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We consider the problem of recovering elements of a low-dimensional model from under-determined linear measurements. To perform recovery, we consider the minimization of a convex regularizer subject to a data fit constraint. Given a model, we ask ourselves what is the "best" convex regularizer to perform its recovery. To answer this question, we define an optimal regularizer as a function that maximizes a compliance measure with respect to the model. We introduce and study several notions of compliance. We give analytical expressions for compliance measures based on the best-known recovery guarantees with the restricted isometry property. These expressions permit to show the optimality of the ℓ 1 -norm for sparse recovery and of the nuclear norm for low-rank matrix recovery for these compliance measures. We also investigate the construction of an optimal convex regularizer using the examples of sparsity in levels and of sparse plus low-rank models.

Introduction

In a finite-dimensional Hilbert space H (with associated inner product •, • , and norm • H ), we consider the observation model:

y = M x 0 (1) 
where y is an m-dimensional vector of measurements, M is an under-determined linear operator (from H = C n , or R n , to C m ), and x 0 ∈ H is the unknown vector we want to recover. The problem of recovering x 0 from y is typically ill-posed. It is thus necessary to use prior information on x 0 to recover it with a guarantee of success.

In this work, we suppose that x 0 belongs to a low-dimensional cone Σ (a positively homogeneous set, i.e., for every x ∈ Σ and λ ≥ 0, λx ∈ Σ) that models known properties of the unknown. Examples of such models include sparse as well as low-rank models and many of their generalizations. Note that in these examples the models belong to the slightly less general class of models that are (finite or infinite) unions of subspaces (homogeneous sets).

To recover x 0 , a classical method is to solve the constrained minimization problem

x * ∈ arg min Mx=y R(x) (2) 
where R is a function -the regularizer -that aims to enforce some structure on the solution x * .

Many works [START_REF] Donoho | For most large underdetermined systems of linear equations the minimal ℓ 1 -norm solution is also the sparsest solution[END_REF][START_REF] Candès | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF][START_REF] Recht | Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization[END_REF][START_REF] Candes | Matrix completion with noise[END_REF] give practical regularizers ensuring that x * = x 0 for several lowdimensional models (in particular sparse and low-rank models, see [START_REF] Foucart | A mathematical introduction to compressive sensing[END_REF] for a most complete review of these results). A practical regularizer is a function that permits the effective calculation of x * . Without computational constraint, the best possible regularizer would be R = ι Σ : the characteristic function of Σ defined by ι Σ (x) = 0 if x ∈ Σ, ι Σ (x) = +∞ otherwise (see Section 2 for a review of this fact). Unfortunately, this function is generally not convex (unless Σ itself is a convex set) and can lead to an intractable optimization problem in general, even though recent works show that using R = ι Σ and a dedicated minimization technique is a possible route for certain particular low-dimensional models that can be smoothly embedded in R n [START_REF] Chi | Nonconvex optimization meets low-rank matrix factorization: An overview[END_REF][START_REF] Traonmilin | The basins of attraction of the global minimizers of the non-convex sparse spike estimation problem[END_REF][START_REF] Traonmilin | The basins of attraction of the global minimizers of non-convex inverse problems with low-dimensional models in infinite dimension[END_REF].

In this work, we focus on continuous convex regularizers that guarantee the existence of a minimizer x * and the existence of practical optimization algorithms to perform minimization [START_REF] Amelunxen | Living on the edge: phase transitions in convex programs with random data[END_REF] such as the primal-dual method [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] (provided their proximity operators can be calculated). Note that convexity in itself is not sufficient to guarantee the practical feasibility of minimization (2) (R(x) could be N P -hard to calculate, e.g., the nuclear norm for tensors [START_REF] Friedland | Nuclear norm of higher-order tensors[END_REF], and/or the proximal operator of R could be N P -hard to compute).

Under conditions on the measurement operator M that typically involve the number of measurements and its structure (e.g., random for compressed sensing), the fact that x 0 ∈ Σ permits to give recovery guarantees when the convex regularizer R is well-chosen. For example, when Σ = Σ k is the set of k-sparse vectors in R n and R(•) = • 1 (ℓ 1 -norm), or when Σ = Σ r is the set of matrices of rank lower than r in R p×p and R(•) = • * (nuclear norm), x 0 can be recovered as long as the number of measurements is of the order of the dimension of the model (up to some log factors) : m ≥ O(k log(n/k)) for sparse recovery or m ≥ O(rp) for low rank recovery.

Our approach to provide these results is to exhibit a regularizer R for a given model set Σ and to give the best possible recovery guarantees for the pair (R, Σ). Recent works aim at giving guidelines to obtain guarantees as tight as possible for general sparse models and convex regularizers [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF][START_REF] Amelunxen | Living on the edge: phase transitions in convex programs with random data[END_REF][START_REF] Vershynin | Estimation in high dimensions: a geometric perspective[END_REF][START_REF] Traonmilin | Stable recovery of low-dimensional cones in hilbert spaces: One rip to rule them all[END_REF][START_REF] Amelunxen | Effective condition number bounds for convex regularization. Information Theory[END_REF][START_REF] März | Sampling rates for ℓ 1 -synthesis[END_REF]. With such frameworks, it becomes possible to compare the performance of different regularizers. This leads naturally to the following question which we address in this work: what is the "best" convex regularizer to recover a given lowdimensional model Σ?

To tackle this problem, it is necessary to define the notion of "best" based on recovery guarantees. We propose different possibilities and follow one route that permits us to give optimality results in the sparse and low-rank cases and show the difficulties that arise when considering more complex generalized sparsity models. This work can be viewed as a way to give meaning to the expression "convexification" of a low-dimensional model, that is often used and rarely defined.

Related works

Low-complexity models induced by convex regularization. Many regularizers encountered in signal processing and machine learning are known to induce a specific type of model. Without aiming for exhaustivity, the use of the ℓ 1 norm [START_REF] Chen | Atomic Decomposition by Basis Pursuit[END_REF] induces a sparse pattern in the solution, while group regularization with mixed ℓ 1ℓ 2 norms restricts this sparse pattern to satisfy a specific block structure [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]. More advanced model sets, such as low-rank matrices are linked to the use of the nuclear norm [START_REF] Fazel | A rank minimization heuristic with application to minimum order system approximation[END_REF]. For a wide class of regularizers, including decomposable norms [START_REF] Candès | Simple bounds for recovering low-complexity models[END_REF], decomposable M -estimator [START_REF] Negahban | A Unified Framework for High-Dimensional Analysis of M -Estimators with Decomposable Regularizers[END_REF], atomic norms [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF] and partly smooth functions [START_REF] Vaiter | Model selection with low complexity priors[END_REF][START_REF] Vaiter | Model Consistency of Partly Smooth Regularizers. Information Theory[END_REF], the connection between nonsmooth convexity and model space can be made explicit. Note that all these works take the following stance: given a convex regularizer R, what is the model set Σ induced by minimizing R(x)?

Convexification of combinatorial functions. Given a real function f , it is known that its biconjugate f * * is a convex and closed function, whatever the initial properties of f . For instance, if f is the constant function equal to 1 except in 0 -that is the counting function ℓ 0 in dimension 1 -restricted to [-1, 1], i.e.,

f (x) =      1 if x ∈ [-1, 1] \ {0}, 0 if x = 0, +∞ otherwise,
then its biconjugate is the absolute value | • | restricted to [-1, 1]. Unfortunately, this construction is harder to generalize on an unbounded domain or in higher dimension. For instance, the biconjugate of the ℓ 0 counting function not restricted to a bounded set is the constant 0. Of interest, we can mention convex closures of submodular functions (functions of {0, 1} p ) that can be calculated explicitly using the Lovász extension [START_REF] Bach | Learning with Submodular Functions: A Convex Optimization Perspective[END_REF] and convex closure of almost convex functions [START_REF] Jach | The Convex Envelope of (n-1)-Convex Functions[END_REF].

