm ‖∑i µiei‖E = ∑ µi. This

norm is equivalent to ‖ · ‖H. This implies there is a constant cr depending on the orthant Ωr, such that

for x = ∑i µiei ∈ O′∩Ωr, maxi µi < crε ′. This implies

x = t ∑
i

µi

∑ j µ j

εei (A.3)

with t =
∑ j µ j

ε 6 ncr
ε ′
ε . Taking ε ′ < ε/(ncr) implies t < 1 and x ∈ conv(O∩Σ). As there is a finite

number of orthants we can chose ε ′ such that we always have x ∈ O′ implies x ∈ conv(O∩Σ).

A.3 Proofs for Section 3.1

Proof of Lemma 3.1.

Denote α = infx∈(Σ−Σ)∩S(1) ‖Mx‖2
2 and β = supx∈(Σ−Σ)∩S(1) ‖Mx‖2

2, so that γ(M) = β/α . Since Σ
is a cone, we have for every x ∈ Σ −Σ ,

α‖x‖2
H 6 ‖Mx‖2

2 6 β‖x‖2
H = γ(M)α‖x‖2

H, (A.4)
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Multiplying x in (A.4) by any λ > 0, we have

λ 2α‖x‖2
H 6 ‖λ Mx‖2

2 6 λ 2γ(M)α‖x‖2
H.

We look for λ > 0, δ 6= 1 such that λ M satisfies a symmetric RIP with constant δ , i.e.,

λ 2α = 1− δ and λ 2γ(M)α = 1+ δ .

Adding these two equalities yields λ 2α(1+ γ(M)) = 1, hence λ 2 = 1
α(1+γ(M)) . Dividing them yields

1− δ

1+ δ
= γ(M) ⇐⇒ δ =

γ(M)− 1

γ(M)+ 1
.

We have shown that for any M, there exists λ > 0 such that

δ (λ M) 6
γ(M)− 1

γ(M)+ 1
.

Remark that the value of λ that makes the RIP bounds symmetrical is unique, and that no better symmet-

rical RIP bound can be obtained, otherwise we could construct a better restricted conditioning (which is

impossible by definition of γ(M)). We deduce

δ (λ M) =
γ(M)− 1

γ(M)+ 1
.

�

LEMMA A.1 Consider a cone Σ ⊆H and T ⊆ H a non-empty set, and denote P the set of symmetric

positive semi-definite linear operators on H, i.e., N ∈ P if and only if NH = N and N � 0. Then

inf
M:ker M∩T 6={0}

γΣ (M) = inf
N∈P:dimkerN=1,kerN∩T 6={0}

γΣ (N). (A.5)

Proof. The infimum on the r.h.s. of (A.5) is over a more constrained set than on the l.h.s., hence

inf
M:ker M∩T 6={0}

γΣ (M)6 inf
N∈P:dimkerN=1,kerN∩T 6={0}

γΣ (N).

If the l.h.s. is infinite, then the right-hand side must also be infinite, and we are done.

Assume that the l.h.s. is finite. We now prove the reverse inequality. For this, consider M a linear

operator with kerM∩T 6= {0} and γΣ (M) < ∞. There exists a nonzero vector t ∈ kerM∩T . We build

an operator N ∈ P such that kerN = span(t) and with γΣ (N) arbitrarily close to γΣ (M).
Since γΣ (M)<∞, M is nonzero hence a singular value decomposition allows writing M =∑r

i=1 σiuiv
H
i

where (ui)
r
i=1 and (vi)

r
i=1 are orthonormal families and min16i6r σi > 0. First we deal with the case

where dimkerM = 1. We set N = ∑r
i=1 σiviv

H
i so that N ∈ P and dimkerN = 1 too. Since ‖Nx‖2

2 =

∑r
i=1 σ2

i 〈vi,x〉2 = ‖Mx‖2
2 for any vector x we have γ(N) = γ(M), and we are done. Assume now that

k := dimkerM > 2. Observe that span(t)⊂ kerM and let (e1, . . . ,ek−1) be an orthonormal basis of the

orthogonal complement of span(t) in kerM, so that (v1, . . . ,vr,e1, . . . ,ek−1) is an orthonormal family.

For each ε > 0, define Nε = ∑r
i=1 σiviv

H
i + ε ∑k−1

j=1 e je
H
j . Again, Nε ∈ P and span(t) = kerNε so that

dimkerNε = 1, and for each x ∈H we have

‖Nε x‖2
2 =

r

∑
i=1

σ2
i 〈vi,x〉2 + ε2

k−1

∑
j=1

〈e j,x〉2 = ‖Mx‖2
2 + ε2

k−1

∑
j=1

〈e j,x〉2,
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hence ‖Mx‖2
2 6 ‖Nε x‖2

2 6 ‖Mx‖2
2 + ε2‖x‖2

2. Since γΣ (M)< ∞, we get

0 < inf
x∈(Σ−Σ)∩S(1)

‖Mx‖2
2 6 inf

x∈(Σ−Σ)∩S(1)
‖Nε x‖2

2 6 sup
x∈(Σ−Σ)∩S(1)

‖Nε x‖2
2 6 sup

x∈(Σ−Σ)∩S(1)

‖Mx‖2
2 + ε2

which implies

γΣ (Nε )6
supx∈(Σ−Σ)∩S(1) ‖Mx‖2

2 + ε2

infx∈(Σ−Σ)∩S(1) ‖Mx‖2
2

= γΣ (M)+
ε2

infx∈(Σ−Σ)∩S(1) ‖Mx‖2
2

.

This implies that infε>0 γΣ (Nε)6 γΣ (M) as claimed.

�

Proof of Lemma 3.2. We define

G(Σ ,E,M) :=
supy∈(Σ−Σ)∩E ‖My‖2

2

infy∈(Σ−Σ)∩E ‖My‖2
2

. (A.6)

For any nonzero M, we have

γFΣ (M) =
supx∈(FΣ−FΣ)∩S(1) ‖Mx‖2

2

infx∈(FΣ−FΣ)∩S(1) ‖Mx‖2
2

=
supy∈(Σ−Σ)∩F−1S(1) ‖MFy‖2

2

infy∈(Σ−Σ)∩F−1S(1) ‖MFy‖2
2

. (A.7)

Hence,

ARC
FΣ (R◦F−1) = inf

M:ker M∩T
R◦F−1 (FΣ) 6={0}

γFΣ (M)

= inf
M:ker M∩T

R◦F−1 (FΣ) 6={0}
G(Σ ,F−1S(1),MF).

By Lemma 2.5 with R′ = R◦F−1, TR◦F−1(FΣ) = TR′(FΣ) = F(TR′◦F(Σ)) = F(TR(Σ)). Also, kerM∩
TR◦F−1(FΣ) 6= {0} is equivalent to the existence of z ∈ kerM such that z′ := F−1z ∈ TR(Σ), i.e., of

z′ ∈ TR(Σ) such that z := Fz′ ∈ kerM. As a result,

inf
M:ker M∩T

R◦F−1 (FΣ) 6={0}
γFΣ (M) = inf

M:F−1 kerM∩TR(Σ) 6={0}
G(Σ ,F−1S(1),MF). (A.8)

Rewriting M′ = MF , we have kerM′ = F−1 kerM and

inf
M:kerM∩T

R◦F−1 (FΣ) 6={0}
γFΣ (M) = inf

M′:kerM′∩TR(Σ) 6={0}
G(Σ ,F−1S(1),M′) (A.9)

which gives the desired result using the fact that F−1S(1) = S(1) since F is a linear isometry.

�

A.4 Proofs for Section 3.2

Proof of Lemma 3.3.
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Consider z ∈H\{0} and M = I −Πz. For every x ∈ S(1), we have

‖Mx‖2
2 = 1− 〈x,z〉2

‖z‖2
H

(A.10)

hence

γΣ (M) =
supx∈(Σ−Σ)∩S(1) ‖Mx‖2

2

infx∈(Σ−Σ)∩S(1) ‖Mx‖2
2

=
1− infx∈(Σ−Σ)∩S(1)

〈x,z〉2

‖z‖2
H

1− supx∈(Σ−Σ)∩S(1)
〈x,z〉2

‖z‖2
H

Case 1: By assumption there is x0 such that ‖x0‖H = 1 and Σ ⊆ span(x0). Since Σ 6= {0} is a cone, it

follows that (Σ −Σ)∩S(1) = span(x0)∩S(1) = {−x0,+x0} and

inf
x∈(Σ−Σ)∩S(1)

〈x,z〉2

‖z‖2
H

= sup
x∈(Σ−Σ)∩S(1)

〈x,z〉2

‖z‖2
H

=
〈x0,z〉2

‖z‖2
H

. (A.11)

Hence, if z ∈ Σ = span(x0) we have γΣ (M) = +∞, otherwise
〈x0,z〉2

‖z‖2
H

< 1 and γΣ (M) = 1. Thus, if

TR(Σ) ⊆ Σ we have A
RIP,nec
Σ (R) = +∞, otherwise there is z ∈ TR(Σ)\Σ , and A

RIP,nec
Σ (R) = 1.

Case 2: Let us show that for any z 6= 0 there is some x ∈ (Σ −Σ)\{0} such that 〈x,z〉= 0. This implies

infx∈(Σ−Σ)∩S(1)
〈x,z〉2

‖z‖2
H

= 0 and yields the result. Indeed, by assumption, given any x1 ∈ Σ \ {0} there is

x2 ∈ Σ such that x2 /∈ span(x1) (hence x2 6= 0). If 〈x1,z〉 = 0 we take x = x1 = x1 − λ x2 with λ = 0.

Otherwise, with λ = 〈x2,z〉
〈x1,z〉 we set x = λ x1 − x2. In both cases we have x 6= 0 and, since Σ is a cone,

x ∈ Σ −Σ and 〈λ x1 − x2,z〉= 0.

�

Proof of Lemma 3.4. Since E ∩S(1) is compact, for any z there exists x̃ ∈ E ∩S(1) such that

|〈x̃,z〉|2 = max
ỹ∈E∩S(1)

|〈ỹ,z〉|2. (A.12)

Since E is a union of subspaces, it is homogeneous. Thus, as x̃ ∈ E , we have x := 〈x̃,z〉x̃ ∈ E . If

y ∈ E \ {0}, we have ỹ := y/‖y‖H ∈ E ∩S(1), 〈z, ỹ〉ỹ is the orthogonal projection of z on ỹ and

‖z− y‖2
H =

∥
∥z−‖y‖H · ỹ

∥
∥2

H
> ‖z−〈z, ỹ〉ỹ‖2

H = ‖z‖2
H−|〈z, ỹ〉|2

(A.12)

> ‖z‖2
H−|〈z, x̃〉|2

(A.13)

Since ‖z− x‖2
H = ‖z‖2

H− 2Re〈z,x〉+ ‖x‖2
H = ‖z‖2

H−|〈z, x̃〉|2, we conclude

‖z− y‖2
H > ‖z− x‖2

H (A.14)

and x ∈ PE(z) by definition of PE .

If x′ ∈ PE(z), we have ‖z− x′‖2
H = ‖z− x‖2

H = miny∈E ‖z− y‖2
H hence the notation ‖z−PE(z)‖2

H is

unambiguous. Since x′ ∈ PE(z), there is equality in the above equation with y = x′, hence ‖y‖H = 〈z, ỹ〉
and |〈z, ỹ〉|2 = |〈z, x̃〉|2, therefore 〈z,y〉 = 〈z,‖y‖Hỹ〉 = ‖y‖H〈z, ỹ〉 = ‖y‖2

H = 〈z, ỹ〉2 = 〈z, x̃〉2 = ‖x‖2
H.

This shows that the notations ‖PE(z)‖2
H and 〈z,PE(z)〉 are unambiguous and that ‖PE(z)‖2

H = 〈z,PE(z)〉.
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We also have ‖z‖2
H = ‖x‖2

H+‖z−x‖2
H = ‖x′‖2, and 〈z,y〉= ‖y‖H hence the notations ‖z−PE(z)‖2

H

and ‖PE(z)‖2
H are unambiguous. �

Proof of Corollary 3.1. Since Σ −Σ is a union of subspaces and (Σ −Σ)∩ S(1) is compact, by

Lemma 3.4, supx∈(Σ−Σ)∩S(1)
〈x,z〉2

‖z‖2
H

=
‖PΣ−Σ (z)‖2

H

‖z‖2
H

, hence we have

(BΣ (R)+ 1)−1 =

(

sup
z∈TR(Σ)\{0}

‖z−PΣ−Σ(z)‖2
H

‖PΣ−Σ(z)‖2
H

+ 1

)−1

= inf
z∈TR(Σ)\{0}

‖PΣ−Σ (z)‖2
H

‖z−PΣ−Σ(z)‖2
H
+ ‖PΣ−Σ(z)‖2

H

= inf
z∈TR(Σ)\{0}

‖PΣ−Σ(z)‖2
H

‖z‖2
H

.

Since Σ is a cone and Σ 6= span(x) for each x ∈ Σ , by Lemma 3.3, using (3.9) we have γnecΣ (R) =
1

1−(1+BΣ (R))−1 = 1+ 1/BΣ(R) hence δ nec
Σ (R) =

γnecΣ (R)−1

γnecΣ (R)+1
= (2BΣ (R)+ 1)−1.

We conclude using that b 7→ 1/(1+ 2b) is decreasing.

�

A.4.1 Lemmas for the proof of Theorem 3.6 (sparse recovery). We begin by some technical lemmas.

We recall that T2 = T2(z)⊆ {1, . . . ,n} denotes a set indexing any 2k largest components (in magnitude)

of vector z , while T = T (z)⊆{1, . . . ,n} will denote a set indexing k largest components (in magnitude).

Given an index set /0 6= H ⊆ {1, . . . ,n}, QH is the “cube” of all vectors v ∈ Rn such that supp(v) = H

and |vi| = 1 for every i ∈ H. The restriction of v to H, vH ∈ Rn, is such that (vH)i = vi, i ∈ H and

supp(vH)⊆ H.

LEMMA A.2 Let Σ = Σk. Let ‖ · ‖w be a weighted ℓ1-norm ( for w = (wi)
n
i=1 with wi > 0, ‖x‖w =

∑wi‖x‖1). Let z ∈ T‖·‖w
(Σ). There is a support H of size 6 k such that

‖zHc‖w −‖zH‖w = inf
x∈Σ

{‖x+ z‖w−‖x‖w}6 0, (A.15)

i.e., the infimum is achieved at x∗ =−zH .

Moreover, if ‖ · ‖w = ‖ · ‖1, H = T (z).

Proof. The result is trivial for z= 0, so we prove it for z∈T‖·‖w
(Σ)\{0}. Consider H ∈ argminT :|T |6k {‖zT c‖w −‖zT‖w}.

By definition of T‖·‖w
(Σ), since z ∈ T‖·‖w

(Σ)\{0}, there are x′ ∈ Σ , λ ∈R\{0} such that ‖x′+λ z‖w 6

‖x′‖w. By homogeneity of Σ , x := x′/λ ∈Σ and ‖x+z‖w 6 ‖x‖w. This shows that infx∈Σ {‖x+ z‖w−‖x‖w}6
0 as claimed. For any such x ∈ Σ , consider T = supp(x).

By the reverse triangle inequality |xi + zi|− |xi|>−|zi|, we have

‖x+ zT‖w −‖x‖w = ∑
i∈T

wi(|xi + zi|− |xi|)>−∑
i∈T

wi|zi|=−‖zT‖w (A.16)

Hence ‖x+ z‖w−‖x‖w = ‖x+ zT‖w + ‖zT c‖w −‖x‖w > ‖zT c‖w −‖z‖w > ‖zHc‖w −‖zH‖w.

If ‖ · ‖w = ‖ · ‖1, let T = T (z) and remark that ‖zHc‖1 −‖zH‖1 > ‖zT c‖1 −‖zT‖1

�

The following Lemma permits to construct and to characterize elements of descent cones.

LEMMA A.3 Assume that R and Σ are positively homogeneous. For every v0 ∈ Σ such that R(v0) > 0

and any v1 ∈ H, we have that z := v1 −αv0 ∈ TR(Σ) where α = max(R(v1)/R(v0),1). If, in addition,

Σ is homogeneous and R is even, we have conversely that any z ∈ TR(Σ) can be written as z = v1 − v0

where v0 ∈ Σ , v1 ∈H, and R(v1)6 R(v0).
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Proof. Since Σ is positively homogeneous, x := αv0 ∈ Σ , and R(x+ z) = R(αv0 + z) = R(v1). If

R(v1) > R(v0) then α > 1 and R(x+ z) = R(v1) = αR(v0) = R(αv0) = R(x). Otherwise, α = 1 and

R(x+ z) = R(v1)6 R(v0) = R(x). In both cases we obtain that z ∈ TR(x)⊆ TR(Σ).
Regarding the second claim, when z ∈ TR(Σ), by definition there exists x ∈ Σ , u ∈H and γ ∈R such

that z = γu where R(x+u)6 R(x). Denote v0 := γx and v1 := v0 + z. Since Σ is homogeneous, we have

v0 ∈ Σ . Since R is even and positively homogeneous, R(v1) = R(γx+ γu) = |γ|R(x+ u) 6 |γ|R(x) =
R(γx) = R(v0).