Convexification of objective function Many works intent to find a convex proxy to a non-convex objective function. In [START_REF] Bertsekas | Convexification procedures and decomposition methods for nonconvex optimization problems[END_REF], adding a Lagrangian term to the regularization of a constrained nonconvex minimization permits to build an equivalent minimization problem that is convex locally. Another possibility is to try to perform a regularization by infimal regularization [START_REF] Bougeard | Towards minimal assumptions for the infimal convolution regularization[END_REF] for lower semicontinuous objective functionals. In [START_REF] Pock | Global solutions of variational models with convex regularization[END_REF], in a function space setting, Pock et al. propose a high dimensional lifting of the Lagrangian formulation of [START_REF] Amelunxen | Living on the edge: phase transitions in convex programs with random data[END_REF] where the data-fit functional is non-convex. In the context of non-convex polynomial optimization, Lasserre's hierarchies [START_REF] Lasserre | The moment-sos hierarchy[END_REF] are used to recast the original problem in a hierarchy of convex semi-definite positive problems which provide global convergence results. The drawback of this method is the computational cost that makes it impractical for high-dimensional problems. Finally, convex closure of submodular functions also permits to cast sparsity inducing objective functions (where the regularizer is a submodular function of the support) into convex problems [START_REF] Bach | Learning with Submodular Functions: A Convex Optimization Perspective[END_REF]. Note that if one aims to find a non-convex, but continuous, regularization, several works of interest may be cited, such as the use of ℓ p minimization [START_REF] Foucart | Sparsest solutions of underdetermined linear systems via ℓ q -minimization for 0 < q <= 1[END_REF], SCAD [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF], or CEL0 [START_REF] Soubies | A continuous exact ℓ 0 penalty (cel0) for least squares regularized problem[END_REF]. Nevertheless, in this paper, we focus on convex functions.

Contributions

In this paper, we define notions of compliance measures between a low-dimensional model and a regularizer in finite dimension. The compliance of a function R for a model Σ is a function

R → A Σ (R) (3) 
that quantifies the recovery capabilities of Σ with R and minimization [START_REF] Amelunxen | Living on the edge: phase transitions in convex programs with random data[END_REF].

An optimal regularizer for a model Σ is defined as a regularizer that maximizes the compliance measure. In this article, we focus on the maximization of compliance measures on the set C of coercive continuous convex regularizers over H. Note that this idea was first mentioned in the preliminary work [START_REF] Traonmilin | Optimality of 1-norm regularization among weighted 1-norms for sparse recovery: a case study on how to find optimal regularizations[END_REF] where optimal regularizers for sparse recovery were considered among weigthed ℓ 1 -norms.

-We introduce compliance measures in Section 2 using tight recovery guarantees: a good regularizer is a regularizer that permits the recovery of Σ as often as possible. We discuss the elementary properties of these measures and show that optimal coercive continuous convex regularizers can be found in the smaller class of atomic norms with atoms included in the model set. While such compliance measures can be optimized in basic toy examples, they require to be approximated in order to deal with sparse and low-rank models. -We propose in Section 3 compliance measures exploiting best known uniform recovery guarantees based on the restricted isometry property (RIP). We give explicit formulations of such recovery guarantees and show that, indeed, the ℓ 1 -norm and the nuclear norm are optimal for sparse and low-rank recovery (respectively) among coercive continuous convex regularizers. -We study the case of two generalized sparsity models in Section 4: sparsity in levels and sparse plus low-rank models. We show how an optimal regularizer can be explicitly constructed in a small family of convex regularizers (ℓ 1 -norm weighted by levels and mixed weighted ℓ 1 -nuclear norm respectively). While giving optimal weighting schemes for mixed regularizations, these examples also show the difficulty of calculating optimal regularizers for new low-dimensional models and opens many questions for the study of optimal regularizers.

Notations

In H, we denote S(1) := {z ∈ H : z H = 1} the unit sphere with respect to • H . Given a linear operator M : H → C m , we denote M H its Hermitian adjoint.

For Σ ⊆ H an arbitrary set, we denote ι Σ its characteristic function defined by ι Σ (x) = 0 if x ∈ Σ, ι Σ (x) = +∞ otherwise. We denote E(Σ) := R + • conv(Σ), where conv(Σ) is the closure of the convex hull of Σ. We define R := R ∪ {+∞}. Given a function f : H → R, we denote by dom(f ) its domain, i.e., the set dom(f ) := {x ∈ H : f (x) < +∞}.

Optimal regularizer for a low dimensional model

In this section, starting from the characterization of exact recovery of a model Σ, we introduce the notion of compliance measure and associated optimal convex regularizer.

Characterization of exact recovery using descent cones

Before defining an optimal regularizer, we must characterize when Σ can be recovered by solving [START_REF] Amelunxen | Living on the edge: phase transitions in convex programs with random data[END_REF]. The fact that a given x 0 ∈ Σ is recovered by solving [START_REF] Amelunxen | Living on the edge: phase transitions in convex programs with random data[END_REF] with regularizer R (i.e., that the solution x * of (2) is unique and satisfies x * = x 0 when y := M x 0 ) is equivalent to the fact that R(x + z) > R(x) for every z ∈ ker(M ) \ {0} (see e.g., [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF]). To summarize this, we use the following definition of symmetrized descent cones.

Definition 1 ((Symmetrized) descent cones.) Consider a regularizer R : H → R. For any x ∈ dom(R), the descent cone of R at x is

T R (x) := {γz : γ ∈ R, z ∈ H, R(x + z) ≤ R(x)} . (4) 
For any set Σ ⊂ dom(R), we define T R (Σ) := x∈Σ T R (x).

Other definitions of descent cones (e.g., non-symmetric like in [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF]) could be used. The symmetrization facilitates technical derivations in the following and permits to characterize recovery as well. For ease of reading, in the following, symmetrized descent cones will be referred to as descent cones. Recovery guarantees with a regularizer R for a linear operator M generally come in two flavors (recall that x * is the result of minimization ( 2)):

-Non-uniform recovery: If x 0 ∈ Σ, then x * = x 0 is equivalent to T R (x 0 ) ∩ ker M = {0}.

-Uniform recovery: "For all x 0 ∈ Σ, x * = x 0 " is equivalent to

T R (Σ) ∩ ker M = {0}. (5) 
In the literature, recovery guarantees are obtained when the measurement operator M fulfills sufficient conditions that imply these characterizations. Distinguishing these two types of recovery guarantees especially makes sense in the context of compressed sensing when M is chosen at random. Typical results are then of the form:

-Non-uniform recovery: Given x 0 ∈ Σ, with high probability on the draw of M , x * = x 0 .

-Uniform recovery: With high probability on the draw of M , x * = x 0 for all x 0 ∈ Σ.

The main techniques to obtain recovery guarantees using a condition on the number of measurements differ largely between these two cases (see Section 3). In this work, we mostly focus on uniform recovery guarantees to stay in a fully deterministic setting. For such uniform recovery guarantees, we see that the only interactions that matter between the model set Σ, the regularizer R, and the measurement operator M are summarized by equation (5).

Compliance measures and optimal regularization

To define a notion of optimal regularizer, we simply propose to say that an optimal regularizer is a function that optimizes a (hopefully well-chosen) criterion. We call such a criterion, a compliance measure and specifically aim at defining it such that it should be maximized. The objective is to define a compliance measure that quantifies the recovery capabilities of a given regularizer R given a model set Σ.

Starting from the characterization of exact recovery, we can make the following remark. If the descent sets of a regularizer R 1 are included in the descent sets of another regularizer R 2 , then the recovery capability of R 1 are greater in the following way: success of recovery with R 2 implies success of recovery with R 1 . Any "reasonable" compliance measure quantifying recovery capabilities needs to fulfill the following axiom:

A compliance measure must be monotonously decreasing with respect to the inclusion of descent sets. We also see that the kernel of M heavily influences the recovery capability of R. If we had some knowledge that M ∈ M where M is a set of linear operators, we would want to define a compliance measure A Σ,M (R) that tells us how good is a regularizer in these situations and to maximize it. Such maximization might yield a function R * that depends on M (e.g., in [START_REF] Soubies | A continuous exact ℓ 0 penalty (cel0) for least squares regularized problem[END_REF], when looking for tight continuous relaxation of the ℓ 0 penalty a dependency on M appears). In the following, we propose a more universal notion of optimal convex regularizer that does not depend on a particular class of linear operators M: we propose compliance measures A Σ (R) that depend only on the set Σ and on the regularizer R, and consider their maximization on some set of convex functions C (that are coercive and continuous, see Section 2.4):

sup R∈C A Σ (R). ( 6 
)
Of course, the existence of a maximizer of A Σ (R) is in itself a general question of interest: we could ask ourselves what conditions on A Σ (R) and C are necessary and sufficient for the existence of a maximizer, which is out of the scope of this article. In the sparse recovery and low-rank matrix recovery examples studied in this article, the existence of a maximizer of the considered compliance measures will be verified.

To build a compliance measure that does not depend on M , we define the optimal regularizer as the regularizer which guarantees recovery of Σ in as many situations as possible, i.e., for "as many linear operators M as possible". Intuitively, a regularizer R is "good" if the set T R (Σ) "leaves a lot of space" for ker M to not intersect it (trivially), see Figure 1). Among non-convex regularizers, the optimal one is the characteristic function of the model set Σ.

Lemma 1 (Optimality of the characteristic function.) Consider an arbitrary non-empty set Σ ⊆ H and denote ι Σ its characteristic function. The corresponding descent cone is

T ιΣ (Σ) = {γz : γ ∈ R, z ∈ Σ -Σ} ⊇ Σ -Σ where Σ -Σ is the so-called secant set of Σ. For any regularizer R such that Σ ⊆ dom(R) we have T ιΣ (Σ) ⊆ T R (Σ). Finally, if Σ is positively homogeneous then T ιΣ (Σ) = Σ -Σ. Proof See Appendix A.2
This Lemma shows that ι Σ is at least as successful as any regularizer R for the exact recovery of Σ (without any consideration of compliance measure). Moreover, T ιΣ (Σ) is the smallest possible descent cone with respect to inclusion. Hence ι Σ can be considered as the ideal regularizer [START_REF] Bourrier | Fundamental performance limits for ideal decoders in high-dimensional linear inverse problems[END_REF] and indeed the optimal one with respect to any compliance measure defined as

A Σ (R) = f (T R (Σ))
where f is some function on subsets of H that is monotonic with respect to set inclusion. This is why the search for optimal regularizers only makes sense under some constraint on R.

A first compliance measure

As a first concrete example, we define here a theoretical compliance measure that reflects the idea that smaller descent cones are better. However, this compliance measure does not lead to analytical expressions for the general study of sparse recovery. Our core results in the next sections rely on compliance measures based on best known uniform recovery guarantees using the restricted isometry property (RIP).

For convex functions, first, observe that, as only the directions of the descent cones and the kernel play a role in recovery guarantees, the size of descent cones can be measured by considering only their intersection with the unit sphere S(1). Choosing the norm • H to define the unit sphere is natural (although also somewhat arbitrary) as this is the only metric introduced so far in the considered setting. It will also appear to define RIP constants soon. Second, if we want to consider a measure that is invariant by rotation, the uniform measure on the unit sphere S(1) comes somewhat naturally. It is indeed the unique Haar measure. The uniqueness is essentially guaranteed when it is a measure in the sense of measure theory (additive, non-negative function over a σ-algebra). In our setting, using this measure is a way of considering that we do not have prior information on the orientation of the kernel of M , or on the orientation of the model set Σ.

Using this measure, given a convex function R, the "amount of space left for the kernel of M " can be quantified by the "volume" of the intersection T R (Σ) ∩ S(1) of the descent cone with the unit sphere. Hence, a compliance measure for uniform recovery can be defined as

A U Σ (R) := 1 - vol (T R (Σ) ∩ S(1)) vol(S(1)) . (7) 
Here, the volume vol(E) of a set E is the measure of E with respect to the uniform measure on the sphere S(1) (i.e., the n -1-dimensional Hausdorff measure of T R (Σ) ∩ S(1), when H is n-dimensional). This measure is well-defined as the descent cones of convex functions are symmetrized convex cones. When looking at non-uniform recovery for random Gaussian measurements, the quantity defined by vol(TR(x0)∩S(1))

vol(S(1))

represents the probability that a randomly oriented kernel of dimension 1, defined as the span of a random vector uniformly distributed on the sphere S(1), intersects (non trivially) T R (x 0 ). The highest probability of intersection with respect to x 0 quantifies the lack of compliance of R, hence we could define:

A N U Σ (R) := 1 -sup x∈Σ vol (T R (x) ∩ S(1)) vol(S(1)) . ( 8 
)
This can be linked with the Gaussian width and statistical dimension theory of non-uniform sparse recovery [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF][START_REF] Amelunxen | Living on the edge: phase transitions in convex programs with random data[END_REF]. Indeed, if M is a random Gaussian matrix of size (n -1) × n, we have

P kerM ∩ T R (x 0 ) = {0} = vol (T R (x 0 ) ∩ S(1)) vol(S(1)) . (9) 
As shown in [START_REF] Amelunxen | Living on the edge: phase transitions in convex programs with random data[END_REF], for a random Gaussian matrix M of size m×n with any number of measurements m, the probability P kerM ∩ T R (x 0 ) = {0} can be guaranteed to be small if m is greater than the statistical dimension of the descent cones. The kinematic formula (Crofton's formula in this case) gives the exact value

P kerM ∩ T R (x 0 ) = {0} = n j=m+1, j even v j (T R (x 0 )) (10) 
where v j (K) is the j-th intrinsic volume of a cone K. For a polyhedral cone it is the probability that the orthogonal projection on K of a Gaussian vector lies in a j-dimensional face of K. The statistical dimension of a descent cone T is defined by [2, Definition 2.2]

statdim(K) = n j=0 jv j (K). ( 11 
)
As it is used to bound the number of measurements in the non uniform case, its supremum over all the descent cones K = T R (x 0 ), x 0 ∈ Σ could be used as a compliance measure. Moreover, it was shown that the statistical dimension is a measure of the "size" of the convex cones that is additive, invariant by rotation, and monotonous. The above compliance measures are completely dependent on the metric defining S(1) (here the Hilbert norm • H ), other choices could be considered especially if measurement operators M showing a particular structure were considered.