�

The next lemma permits to compare Bs
Σ (R) with Bs

Σ (‖ · ‖1) (see definition in (3.29)) which was

calculated in [17] to characterize the necessary RIP condition for sparse recovery.

LEMMA A.4 Let Σ = Σk be the set of k-sparse vectors in Rn with k < n/2 and 1 6 L 6 n−2k. Assume

that R is positively homogeneous, subadditive, and nonzero.

Consider

(H0,v0) ∈ arg max
H⊆{1,...,n}: |H|=k

v∈QH

R(v) (A.17)

(H1,v1) ∈ arg min
H⊆{1,...,n}\H0,|H|=k+L

v∈QH

R(v). (A.18)

1. We have R(v0)> 0, and for any H of size k′ > k and any v ∈ QH , we have

R(v)6
k′

k
R(v0). (A.19)

If R = R⋆ = ‖ · ‖1 then we have indeed equality R⋆(v) = k′
k

R⋆(v0).

2. We have

B2k+L
Σ (R) := sup

z∈TR(Σ)\{0}:|supp(z)|=2k+L

‖zT c
2
‖2

2

‖zT2
‖2

2

>

L
k

max

((
R(v1)
R(v0)

)2

,1

)

+ 1

>

L
k

(
L
k
+ 1
)2
+ 1

.

(A.20)

Proof. As a preliminary observe that if R⋆ = ‖ · ‖1 then R⋆(v) = |H| for any H,v ∈ QH , hence H0,H1

can be any pair of disjoint sets of respective sizes k,k+L, and vi ∈ QHi
can be arbitrary, for example

vi = 1Hi
. This yields R⋆(v0) = k, R⋆(v1) = k+L, hence R⋆(v1) = (1+L/k)R⋆(v0).

To prove the first claim, consider {Gi}
16i6(k′

k )
the collection of all subsets Gi ⊆ H of size exactly

k. Since v ∈ QH , we have vGi
∈ QGi

for each i. Also, since |Gi| = k for every i, by definition of H0,v0

we obtain maxi R(vGi
) 6 R(v0). Notice that given a coordinate j ∈ H, there are

(
k′−1
k−1

)
sets Gi such that

j ∈ Gi. With λ := 1

(k′−1
k−1)

we get v = λ ∑i vGi
hence by positive homogeneity and subadditivity of R

(which imply convexity)

R(v) = R(λ
(k′

k )

∑
i=1

vGi
)6

(k′
k )

∑
i=1

R(λ vGi
) = λ

(k′
k )

∑
i

R(vGi
)6

(
k′
k

)

(
k′−1
k−1

)R(v0) =
k′

k
R(v0). (A.21)
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This establishes (A.19). With R=R⋆, we have R⋆(v)= ‖v‖1 = k′ for v∈QH , hence R⋆(v)= (k′/k)R⋆(v0)
as claimed.

For the sake of contradiction, assume that R(v0) 6 0. As we have just proved, this implies R(v) 6
(n/k)R(v0) 6 0 for every v ∈ {−1,+1}n = QH with H = {1, . . . ,n}. By convexity of R it follows that

R(v)6 0 for each v ∈ [−1,1]n = conv(QH), and by positive homogeneity,

R(v)6 0, ∀v ∈H. (A.22)

Positive homogeneity and subadditivity also imply

0 = 0 ·R(v0) = R(0 · v0) = R(0) = R(−v+ v)6 R(−v)+R(v)
(A.22)

6 R(−v)

for every v ∈H, hence R(v) = 0 on H, which yields the desired contradiction since we assume that R is

nonzero.

Regarding the second claim, since 2k+L6 n there is indeed some H of size k+L such that H∩H0 =
/0, hence H1 is well defined. By construction, H1 ∩H0 = /0. Since R(v0) > 0, R is positively homoge-

neous and Σ is homogeneous, by Lemma A.3, z =−αv0 + v1 ∈ TR(Σ) with α := max(R(v1)/R(v0),1).
Observe that |supp(z)|= |H0|+ |H1|= 2k+L. Since α > 1 and all nonzero entries of v0,v1 have magni-

tude one, a set of 2k largest components of z is T2 =H0∪T ′
1 with T ′

1 any subset of H1 with k components,

and we obtain (A.20). once we observe that

‖zT c
2
‖2

2

‖zT2
‖2

2

=
L

kα2 + k
=

L/k

α2 + 1
.

�

LEMMA A.5 Consider c∞,c1 > 0, an integer n > 2, and the optimization problem

sup
x∈Rn

+:‖x‖∞6c∞;‖x‖16c1

‖x‖2
2. (A.23)

If c1 > c∞ then there exists 1 6 L 6 n− 1 and 0 6 θ 6 1 such that

x∗ := c∞(1, . . . ,1
︸ ︷︷ ︸

L>1

,θ , 0, . . . ,0
︸ ︷︷ ︸

n−(L+1)>0

)

is a maximizer. Otherwise, a maximizer is x∗ = (c1,0, . . . ,0).

Proof. Standard compactness arguments show the existence of a maximizer x∗. We distinguish two

cases:

• If ‖x∗‖∞ < c∞ then x∗ is indeed a maximizer of the Euclidean norm under an ℓ1 constraint, hence

x∗ is a Dirac: without loss of generality, x∗ = (c1,0, . . . ,0) so that c1 = ‖x∗‖∞ < c∞.

• Otherwise ‖x∗‖∞ = c∞, in which case we show that all entries of x∗, except at most one, are either

zero or equal to c∞. For the sake of contradiction, assume that x∗ contains two distinct entries with

values 0< a< b< c∞, then for small enough t > 0, replacing these entries with 0< a−t < b+t <
c∞ and keeping all other entries unchanged would lead to a vector x satisfying ‖x‖∞ = ‖x∗‖∞ = c∞,

‖x‖1 = ‖x∗‖1. However, since ‖x‖2
2−‖x∗‖2

2 = (a−t)2+(b+t)2−(a2+b2) = 2t2+2(b−a)t > 0.

Since x∗ has optimal objective value, this yields the desired contradiction. Since the objective

value and the constraints are invariant to index permutations, there is thus a maximizer with the

claimed shape, and we have c1 > ‖x∗‖1 > ‖x∗‖∞ = c∞.
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The two cases respectively correspond to c1 < c∞ or c1 > c∞, which are mutually exclusive, hence the

conclusion.

�

LEMMA A.6 ([17]) Consider Σ = Σk ⊆ Rn. We have

BΣ (‖ · ‖1) = max
16L6n−2k

L
k

(
L
k
+ 1
)2
+ 1

. (A.24)

Proof. With Bs
Σ (R) defined in (3.29), and recalling the expression (3.26) of BΣ (R), we have

BΣ (‖ · ‖1) = max
16L6n−2k

B2k+L
Σ (‖ · ‖1)

By Lemma A.4,
R⋆(v1)
R⋆(v0)

= (L/k)+ 1 > 1 and B2k+L
Σ (‖ · ‖1)>

L
k

(
R⋆(v1)
R⋆(v0)

)2
+1

=
L
k

( L
k
+1)

2
+1

. This implies

BΣ (‖ · ‖1)> max
16L6n−2k

L
k

(
L
k
+ 1
)2
+ 1

, (A.25)

and there only remains to show there is indeed equality. We isolate this result from [17] for complete-

ness. This will also help understand the case of sparsity in levels in Appendix A.6.

First, we show we can restrict the maximization used to express BΣ (‖ ·‖1) (cf (3.26)) over vectors z

having constant amplitude α > 0 on T (z).
Indeed, consider z 6= 0 such that z ∈ TΣk

(‖ · ‖1). By Lemma A.2, we have ‖zT c‖1 6 ‖zT‖1 with

T = T (z) a set of k indices of components of largest magnitude of z. Assume that there are i 6= j in T

such that |zi| 6= |z j |. Let y such that yl = zl for l /∈ {i, j} and yi = y j = (|zi|+ |z j|)/2. The set T remains a

support of the k largest amplitudes in y, and T2 = T2(z) remains a support of the 2k largest amplitudes in

y. Moreover, we have ‖yT‖1 = ‖zT‖1 > ‖zT c‖1 = ‖yT c‖1 = ‖− yT + y‖1 hence we have y ∈ TΣk
(‖ · ‖1).

Since ‖yT2
‖2

2 −‖zT2
‖2

2 = ‖yT‖2
2 −‖zT‖2

2 = 2[(|zi|+ |z j|)/2]2 − |zi|2 − |z j|2 = −(|zi| − |z j|)2/2 < 0 and

‖yT c
2
‖2

2 = ‖zT c
2
‖2

2 we have ‖yT c
2
‖2

2/‖yT2
‖2

2 > ‖zT c
2
‖2

2/‖zT2
‖2

2.

Second, the same reasoning on T ′ = T2 \T , shows that we can further restrict the maximization used

to define BΣ (‖ · ‖1) to vectors having constant amplitude 0 6 β 6 α over T ′. This leads to

BΣ (‖ · ‖1) = sup
z 6=0:‖zTc‖16‖zT ‖1

‖zT c
2
‖2

2

‖zT2
‖2

2

= sup
α ,β :α>β>0

sup
x∈Rn−2k :‖x‖∞6β ,‖x‖16k(α−β )

‖x‖2
2

k(α2 +β 2)
. (A.26)

Using Lemma A.5, the supremum with respect to x is reached with vectors with the shape

(β , . . . ,β
︸ ︷︷ ︸

L

,θ , 0, . . . ,0
︸ ︷︷ ︸

n−2k−(L+1)>0

)

with 0 6 θ 6 β and 0 6 L 6 n− 2k− 1. We deduce

BΣ (‖ · ‖1) = sup
α ,β :α>β>0

sup
L,θ :06L6n−2k−1,06θ6β

θ6kα−(k+L)β

Lβ 2 +θ 2

k(α2 +β 2)

= max
06L6n−2k−1

sup
α ,β :α>β>0

sup
θ :06θ6β

θ6kα−(k+L)β

Lβ 2 +θ 2

k(α2 +β 2)

(A.27)
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When 0 6 β 6 kα − (k+L)β we have

sup
θ :06θ6β ,θ6kα−(k+L)β

Lβ 2 +θ 2

k(α2 +β 2)
=

(L+ 1)β 2

k(α2 +β 2)
(A.28)

while when β > kα − (k+L)β > 0 we have

sup
θ :06θ6β ,θ6kα−(k+L)β

Lβ 2 +θ 2

k(α2 +β 2)
=

Lβ 2 +(kα − (k+L)β )2

k(α2 +β 2)
. (A.29)

On the one hand, when 0 < β 6 α satisfies β 6 kα − (k+L)β we have α > (1+(L+1)/k)β hence

sup
θ :06θ6β ,θ6kα−(k+L)β

Lβ 2 +θ 2

k(α2 +β 2)
=

(L+ 1)β 2

k(α2 +β 2)
=

(L+ 1)/k

(α/β )2 + 1
6

(L+ 1)/k

[1+(L+ 1)/k]2+ 1
. (A.30)

On the other hand, when 0 < β 6 α satisfies β > kα − (k+L)β > 0 we have (1+(L+1)/k))β > α >

(1+L/k)β and, denoting g(t) := L/k+kt2

(1+L/k+t)2+1
for t > 0, we get

sup
θ :06θ6β ,θ6kα−(k+L)β

Lβ 2 +θ 2

k(α2 +β 2)
=

Lβ 2 +(kα − (k+L)β )2

k(α2 +β 2)
=

L/k+ k[α/β − (1+L/k)]2

(α/β )2 + 1
= g(α/β−(1+L/k)).

(A.31)

A simple function study shows that g′(t) is positively proportional to a second degree polynomial P(t)
with positive leading coefficient and such that P(0)< 0. It follows that there is t0 > 0 such that g′(t)6 0

for 0 6 t 6 t0 and g′(t)> 0 for t > t0. Hence, g is decreasing on [0, t0] and increasing on [t0,+∞), so that

g(α/β −(1+L/k))6 sup
06t61/k

g(t)=max(g(0),g(1/k))=max

(
L/k

(1+L/k)2 + 1
,

(L+ 1)/k

(1+(L+ 1)/k)2+ 1

)

.

As all the above bounds also hold if β = 0, we obtain the claimed result.

�

REMARK A.1 The maximum value of
L/k

((k+L)/k)2+1
(with respect to L) is reached for L/k maximizing

f (u) = u/((u+ 1)2 + 1) (which is maximized at
√

2 over R). We verify that it matches the necessary

RIP condition 1√
2

from [17], f (
√

2) = 2
√

2/(2+
√

2) which gives γΣ (‖ ·‖1) = (4+3
√

2)/
√

2 =
√

2+1√
2−1

.

A.4.2 Lemmas for the proof of Theorem 3.7 . Given a matrix U , we denote Uk:l the restriction of U

to its rows k, . . . , l. We denote O(n) the orthogonal group. Given a symmetric matrix z, we write eig(z)
the vector of eigenvalues ordered decreasingly with respect to their absolute value. Given a vector x

of size n, we write diag(x) the diagonal matrix with diagonal equal to x. To match the notations for

the case of sparsity, given a matrix z =UTdiag(w)U , we write zH =UTdiag(wH)U and QH as in the

previous section. We denote T = {1, ..,r} and T2 = {1, ..,2r}. We denote ‖ · ‖F the Frobenius norm.

Using the same demonstration as Lemma A.2 we characterize the descent cones of the nuclear norm.

LEMMA A.7 Let Σ = Σr. Let ‖ · ‖w be a weighted nuclear-norm. Let z ∈ T‖·‖w
(Σ). There is a support

H of size 6 r such that

‖zHc‖w −‖zH‖w = inf
x∈Σ

{‖x+ z‖w−‖x‖w}6 0, (A.32)

i.e., the infimum is achieved at x∗ =−zH . Moreover, if ‖ · ‖w = ‖ · ‖∗, H = T (z).
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LEMMA A.8 Let Σ = Σr be the set of n× n symmetric matrices with rank at most r with r < n/2, and

1 6 L 6 n− 2r. Assume R is positively homogeneous, subadditive and nonzero. Consider the supports

H0 = {1,2, ..,r} and H1 = {r+ 1, . . . ,2r+L}.

(U0,v0) ∈ arg max
U∈O(n),v∈QH0

‖UTdiag(v)U‖A, (A.33)

(U1,v1) ∈ arg min
U∈O(n),v∈QH1

: U0,1:rU
T
r+1:2r+L=0

‖UTdiag(v)U‖A. (A.34)

1. We have R(UT
0 v0U0)> 0, and for any H of size r′ > r, V ∈ O(n) and w ∈ QH , we have

R(V Tdiag(w)V )6
r′

r
R(UT

0 v0U0). (A.35)

If R = R⋆ = ‖ · ‖∗ then we have indeed equality R(V Tdiag(w)V ) = r′
r

R(UT
0 v0U0).

2. We have

BL+2r
Σ (R) := sup

z∈T‖·‖A(Σ)\{0}:|supp(eig(z))|=2r+L

‖zT c
2
‖2

F

‖zT2
‖2

F

>

L
r

(

max
(

R(UT
1 diag(v1)U1)

R(UT
0 diag(v0)U0)

,1
))2

+ 1

>

L
r

(
L
r
+ 1
)2
+ 1

.

(A.36)

Proof. As a preliminary observe that if R⋆ = ‖ · ‖∗ then R⋆(V T wV ) = |H| for any H,w ∈ QH ,V ∈
O(n), hence wi ∈ QHi

can be arbitrary, for example wi = 1Hi
. This yields R⋆(UT

0 diag(v0)U0) = r,

R⋆(UT
1 diag(v1)U1) = r+L, hence R⋆(UT

1 diag(v1)U1) = (1+L/r)R⋆((UT
0 diag(v0)U0).

To prove the first claim, consider {Gi}
16i6(r′

r)
the collection of all subsets Gi ⊆ H of size exactly

r. Since w ∈ QH , we have wGi
∈ QGi

for each i. Also, since |Gi|= r for every i, by definition of H0,v0

and remarking that the maximization over O(n) permits to consider any permutation of the support, we

obtain maxi R(V Tdiag(vGi
)V )6 R(UT

0 diag(v0)U0).