In this article, we concentrate on compliance measures based on uniform recovery guarantees.

Remark 1 These compliance measures implicitly force Σ ⊂ dom(R), unless A Σ (R) = 0. Indeed, suppose there exists x ∈ Σ such that R(x) = +∞, then for all z ∈ H, we have

R(x + z) ≤ +∞ = R(x). This implies T R (x) = H and A U Σ (R) = A N U Σ (R) = 0.
Remark 2 When studying convex regularization for low dimensional recovery in infinite dimensional separated Hilbert spaces, the noiseless recovery only depends on the behavior of the regularizer R on E(Σ) (defined in Section 1.3). The behavior of R outside E(Σ) is only studied to obtain properties of robustness to modeling error [START_REF] Traonmilin | Stable recovery of low-dimensional cones in hilbert spaces: One rip to rule them all[END_REF]. In many examples of generalized sparsity and low-dimensional modeling in infinite dimension, the space E(Σ) has a finite dimension [START_REF] Adcock | Generalized sampling: stable reconstructions, inverse problems and compressed sensing over the continuum[END_REF].

Our framework still applies in this case.

It is an open question to generalize our framework for low-dimensional recovery in more general settings such as Banach spaces (e.g., for off-the-grid super-resolution).

Remark 3

In the uniform recovery case, the compliance measure A U Σ defined in ( 7) is monotonous with respect to the partial ordering of descent cones defined by the inclusion property. However, it does not (at least explicitly) take into account potential effects of the dimension of the kernel of M , which may be higher than one. For a given dimension ℓ of the kernel of M , the uniform measure on the corresponding Grassmanian manifold (of all subspaces of dimension ℓ) would be more natural as it would directly quantify the probability of intersection with a random kernel of fixed dimension. This measure for kernels of dimension ℓ and a descent cone K is the following:

V ℓ (K) := µ O(n) ({Q ∈ O(n) : (QE) ∩ K = {0}}) (12) 
where µ O(n) is the uniform measure on the orthogonal group and E is an arbitrary fixed ℓdimensional subspace. The measure V ℓ is invariant by rotation and for ℓ = 1 it matches the Haar measure used in ( 7)- [START_REF] Bougeard | Towards minimal assumptions for the infimal convolution regularization[END_REF].

Given a set Σ, and assuming the existence of a maximizer R * of A U Σ (within a prescribed family of possible regularizers), there are only two possibilities: either all maximizers of A U Σ (R) also minimize V ℓ (T R (Σ)), or not. In this last case, it would mean that there is R * maximizing A U Σ and not minimizing V ℓ . It is an interesting challenge, left to future work, to understand whether this case can indeed happen.

Coercive continuous convex functions

As mentioned before we look for practical regularizers. We define C the set of all functions R : H → R (i.e., with dom(R) = H) that are convex, continuous, and coercive.

The coercivity condition is typical in the context of convex regularization in order to avoid constant functions.

With any proper lower semi-continuous regularizer (hence, with any regularizer in C) the convergence of the primal dual algorithm is guaranteed [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. This guarantees the existence of practical algorithms (for the problem min x 1 2 M xy 2 + λR(x) ) when the proximity operator y → prox λR (y

) := arg min 1 2 u -y 2 H + λR(u) (13) 
can be approximated efficiently.

Elementary properties and reduction to atomic "norms"

As compliance measures based on uniform recovery guarantees can be written as functions of descent cones T R (Σ), we have the following immediate Lemma.

Lemma 2 (The compliance measure is monotonic.

) Let R 1 , R 2 be two functions such that T R1 (Σ) ⊂ T R2 (Σ) then A U Σ (R 1 ) ≥ A U Σ (R 2
). In other words, the compliance measure is decreasing with respect to the inclusion of descent cones. We also verify that multiplying a regularizer by a scalar does not change the compliance measure which is consistent with recovery guarantees.

Lemma 3 (The compliance measure is 0-homogeneous.) Let λ > 0. Then,

A U Σ (λR) = A U Σ (R), A N U Σ (λR) = A N U Σ (R). ( 14 
)
Proof Let x ∈ Σ. We remark that, the tangent cone is invariant by scalar multiplication:

T λR (x) = {γz : γ ∈ R, λR(x + z) ≤ λR(x)} = {γz : γ ∈ R; R(x + z) ≤ R(x)} = T R (x). ( 15 
)
This shows directly that

A N U Σ (λR) = A N U Σ (R). This also implies that T λR (Σ) = T R (Σ) and A U Σ (λR) = A U Σ (R). ⊓ ⊔
More generally, any operation on R that leaves T R (Σ) invariant does not change the compliance measure. This is typically the case of the post-composition of R with an increasing function.

We now recall the notion of atomic "norm" and show that optimal regularizers can be found in a set of atomic norms.

Definition 2 (Atomic norm.) The atomic "norm" induced by a set A is defined as:

x A := inf {t ∈ R + : x ∈ t • conv(A)} ( 16 
)
where conv(A) is the closure of the convex hull conv(A) in H. This "norm" is finite only on

E(A) := R + • conv(A) = {x = t • y, t ∈ R + , y ∈ conv(A)} ⊂ H. (17) 
It is extended to H by setting x A = +∞ if x / ∈ E(A).

Classical convex regularizer for sparse and low rank models are atomic norms:

-The ℓ 1 -norm • 1 is the atomic norm induced by signed canonical basis vectors.

-The nuclear norm • * is the atomic norm induced by unitary rank-one matrices.

Atomic norms are convex gauges induced by the convex hull of atoms. Their properties can be linked with the properties of the set A with classical results on convex gauge functions (see Appendix A.1).

It is possible to define an atomic norm, denoted • Σ , specifically induced by the model Σ.

Definition 3 (Atomic norm induced by the model.) Given a cone Σ, we define the atomic norm induced by Σ as

• Σ := • Σ∩S(1) . ( 18 
)
This norm is known as the k-support norm for sparse model, it is not adapted to perform uniform recovery. In particular, it cannot recover 1-sparse vectors. In [37, Lemma 2.1], it was shown that there is always an atomic norm with smaller descent cones than the descent sets of a proper coercive continuous function with convex level sets. We give a version of this result for our definition of cones and specify the properties of the obtained atomic norm.

Lemma 4 (Optimality of atomic norms for a given model.)

Let Σ be a cone such that E(Σ) = H and R be a coercive continuous convex function. Then there exists A ⊂ Σ such that:

T • A (Σ) ⊆ T R (Σ). ( 19 
)
and • A is a coercive, continuous, positively homogeneous convex function.

Proof See Appendix A.2.2.

With Lemma 4, for all coercive continuous convex functions R (i.e. elements of C), it is possible to find an atomic norm R ′ with atoms included in Σ such that T R ′ (Σ) ⊂ T R (Σ). We define C Σ as the set of coercive continuous positively homogeneous atomic "norms" whose atoms A are included in Σ:

C Σ := { • A : A ⊂ Σ, • A ∈ C, ∀x ∈ H, λ > 0, λx A = |λ| x A }. ( 20 
)
As a consequence of this Lemma, we have the following immediate result.

Theorem 1 (Optimization of compliance measures over C Σ .) Let Σ be a cone such that

E(Σ) = H. Suppose A Σ is a compliance measure that is a decreasing function of T R (Σ) with respect to set inclusion. Then sup R∈C A Σ (R) = sup R∈CΣ A Σ (R). ( 21 
)
In particular sup

R∈C A U Σ (R) = sup R∈CΣ A U Σ (R). ( 22 
)
Proof Let R ∈ C, with Lemma 4, there exists

• A ∈ C Σ such that T • A (Σ) ⊂ T R (Σ). This implies T • A (Σ) ∩ S(1) ⊂ T R (Σ) ∩ S(1) and A Σ (R) ≤ A Σ ( • A ). ⊓ ⊔
Theorem 1 shows that we can limit ourselves to atomic norms if our only objective is to maximize the compliance measure.

With such measures, we can calculate optimal regularizers for elementary linear transformations of models.

Lemma 5 (Compliance measures are equivariant to linear transformations.) Consider a compliance measure defined as: A Σ (R) := f (T R (Σ)) with f some scalar valued function defined on non-empty subsets of H. For any invertible linear map F on H, any model set Σ and any regularizer R, we have

T R (F Σ) = F (T R•F (Σ)) (23) 
A F Σ (R) = f [F (T R•F (Σ))]. ( 24 
)
Proof First γz ∈ T R (F Σ) if, and only if, there exists

x ∈ Σ such that R(F x + z) ≤ R(F x), i.e., such that (R • F )(x + F -1 z) ≤ (R • F )(x). This is in turn equivalent to γF -1 z ∈ T R•F (Σ), i.e., γz ∈ F (T R•F (Σ)). Second, it follows that A F Σ (R) = f (T R (F Σ)) = f [F (T R•F (Σ))].
Thanks to Lemma 5, we can build optimal regularizers from other optimal regularizers when the model set is obtained from another one by applying a linear isometry.

Corollary 1 (Compliance measures are invariant under invariant maps.) Consider a compliance measure defined as:

A Σ (R) := f (T R (Σ)
) with f some scalar valued function on subsets of H. Assume that f is invariant to a family F of invertible linear maps on H, i.e., for any F ∈ F and any non-empty set T ⊆ H, f (F T ) = f (T ). Then, for any F ∈ F , any regularizer R and any model set Σ, we have

A F Σ (R • F -1 ) = A Σ (R). ( 25 
)
Proof By Lemma 5,

A F Σ (R•F -1 ) = f [F (T (R•F -1 )•F (Σ))] = f (F T R (Σ)) = f (T T (Σ)) = A Σ (R). ⊓ ⊔
Corollary 2 (Compliance measures are invariant by isometries.) Consider F an isometry on H, R a regularizer and Σ a model set. We have

A U F Σ (R • F -1 ) = A U Σ (R). ( 26 
)
Proof The volume is invariant to isometries, hence

A U Σ (R) = f U (T R (Σ)) where f U (•) is invariant to isometries. ⊓ ⊔ 2.
6 An exact result in 3D: the most we can do?

Compliance measures A U Σ (R) and A N U Σ (R) where effectively optimized [START_REF] Traonmilin | Optimality of 1-norm regularization among weighted 1-norms for sparse recovery: a case study on how to find optimal regularizations[END_REF] in the case of 1sparse recovery in dimension 3, i.e., for Σ = Σ 1 the set of 1-sparse vectors in R 3 . In this case,

C Σ = { • A : A ⊂ Σ 1 }. It was shown that for the set C ′ Σ = { • A : A ⊂ Σ 1 , A = -A} (which is the set of weighted ℓ 1 -norms) that arg max R∈C ′ Σ A U Σ (R) = arg max R∈C ′ Σ A N U Σ (R) = {λ • 1 : λ > 0}. ( 27 
)
Fig. 2 Solid angle of a half descent cone of a weighted ℓ 1 -norm

To show this, the solid angles of all descent cones of arbitrary weighted ℓ 1 -norms were calculated exactly, and their size minimized with respect to the weights.

Unfortunately, calculating exactly these solid angles in dimension d seems out of reach for any sparsity and atomic norm in C Σ even if some progress in bounds of these quantities [START_REF] März | Sampling rates for ℓ 1 -synthesis[END_REF] in some particular cases (non-uniform recovery with ℓ 1 -norm in probability with random matrices). To the best of our knowledge, no general bound is available for the volume of descent cones of arbitrary atomic norms in C Σ for sparse recovery. To build a compliance measure that we could optimize, we would need to first to establish such general bounds with some tightness.

In the next section, we propose to build compliance measures based on best-known uniform recovery guarantees that have some "tightness" properties. This will enable us to manipulate analytical expressions and give results for sparse recovery and low-rank recovery.

Compliance measures based on the restricted isometry property

The most used tool for the study of uniform recovery is the restricted isometry property (RIP). This property is adequate for multiple models [START_REF] Traonmilin | Stable recovery of low-dimensional cones in hilbert spaces: One rip to rule them all[END_REF], to be tight in some sense [START_REF] Davies | Restricted isometry constants where ℓ p sparse recovery can fail for 0 < p ≤ 1. Information Theory[END_REF] for sparse and low-rank recovery, to be necessary in some sense [START_REF] Bourrier | Fundamental performance limits for ideal decoders in high-dimensional linear inverse problems[END_REF], and to be well adapted to the study of random operators [START_REF] Puy | Recipes for stable linear embeddings from hilbert spaces to R m . Information Theory[END_REF]. In [START_REF] Traonmilin | Stable recovery of low-dimensional cones in hilbert spaces: One rip to rule them all[END_REF], given a regularizer R, an explicit constant δ Σ (R) is given, such that δ Σ (M ) < δ Σ (R) guarantees the exact recovery of elements of Σ by minimization (2). Hence, using δ Σ (R) as a compliance measure, the higher the value of δ Σ (R), the less stringent the RIP condition on M to ensure recovery of all elements of Σ using R as a regularizer.

To formalize further this idea, we start by recalling definitions and results about RIP recovery guarantees then apply our methodology. We also give results that emphasize the relevant quantity (depending on the geometry of the regularizer and the model) to optimize. Definition 4 (RIP constant.) Consider an arbitrary non-empty set Σ ⊂ H and M a linear map from H to C m . The RIP constant of M is defined as

δ Σ (M ) = sup x∈Σ-Σ M x 2 2 x 2 H -1 , (28) 
where Σ -Σ (differences of elements of Σ) is called the secant set. For brevity, we will simply denote δ(M ) when the model set Σ is clear from context.

This coincides with the usual notion of RIP for sparse recovery when Σ = Σ k is the set of vectors with at most k nonzero entries (and Σ -Σ = Σ 2k ); and with the RIP for low-rank recovery when Σ = Σ r is the set of matrices of rank at most r (then, Σ -Σ = Σ 2r ).

A natural and sharp RIP-based compliance measure is

A RIP,sharp Σ (R) = δ sharp Σ
(R) defined as:

δ sharp Σ (R) := inf M:ker M∩TR(Σ) ={0} δ Σ (M ). ( 29 
)
This is the smallest RIP constant of measurement operators where uniform recovery fails [START_REF] Davies | Restricted isometry constants where ℓ p sparse recovery can fail for 0 < p ≤ 1. Information Theory[END_REF], hence the following immediate theorem.

Theorem 2 (The compliance measure δ sharp Σ (R) is sharp.) Consider an arbitrary nonempty set Σ ⊆ H. Suppose M has RIP with constant δ Σ (M ) < δ sharp Σ (R), then for all x 0 ∈ Σ and x * the result of minimization (2) satisfies

x * = x 0 . ( 30 
)
Conversely, there exists M with δ Σ (M ) ≥ δ sharp Σ (R) and x 0 ∈ Σ such that x * = x 0 .