Notice that given a coordinate j ∈ H, there are
(

r′−1
r−1

)
sets Gi such that j ∈ Gi. With λ := 1

(r′−1
r−1)

, we

get V Tdiag(w)V = V T λ ∑i diag(wGi
)V hence by positive homogeneity and subadditivity of R (which

imply convexity)

R(V T wV ) = R(λV T
(r′

r )

∑
i=1

diag(wGi
)V )6

(r′
r)

∑
i=1

R(V T λdiag(wGi
)V ) = λ

(r′
r )

∑
i

R(V Tdiag(wGi
)V )

6

(
r′
r

)

(
r′−1
r−1

)R(UT
0 diag(v0)U0) =

r′

r
R(UT

0 diag(v0)U0).

(A.37)

This establishes (A.35). With R = R⋆, we have R⋆(V Tdiag(w)V ) = ‖w‖1 = r′ for w ∈ QH , hence

R⋆(V Tdiag(w)V ) = (r′/r)R⋆(UT
0 diag(v0)U0) as claimed.

For the sake of contradiction, assume that R(UT
0 diag(v0)U0) 6 0. As we have just proved, this

implies R(V Tdiag(w)V ) 6 (n/k)R(UT
0 diag(v0)U0) 6 0 for every w ∈ {−1,+1}n = QH with H =



40 of 67 REFERENCES

{1, . . . ,n} and V ∈ O(n). By convexity of R it follows that R(V Tdiag(w)V )6 0 for each w ∈ [−1,1]n =
conv(QH), and by positive homogeneity,

R(V Tdiag(w)V )6 0, ∀w ∈ Rn. (A.38)

Positive homogeneity and subadditivity also imply

0 = 0 ·R(UT
0 diag(v0)U0) = R(0 ·UT

0 diag(v0)U0) = R(0) = R(−V Tdiag(w)V +V Tdiag(w)V )

6 R(−V T
diag(w)V )+R(V T

diag(w)V )

(A.38)

6 R(−V Tdiag(w)V )

for every V Tdiag(w)V ∈ H, hence R(V Tdiag(w)V ) = 0 on H, which yields the desired contradiction

since we assume that R is nonzero.

Regarding the second claim, since 2r+L6 n, by construction, H1∩H0 = /0. Since R(UT
0 diag(v0)U0)>

0, R is positively homogeneous and the set Σ is homogeneous, and we have by Lemma A.3, z =
−αUT

0 diag(v0)U0+UT
1 diag(v1)U1 ∈TR(Σ) with α :=max(R(UT

1 diag(v1)U1)/R(UT
0 diag(v0)U0),1).

Observe that |supp(eig(z))| = |H0|+ |H1|= 2r+L. Since α > 1 and all nonzero entries of v0,v1 have

magnitude one, a set of the 2r largest components of eig(z) is T2 = H0 ∪T ′
1 with T ′

1 any subset of H1

with k components, and we obtain (A.36). once we observe that

‖zT c
2
‖2

2

‖zT2
‖2

2

=
L

rα2 + r
=

L/r

α2 + 1
. (A.39)

�

LEMMA A.9 Let Σ = Σr. Then

BΣ (‖ · ‖∗) = max
06L6n−2r

L
r

(
L
r
+ 1
)2
+ 1

. (A.40)

Proof.

We have z ∈ T‖·‖∗(Σr) is equivalent to ‖zT c
2
‖∗ + ‖zT ′‖∗ 6 ‖zT‖∗ where T ′ = supp(z) \ (T c

2 ∪ T )
(Lemma A.7). Hence,

BL+2r
Σ (‖ · ‖∗) = sup

z:‖zTc
2
‖∗+‖zT ′‖∗6‖zT ‖∗

‖zT c
2
‖2

F

‖zT2
‖2

F

. (A.41)

Using the fact that ‖z‖∗ = ‖eig(z)‖1 and ‖z‖F = ‖eig(z)‖2, we fall on the expression of BL+2r
Σ (‖ · ‖1)

and get the result using Lemma A.6.

�

A.5 Proofs for Section 3.3

Proof of Lemma 3.5. The constant δ suff
Σ (R) [38][Eq. (5)] has the following expression:

δ suff
Σ (R) = inf

z∈TR(Σ)\{0}
sup
x∈Σ

−Re〈x,z〉
‖x‖H

√

‖x+ z‖2
Σ −‖x‖2

H
− 2Re〈x,z〉

. (A.42)
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Considering any nonzero z ∈H, since Σ is a union of subspaces and Σ ∩S(1) is compact, by Lemma 3.4

the set PΣ (z) is not empty and 〈PΣ (z),z〉 = ‖PΣ(z)‖2
H is unambiguous. Choosing an arbitrary y ∈ PΣ (z)

and setting x =−y, we obtain

sup
x∈Σ

−Re〈x,z〉
‖x‖H

√

‖x+ z‖2
Σ −‖x‖2

H
− 2Re〈x,z〉

>
‖PΣ (z)‖2

H

‖PΣ(z)‖H
√

‖z−PΣ(z)‖2
Σ −‖PΣ(z)‖2

H
+ 2‖PΣ(z)‖2

H

=
1

√

sup
z∈TR(Σ)\{0}

‖z−PΣ (z)‖2
Σ

‖PΣ (z)‖2
H

+ 1

.

Considering the infimum over z ∈ TR(Σ)\ {0} yields the first claim. Let us now proceed to the second

claim.

Given z ∈ TR(Σ)\ {0}, consider an arbitrary x ∈ Σ , and V ∈ V such that x ∈ V . With Fact A.2, for

every v ∈ H, ‖v‖2
Σ is the infimum of ∑i λi‖ui‖2

H over convex decompositions v = ∑i λiui over Σ , hence

there exists ui ∈ Σ , λi > 0 such that ∑i λi = 1, ∑i λiui = x+ z and

‖x+ z‖2
Σ = ∑

i

λi‖ui‖2
H.

Since V ⊂ Σ , ui,V := PV ui ∈ Σ . By the additional assumption, since ui ∈ Σ we also have and ui,V⊥ :=
PV⊥ui ∈ Σ for each i. Observe also that PV⊥x = 0. Hence, with the notations zV = PV z, zV⊥ = PV⊥z, we

have the convex decompositions

zV⊥ = PV⊥(x+ z) = ∑λiui,V⊥

x+ zV = PV (x+ z) = ∑λiui,V .

Using Jensen’s inequality for the convex functions ‖ · ‖2
Σ and ‖ · ‖2

H and the identity ‖v‖2
Σ = ‖v‖2

H for

v ∈ Σ (Fact A.1), we have

‖zV⊥‖2
Σ + ‖x+ zV‖2

H 6 ∑
i

λi‖ui,V⊥‖2
Σ +∑

i

λi‖ui,V‖2
H = ∑

i

λi‖ui,V⊥‖2
H+∑

i

λi‖ui,V‖2
H

= ∑
i

λi‖ui‖2
H = ‖x+ z‖2

Σ .

Since PV is the (linear and self-adjoint) orthogonal projection onto V , we have Re〈x,zV 〉=Re〈x,PV z〉=
Re〈PV x,z〉=Re〈x,z〉, and we obtain

‖zV⊥‖2
Σ + ‖zV‖2

H 6 ‖x+ z‖2
Σ −‖x+ zV‖2

H+ ‖zV‖2
H

‖zV⊥‖2
Σ + ‖zV‖2

H 6 ‖x+ z‖2
Σ −‖x‖2

H− 2Re〈x,zV 〉
‖zV⊥‖2

Σ + ‖zV‖2
H 6 ‖x+ z‖2

Σ −‖x‖2
H− 2Re〈x,z〉.

(A.43)

Using Cauchy-Schwarz inequality, we have (Re(〈x,z〉)2 = (Re(〈x,zV 〉)2
6 ‖x‖2

H‖zV ‖2
H. Denoting V0

such that PV0
(z) ∈ PΣ (z), we get
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(Re〈x,z〉)2
(
‖zV⊥‖2

Σ + ‖zV‖2
H

)
6 ‖x‖2

H‖zV‖2
H

(
‖x+ z‖2

Σ −‖x‖2
H− 2Re〈x,z〉

)

(Re〈x,z〉)2

‖x‖2
H

(
‖x+ z‖2

Σ −‖x‖2
H
− 2Re〈x,z〉

) 6
‖zV ‖2

H
(
‖zV⊥‖2

Σ + ‖zV‖2
H

) =
1

‖z
V⊥‖2

Σ

‖zV ‖2
H

+ 1

6
1

‖z−PV z‖2
Σ

‖PΣ (z)‖2
H

+ 1
,

where the last inequality (we could use here the weaker alternative assumption PΣ (z)∩ argminx∈Σ ‖x−
z‖Σ/‖x‖H 6= /0) uses that zV⊥ = z−PV z and ‖PV0

z‖H = ‖PΣ(z)‖H > ‖PV (z)‖H = ‖zV‖H. To conclude,

we use the additional hypothesis PΣ(z)⊆ argminx∈Σ ‖x−z‖Σ , which implies ‖z−PΣ(z)‖Σ 6 ‖z−PV z‖Σ

since PV z ∈ Σ

sup
x∈Σ

−Re〈x,z〉
‖x‖H

√

‖x+ z‖2
Σ −‖x‖2

H
− 2Re〈x,z〉

6
1

√

sup
z∈TR(Σ)\{0}

‖z−PΣ (z)‖2
Σ

‖PΣ (z)‖2
H

+ 1

.

�

To replicate the proof used in the necessary case, we show a monotonicity property of ‖ · ‖Σ .

LEMMA A.10 Consider a model set Σ ⊂H, ‖ · ‖Σ the atomic “norm” induced by Σ , and D : H→H a

linear operator. If DΣ ⊆ Σ and ‖D‖op := sup‖v‖H61 ‖Dv‖H 6 1 then

‖Dv‖Σ 6 ‖v‖Σ , ∀v ∈H. (A.44)

Proof. Let λi,ui such that ui ∈ Σ , ∑i λi = 1, ∑i λiui = v. Denoting u′i = Dui we have u′i ∈ Σ and

Dv = ∑λiu
′
i. By Jensen’s inequality and the fact that ‖u‖Σ = ‖u‖H for any u ∈ Σ (Fact A.1), it follows

that

‖Dv‖2
Σ 6 ∑λi‖u′i‖2

Σ = ∑λi‖u′i‖2
H = ∑λi‖Dui‖2

H 6 ∑λi‖ui‖2
H. (A.45)

With Fact A.2, ‖v‖2
Σ is the infimum of the right-hand side over all such decompositions v = ∑λiui.

�

COROLLARY A.1 With Σ := Σk the set of k-sparse vectors in H = Rn, we have:

1. the norm ‖ · ‖Σ is invariant by permutation and coordinate sign changes;

2. for any vectors v,v′ ∈H such that |v j|6 |v′j| for all j we have ‖v‖Σ 6 ‖v′‖Σ ;

3. consider any vector z, and Tk a subset indexing k components of the largest magnitude, i.e., mini∈T |zi|>
max j/∈T |z j|, with |T |= k. Then

max
|T |6k

‖zT‖Σ = ‖zTk
‖Σ (A.46)

min
|T |6k

‖z− zT‖Σ = ‖z− zTk
‖Σ . (A.47)

Proof. We show the three properties separately.
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• Property 1: Let π be a permutation of (1, . . . ,n) and ε1, . . . ,εn ∈ {±1}. Define D by (Du)i =
εiuπ(i). Observe that DΣk ⊆ Σk and ‖D‖op = 1. Conclude using Lemma A.10 that ‖Du‖Σ 6 ‖u‖Σ

for any u ∈ H. The same holds with D′ = D−1, hence ‖u‖Σ = ‖D−1Du‖Σ 6 ‖Du‖Σ for any u.

This shows ‖D · ‖Σ = ‖ · ‖Σ .

• Property 2: Given the assumptions on v,v′, the linear operator defined by (Du)i = viui/v′i if

v′i 6= 0 (and (Du)i = 0 otherwise) satisfies DΣ ⊆ Σ and ‖D‖op 6 1 hence, using Lemma A.10

again, ‖v‖Σ = ‖Dv′‖Σ 6 ‖v′‖Σ .

• Property 3: By the invariance by permutation and coordinate sign changes of ‖·‖Σ , it is sufficient

to prove the result when z1 > . . . > zn > 0 and Tk = {1, . . . ,k}. Given T of size k, there is a

permutation φ of (1, . . . ,n) such that T = {φ(1), . . . ,φ(k)} where φ(1) < .. . < φ(k). It follows

that zφ(i) 6 zi for 16 i6 k. Hence by Property 2, we have ‖zT‖Σ = ‖(zφ(1), . . . ,zφ(k),0, . . . ,0)‖Σ 6

‖(z1, . . . ,zk,0, . . . ,0)‖Σ = ‖zTk
‖Σ . A similar argument using T c yields ‖z− zT‖Σ > ‖z− zTk

‖Σ .

�

COROLLARY A.2 With Σ := Σr the set of matrices of rank lower than r in H the set of symmetric

matrices in Rn×n, we have:

1. for any matrices V Tdiag(w)V,V Tdiag(w′)V with V ∈ O(n) such that |w j| 6 |w′
j | for all j we

have ‖V Tdiag(w)V‖Σ 6 ‖V Tdiag(w′)V‖Σ ;

2. For any symmetric matrix z, and Tr a subset indexing r components of largest magnitude of

eig(z), i.e.,

min
i∈T

|eig(z)i|> max
j/∈T

|eig(z) j|,

with |T |= r. Then

max
|T |6r

‖zT‖Σ = ‖zTr‖Σ (A.48)

min
|T |6r

‖z− zT‖Σ = ‖z− zTr‖Σ . (A.49)

Proof. We show the two properties separately.

• Property 1: Given the assumptions on w,w′, the linear operator defined by Dz =V TWVz where

W is the diagonal matrix such that Wii = wi/w′
i if w′

i 6= 0 (and Wii = 0 otherwise) satisfies DΣ ⊆ Σ
and ‖D‖op 6 1. We have D(V Tdiag(w′)V ) = V TWw′V = V T wV . With Lemma A.10, we get

‖V Tdiag(w)V‖Σ = ‖D(V Tdiag(w′)V )‖Σ 6 ‖V Tdiag(w′)V‖Σ .

• Property 2: This property is direct using the eigenvalue decomposition

z =UT
diag(eig(z))UT =UT

diag(eig(z)T +eig(z)T c)UT

and Property 1.

� We now prove Lemma 3.6. Proof of Lemma 3.6.

Consider first Σ = Σk. First, the properties of ‖ · ‖Σ established in Corollary A.1 directly show that the

minimum of ‖x− z‖Σ with respect to x ∈ Σ is reached at any x ∈ PΣ (z). Then, we can write Σ =∪V∈VV
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where V ∈ V if, and only if there is an index set T ⊆ {1, . . . ,n} such that |T |6 k and V = span(ei)i∈T .

Given V ∈ V and u ∈ Σk, let us show that PV⊥u ∈ Σk. Writing V = span(ei)i∈T where |T |6 k, we have

PV (u) = uT and PV⊥(u) = uT c . As supp(uT c)⊆ supp(u) it follows that ‖uT c‖0 6 k, hence PV⊥(u) ∈ Σk.

In the case of low rank matrices Σ = Σr. We take V = {span(Ui)i∈I , |I|6 r,‖Ui‖F = 1,rank(Ui) =
1,〈Ui,U j〉 = 0, i 6= j} . With Corollary A.2, the minimum of ‖x− z‖Σ with respect to x ∈ Σ is reached

at any x ∈ PΣ (z). Let z ∈ Σr and V ∈ V . We have PV (z) = V T
1 S1V1 has rank r′ lower than r. We can

write z =V T
1 S1V1 +V T

2 S2V2 with V1V T
2 = 0. Hence, PV⊥(z) has rank at most r− r′ 6 r and PV⊥(z) ∈ Σr

otherwise z would be of rank greater than r.

� We need the following Lemma to control ‖ · ‖Σ .

LEMMA A.11 Let Σ = Σk ⊂ Rn. Then for any v

‖v‖2
Σ >

‖v‖2
1

k
. (A.50)

Let Σ = Σr. Then for any v

‖v‖2
Σ >

‖v‖2
∗

r
. (A.51)

Proof.

Case Σ = Σk : Let λi > 0,ui ∈ Σ such that ‖v‖2
Σ = ∑λi‖ui‖2

2 and v = ∑λiui from Fact A.2. We have,

by convexity

‖v‖1 =

∥
∥
∥
∥
∥
∑

i

λiui

∥
∥
∥
∥
∥

1

6 ∑
i

λi‖ui‖1. (A.52)

Using the fact that ‖x‖1 6
√

k‖x‖2 if |supp(x)|6 k and the concavity of the square root,

‖v‖1 6
√

k∑
i

λi‖ui‖2 6
√

k

√

∑
i

λi‖ui‖2
2 =

√
k‖v‖Σ . (A.53)

Case Σ = Σr : Let λi > 0,ui ∈ Σ such that ‖v‖2
Σ = ∑λi‖ui‖2

F and v = ∑λiui from Fact A.2. We have,

by convexity

‖v‖1 =

∥
∥
∥
∥
∥
∑

i

λiui

∥
∥
∥
∥
∥
∗
6 ∑

i

λi‖ui‖∗. (A.54)

Using the fact that ‖x‖∗ 6
√

r‖x‖F if rank(x)6 r and the concavity of the square root,

‖v‖∗ 6
√

k∑
i

λi‖ui‖F 6
√

k

√

∑
i

λi‖ui‖2
F =

√
k‖v‖Σ . (A.55)

�

A.5.1 Sparsity. We prove several intermediates lemmas to obtain DΣ (‖ · ‖1).

LEMMA A.12 Consider Σ = Σk the set of k-sparse vectors in H= Rn, and 0 6 L > n− k. We have

Dk+L
Σ (‖ · ‖1) := sup

z∈T‖·‖1
(Σ)\{0}:|supp(z)|=k+L

‖zT c‖2
Σ

‖zT‖2
2

= min

(

1,
L

k

)

. (A.56)
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Proof. It was already proven in [38, Theorem 4.1] that δ suff
Σ (‖ · ‖1)>

1√
2

hence by Lemma 3.5

sup
z∈T‖·‖1

(Σ)\{0}

‖zT c‖2
Σ

‖zT‖2
2

= DΣ (‖ · ‖1)6 1. (A.57)

Hence, Dk+L
Σ (‖ · ‖1)6 1

Consider H0 of cardinality k, H1 of cardinality L such that H0∩H1 = /0 (this is possible as k+L 6 n),

and define z = α1H0
+ 1H1

where α = max(1,L/k). As α > 1, a set of the k largest components of z is

T = H0. Moreover, ‖zH0
‖1 = αk = max(k,L) > L = ‖zH1

‖1 = ‖zHc
0
‖1.

We distinguish two cases:

• Case 1: L > k, from Lemma A.11, ‖zT c‖2
Σ > 1

k
‖zH1

‖2
1 = L2/k. Moreover, ‖zT‖2

2 = kα2 = L2/k,

thus ‖zT c‖2
Σ/‖zT‖2

2 > 1. Combining with (A.57) yields Dk+L
Σ (‖ · ‖1) = 1 = min(1,L/k).

• Case 2: L < k, we have zT c = zH1
∈ Σk hence ‖zT c‖2

Σ = ‖zT c‖2
2 = ‖zH1

‖2
2 = L and ‖zT c‖2

Σ/‖zT‖2
2 =

L/k. This shows that Dk+L
Σ (‖·‖1)> L/k =min(1,L/k). To conclude, we show that Dk+L

Σ (‖·‖1)6
L/k. Consider any z′ ∈ T‖·‖1

(Σ) such that |supp(z′)|= k+L, with Lemma A.2, there is a support

H of size lower than k such that, ‖z′H‖1 > ‖z′Hc‖1, let T a set of the k largest components of z′.
We have ‖z′T‖1 −‖z′T c‖1 > ‖z′H‖1 −‖z′Hc‖1. As ‖z′‖0 6 k+ L and L < k, z′T c ∈ ΣL ⊂ Σk hence

‖z′T c‖Σ = ‖z′T c‖2. Moreover, |z′i|> ‖z′T c‖∞ for any i ∈ T , hence ‖z′T‖2
2 > k‖z′T c‖2

∞. As a result

‖z′T c‖2
Σ

‖z′T‖2
2

=
‖z′T c‖2

2

‖z′T‖2
2

6
L‖z′T c‖2

∞

k‖z′T c‖2
∞

= L/k.

�

LEMMA A.13 Let Σ = Σk be the set of k-sparse vectors in Rn with k < n/2 and 1 6 L 6 n− k. Assume

that R is positively homogeneous, subadditive and nonzero.

Consider

(H0,v0) ∈ arg max
H⊆{1,...,n}: |H|=k

v∈QH

R(v) (A.58)

(H1,v1) ∈ arg min
H⊆{1,...,n}\H0,|H|=L

v∈QH

R(v). (A.59)

We have

Dk+L
Σ (R) := sup

z∈TR(Σ)\{0}:|supp(z)|=k+L

‖zT c‖2
Σ

‖zT‖2
2

> min

(

1,
L

k

)

. (A.60)

Proof. From Lemma A.4, R⋆(v1) =
L
k

R⋆(v0). Since k+L 6 n there is indeed some H of cardinality L

such that H ∩H0 = /0, hence H1 is well-defined. By construction, H1 ∩H0 = /0. From Lemma A.4, we

also have R(v0)> 0 and R(v1)/R(v0)6 L/k.

Since R(v0)> 0, R is positively homogeneous and Σ is homogeneous, by Lemma A.3, z =−αv0 +
v1 ∈ TR(Σ) with α := max(R(v1)/R(v0),1). Observe that |supp(z)|= |H0|+ |H1|= k+L. Since α > 1

and all nonzero entries of v0,v1 have magnitude one, a set of the k largest components of z is T = H0.

We have
‖zT c‖2

Σ

‖zT‖2
2

=
‖v1‖2

Σ

kα2
. (A.61)
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With Lemma A.11, ‖v1‖2
Σ >

‖v1‖2
1

k
> L2

k
if L > k and ‖v1‖2

Σ = ‖v1‖2
2 otherwise (Fact A.1). If L > k

‖zT c‖2
Σ

‖zT‖2
2

>
L2

k2α2
>

L2

k2 max(L/k,1)2
= 1. (A.62)

If L < k,
‖zT c‖2

Σ

‖zT‖2
2

=
L

kα2
>

L

k
(A.63)

which leads to the conclusion.

�

A.5.2 Low rank.

LEMMA A.14 Consider Σ = Σr the set of symmetric matrices of rank lower than r. For any L > 0 such

that r+L 6 n we have,

Dr+L
Σ (‖ · ‖∗) := sup

z∈T‖·‖∗(Σ)\{0}:rank(z)=r+L

‖zT c‖2
Σ

‖zT‖2
F

= min

(

1,
L

r

)

(A.64)

where zT is z restricted to its r biggest eigenvalues, and zT c = z− zT

Proof. It was already proven in [38, Theorem 4.1] that δ suff
Σ (‖ · ‖∗)> 1√

2
hence by Lemma 3.5

sup
z∈T‖·‖∗ (Σ)\{0}

‖zT c‖2
Σ

‖zT‖2
F

= DΣ (‖ · ‖∗)6 1. (A.65)

Consider H0 = {1, ..r} , H1 = {r+1, ..,r+L}, let U ∈ O(n) and define z =UTdiag(α1H0
+1H1

)U
where α = max(1,L/r). As α > 1, a set of the r largest components of eig(z) is T = H0. Moreover,

‖zT‖∗ = αr = max(r,L)> L = ‖z− zT‖∗ = ‖zT c‖∗.

If L > r, from Lemma A.11, ‖zT c‖2
Σ > 1

r
(‖zT c‖∗)2 = L2/r. Moreover, ‖zT‖2

F = rα2 = L2/r, thus

‖zT c‖2
Σ/‖zT‖2

F > 1. Combining with (A.65) yields DL(‖ · ‖∗) = 1 = min(1,L/r).
If L < r, we have zT c ∈ Σr hence ‖zT c‖2

Σ = L and ‖zT c‖2
Σ/‖zT‖2

2 = L/r. This shows that DL(‖ ·‖∗)>
L/r = min(1,L/r). To conclude, we show that DL(‖ · ‖∗) 6 L/r. Consider any z′ ∈ T‖·‖∗(Σ) such that

|supp(z′)|= r+L, with Lemma A.7, there is a support r′ and H = 1, ..,r′ such that ‖z′H‖∗ > ‖z′Hc‖∗, let

T a set of r largest components of z′. We have ‖z′T‖∗−‖z′T c‖∗ > ‖z′H‖∗−‖z′Hc‖∗. As ‖eig(z′)‖0 6 r+L

and L < r, z′T c ∈ ΣL ⊂ Σr hence ‖z′T c‖Σ = ‖z′T c‖F . Moreover, |eig(z′)i| > ‖eig(z′T c)‖∞ for any i ∈ T ,

hence ‖z′T‖2
F > r‖eig(z′T c)‖2

∞. As a result

‖z′T c‖2
Σ

‖z′T‖2
F

=
‖z′T c‖2

F

‖z′T‖2
F

6
L‖eig(z′T c)‖2

∞

r‖eig(z′T c)‖2
∞

= L/r.

�

LEMMA A.15 Let Σ = Σr be the set of n×n symmetric matrices with rank at most r with r < n/2, and

1 6 L 6 n− r. Assume R is positively homogeneous, subadditive and nonzero. Consider the supports

H0 = {1,2, ..,r} and H1 = {r+ 1, . . . ,r+L}.

(U0,v0) ∈ arg max
U∈O(n),v∈QH0

‖UTdiag(v)U‖A (A.66)

(U1,v1) ∈ arg min
U∈O(n),v∈QH1

: U0,1:rU
T
r+1:r+L=0

‖UT
diag(v)U‖A. (A.67)
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We have

Dr+L
Σ (R) := sup

z∈TR(Σ)\{0}:|supp(z)|=r+L

‖zT c‖2
Σ

‖zT‖2
F

> min

(

1,
L

r

)

. (A.68)

Proof. From Lemma A.8, R⋆(UT
1 diag(v1)U1 =

L
r
R⋆(UT

0 diag(v0)U0), R(UT
0 diag(v0)U0)> 0 and

R(UT
1 diag(v1)U1)/R(UT

0 diag(v0)U0)6 L/r.

Since R(v0)> 0, R is positively homogeneous and Σ is homogeneous, by Lemma A.3, z=−αUT
0 diag(v0)U0+

UT
1 diag(v1)U1 ∈TR(Σ) with α :=max(R(UT

1 diag(v1)U1)/R(UT
0 diag(v0)U0),1). Observe that |supp(eig(z))|=

|H0|+ |H1| = r + L. Since α > 1 and all nonzero entries of v0,v1 have magnitude one, a set of the r

largest components of z is T = H0. We have

‖zT c‖2
Σ

‖zT‖2
F

=
‖UT

1 diag(v1)U1‖2
Σ

rα2
. (A.69)

With Lemma A.11, we have
{

‖UT
1 diag(v1)U1‖2

Σ > 1
r
‖UT

1 diag(v1)U1‖2
∗ =

L2

r
if L > r

‖UT
1 diag(v1)U1‖2

Σ = ‖UT
1 diag(v1)U1‖2

F otherwise (Fact A.1).
(A.70)

If L > r
‖zT c‖2

Σ

‖zT‖2
F

>
L2

r2α2
>

L2

r2 max(L/r,1)2
= 1. (A.71)

If L < r,
‖zT c‖2

Σ

‖zT‖2
F

=
L

rα2
>

L

r
(A.72)

which leads to the conclusion.

�

A.6 Proofs for Section 4

We extend notations for classical sparsity to sparsity in levels (Σ = Σk1,k2
). For z = (z1,z2) ∈ H, we

we define the following projections P1(z) := z1 and P2(z) := z2 and denote T = (S1,S2) = T (z) where

for i ∈ {1,2}, Si ⊆ {1, . . . ,ni} is a support containing ki largest coordinates (in absolute value) of zi, i.e.

|Si|= ki and min j∈S1
|zi, j|> max j∈Sc

i
|zi, j|. For every U = (U1,U2) where Ui ⊆ {1, . . . ,ni} and |Ui|= ki,

we also have ‖(zi)Si
‖1 > ‖(zi)Ui

‖1 hence ‖zT‖w > ‖zU‖w and similarly ‖zT c‖w 6 ‖zUc‖w.

We define similarly T2 = T2(z) = (S′1,S
′
2) with S′i containing the 2ki largest coordinates of zi. We

begin by simplifying the condition z ∈ T‖·‖w
(Σ)\ {0}.

LEMMA A.16 Let w = (w1,w2) ∈R2
+. Let ‖ ·‖w = w1‖P1(·)‖1 +w2‖P2(·)‖1 Let z ∈ T‖·‖w

(Σk1,k2
)\{0}

then

‖zT c‖w 6 ‖zT‖w. (A.73)

Reciprocally,

‖zT c‖w 6 ‖zT‖w (A.74)

implies z ∈ T‖·‖w
(Σk1,k2

).
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Proof. By definition, if z∈T‖·‖w
(Σk1,k2

)\{0} then there exists x∈Σk1,k2
and γ ∈R\{0} such that z= γy

and ‖x+ y‖w 6 ‖x‖w. With U := supp(x) we have ‖yUc‖w+‖(x+ y)U‖w = ‖x+ y‖w 6 ‖x‖w = ‖xU‖w.

By the triangle inequality this implies

‖yUc‖w 6 ‖xU‖w −‖(x+ y)U‖w 6 ‖yU‖w. (A.75)

As γ 6= 0, we obtain ‖zUc‖w 6 ‖zU‖w. We have

‖zT‖w > ‖zU‖w > ‖zUc‖w > ‖zT c‖w. (A.76)

�

To calculate BΣ (‖ · ‖w) (see definition in Corollary 3.1), we need a few lemmas.

LEMMA A.17 Consider w1,w2,k1,k2 > 0 and β1,β2,λ > 0 and

V := min
α1,α2>0

k1α2
1 + k2α2

2 s.t. α1 > β1, α2 > β2, k1w1α1 + k2w2α2 > λ (A.77)

• If λ < k1w1β1 + k2w2β2 then V = k1β 2
1 + k2β 2

2 .

• If λ > k1w1β1+k2w2β2 then the minimum is achieved at α∗
1 ,α

∗
2 such that k1w1α∗

1 +k2w2α∗
2 = λ .

Moreover,

– if λ > (k1w2
1 + k2w2

2)max(β1/w1,β2/w2) then

V = min
α1,α2>0,w1α1+k2w2α2=λ

k1α2
1 + k2α2

2 = λ 2/(k1w2
1 + k2w2

2);

– otherwise

V = min

(

k1β 2
1 +

(λ − k1w1β1)
2

k2w2
2

,k2β 2
2 +

(λ − k2w2β2)
2

k1w2
1

)

> λ 2/(k1w2
1 + k2w2

2).

Proof. Consider the change of variables x =
√

k1α1, y =
√

k2α2 and denote x0 :=
√

k1β1, y0 :=
√

k2β2,

a :=
√

k1w1, b :=
√

k2w2. This leads to the equivalent problem

min
x,y>0

x2 + y2 s.t. x > x0,y > y0,ax+ by > λ

which involves a convex objective to be minimized over a polyhedral constraint set. If ax0 + by0 > λ ,

i.e., if k1w1β1 + k2w2β2 > λ , then this problem is equivalent to

min
x,y>0

x2 + y2 s.t. x > x0,y > y0

which is minimized at (x0,y0), with value x2
0 +y2

0 = k1β 2
1 +k2β 2

2 . Otherwise, the candidate optima must

satisfy the constraint ax+ by = λ , hence y = (λ − ax)/b and the problem is equivalent to

min
x06x6(λ−by0)/a

x2 +(ax−λ )2/b2. (A.78)

The unconstrained minimum of (A.78) is at x∗ satisfying 2x∗+ 2a(ax∗−λ )/b2 = 0, i.e., , x∗ = aλ
a2+b2 ,

leading to y∗ = (λ − ax∗)/b = bλ
a2+b2 and to an optimal unconstrained problem value

(x∗)2 +(y∗)2 = λ 2/(a2 + b2) = λ 2/(k1w2
1 + k2w2

2).
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This is also the value of the constrained minimum of (A.78), provided that x0 6 x∗ 6 (λ − by0)/a, i.e.,

that λ > (a2 + b2)max(x0/a,y0/b) = (k1w2
1 + k2w2

2)max(β1/w1,β2/w2). Otherwise, the constrained

minimum is either at x = x0 and y = (λ − ax0)/b, so that x2 + y2 = x2
0 +(λ − ax0)

2/b2; or at y = y0

and x = (λ − by0)/a, so that x2 + y2 = y2
0 +(λ − by0)

2/a2. The value at the optimum is then min(x2
0 +

(λ −ax0)
2/b2,y2

0+(λ −by0)
2/a2), which is necessarily larger than that of the unconstrained minimum.

Once translated in terms of the original variables, this yields the result.

�

LEMMA A.18 Let ρ > 0, k1,k2,L1,L2,w1,w2,λ > 0

max
β1>0,β2>0

L1β 2
1 +L2β 2

2

ρ + k1β 2
1 + k2β 2

2

s.t. w1(k1 +L1)β1 +w2(k2 +L2)β2 = λ (A.79)

is equal to

max
i∈{1,2}

Liλ
2

ρw2
i (ki +Li)2 + kiλ 2

. (A.80)

Denoting i∗ the index maximizing this expression, the maximum is reached for βi∗ =
λ

wi∗ (ki∗+Li∗ )
(and

β j = 0 for j 6= i).