Despite this sharp property with respect to recovery, δ sharp Σ (R) is not endowed with any known analytic expression more explicit than its definition, and it is an open question to derive closedform formulations of this constant for a general R, even for the particular case of sparse or low-rank models. This limits the possibility to conduct an exact optimization with respect to R, and motivates the investigation of more explicit RIP-based compliance measures, with two flavors:

-Compliance measures δ nec Σ (R) based on necessary RIP conditions [START_REF] Davies | Restricted isometry constants where ℓ p sparse recovery can fail for 0 < p ≤ 1. Information Theory[END_REF] which yield sharp recovery constants for particular set of operators M , e.g.,

δ nec Σ (R) := inf z∈TR(Σ)\{0} δ Σ (I -Π z ). ( 31 
)
where Π z is the orthogonal projection onto the one-dimensional subspace span(z) (other intermediate necessary RIP constants can be defined). Such measures upper bound δ sharp Σ (R) (δ nec Σ (R) characterizes RIP recovery guarantees of measurement operators having the shape I -Π z ).

-Compliance measures δ suff Σ (R) based on sufficient RIP constants for recovery (e.g., the explicit sufficient RIP constant δ Σ (R) from [START_REF] Traonmilin | Stable recovery of low-dimensional cones in hilbert spaces: One rip to rule them all[END_REF], which is explained in Section 3.3), which are lower bounds to δ sharp Σ (R).

Note that we have the relation

δ suff Σ (R) ≤ δ sharp Σ (R) ≤ δ nec Σ (R). ( 32 
)
The next sections aim at showing that the ℓ 1 -norm (resp. the nuclear norm) maximizes the (best known) upper and lower bounds of δ sharp Σ (R) for k-sparse model (resp. low rank models). First, in Section 3.1, we recall that when Σ is a non-trivial cone, the compliance measures associated to RIP constants can be cast to equivalent compliance measures associated to a restricted conditioning (RC), which can be written more explicitly.

Second, in Section 3.2, we use the expression of the RC-based compliance measure associated to δ nec Σ (•) (from Equation [START_REF] Rockafellar | Convex analysis[END_REF]) to show that the ℓ 1 norm (resp. the trace-norm) optimizes δ nec Σ (•) for k-sparse vectors (resp. for matrices of rank at most r), with δ nec Σ (R ⋆ ) ≈ 1/ √ 2 when n is large enough.

Finally, in Section 3.3, we give a characterization of δ suff Σ (R) and show the optimality of the ℓ 1 -norm (resp. the nuclear norm) with δ suff Σ (R ⋆ ) = 1/ √ 2.

Restricted conditioning as a compliance measure

When working with a model set Σ that is a cone, instead of working with actual RIP constants, it is easier to use (equivalently) the restricted conditioning.

Definition 5 (Restricted conditioning.) Consider a cone Σ ⊂ H and a linear operator M from R n to C m . We define the restricted conditioning of M as

γ Σ (M ) := sup x∈(Σ-Σ)∩S(1) M x 2 2 inf x∈(Σ-Σ)∩S(1) M x 2 2 ∈ [1, ∞] (33) 
where by convention here a/0 = +∞ for any a ≥ 0. For brevity we will simply denote γ(M ) when Σ is clear from context.

As shown below, the RIP constant δ Σ (M ) is a monotonically increasing function of γ Σ (M ). The advantage of the latter is that it is invariant by rescaling M (rescaling leaves unchanged the recovery properties when measuring x 0 with M ).

Lemma 6 (The RIP constant δ Σ (M ) is monotone in γ Σ (M ).) Consider a cone Σ ⊆ H.

For any M such that γ Σ (M ) < ∞, there is a unique λ > 0 such that

γ Σ (M ) = 1 + δ Σ (λM ) 1 -δ Σ (λM ) (34) 
or equivalently

δ Σ (λM ) = γ Σ (M ) -1 γ Σ (M ) + 1 . ( 35 
)
Proof See Appendix A.3.

Thus, for cones, RIP-based compliance measures have equivalent RC-based compliance measures such that

γ Σ (R) = 1 + δ Σ (R) 1 -δ Σ (R) and δ Σ (R) = γ Σ (R) -1 γ Σ (R) + 1 . ( 36 
)
The sharp RIP constant [START_REF] Puy | Recipes for stable linear embeddings from hilbert spaces to R m . Information Theory[END_REF], the necessary RIP constant [START_REF] Rockafellar | Convex analysis[END_REF] and the sufficient RIP constant δ suff Σ (R) of [START_REF] Traonmilin | Stable recovery of low-dimensional cones in hilbert spaces: One rip to rule them all[END_REF] are associated to

γ sharp Σ (R) := inf M:ker M∩TR(Σ) ={0} γ Σ (M ) = 1 + δ sharp Σ (R) 1 -δ sharp Σ (R) , (37) 
γ nec Σ (R) := inf z∈TR(Σ)\{0} γ Σ (I -Π z ) = 1 + δ nec Σ (R) 1 -δ nec Σ (R) , (38) 
γ suff Σ (R) := 1 + δ suff Σ (R) 1 -δ suff Σ (R) . ( 39 
)
We deduce from (32) the inequalities

γ suff Σ (R) ≤ γ sharp Σ (R) ≤ γ nec Σ (R). ( 40 
)
The following result shows that γ sharp Σ (R) can be simplified.

Proposition 1 (Explicit expression of γ sharp Σ

(R).) Consider a cone Σ ⊆ H. Let P be the set of symmetric positive semi-definite (PSD) linear operators on H: N ∈ P if and only if N

H = N and N 0. For z ∈ H \ {0} define f RC Σ (z) := inf N ∈P:ker N =span(z) γ Σ (N ) ( 41 
)
and for any non-empty set T ⊆ H such that T = {0} define

f RC Σ (T ) := inf z∈T \{0} f RC Σ (z). ( 42 
)
We have

inf M:ker M∩T ={0} γ Σ (M ) = f RC Σ (T ). ( 43 
)
Proof This is an immediate consequence of Lemma 12 in Appendix A.3.

⊓ ⊔

Using T = T Σ (R), the sharp RC (or RIP) constant is the smallest RC constant of positive symmetric definite PSD operators with kernels of dimension 1 for which recovery of Σ fails:

γ sharp Σ (R) = f RC Σ (T R (Σ)). (44) 
Since I -Π z ∈ P for any nonzero z, we have f RC Σ (z) ≤ γ Σ (I -Π z ) hence we recover the inequality

γ sharp Σ (R) ≤ inf z∈TR(Σ)\{0} γ Σ (I -Π z ) = γ nec Σ (R),
however it is an open question to determine whether this is an equality in particular cases or in general. The constant γ nec Σ is already sharp in the following sense: for sparse recovery with the ℓ 1 -norms, as well as for low-rank recovery with the nuclear norm, it is the biggest possible RIP constant (δ suff

Σ (R) = 1 √ 
2 ) that guarantees uniform recovery with • 1 (respectively with the nuclear norm) for all sparsities k (for all rank levels r respectively) [START_REF] Davies | Restricted isometry constants where ℓ p sparse recovery can fail for 0 < p ≤ 1. Information Theory[END_REF].

Similarly, to the compliance measures from Section 2, we can deduce an optimal regularizer after an isometric linear transformation of the model.