Proof. Let c > 0. Observe that

L1β 2
1 +L2β 2

2

ρ + k1β 2
1 + k2β 2

2

> c (A.81)

is equivalent to

(L1 − ck1)β
2
1 +(L2 − ck2)β

2
2 > cρ . (A.82)

With the change of variable bi = wi(ki +Li)βi we have b1 + b2 = λ and (A.82) reads

(L1 − ck1)

w2
1(k1 +L1)2

b2
1 +

(L2 − ck2)

w2
2(k2 +L2)2

(b1 −λ )2 > cρ . (A.83)

The left side is maximized (with respect to 0 6 b1 6 λ ) for either b1 = 0 or b1 = λ . The initial inequal-

ity (A.81) is thus feasible if, and only if, the maximum of the left-hand side of (A.83) over these two

values verifies the inequality

max
i∈{1,2}

(Li − cki)

w2
i (ki +Li)2

λ 2 > cρ (A.84)

i.e., if there is i∈ {1,2} such that (Li−cki)λ
2 > cρw2

i (ki+Li)
2. This is equivalent to Liλ

2 > c(ρw2
i (ki+

Li)
2 + kiλ

2) and

c 6
Liλ

2

ρw2
i (ki +Li)2 + kiλ 2

. (A.85)

�

LEMMA A.19 Consider w1,w2,β1,β2,c > 0 and

V := sup
06θi6βi,w1θ1+w2θ26c

θ 2
1 +θ 2

2 . (A.86)

Denoting (ℓ,r) ∈ {(1,2),(2,1)} such that wℓβℓ 6 wrβr, we have



50 of 67 REFERENCES

1. if c < wℓβℓ then V = maxi∈{1,2}(c/wi)
2;

2. if wℓβℓ 6 c < wrβr then V = max((c/wr)
2,β 2

ℓ +[(c−wℓβℓ)/wr]
2;

3. if wrβr 6 c < w1β1 +w2β2 then V = max(i, j)∈{(1,2),(2,1)}β 2
i +[(c−wiβi)/w j]

2;

4. if c > w1β1 +w2β2 then V = β 2
1 +β 2

2 ;

Proof. The optimum V is the maximization of a quadratic form within the intersection of a rectangle

and a half-space delimited by an affine function. Using standard compactness arguments there exists

at least a maximizer (θ ∗
1 ,θ

∗
2 ) of the considered expression. If θ ∗

i < βi for some i ∈ {1,2} then the

constraint c = w1θ ∗
1 +w2θ ∗

2 is satisfied (otherwise, we would have 0 6 θ ∗
i < βi and w1θ1 +w2θ2 < c,

and we could exhibit other θi > θi∗ still satisfying the constraints and such that θ 2
1 + θ 2

2 is increased),

hence w1β1 +w2β2 > w1θ ∗
1 +w2θ ∗

2 = c.

Vice-versa if w1β1 +w2β2 > c then since (θ ∗
1 ,θ

∗
2 ) satisfies all constraints we have w1θ ∗

1 +w2θ ∗
2 6 c <

w1β1 +w2β2, hence there is at least one index i ∈ {1,2} such that θ ∗
i < βi. We can thus consider the

following cases (depending on the shape of the domain):

• if w1β1 +w2β2 6 c then for each i ∈ {1,2}, θ ∗
i = βi hence V = β 2

1 +β 2
2 as claimed;

• otherwise, i.e., if w1β1 +w2β2 > c, we have w1θ ∗
1 +w2θ ∗

2 = c and we distinguish three cases:

(a) θ ∗
1 < β1, θ ∗

2 < β2: then, since θ ∗
2 = (c−w1θ ∗

1 )/w2 where θ ∗
1 is a maximizer of θ 2

1 + [(c−
w1θ1)/w2]

2 under the constraint 0 6 θ1 and c−w1θ1 > 0, there is (i, j) ∈ {(1,2),(2,1)}
such that θ ∗

j = 0 and θ ∗
i = c/wi. This is feasible provided that c/wi < βi.

(b) θ ∗
1 = β1, θ ∗

2 < β2, hence θ ∗
2 = (c−w1β1)/w2. This satisfies 0 6 θ ∗

2 < β2 if, and only if,

c > w1β1.

(c) θ ∗
1 < β1, θ ∗

2 = β2, hence θ ∗
1 = (c−w2β2)/w1. This is feasible provided that c > w2β2.

We now discuss the possible cases depending on the value of c:

– c < wℓβℓ: (a) with any (i, j) ∈ {(1,2),(2,1)} is feasible; (b)-(c) are unfeasible, hence V =
maxi∈{1,2}(c/wi)

2.

– c > wrβr: (a) is unfeasible; (b)-(c) are both feasible, hence the claimed value of V for this

case.

– wℓβℓ 6 c < wrβr: (a) is feasible with (i, j) such that c < wiβi, i.e., , with (i, j) = (r, ℓ),
leading to a value (θ ∗

j )
2 + (θ ∗

i )
2 = (c/wi)

2 = (c/wr)
2; (b) is feasible provided that c >

w1β1, i.e., that (r, ℓ) = (2,1), leading to a value (θ ∗
1 )

2 +(θ ∗
2 )

2 = β 2
1 + [(c−w1β1)/w2]

2 =
β 2
ℓ + [(c−wℓβℓ)/wr]

2; similarly, (c) is feasible provided that (r, ℓ) = (2,1), leading to a

value (θ ∗
2 )

2 +(θ ∗
1 )

2 = β 2
2 + [(c−w2β2)/w1]

2 = β 2
ℓ + [(c−wℓβℓ)/wr]

2. Overall, this leads

to V = max((c/wr)
2,β 2

ℓ +[(c−wℓβℓ)/wr]
2.

�

As in the case of the ℓ1 norm for sparsity and the nuclear norm for low-rank matrices, we compute

BΣ (‖ · ‖w) (see definition in Corollary 3.1) via intermediate quantities BL1,L2(w) that we now introduce

and control. We find an expression consistent with the ℓ1 case.
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LEMMA A.20 Consider weights w = (w1,w2) with wi > 0 and integers ki > 0. Denote for any integers

L1,L2 > 0

BL1,L2(w) := sup
αi>βi>0,β1+β2>0

∑2
i=1(kiwiαi−wi(ki+Li)βi)=0

∑2
i=1 Liβ

2
i

∑2
i=1 ki(α2

i +β 2
i )

. (A.87)

For m ∈ {1,2}, consider

gm(L1,L2,α1,α2,β1,β2) :=
L1β 2

1 +L2β 2
2 +[(∑2

i=1(kiwiαi − (ki +Li)wiβi)/wm]
2

∑2
i=1 ki(α2

i +β 2
i )

.

We have

sup
αi ,βi:06βi6αi;β1+β2>0

∑2
i=1(ki+Li)wiβi6∑2

i=1 kiwiαi

gm(L1,L2,α1,α2,β1,β2)6 BL1,L2(w). (A.88)

(A.89)

Proof. First we show that there exist α∗
i ∈ R+,β

∗
i ∈ R+ such that

gm(L1,L2,α
∗
1 ,α

∗
2 ,β

∗
1 ,β

∗
2 ) = sup

αi ,βi:06βi6αi;β1+β2>0

∑2
i=1(ki+Li)wiβi6∑2

i=1 kiwiαi

gm(L1,L2,α1,α2,β1,β2) (A.90)

with 06 β ∗
i 6α∗

i ;β ∗
1 +β ∗

2 > 0, and ∑2
i=1(ki+Li)wiβ

∗
i 6∑2

i=1 kiwiα
∗
i . Indeed, given any αi,βi satisfying

these constraints, setting β ′
j = β j/(β1 + β2), α ′

j = α j/(βi + β j), we have gm(L1,L2,α
′
1,α

′
2,β

′
1,β

′
2) =

gm(L1,L2,α1,α2,β1,β2) hence the supremum is unchanged if we impose β ′
1 +β ′

2 = 1 instead of β1 +
β2 > 0. Given any such pair β ′

1,β
′
2, Lemma A.17 yields the optimum over αi satisfying the constraints,

and as the resulting expression is continuous with respect to β ′
j, the existence of a maximizer follows

using a compactness argument.

We will soon prove that ∑i(ki +Li)wiβ
∗
i = ∑i kiwiα

∗
i . If this equality is verified, since 0 6 β ∗

i 6 α∗
i ,

we obtain the desired result

gm(L1,L2,α
∗
1 ,α

∗
2 ,β

∗
1 ,β

∗
2 ) =

∑2
i=1(Liβ

∗
i )

2

∑2
i=1 ki((α∗

i )
2 +(β ∗

i )
2)

6 sup
αi ,βi:06βi6αi ;β1+β2>0

∑2
i=1(ki+Li)wiβi=∑2

i=1 kiwiαi

∑2
i=1 Liβ

2
i

∑2
i=1 ki((αi)2 +(βi)2)

= BL1,L2(w). (A.91)

For the sake of contradiction, assume that ∑i(ki + Li)wiβ
∗
i < ∑i kiwiα

∗
i , then with the shorthand

C := gm(L1,L2,α
∗
1 ,α

∗
2 ,β

∗
1 ,β

∗
2 ), we have

[(∑
i

kiwiα
∗
i −∑

i

(ki +Li)wiβ
∗
i )/wm]

2 +∑
i

(Li −Cki)(β
∗
i )

2 =C∑
i

ki(α
∗
i )

2. (A.92)

Since gm(L1,L2,α1,α2,β1,β2)6C within the constraints of (A.88), (β ∗
1 ,β

∗
2 ) maximize

h(β1,β2) := [(∑
i

kiwiα
∗
i −∑

i

(ki +Li)wiβi)/wv]
2 +∑

i

(Li −Cki)(βi)
2
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among all β1,β2 such that 0 6 βi 6 α∗
i , β1 +β2 > 0 and ∑2

i=1(ki +Li)wiβi 6 ∑2
i=1 kiwiα

∗
i .

Consider j ∈ {1,2}.

If C > L j/k j, then h is decreasing with respect to β j on the considered range, hence β ∗
j = 0.

Otherwise C 6 L j/k j, and since h is a second degree polynomial in β j with positive leading coeffi-

cient, its maximum is at one of the extremities of the optimization interval, i.e., since we assumed

∑i(ki +Li)wiβ
∗
i < ∑i kiwiα

∗
i , at least one of the constraints β ∗

j = 0, β ∗
j = α∗

j is reached.

Since the optimum satisfies all constraints of (A.88), we have β ∗
1 +β ∗

2 > 0, hence in light of the

above observations there is at least one index j ∈ {1,2} such that C 6 L j/k j, and for which we have

β ∗
j = α∗

j > 0.

Since ∑2
i=1 kiwiβ

∗
i 6 ∑2

i=1(ki + Li)wiβ
∗
i < ∑2

i=1 kiwiα
∗
i , both constraints β ∗

1 = α∗
1 ,β

∗
2 = α∗

2 cannot

be reached at the same time hence there is (i, j) ∈ {(1,2),(2,1)} such that β ∗
i = 0, β ∗

j = α∗
j and

C = gm(L1,L2,α
∗
1 ,α

∗
2 ,β

∗
1 ,β

∗
2 ) =

L j(β
∗
j )

2 +[(kiwiα
∗
i + k jw jα

∗
j − (k j +L j)w jβ

∗
j )/wm]

2

ki(α∗
i )

2 + k j(α∗
j )

2 + k j(β ∗
j )

2
(A.93)

=
L j(α

∗
j )

2 +[(kiwiα
∗
i −L jw jα

∗
j )/wm]

2

ki(α∗
i )

2 + 2k j(α∗
j )

2
. (A.94)

This can be rewritten (L j − 2Ck j)(α
∗
j )

2 + [(kiwiα
∗
i − L jw jα

∗
j )/wm]

2 = Cki(α
∗
i )

2. Observe that any

α1,α2,β1,β2 such that βi = 0, β j = α j > 0, αi = α∗
i , and L jw jα j 6 kiwiα

∗
i satisfy the constraints

of (A.88), hence gm(L1,L2,α1,α2,β1,β2)6C, or equivalently

(L j − 2Ck j)(α j)
2 +[(kiwiα

∗
i −L jw jα j)/wm]

2 6Cki(α
∗
i )

2 (A.95)

Thus, α∗
j maximizes the left hand side of (A.95) under the constraint 0 6 L jw jα j 6 kiwiα

∗
i . If L−

2Ck j 6 0, then the left hand side of (A.95) is decreasing with respect to α j in the considered range, hence

α∗
j = 0, which is not possible since 0 < β1 +β2 = β ∗

j = α∗
j . Therefore we must have L j − 2Ck j > 0,

hence the left hand side of (A.95) is a second degree polynomial in α j with positive leading coefficient.

Its maximum is achieved at one extremity of the interval constraint : the case α∗
j = 0 was already

ruled out as impossible, hence L jw jα
∗
j = kiwiα

∗
i . This implies (ki +Li)wiβ

∗
i +(k j +L j)w jβ

∗
j = (k j +

L j)w jα
∗
j = k jw jα

∗
j + kiwiα

∗
i , which yields the desired contradiction to the assumption that ∑i(ki +

Li)wiβ
∗
i < ∑i kiwiα

∗
i .

�

LEMMA A.21 Consider weights w = (w1,w2) and integers ki,ni such that 1 6 2ki < ni and Σ = Σk1,k2
⊂

Rn1 ×Rn2, i ∈ {1,2}. We have

BΣ (‖ · ‖w) = max
06Li6n−2ki

BL1,L2(w) (A.96)

where BL1,L2(w) is defined in (A.87).

Proof. We use the same proof method as in Lemma A.6. With the notations T = T (z),T2 = T2(z) from

the beginning of Appendix A.6, denote T ′ = T2 \T so that ‖zT c
2
‖w+‖zT ′‖w = ‖zT c‖w. By Lemma A.16,

we have

BΣ (‖ · ‖w) = sup
z:z 6=0,‖zTc

2
‖w+‖zT ′‖w6‖zT ‖w

‖zT c
2
‖2

2

‖zT2
‖2

2

. (A.97)



REFERENCES 53 of 67

We now show that this expression can be simplified by maximizing over vectors z with a particular

shape. Consider z a vector satisfying the constraint in (A.97). Replacing each entry zi of z with its

magnitude |zi| leaves the constraint (as well as the maximized quantity) unchanged, hence without loss

of generality we can assume that z has nonnegative entries zi > 0. Similarly, we can assume without

loss of generality that for each i ∈ {1,2}, the index set Si = [1,ki] indexes ki largest entries of Pi(z) and

S′i = [1,2ki] indexes the 2ki largest entries.

Given some j ∈ {1,2}, consider two (equal or distinct) indices in S j and the vector z̃ obtained by

keeping unchanged all entries of z, except those indexed by these indices which are replaced by their

average. This has the following effect:

1. Each Si (resp. S′i), i ∈ {1,2}, is a set of the ki (resp. 2ki) largest coordinates of Pi(z̃), hence

T (z̃) = T = (S1,S2), T2(z̃) = T2 = (S′1,S
′
2), T ′(z̃) = T ′ = T2\T , z̃T c

2
= zT c

2
, z̃T ′ = zT ′ , and the

support of Pi(z̃), i ∈ {1,2} is the same as that of Pi(z).

2. Denoting a,b > 0 the values of the two considered entries, since (a+ b)/2+(a+ b)/2= a+ b,

we have ‖[Pj(z̃)]S j
‖1 = ‖[Pj(z)]S j

‖1, and we obtain that ‖z̃T‖w = ‖zT‖w, hence z̃ still satisfies the

optimization constraint;

3. As ‖z̃T c
2
‖2 = ‖zT c

2
‖2 and ‖z̃T2

‖2
2 −‖zT2

‖2
2 = 2[(a+ b)/2]2 − a2 − b2 = −(a− b)2/2 6 0, hence

‖z̃T c
2
‖2

2/‖z̃T2
‖2

2 > ‖z̃T c
2
‖2

2/‖z̃T2
‖2

2 where the inequality is strict as soon as a 6= b.

All the above imply that, without loss of generality, we can restrict the optimization to vectors z such

that, for i∈ {1,2}, all entries of zSi
are equal. We denote αi > 0 their common value. A similar reasoning

with S′j\S j instead of S j shows that we can also assume without loss of generality that all entries of zS′i\Si
,

i ∈ {1,2}, are equal. We denote βi > 0 their common value.

The value of the smallest component of [Pi(z)]Si
is αi, while the smallest component of [Pi(z)]S′i is

min(αi,βi). Denoting xi = Pi(z)(S′i)c , we have xi ∈ R
ni−2ki
+ and the largest component of [Pi(z)](S′i)c is

‖xi‖∞. Hence, Si and S′i are respectively a set of the ki and 2ki largest components of Pi(z) if, and only

if, ‖xi‖∞ 6 βi 6 αi.

Finally, we observe that ‖zT‖w−‖zT ′‖w−‖zT c
2
‖w =w1k1α1+w2k2α2−w1k1β1−w2k2β2−w1‖x1‖1−

w2‖x2‖1, ‖zT c
2
‖2

2 = ‖x1‖2
2 + ‖x2‖2

2 and ‖zT2
‖2

2 = k1α2
1 + k2α2

2 + k1β 2
1 + k2β 2

2 . This establishes

BΣ (‖ · ‖w) = sup
βi:βi>0

β1+β2>0

sup
αi:αi>βi

sup
‖xi‖∞6βi

∑2
i=1 wi‖xi‖16∑2

i=1 kiwi(αi−βi)

∑2
i=1 ‖xi‖2

2

∑2
i=1 ki(α2

i +β 2
i )

, (A.98)

where the restriction β1 + β2 > 0 simply follows from the fact that when β1 + β2 = 0 we have x1 =
x2 = 0 which leads to a sub-optimal objective value. To show that the supremum in (A.98) is achieved,

observe that both the constraints on y := (α1,α2,β1,β2,x1,x2) and the quantity f (y) that is maximized

are invariant by multiplication by a positive constant factor. Hence, the supremum is unchanged if we

add a scaling constraint. e.g. by fixing ‖y‖∞. This leads to the supremum of a continuous function over

a compact set (the unit ℓ∞ ball), hence there exists α∗
i ,β

∗
i ,x

∗
i reaching the supremum in (A.98).

Thanks to Lemma A.5, given the constraints (depending on αi and βi), the maximization w.r.t xi is

reached with vectors with the shape

(βi, . . . ,βi
︸ ︷︷ ︸

Li

,θi, 0, . . . ,0
︸ ︷︷ ︸

ni−2ki−(Li+1)>0

)
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with 0 6 θi 6 βi, 0 6 Li 6 ni − 2ki − 1, including potentially Li = 0 (case of vector xi with a single

nonzero coordinate θi). We deduce

BΣ (‖ · ‖w) = sup
βi:βi>0

β1+β2>0

sup
αi:αi>βi

sup
Li ,θi:06Li6n−2ki−1,06θi6βi

∑2
i=1 wiθi6∑2

i=1(kiwiαi−wi(ki+Li)βi)

∑2
i=1 Liβ

2
i +θ 2

i

∑2
i=1 ki(α2

i +β 2
i )

. (A.99)

Hence, denoting

f (L1,L2,α1,α2,β1,β2) := sup
θi:06θi6βi

∑2
i=1 wiθi6∑2

i=1(kiwiαi−wi(ki+Li)βi)

∑2
i=1 Liβ

2
i +θ 2

i

∑2
i=1 ki(α2

i +β 2
i )

, (A.100)

for parameters αi,βi,Li such that c := ∑2
i=1(kiwiαi −wi(ki +Li)βi)> 0, we have

BΣ (‖ · ‖w) = max
06Li6ni−2ki−1

sup
β1 ,β2>0

β1+β2>0

sup
αi:αi>βi

∑2
i=1 kiwiαi>∑2

i=1(ki+Li)wiβi

f (L1,L2,α1,α2,β1,β2)

︸ ︷︷ ︸

f (L1,L2)

.

(A.101)

To continue, we bound f (L1,L2) via characterizations of f (L1,L2,α1,α2,β1,β2) in different parameter

ranges. The supremum in (A.100) is covered by Lemma A.19 hence we need to primarily distinguish

cases depending on relative order of c=∑2
i=1(kiwiαi−wi(ki+Li)βi)> 0, w1β1+w2β2, w1β1, and w2β2.

This suggests writing f (L1,L2) = maxu∈{0,1} fu(L1,L2) where

f0(L1,L2) := sup
βi ,αi:06βi6αi ,β1+β2>0

∑2
i=1 kiwiαi>∑2

i=1(ki+Li+1)wiβi

f (L1,L2,α1,α2,β1,β2) (A.102)

f1(L1,L2) := sup
βi ,αi:06βi6αi ,β1+β2>0

∑2
i=1(ki+Li)wiβi6∑2

i=1 kiwiαi<∑2
i=1(ki+Li+1)wiβi

f (L1,L2,α1,α2,β1,β2). (A.103)

To express f0(L1,L2) and bound f1(L1,L2), we use the functions gm, m ∈ {1,2}, from Lemma A.20.

Expressing and bounding f0: if ∑2
i=1 kiwiαi > ∑2

i=1(ki + Li + 1)wiβi then c > w1β1 +w2β2 hence

Lemma A.19, case 4 yields

f (L1,L2,α1,α2,β1,β2) =
∑2

i=1(Li + 1)β 2
i

∑2
i=1 ki(α2

i +β 2
i )

(A.104)

f0(L1,L2) = sup
06βi6αi ,β1+β2>0

∑2
i=1 kiwiαi>∑2

i=1(ki+Li+1)wiβi

∑2
i=1(Li + 1)β 2

i

∑2
i=1 ki(α2

i +β 2
i )

(A.105)

Lemma A.17
= sup

06βi6αi ,β1+β2>0

∑2
i=1 kiwiαi=∑2

i=1(ki+Li+1)wiβi

∑2
i=1(Li + 1)β 2

i

∑2
i=1 ki(α2

i +β 2
i )

= BL1+1,L2+1(w).

(A.106)
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As a result

f0(L1,L2)6 max
06Li6ni−2ki−1

BL1+1,L2+1(w) 6 max
06L′i6ni−2ki

BL′1,L
′
2(w) (A.107)

Bounding f1: we denote (ℓ,r) ∈ {(1,2),(2,1)} a pair such that wℓβℓ = mini wiβi 6 maxi wiβi = wrβr.

When ∑2
i=1(ki +Li)wiβi 6 ∑2

i=1 kiwiαi < ∑2
i=1(ki +Li + 1)wiβi we can distinguish three cases.

1. if (kℓ+Lℓ)wℓβℓ+(kr+Lr+1)wrβr 6∑2
i=1 kiwiαi <∑2

i=1(ki+Li+1)wiβi then max(w1β1,w2β2)=
wrβr 6 c < w1β1 +w2β2 hence Lemma A.19, case 3 yields

f (L1,L2,α1,α2,β1,β2) = max
(u,v)∈{(1,2),(2,1)}

(Lu + 1)β 2
u +Lvβ 2

v +[(c−wuβu)/wv]
2

∑2
i=1 ki(α2

i +β 2
i )

︸ ︷︷ ︸

=gv(L
′
1,L

′
2,α1,α2,β1,β2), L′u=Lu+1,L′v=Lv

. (A.108)

2. if (kℓ + Lℓ + 1)wℓβℓ + (kr + Lr)wrβr 6 ∑2
i=1 kiwiαi < (kℓ + Lℓ)wℓβℓ + (kr + Lr + 1)wrβr then

min(w1β1,w2β2) = wℓβℓ 6 c < wrβr = max(w1β1,w2β2) hence Lemma A.19, case 2 yields

f (L1,L2,α1,α2,β1,β2) = max









L1β 2
1 +L2β 2

2 +(c/wr)
2

∑2
i=1 ki(α2

i +β 2
i )

︸ ︷︷ ︸

gr(L1,L2,α1,α2,β1,β2)

,
(Lℓ+ 1)β 2

ℓ +Lrβ
2
r +[(c−wℓβℓ)/wr]

2

∑2
i=1 ki(α2

i +β 2
i )

︸ ︷︷ ︸

gr(L′1,L
′
2,α1,α2,β1,β2), L′ℓ=Lℓ+1,L′r=Lr









.

(A.109)

3. otherwise, ∑2
i=1(ki+Li)wiβi 6∑2

i=1 kiwiαi < (kℓ+Lℓ+1)wℓβℓ+(kr+Lr)wrβr, hence c<min(w1β1,w2β2)
and by Lemma A.19, case 1

f (L1,L2,α1,α2,β1,β2) = max









L1β 2
1 +L2β 2

2 +(c/w1)
2

∑2
i=1 ki(α2

i +β 2
i )

︸ ︷︷ ︸

g1(L1,L2,α1,α2,β1,β2)

,
L1β 2

1 +L2β 2
2 +(c/w2)

2

∑2
i=1 ki(α2

i +β 2
i )

︸ ︷︷ ︸

g2(L1,L2,α1,α2,β1,β2)









. (A.110)

Thus, in the range of αi,βi involved in the definition of f1(L1,L2) as a supremum, there are integers

0 6 L′
i 6 ni − 2ki and v ∈ {1,2} such that f (L1,L2,α1,α2,β1,β2) = gv(L

′
1,L

′
2,α1,α2,β1,β2). We will

shortly prove that given the relations between L′
i and the considered range of αi,βi we have

2

∑
i=1

(ki +L′
i)wiβi 6

2

∑
i=1

kiwiαi. (A.111)

hence using Lemma A.20 we obtain gv(L
′
1,L

′
2,α1,α2,β1,β2)6 BL′1,L

′
2(w).

This implies

f1(L1,L2)6 max
06L′i6ni−2ki

BL′1,L
′
2(w)
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and, combined with (A.101)-(A.107), yields the upper bound

BΣ (‖ · ‖w) = max
06Li6ni−2ki

max( f0(L1,L2), f1(L1,L2))6 max
06L′i6ni−2ki

BL′1,L
′
2(w). (A.112)

Proof of (A.111). We treat separately the three cases respectively associated to (A.108), (A.109), (A.110).

1. When ∑2
i=1(ki +Li)wiβi 6 ∑2

i=1 kiwiαi < (kℓ+Lℓ+ 1)wℓβℓ+(kr +Lr)wrβr, by (A.110) there is

v ∈ {1,2} such that f (L1,L2,α1,α2,β1,β2) = gv(L
′
1,L

′
2,α1,α2,β1,β2) with (L′

1,L
′
2) = (L1,L2).

We observe that ∑2
i=1(ki +L′

i)wiβi = ∑2
i=1(ki +Li)wiβi 6 ∑2

i=1 kiwiαi.

2. When (kℓ+Lℓ)wℓβℓ+(kr +Lr + 1)wrβr 6 ∑2
i=1 kiwiαi < ∑2

i=1(ki +Li + 1)wiβi, by (A.108), we

have f (L1,L2,α1,α2,β1,β2)= gv(L
′
1,L

′
2,α1,α2,β1,β2) where (L′

1,L
′
2,v)∈{(L1+1,L2,2),(L1,L2+

1,1)}. If (L′
ℓ,L

′
r) = (Lℓ,Lr + 1) then ∑2

i=1(ki + L′
i)wiβi = (kℓ + Lℓ)wℓβℓ + (kr + Lr + 1)wrβr.

Otherwise we have (L′
ℓ,L

′
r) = (Lℓ + 1,Lr), hence ∑2

i=1(ki +L′
i)wiβi = (kℓ+Lℓ+ 1)wℓβℓ+(kr +

Lr)wrβr 6 (kℓ+Lℓ)wℓβℓ+(kr+Lr +1)wrβr since wℓβℓ 6 wrβr by definition of r, ℓ. In both cases

we get ∑2
i=1(ki +L′

i)wiβi 6 ∑2
i=1 kiwiαi.

3. When (kℓ+Lℓ+1)wℓβℓ+(kr+Lr)wrβr 6∑2
i=1 kiwiαi < (kℓ+Lℓ)wℓβℓ+(kr+Lr+1)wrβr, (A.109)

yields f (L1,L2,α1,α2,β1,β2) = gr(L
′
1,L

′
2,α1,α2,β1,β2) with (L′

ℓ,L
′
r) ∈ {(Lℓ,Lr),(Lℓ + 1,Lr)},

hence we have ∑2
i=1(ki +L′

i)wiβi 6 (kℓ+Lℓ+ 1)wℓβℓ+(kr +Lr)wrβr 6 ∑2
i=1 kiwiαi.

As these three cases cover all possibilities, we deduce bound (A.111) as claimed.

To conclude, we obtain a lower bound on BΣ (‖·‖w). Consider any integers 06 Li 6 ni−2ki and any

scalars αi,βi such that 0 6 βi 6 αi, β1 +β2 > 0 and ∑2
i=1(ki +Li)wiβi = ∑2

i=1 kiwiαi, and let z = (z1,z2)
where

zi = (αi, . . . ,αi
︸ ︷︷ ︸

ki

,βi, . . . ,βi
︸ ︷︷ ︸

ki+Li

, 0, . . . ,0
︸ ︷︷ ︸

ni−(2ki+Li)

).

We have ‖zT‖w = k1w1α1+k2w2α2 = (k1 +L1)w1β1+(k2+L2)w2β2 = ‖zT c‖w hence, by Lemma A.16

and the definition of BΣ (‖ · ‖w),

BΣ (‖ · ‖w)>
‖zT c

2
‖2

2

‖zT2
‖2

2

=
∑2

i=1 Liβ
2
i

∑2
i=1 ki(α2

i +β 2
i )

. (A.113)

Taking the supremum over αi,βi under the considered constraints yields BΣ (‖ · ‖w) > BL1,L2(w). We

deduce

BΣ (‖ · ‖w)> max
06Li6ni−2ki

BL1,L2(w).

�

We give a characterization/lower bound (depending on w) of the intermediate BL1,L2(w).

LEMMA A.22 Consider w = (w1,w2), 0 6 Li 6 ni − 2k, and BL1,L2(w) defined as in Lemma A.20. We

have

max
(i, j)∈{(1,2),(2,1)}

Li/ki
νi

1−νi
(Li/ki)2 + 2

6 BL1,L2(w)6 max
(i, j)∈{(1,2),(2,1)}

Li/ki

νi(Li/ki + 1)2 + 1
(A.114)

with νi =
1

1+k j/(kiµ
2
i )

and µi =
wi

w j
for (i, j) ∈ {(1,2),(2,1)}. The rhs is an equality if νi >

ki

ki+Li
, ∀i ∈

{1,2}.
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Proof. For L1,L2 such that L1 +L2 > 0, we rewrite BL1,L2 defined in (A.87) as

BL1,L2(w) = sup
λ>0

sup
βi:β1,β2>0

∑2
i=1 wi(ki+Li)βi=λ

sup
αi :αi>βi

∑2
i=1 kiwiαi=λ

L1β 2
1 +L2β 2

2

k1α2
1 + k2α2

2 + k1β 2
1 + k2β 2

2

.
(A.115)

For fixed λ > 0 and β1,β2 such that ∑2
i=1 wi(ki+Li)βi = λ , we have λ >∑2

i=1 wikiβi hence, by Lemma A.17,

BL1,L2(w)6 sup
λ>0

sup
β1>0,β2>0

w1(k1+L1)β1+w2(k2+L2)β2=λ

L1β 2
1 +L2β 2

2

λ 2

k1w2
1+k2w2

2

+ k1β 2
1 + k2β 2

2

.
(A.116)

with equality if the maximizers λ̂ , β̂i of the right side satisfy the constraints λ̂ > (k1w2
1+k1w2

2)max(β̂1/w1, β̂2/w2).

Consider (i, j) ∈ {(1,2),(2,1)}. Since νi := 1

1+k jw
2
j/(kiw

2
i )
=

kiw
2
i

kiw
2
i +k jw

2
j

, we obtain by Lemma A.18

BL1,L2(w) 6 sup
λ>0

max
i∈{1,2}

Liλ
2

λ 2

k1w2
1+k2w2

2

w2
i (ki +Li)2 + kiλ 2

= max
(i, j)∈{(1,2),(2,1)}

Li/ki

νi(Li/ki + 1)2 + 1
. (A.117)

This establishes the upper bound in (A.114). Denoting (i∗, j∗) maximizing the right-hand-side expres-

sion above, and using the optimal values from Lemma A.18, β̂i∗ =
λ̂

wi∗ (ki∗+Li∗ )
(with β̂ j∗ = 0 and an

arbitrary λ̂ > 0), we have max(β̂1/w1, β̂2/w2) = β̂i∗/wi∗ =
λ̂

w2
i∗ (ki∗+Li∗ )

hence equality holds in (A.117)

if the following inequality is satisfied

(k1w2
1 + k1w2

2)
1

w2
i∗(ki∗ +Li∗)

6 1,

or equivalently if
ki∗

νi∗ (ki∗+Li∗ )
6 1. This is guaranteed as soon as νℓ >

kℓ
kℓ+Lℓ

for every ℓ ∈ {1,2}. This

establishes the equality case in the rhs of (A.114).