Lemma 7 (Invariance of γ

sharp Σ (R) under linear isometries.) Consider a cone Σ ⊆ H, an arbitrary regularizer R such that Σ ⊆ dom(R), and a (linear) isometry F . We have

γ sharp F Σ (R • F -1 ) = γ sharp Σ (R). ( 45 
)
Hence, for any class C ′ of regularizers,

R * ∈ arg max R∈C ′ γ sharp Σ (R) ⇔ R * • F -1 ∈ arg max R ′ ∈C ′ γ sharp F Σ (R ′ ). ( 46 
)
Proof See Appendix A.3.

Compliance measures based on necessary RC conditions

In this section, we characterize the compliance measure

γ nec Σ (R) = inf z∈TR(Σ)\{0} γ Σ (I -Π z ). ( 47 
)
To show optimality of the ℓ 1 -norm for sparse recovery and of the nuclear norm for low-rank recovery, we will use the following characterization of γ nec Σ (R) when Σ is a cone.

Lemma 8 (Characterization of γ nec Σ (R) for a cone.) Consider a cone Σ ⊆ H such that Σ = {0} and R an arbitrary regularizer such that Σ ⊆ dom(R).

1. If there is x ∈ H such that Σ ⊆ span(x), then γ nec Σ (R) = +∞ if T R (Σ) ⊆ Σ, 1 otherwise. ( 48 
)
2. If Σ span(x) for every x ∈ H, then

γ nec Σ (R) = 1 1 -inf z∈TR(Σ)\{0} sup x∈(Σ-Σ)∩S(1) x,z 2 z 2 H . ( 49 
)
Proof See Appendix A.4.

To go further, we exploit two assumptions related to orthogonal projections on certain sets.

Definition 6 (Orthogonal projection.) For any set E we define, for all z ∈ H

P E (z) = arg min y∈E z -y H . (50) 
This is a set-valued operator is called the orthogonal projection, and P E (z) may be empty if the minimum is not achieved.

Some assumptions on E ensure that P E (z) is not empty for any z.

Lemma 9 (Existence of the projection.) Consider a union of subspaces E ⊆ H, and assume that E ∩ S(1) is compact. Then for every z ∈ H, P E (z) = ∅. Moreover, for every

x, x ′ ∈ P E (z) we have z -x 2 H = z -x ′ 2 H and z, x = x 2 H = x ′ 2 H = z, x ′ , hence the notations z -P E (z) 2
H , z, P E (z) and P E (z) 2 H are unambiguous. We also have

z 2 H = z -P E (z) 2 H + P E (z) 2 H and z, P E (z) = P E (z) 2 H = sup x∈E∩S(1) | x, z | 2 . Proof See Appendix A.4.
Even if E is a union of subspaces and E ∩ S(1) is compact, P E (z) may not always be a singleton. For example, consider E the set of k-sparse vectors and z the vector with all entries equal to one.

Thanks to Lemma 9, we have the following characterization of the maximizers of δ nec Σ .

Corollary 3 (Characterization of δ nec Σ .) Consider a cone Σ ⊂ H and assume that Σ -Σ is a union of subspaces, (Σ -Σ) ∩ S( 1) is compact, and Σ = span(x) for each x ∈ Σ. For any class C ′ of regularizers such that Σ ⊆ dom(R) for every R ∈ C ′ , the set of maximizers of δ nec Σ (•) satisfies (whether this set of maximizers is empty)

arg max R∈C ′ δ nec Σ (R) = arg min R∈C ′ B Σ (R) with B Σ (R) := sup z∈TR(Σ)\{0} z -P Σ-Σ (z) 2 H P Σ-Σ (z) 2 H . (51) 
For any regularizer R we have

δ nec Σ (R) = (1 + 2B Σ (R)) -1 . ( 52 
)
Proof See Appendix A.4.

We now have the tools to study optimality for sparse and low rank models.

Optimal regularization for sparse recovery and for low-rank recovery

Consider now Σ = Σ k the set of k-sparse vectors in H = R n (associated with the canonical scalar product •, • and the ℓ 2 -norm • H = • 2 ), where 1 ≤ k ≤ n/2, n ≥ 3. We have Σ -Σ = Σ 2k (for n ≤ 2k
, in particular for n ≤ 2 and any k ≥ 1, uniform recovery is not possible for non-invertible M : as

Σ -Σ = R n , by Lemma 1 we have T R (Σ) = R n for any regularizer, thus T R (Σ)∩ker M = {0} implies ker M = {0}).
It is well-known that Σ and Σ -Σ are both unions of subspaces (hence Σ is a cone), and it is straightforward that (Σ -Σ) ∩ S( 1) is compact and Σ is not reduced to a single line. Moreover, for any nonzero z ∈ R n , P Σ-Σ (z) contains the restriction z T2 of z to any set

T 2 = T 2 (z) ⊆ {1, . . . , n} of size 2k such that min i∈T2 |z i | ≥ max j∈T c 2 |z j |.
Hence, we can invoke Corollary 3 to replace the maximization of δ nec Σ (R) by the minimization of

B Σ (R) = sup z∈TR(Σ)\{0} z T c 2 2 2 z T2 2 2 . ( 53 
)
Similarly, We consider Σ = Σ r the set of matrices of rank at most r in the Hilbert space H of n × n symmetric matrices (we study the symmetric case for simplicity, but conjecture that our result can be extended to the non-symmetric case) with • H = • F (the Frobenius norm). We have again Σ -Σ = Σ 2r and all conditions are satisfied such that Corollary 3 can be invoked. Denoting ∆ = eig(z) the vector of eigenvalues of matrix z ∈ H sorted by decreasing absolute value, so that z = U T ∆U for some unitary matrix U , and defining z T := z = U T ∆ T U for every index set T , we have

P Σ-Σ (z) = z T2 and z -P Σ-Σ (z) = z T c 2 where T 2 = T 2 (z) ⊆ [1, n] is any index set containing the 2k largest eigenvalues (in magnitude) of z, i.e., such that min i∈T2 |∆ i | ≥ max j∈T c 2 |∆ j |.
With these observations and notations, we are again left to optimize (53). Specializing to the class C of convex, coercive, continuous regularizers, we obtain the following theorems.

Theorem 3 (Optimality of ℓ 1 -norm for k-sparse vectors for δ nec Σ .) With k-sparse vectors, Σ = Σ k ⊆ H = R n , k < n 2 , and R ⋆ (•) = • 1 , we have δ nec Σ (R ⋆ ) = sup R∈C δ nec Σ (R) = (2B ⋆ k,n + 1) -1 with B ⋆ k,n := max 1≤L≤n-2k L/k (L/k + 1) 2 + 1 . (54) Moreover, for k = 1, the unique functions R ∈ C Σ maximizing δ nec Σ are of the form R(•) = λ • 1 with λ > 0.
Theorem 4 (Optimality of the nuclear norm for rank-r matrices for δ nec Σ .) With the set of rank-r matrices, Σ = Σ r , in the space H of symmetric n × n matrices, r < n 2 , and with R ⋆ (•) = • * (the nuclear norm), we have

δ nec Σ (R ⋆ ) = sup R∈C δ nec Σ (R) = (2B ⋆ r,n + 1) -1 with B ⋆ r,n := max 1≤L≤n-2r L/r (L/r + 1) 2 + 1 . (55) 
The proof of the two theorems exploits technical lemmas detailed in Appendix A.4.1 and Appendix A.4.2.