We now treat the lower bound in (A.114). For fixed βi > 0 and λ > 0 such that (k1 + L1)w1β1 +
(k2 +L2)w2β2 = λ , we still have λ > k1w1β1 + k2w2β2. By Lemma A.17, letting

V = min
αi :αi>βi

∑2
i=1

kiwiαi=λ

k1α2
1 + k2α2

2 ,
(A.118)

we either have

• V = min
(

k1β 2
1 + k2(

λ−k1w1β1
k2w2

)2,k2β 2
2 + k1(

λ−k2w2β2
k1w1

)2
)

;

• or

V = λ 2/(k1w2
1 + k2w2

2) = min
αi :αi>0

∑2
i=1

kiαi=λ

k1α2
1 + k2α2

2

6 min

(

k1β 2
1 + k2(

λ − k1w1β1

k2w2

)2,k2β 2
2 + k1(

λ − k2w2β2

k1w1

)2

)

(A.119)

where the last inequality was obtained by evaluating k1α2
1 + k2α2

2 at α1 = β1 (resp. at α2 = β2)

with α2 (resp. α1) tuned so that k1w1α1 + k2w2α2 = λ .
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We deduce that V 6 min
(

k1β 2
1 + k2(

λ−k1w1β1
k2w2

)2,k2β 2
2 + k1(

λ−k2w2β2
k1w1

)2
)

and it follows using (A.115)

that

BL1,L2(w)> sup
λ>0

sup
βi:β1 ,β2>0

∑2
i=1 wi(ki+Li)βi=λ

L1β 2
1 +L2β 2

2

min
(

k1β 2
1 + k2(

λ−k1w1β1
k2w2

)2,k2β 2
2 + k1(

λ−k2w2β2
k1w1

)2
)

+ k1β 2
1 + k2β 2

2

= sup
βi:β1,β2>0

∑2
i=1 wi(ki+Li)βi=1

L1β 2
1 +L2β 2

2

min
(

k1β 2
1 + k2(

1−k1w1β1
k2w2

)2,k2β 2
2 + k1(

1−k2w2β2
k1w1

)2
)

+ k1β 2
1 + k2β 2

2

= sup
βi:β1,β2>0

∑2
i=1 wi(ki+Li)βi=1

max

(

L1β 2
1 +L2β 2

2

2k1β 2
1 + k2β 2

2 + k2(
1−k1w1β1

k2w2
)2
,

L1β 2
1 +L2β 2

2

k1β 2
1 + 2k2β 2

2 + k1(
1−k2w2β2

k1w1
)2

)

.

(A.120)

For (i, j) ∈ {(1,2),(2,1)}, using the values β̃i =
1

wi(ki+Li)
, β̃ j = 0, we have

BL1,L2(w)>
L1β̃ 2

i

2kiβ̃ 2
i + k j(

1−kiwiβ̃i

k jw j
)2
. (A.121)

Since 1− kiwiβ̃i = wi(ki +Li)β̃i − kiwiβ̃i = wiLiβ̃i, we have

Liβ̃
2
i

2kiβ̃ 2
i + k j(

1−kiwiβ̃i

k jw j
)2

=
Liβ̃

2
i

2kiβ̃ 2
i + k j(

wiLi
k jw j

)2β 2
i

=
Li

2ki + k j(
wiLi
k jw j

)2
.

Since νi =
1

1+k jw
2
j/(kiw

2
i )

, we have (1−νi)/νi = 1/νi − 1 = k jw
2
j/kiw

2
i . We deduce

BL1,L2(w) >
Li

2ki +
(wiLi)2

k jw
2
j

=
Li/ki

kiw
2
i

k jw
2
j

(Li/ki)2 + 2
=

Li/ki
νi

1−νi
(Li/ki)2 + 2

.
(A.122)

�

The following function study will be used to deal with the optimization of the BL1,L2(w).

LEMMA A.23 Consider a such that 0 < a 6 1. The function

g1 : u > 0 7→ g1(u;a) :=
u

a(u+ 1)2+ 1
(A.123)

is maximized at u∗1 =
√

1+ 1/a, increasing for u 6 u∗1, decreasing for u > u∗1 and

g1(u
∗
1;a) =

1

2
(
√

1+ 1/a− 1). (A.124)
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Proof. Since g′1(u;a) = −au2+a+1
(a(u+1)2+1)2 , the equality g′1(u

∗
1;a) = 0 implies a(u∗1)

2 = a+ 1 and u∗1 =
√

1+ 1/a. Given the sign of g′1(u;a), g1(·;a) is increasing for u 6 u∗1 and decreasing for u > u∗1. As

a = [(u∗1)
2 − 1]−1 we get

f1(a) := g1(u
∗
1,a) =

u∗1((u
∗
1)

2 − 1)

(u∗1 + 1)2 +(u∗1)
2 − 1

=
u∗1((u

∗
1)

2 − 1)

2(u∗1)
2 + 2u∗1

=
1

2
(u∗1 − 1) =

1

2
(
√

1+ 1/a− 1)

(A.125)

which is decreasing with respect to a. �

LEMMA A.24 Consider 0 6 a 6 1, g1(u;a) := u
a(u+1)2+1

and g2(u;a) := u
a

1−a u2+2
and define

hi(u,v;a) := max(gi(u;a),gi(v;1− a)), i ∈ {1,2}. (A.126)

1. For a = 1/2 we have h1(u,v;1/2)6
√

3−1
2

for every u,v > 0.

2. If a /∈ [ã,1− ã], where ã := 2
√

3− 3 ≈ 0.46 then h2(2,2,a)>
√

3−1
2

.

Consider integers such that ki > 2, 1 6 4ki 6 ni for i ∈ {1,2} and

H1(a) := max
06Li6ni−2ki

h1(L1/k1,L2/k2;a). (A.127)

3. There exists a∗ ∈ [ã,1− ã] such that H1(a
∗) = mina∈[ã,1−ã] H1(a).

4. Consider a ∈ [ã,1− ã] then

H1(a)=max

(

max
L1∈{⌊k1

√
1+1/a⌋;⌈k1

√
1+1/a⌉}

g1(L1/k1;a), max
L2∈{⌊k2

√
1+1/(1−a)⌋;⌈k2

√
1+1/(1−a)⌉}

g1(L2/k2;1− a)

)

.

where ⌊·⌋ and ⌈·⌉ denote the lower and upper integer part. Moreover, the L∗
i maximizing the

above expression are also maximizing (A.127) and are such that L∗
1/k1 > 1/a− 1 and L∗

2/k2 >

1/(1− a)− 1.

Proof.

Item 1. By Lemma A.23, with a= 1/2 and any u,v> 0 we have g1(u;a)6 g1(u
∗
1;a)= 1

2
(
√

1+ 1/a−
1) = (

√
3− 1)/2 and similarly g1(v;1− a) = (

√
3− 1)/2 hence h1(u,v;a) = (

√
3− 1)/2.

Item 2. We prove the inequality for a < ã. Since h2(2,2;1−a) = h2(2,2;a) by definition of h2, the

same inequality holds if a > 1− ã. For a < ã since a < 1/2 we have a/(1−a)< (1−a)/a hence using

the definition of g2 we have g2(2,a)> g2(2,1− a). By monotonicity of a 7→ (1− a)/(1+ a) we get

h2 (2,2;a) = max(g2(2,a),g2(2,1− a)) = g2(2,a) =
2

4 a
1−a

+ 2
=

1− a

1+ a
>

1− ã

1+ ã
= g2(2, ã).

Finally, we compute

g2(2, ã)=
1− (2

√
3− 3)

1+ 2
√

3− 3
=

4− 2
√

3

2
√

3− 2
=

(4− 2
√

3)(2
√

3+ 2)

(2
√

3)2 − 22
=

8
√

3− 12+ 8− 4
√

3

8
=

4
√

3− 4

8
=

√
3− 1

2
.
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Item 3. The function H1 is defined as the maximum of a finite number of continuous functions of

a. By continuity of the maximum, H1 is continuous and its minimum on the compact set [ã,1− ã] is

reached.

Item 4. Consider a ∈ [ã,1− ã]. By Lemma A.23 the function u 7→ g1(u;a) is maximized at a

u∗1 =
√

1+ 1/a. Similarly, v 7→ g1(v;1−a) is maximized at u∗2 =
√

1+ 1/(1− a). Since 1/36 ã6 1/2,

with ν1 = a, ν2 = 1− a we have νi > 1/3 hence u∗i =
√

1+ 1/νi 6 2. Moreover, since we assume

ni > 4ki, we have ni − 2ki > 2ki > ki

√

1+ 1/νi = kiu
∗
i . It follows that for i ∈ {1,2} we have

max
06Li6ni−2ki

g1(Li/ki;νi) = max
Li∈{⌊kiu

∗
i ⌋;⌈kiu

∗
i ⌉}

g1(Li/ki;νi).

As a result, the maximizers L∗
i of both sides are identical, and we have H1(a)=max(g1(L

∗
1/k1;a),g1(L

∗
2/k2;1−

a)) with

L∗
1 ∈ arg max

L1∈{⌊k1u∗1⌋;⌈k1u∗1⌉}
g1(L1/k1;a)

L∗
2 ∈ arg max

L2∈{⌊k2u∗2⌋;⌈k2u∗2⌉}
g1(L2/k2;1− a).

There remains to show that L∗
i /ki > 1/ν1 − 1. For this, we first observe that since ki > 2 we have

L∗
i /ki > ⌊kiu

∗
i ⌋/ki > (kiu

∗
i − 1)/ki = u∗i − 1/ki > u∗i − 1/2 =

√

1+ 1/νi− 1/2.

The derivative of x→
√

1+ x−1/2−(x−1)=
√

1+ x−x+1/2 at any x> 0 is 1/(2
√

1+ x)−16−1/2

hence this function is monotonically decreasing. Since a ∈ [ã,1− ã] and ν1 = a, ν2 = 1− a we have

νi > ã hence 1/νi 6 1/ã for i ∈ {1,2}, hence

√

1+ 1/νi− 1/2− (1/νi− 1)>
√

1+ 1/ã− 1/2− (1/ã− 1)≈ 0.12 > 0.

We deduce that L∗
i /ki > 1/νi − 1 as claimed.

�

We can conclude with the proof of Theorem 4.2.

Proof of Theorem 4.2. The proof starts from the fact (Corollary 3.1) that

argmax
R∈C′

δ nec
Σ (R) = arg min

R∈C′
BΣ (R) (A.128)

with C ′ = {R(·) = ‖ · ‖w : w = (w1,w2),w1 > 0,w2 > 0}. Using Lemma A.21, for each w we have

BΣ (‖ · ‖w) = max
06Li6n−2ki,i∈{1,2}

BL1,L2(w). (A.129)

With the notations of Lemma A.22 we have µ1 = w1/w2 and µ2 = w2/w1 hence µ1 = 1/µ2, and one

can check that ν1 +ν2 = 1 where ν1 = ν1(w) := (1+ k2w2
2/(k1w2

1))
−1. Hence, by Lemma A.22 (taking

u = L1/k1,v = L2/k2,a = ν1 and using (A.126)) and with the notation of Lemma A.24, for all integers

0 6 Li 6 ni − 2ki we have

h2(L1/k1,L2/k2;ν1)6 BL1,L2(w)6 h1(L1/k1,L2/k2;ν1) (A.130)

with equality in the right hand s if for each i ∈ {1,2} we have νi > Li/(ki +Li), i.e., Li/ki > 1/νi − 1.

Using (A.129) we get

max
06Li6n−2ki,i∈{1,2}

h2(L1/k1,L2/k2;ν1)6 BΣ (‖ · ‖w)6 max
06Li6n−2ki,i∈{1,2}

h1(L1/k1,L2/k2;ν1), (A.131)
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and if the maximizers L∗
i of the right-hand side of (A.131) satisfy L∗

i /ki > 1/νi − 1 for each i ∈ {1,2}
then in fact

BΣ (‖ · ‖w) = H1(ν1) := h1(L
∗
1/k1,L

∗
2/k2;ν1) (A.132)

where H1 is defined as the maximum of h1 over the Li/ki (Lemma A.24). In particular for νi = 1/2, this

is verified if L∗
i > ki. Next we proceed in three steps. We set ã := 2

√
3− 3 ≈ 0.46.

Step 1. We show that if w′,w′′ are such that ν1(w
′) /∈ [ã,1− ã] and ν1(w

′′) = 1/2 ∈ [ã,1− ã] then

BΣ (‖ · ‖w′)>

√
3− 1

2
> BΣ (‖ · ‖w′′).

A first consequence is to establish (4.6), using Corollary 3.1 to convert the bound on BΣ (‖ · ‖w), for

w ∈ {w∗,w0}, to a bound on δ nec
Σ (‖ · ‖w). Indeed, since ν1(w

′′) = k1(w
′′
1)

2/(k1(w
′′
1)

2 + k2(w
′′
2)

2), the

fact that ν1(w
′′) = 1/2 corresponds to w′′ ∝ (1/

√
k1,1/

√
k2) =: w0(k1,k2), hence B∗

Σ 6 BΣ (‖ · ‖w0
) 6

(
√

3− 1)/2.

A second consequence is that the optimization of w = (w1,w2) can be restricted to a range corre-

sponding to ν1 = ν1(w) ∈ [ã,1− ã].
Indeed, on the one hand, for ν1(w

′′) = 1/2, by Lemma A.24-Item 4 we have ,

H1(1/2) = max

(

max
L1∈{⌊k1

√
3⌋;⌈k1

√
3⌉}

g1(L1/k1;1/2), max
L2∈{⌊k2

√
3⌋;⌈k2

√
3⌉}

g1(L2/k2;1/2)

)

where g1 is defined in Lemma A.24.

Hence, L∗
i > ki so that (A.132) holds, and we deduce that BΣ (‖ · ‖w′′) = H1(1/2).

From Lemma A.24-Item 1, we have

H1(1/2)6

√
3− 1

2
,

and we obtain BΣ (‖ · ‖w)6 (
√

3− 1)/2 as claimed.

We can also establish the conclusion of the theorem (4.7) by considering supk′1,k
′
2>1,n′1>4k′1,n

′
2>4k′2

BΣ (‖·
‖w′′). Using the expression of H(1/2) we have that

sup
k′1,k

′
2>1,n′1>4k′1,n

′
2>4k′2

BΣ (‖ · ‖w′′) = sup
k′1>1,n′1>4k′1

max
L1∈{⌊k′

1

√
3⌋;⌈k′

1

√
3⌉}

g1(L1/k′1;1/2)

= sup
k>1

max
L∈{⌊k

√
3⌋;⌈k

√
3⌉}

g1(L/k;1/2)
(A.133)

Using Lemma A.23, as g1 is continuous and ⌊k
√

3⌋/k →k→∞

√
3 = u∗1 the maximizer of g1(·;1/2)

(because (k
√

3−1)/k6 ⌊k
√

3⌋/k6
√

3), we have supk max
L∈{⌊k

√
3⌋;⌈k

√
3⌉} g1(L/k;1/2)= g1(u

∗
1;1/2)=

(
√

3− 1)/2. Again using Corollary 3.1 to link δ nec
Σ and BΣ yields (4.7).

On the other hand, if ν1 /∈ [ã,1− ã] then by Lemma A.24-Item 2 we have h2(2,2;ν1)> (
√

3−1)/2.

Since ni > 4ki, the integers Li := 2ki, i ∈ {1,2} satisfy 0 < Li 6 ni − 2ki hence, by the left-hand side in

(A.131),

BΣ (‖ · ‖w′)> h2(L1/k1,L2/k2,ν1) = h2(2,2;ν1)>

√
3− 1

2
.

Step 2. We show that if w satisfies ν1 = ν1(w) ∈ [ã,1− ã] then BΣ (‖ · ‖w) = H1(ν1(w)).
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Since ki > 2 and ni > 4ki, by Lemma A.24-Item 4, we have the equality H1(ν1)= h1(L
∗
1/k1,L

∗
2/k2,ν1)

where L∗
1 ∈ {⌊k1

√

1+ 1/ν1⌋;⌈k1

√

1+ 1/ν1⌉}, L∗
2 ∈ {⌊k2

√

1+ 1/(1−ν1)⌋;⌈k2

√

1+ 1/(1−ν1)⌉} and

L∗
i /ki > 1/νi − 1. By (A.131)- (A.132) we deduce that the equality BΣ (‖ · ‖w) = H1(ν1(w)) holds.

Step 3. By Lemma A.24-Item 3, there is a∗ ∈ [ã,1− ã] such that H1(a
∗) = minã6a61−ã H1(a). In

light of Steps 1 and 2, the infimum over w of BΣ (‖·‖w) is thus achieved, and a weight vector w∗ satisfies

BΣ (‖ · ‖w∗) = min
w

BΣ (‖ · ‖w)) = H1(a
∗) (A.134)

if, and only if H1(ν1(w
∗)) = H1(a

∗). Since ν1(w) =
(

1+ k2
k1
(w2/w1)

2
)−1

, combining all the above

yields

w∗
2

w∗
1

=

√

k1

k2

(1/ν∗
1 − 1)

where ν∗
1 is an optimum of

BΣ (‖ · ‖w∗) = min
ν1∈[ã,1−ã],ν2=1−ν1

max
i∈{1,2}

max
xi∈{⌊ki

√
1+1/νi⌋;⌈ki

√
1+1/νi⌉}

g1(xi/ki;νi).

�

The following Lemma is needed for the proof of Theorem 4.3.

LEMMA A.25 Consider integers n > k > 1, a nonzero vector z ∈Rn, S a set of the k largest entries of z.

There exists 0 6 r 6 k− 1, β ∈ Rn, γ > 0 such that

‖β‖0 = k− r− 1 6 L := |supp(zSc)|6 n− 1 (A.135)

‖β‖∞ 6 min
l∈S

|z(l)| (A.136)

‖zSc‖1 = ‖β‖1 + γ (A.137)

‖zSc‖2
Σk

= ‖β‖2
2 +

1

r+ 1
γ2 (A.138)

Moreover if k− r− 1 > 1 then

γ < (r+ 1) min
l∈supp(β )

|β (l)| ; (A.139)

Proof. We use the fact that for any integer k the norm ‖·‖Σk
coincides with the so-called k-support norm

[4, Definition 2.1], that is invariant by permutation of the coordinates and has the following expression

for each y ∈ Rn sorted in descending order:

‖y‖2
Σk

=
k−r−1

∑
l=1

|y(l)|2 + 1

r+ 1

(
n

∑
l=k−r

|y(l)|
)2

(A.140)

where r is the unique integer in {0, . . . ,k− 1} such that

|y(k− r− 1)|> 1

r+ 1

n

∑
l=k−r

|y(l)|> |y(k− r)|, (A.141)

with the convention |y(0)|=+∞, see [4, Proposition 2.1].
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We apply the above characterization with y ∈ Rn the sorting of zSc by descending order of absolute

values. Notice that k − r − 1 6 L := |supp(zSc)| = |supp(yi)| 6 n− 1 (since z 6= 0, |S| > 1), which

establishes the rhs inequality in (A.135): otherwise we would have y(k− r− 1) = y(k− r) = 0 which

would contradict (A.141).

We define β ∈ Rn and γ > 0 as

β (l) := |y(l)|, 1 6 l 6 k− r− 1; β (l) := 0, k− r 6 l 6 n; (A.142)

γ :=
n

∑
l=k−r

|y(l))| (A.143)

Since β (l) is non-increasing with l, with β (k− r− 1) = |y(k− r− 1)| > 0 and β (k− r) = 0 we have

‖β‖0 = k − r − 1 hence (A.135) holds. Moreover, by definition of S, we also have minl∈S |z(l)| >
‖zSc‖∞ = ‖y‖∞ = ‖β‖∞ hence (A.136) holds. We also obviously have ‖zSc‖1 = ‖y‖1 = ‖β‖1 + γ , i.e.

the required identity (A.137).

Since y is a decreasing rearrangement of zSc and ‖ · ‖Σk
is invariant by permutation we have

‖zSc‖2
Σk

= ‖y‖2
Σk

(A.140)+(A.142)+(A.143)
= ‖β‖2

2 +
1

r+ 1
γ2.

This establishes (A.138). Finally when k− r−1 > 1 we have minl∈supp(β )β (l) = β (k− r−1) = |y(k−
r− 1)| hence (A.139) is a direct consequence of (A.141).

�

We now give the proof of Theorem 4.3.

Proof of Theorem 4.3. The assumptions of Lemma 3.5 hold, so we can rely on expression (3.30):

to lower bound δ suff
Σk1,k2

(‖ · ‖w) by 1/
√

3, we thus upper bound ‖z −PΣ (z)‖2
Σ by 2‖PΣ(z)‖2

2 for every

z ∈ TΣ (‖ · ‖w). First we characterize PΣ (z) for any z. With T = T (z) = (S1,S2) defined as in the

beginning of Appendix A.6 we have PΣ (z) = zT because for z = (z1,z2) ∈H we have

min
y∈Σ

‖z− y‖2
2 = min

y1∈Σk1
,y2∈Σk2

(
‖z1 − y1‖2

2 + ‖z2 − y2‖2
2

)
= ‖z1 − (z1)S1

‖2 + ‖z2 − (z2)S2
‖2

2 = ‖z− zT‖2
2.

We will use that, by Lemma A.16, we have

z ∈ TΣ (‖ · ‖w)⇔
2

∑
i=1

‖(zi)Sc
i
‖1/
√

ki 6

2

∑
i=1

‖(zi)Si
‖1/
√

ki. (A.144)

Now, using the fact that ‖(u1,u2)‖2
Σ = ‖u1‖2

Σk1
+ ‖u2‖2

Σk2
(from [38, Lemma 4.2]) we obtain

‖z−PΣ(z)‖2
Σ = ‖zT c‖2

Σ =
2

∑
i=1

‖(zi)Sc
i
‖2

Σki
(A.145)

With Lemma A.25, we obtain an explicit expression of the ratio ‖z−PΣ(z)‖2
Σ/‖PΣ(z)‖2

2. For i ∈
{1,2}, let Li = |supp((zi)Sc

i
)|. There exists 0 6 ri 6 ki − 1 and βi ∈ Rni , γi > 0 such that ‖βi‖∞ 6

minl∈Si
|zi(l)|, ‖βi‖0 = ki − ri − 1 6 Li and

‖(zi)Si
‖2

Σki
= ‖βi‖2

2 +
1

ri + 1
γ2

i (A.146)

‖(zi)Sc
i
‖1 = ‖βi‖1 + γi. (A.147)
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where, if ki − ri − 1 > 1, we further have

γi < (ri + 1) min
l∈supp(βi)

|βi(l)|. (A.148)

Consider i ∈ {1,2}. Depending on the value of ki − ri − 1, we have the following properties

• If ki − ri − 1 = 0 then ‖βi‖0 = 0 and βi = 0. Hence by (A.147) we have γ = ‖(zi)Sc
i
‖1 and

‖βi‖2
2 +

1

ri + 1
γ2

i =
‖(zi)Sc

i
‖2

1

ki

. (A.149)

• If ki − ri − 1 > 1 then, since ki‖βi‖2
∞ 6 ki minl∈S |zi(l)|2 6 ‖(zi)Si

‖2
2 and ‖βi‖0 = ki − ri − 1, we

have

‖βi‖2
2 +

1

ri + 1
γ2

i

(A.148)

6 ‖βi‖2
2 +(ri + 1) ·

(
minl∈supp(βi) |βi(l)|

)2

6 [(ki − ri − 1)+ (ri+ 1)] · ‖βi‖2
∞ = ki‖βi‖2

∞ 6 ‖(zi)Si
‖2

2. (A.150)

Thanks to these properties, we distinguish two easy cases to bound ‖z−PΣ(z)‖2
Σ/‖PΣ(z)‖2

2.

1. If ki − ri − 1 > 1 for each i ∈ {1,2} then

‖z−PΣ(z)‖2
Σ

(A.138)
=

2

∑
i=1

(

‖βi‖2
2 +

1

ri + 1
γ2

i

)
(A.150)

6

2

∑
i=1

‖(zi)Si
‖2

2 = ‖PΣ(z)‖2
2.

2. If ki − ri − 1 = 0 for each i ∈ {1,2} then

‖z−PΣ(z)‖2
Σ

(A.138)
=

2

∑
i=1

(

‖βi‖2
2 +

1

ri + 1
γ2

i

)
(A.149)
= ∑

i

‖zSc
i
‖2

1/ki

|a|2+|b|26(|a|+|b|)2

6 (∑
i

‖zSc
i
‖1/
√

ki)
2

(A.144)

6 (∑
i

‖zSi
‖1/
√

ki)
2

6(∑
i

‖zSi
‖2)

2

(|a|+|b|)262(|a|2+|b|2)
6 2∑

i

‖zSi
‖2

2 = 2‖PΣ(z)‖2
2.

In both cases we obtain ‖z−PΣ(z)‖2
Σ/‖PΣ(z)‖2

2 6 2.

When these easy cases do not hold we have e.g. 0 = k1 − r1 − 1 and k2 − r2 − 1 > 1 (the same

reasoning holds if k2 − r2 − 1 = 0 and k1 − r1 − 1 > 1), ‖zSc
1
‖2

Σk1
= ‖zSc

1
‖2

1/k1 and ‖zSc
2
‖2

Σk2
= ‖β2‖2

2 +

γ2/(r+ 1) .
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This gives

‖z−PΣ(z)‖2
Σ = ‖zSc

1
‖2

1/k1 + ‖β2‖2
2 + γ2/(r+ 1)

(A.144)

6 (‖zS1
‖1/
√

k1 + ‖zS2
‖1/
√

k1 −‖zSc
2
‖1/
√

k2)
2 + ‖β2‖2

2 + γ2/(r+ 1)

(A.147)
= (‖zS1

‖1/
√

k1 + ‖zS2
‖1/
√

k1 − (‖β2‖1 + γ)/
√

k2)
2 + ‖β2‖2

2 + γ2/(r+ 1).

We have 06 ‖zS1
‖1/

√
k1+‖zS2

‖1/
√

k1−(‖β2‖1+γ)/
√

k2)
2 6 ‖zS1

‖2+‖zS2
‖2−(‖β2‖1+γ)/

√
k2)

2

and

‖z−PΣ(z)‖2
Σ 6 (‖zS1

‖2 + ‖zS2
‖2 − (‖β2‖1 + γ)/

√

k2)
2 + ‖β2‖2

2 + γ2/(r+ 1). (A.151)

As this a quadratic function of γ > 0 with positive leading coefficient it is maximized, at either bound

of the range of γ , i.e γ = 0 or γ → (r2 + 1)minl∈supp(β2) |β2(l)|=: (r2 + 1)β̃2.

For the case, γ → (r2 + 1)β̃2,

‖z−PΣ(z)‖2
Σ 6 (‖zS1

‖2 + ‖zS2
‖2 − (‖β2‖1 +(r2 + 1)β̃2)/

√

k2)
2 + ‖β2‖2

2 +(r2 + 1)β̃ 2
2 . (A.152)

Let us call f (β2) the numerator. For fixed β̃2,‖β2‖∞, consider β ∗
2 the maximizer of f under the

constraint β̃2 6 |β2(l)| 6 ‖β2‖∞. We remark that given l ∈ supp(β2) , we have that f (β2) where we

fixed β2(l
′) = β ∗

2 (l
′) for l′ ∈ supp(β2) \ {l} is a quadratic function of |β2(l)| with positive leading

coefficient. Under the constraint β̃2 6 |β2(l)| 6 ‖β2‖∞, it is maximized at either of the two bounds on

|β2(l)|, we deduce that β ∗
2 (l) = β̃2 or β ∗

2 (l) = ‖β2‖∞.

This implies that there is (an integer – but we relax this constraint ) 0 6 s 6 ‖β2‖0 = k2− r2−1 such

that

‖z−PΣ(z)‖2
Σ 6 (‖zS1

‖2 + ‖zS2
‖2 − (s‖β2‖∞ +(k2 − r2 − 1− s)β̃2+(r2 + 1)β̃2)/

√

k2)
2

+ s‖β2‖2
∞ +(k2 − r2 − 1− s)β̃ 2

2 +(r2 + 1)β̃ 2
2 . (A.153)

Again the right side is a quadratic function of β̃2 under the constraint 0 < β̃2 6 ‖β‖∞, and bounded at

either β̃2 → 0 or β̃2 = ‖β2‖∞:

‖z−PΣ(z)‖2
Σ

6 max
(

(‖zS1
‖2 + ‖zS2

‖2 − s‖β2‖∞/
√

k2)
2 + s‖β2‖2

∞,(‖zS1
‖2 + ‖zS2

‖2 −
√

k2‖β2‖∞))
2 + k2‖β2‖2

∞

)

6 max
06s′6k2

(

(‖zS1
‖2 + ‖zS2

‖2 − s′‖β2‖∞/
√

k2)
2 + s′‖β2‖2

∞

)

. (A.154)

For each 0 6 s′ 6 k2 the denominator in the last line is a quadratic function of of ‖β2‖∞ with 0 <
‖β2‖∞ 6 minl∈S2

|z(l)| (from Lemma A.25) hence

‖z−PΣ(z)‖2
Σ

6 max
06s′6k2

max

(

(‖zS1
‖2 + ‖zS2

‖2)
2,(‖zS1

‖2 + ‖zS2
‖2 − s′ min

l∈S2

|z(l)|]/
√

k2)
2 + s′[min

l∈S2

|z(l)|]2
)

(A.155)

= max
06s′6k2

(

(‖zS1
‖2 + ‖zS2

‖2 − s′ min
l∈S2

|z(l)|]/
√

k2)
2 + s′[min

l∈S2

|z(l)|]2
)

. (A.156)
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Similarly, for γ = 0

‖z−PΣ(z)‖2
Σ 6 (‖zS1

‖2 + ‖zS2
‖2 −‖β2‖1/

√

k2)
2 + ‖β2‖2

2 (A.157)

which implies using the same argument used to obtain (A.156)

‖z−PΣ(z)‖2
Σ 6 max

06s′6k2

(‖zS1
‖2 + ‖zS2

‖2 − s′ min
l∈S

|z(l)|]/
√

k2)
2 + s′[min

l∈S
|z(l)|]2. (A.158)

Still using the same argument about quadratic functions the right side of the maximum is bounded

by either of the cases s′ = 0 or s′ = k2. For s′ = 0

‖z−PΣ(z)‖2
Σ 6 (‖zS1

‖2 + ‖zS2
‖2)

2 6 2(‖zS1
‖2

2 + ‖zS2
‖2

2) = 2‖PΣ(z)‖2
2.

For s′ = k2

‖z−PΣ(z)‖2
Σ

‖PΣ(z)‖2
2

6V :=
(‖zS1

‖2 + ‖zS2
‖2 −

√
k2 minl∈S |z(l)|])2 + k2[minl∈S |z(l)|]2

∑2
i=1 ‖zSi

‖2
2

.

Denote c = 1−
√

k2
[minl∈S |z(l)|]

‖zS2
‖2

∈ [0,1) and consider r > 0, θ ∈ [0,π/2] such that ‖zS1
‖2 = r cosθ ,

‖zS2
‖2 = r sinθ

V =
(r cosθ + cr sinθ )2 +(1− c)2r2 sin2 θ

r2 cos2 θ + r2 sin2 θ

=
cos2 θ + c2 sin2 θ +(1− c)2 sin2 θ + 2csinθ cosθ

cos2 θ + sin2 θ

= 1+(2c2− 2c)sin2 θ + 2csinθ cosθ .

This is a quadratic function of c with positive leading coefficient hence it is maximized at c = 0 or c = 1

. Hence

V 6 max(1,1+ 2sinθ cosθ )

= max(1,1+ sin(2θ ))

6 2.

�

Proof of Theorem 4.4.

We follow the same proof structure (cf Appendix A.6) as for Theorem 4.2, with analog definitions

of P1(z) = z1 and P2(z) = z2 for z = (z1,s2) ∈H. We also denote T = (S1,S2) = T (z) where S1 denotes

a support of the k largest coordinates in absolute values and S2 = {1, . . . ,r} the set indexing the first r

(largest) eigenvalues collected in vector eig(u) (this index set was denoted T in Appendix A.4.2). We

modify accordingly the notation T2 for the 2k (resp. 2r) largest coordinates (resp eigenvalues).

Remark that Lemma A.16 is still valid with ‖ · ‖w = w1‖P1(·)‖1 +w2‖P2(·)‖∗.
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This permits in turns to obtain the expression (with T ′ = T2 \T )

BΣ (‖ · ‖w) = sup
z:z 6=0,‖zTc

2
‖w+‖zT ′‖w6‖zT ‖w

‖zT c
2
‖2
H

‖zT2
‖2
H

(A.159)

from the proof of Lemma A.21. Now remark that this is exactly the same expression as in the spar-

sity in levels case using the vector of ordered eigenvalues for the part in Hp: ‖(u1,u2)‖2
H = ‖u1‖2

2 +
‖eig(u2)‖2

2 and ‖(u1,u2)‖w = w1‖u1‖1 +w2‖eig(u2)‖1. This in turns show that (using the same proof

as Lemma A.21)

BΣ (‖ · ‖w) = max
06L16n−2k,06L26p−2r

BL1,L2(w) (A.160)

where BL1,L2(w) is defined in (A.87). This is the first step of Theorem 4.2.

The rest of the proof then exactly matches the next steps of the proof of Theorem 4.2.

�
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