Proof We give the proof for the case of sparse recovery. To express it for low-rank recovery simply replace the notation k by r. For 1 ≤ s ≤ n and any regularizer R we define

B s Σ (R) := sup z∈TR(Σ)\{0},z∈Σs z T c 2 2 2 z T2 2 2 . ( 56 
)
For s ≤ 2k and any z ∈ Σ s we have z

T c 2 = 0 hence B s Σ (R) = 0, thus B Σ (R) = max 1≤L≤n-2k B 2k+L Σ (R). First consider R ∈ C Σ . Since R is positively homogeneous and subadditive, by Lemma 15 for Σ k / Lemma 19 for Σ r , B 2k+L Σ (R) ≥ L k L k + 1 2 + 1 , for each 1 ≤ L ≤ n -2k.
For R ⋆ and 1 ≤ L ≤ n -2k we also have (Lemma 17 / Lemma 20, inspired by [START_REF] Davies | Restricted isometry constants where ℓ p sparse recovery can fail for 0 < p ≤ 1. Information Theory[END_REF]) that

B Σ (R ⋆ ) = max 1≤L≤n-2k L k L k + 1 2 + 1 .
As a result,

B Σ (R) ≥ B Σ (R ⋆ ) = max 1≤L≤n-2k L k L k + 1 2 + 1 =: B ⋆ k,n Finally, remark that B Σ (R) is an increasing function of T R (Σ). Using Lemma 4, for any R ∈ C there is R ′ ∈ C Σ such that B Σ (R) ≥ B Σ (R ′ ) ≥ B ⋆ k,n .
For k = 1, uniqueness comes from the fact that on a given orthant for

R ∈ C Σ , R is a weighted ℓ 1 norm: R((x 1 , . . . , x n )) = i w i |x i | and the equality case in Lemma 15 forces w i = max i w i . ⊓ ⊔ Because of the uniqueness result for k = 1, the ℓ 1 -norm is the unique convex regularizer in ∩C Σ k that jointly maximizes δ nec Σ k for all k < n 2 (the proof of Theorem 3 is valid for C Σ k ′ , with k ≤ k ′ < n 2 ).
It is an open question to determine if we have uniqueness model by model. As the result might change for tighter compliance measures, we leave this question for future work.

In the next section, we will see that the optimization of the sufficient RIP constant leads to very similar expressions.

Compliance measures based on sufficient RC conditions

When Σ is a union of subspaces and R is an arbitrary regularizer, an "explicit" RIP constant δ suff Σ (R) is sufficient to guarantee reconstruction [START_REF] Traonmilin | Stable recovery of low-dimensional cones in hilbert spaces: One rip to rule them all[END_REF]. The expression of this constant [START_REF] Traonmilin | Stable recovery of low-dimensional cones in hilbert spaces: One rip to rule them all[END_REF][Eq. ( 5)] is recalled in the Appendix (Equation ( 123)) and can be used as a compliance measure. It gives rise to the following lemma, which is proved in Appendix A.5.

Lemma 10 (Equality case of the sufficient conditions.) Assume that Σ = ∪ V ∈V V is a union of subspaces and that Σ ∩ S(1) is compact. Consider R any regularizer such that Σ ⊆ dom(R). We have

δ suff Σ (R) ≥ 1 sup z∈TR(Σ)\{0} z-PΣ (z) 2 Σ PΣ (z) 2 2 + 1 =: δ suff2 Σ (R). ( 57 
)
Further, assume that P Σ (z) ⊆ arg min x∈Σ x-z Σ for every z ∈ H and that, for every V ∈ V and every u ∈ Σ, P V ⊥ (u) ∈ Σ. Then, there is equality in (57).

Proof See Appendix A.5. Note that the assumption P Σ (z) ⊆ arg min x∈Σ xz Σ could be replaced by the slightly weaker

P Σ (z) ∩ arg min x∈Σ x -z Σ / x 2 = ∅. ⊓ ⊔
We get an immediate corollary of the first claim in the above lemma.

Corollary 4 (Expression of a sufficient condition.)

Assume that Σ = ∪ V ∈V V is a union of subspaces and that Σ ∩ S(1) is compact. For any class C ′ of regularizers such that Σ ⊆ dom(R) for every R ∈ C ′ , the set of maximizers of δ suff2 Σ (•) satisfies (whether this set of maximizers is empty) arg max R∈C ′ δ suff2 Σ (R) = arg min R∈C ′ D Σ (R) with D Σ (R) := sup z∈TR(Σ)\{0} z -P Σ (z) 2 Σ P Σ (z) 2 H . (58) 
For any optimal regularizer R ⋆ we have

δ suff2 Σ (R ⋆ ) = (1 + D Σ (R ⋆ ) -1/2 . ( 59 
)
Note the subtle difference in the norm at the numerator in B Σ (R) and D Σ (R).

Optimal regularization for sparse recovery and low-rank recovery

When considering sparse recovery or low-rank recovery, there is indeed equality δ suff Σ (R) = δ suff2 Σ (R) thanks to the following Lemma.

Lemma 11

The assumptions for the equality case of Lemma 10 hold for Σ = Σ k the set of k-sparse vectors in H = R n , as well as for the set Σ = Σ r of symmetric matrices of rank at most r in H the set of symmetric n × n matrices.

Proof See Appendix A.5.

Consider Σ := Σ k , and regularizers in C Σ . Similarly to the necessary case, from Lemma 10, we have (when Σ is a union of subspace and Σ ∩ S(1) is closed)

D Σ (R) = sup z∈TR(Σ)\{0} z T c 2 Σ z T 2 2 ( 60 
)
where T denotes the support of the k largest coordinates of z.

We obtain similar results as in the necessary RIP constant case.

Theorem 5 (Optimality of ℓ 1 -norm for k-sparse vectors for

δ suff Σ .) With k-sparse vectors, Σ = Σ k ⊆ H = R n , k < n 2 , and R ⋆ (•) = • 1 , we have δ suff Σ (R ⋆ ) = sup R∈C δ suff Σ (R) = 1 √ 2 . ( 61 
)
Moreover, for k = 1, the unique functions R ∈ C Σ maximizing δ suff Σ are of the form R(•) = λ • 1 with λ > 0.
Theorem 6 (Optimality of the nuclear norm for rank-r matrices for δ suff Σ .) With the set of rank-r matrices, Σ = Σ r , in the space H of symmetric n × n matrices, r < n 2 , and with R ⋆ (•) = • * (the nuclear norm), we have

δ suff Σ (R ⋆ ) = sup R∈C δ suff Σ (R) = 1 √ 2 . ( 62 
)
Proof We give the proof for the case of sparse recovery. To express it for low-rank recovery simply replace the notation k by r. For 1 ≤ s ≤ n and any regularizer R we define

D s Σ (R) := sup z∈TR(Σ)\{0},z∈Σs z T c 2 Σ z T 2 2 .
For s ≤ k and any z ∈ Σ s we have z

T c = 0 hence D s Σ (R) = 0, thus D Σ (R) = max 1≤L≤n-k D k+L Σ (R). First consider R ∈ C Σ .
Since R is positively homogeneous and subadditive, by Lemma 24 for Σ k / Lemma 26 for Σ r ,

D k+L Σ (R) ≥ min(1, L k ), for each 1 ≤ L ≤ n -k.
For R ⋆ and 1 ≤ L ≤ nk we also have (with Lemma 23 / Lemma 25) that

D k+L Σ (R ⋆ ) = min(1, L k ).
As a result,

D Σ (R) ≥ D Σ (R ⋆ ) = max 1≤L≤n-k min(1, L k ) = 1.
Finally, remark that D Σ (R) is an increasing function of T R (Σ). Using Lemma 4, for any

R ∈ C there is R ′ ∈ C Σ such that D Σ (R) ≥ D Σ (R ′ ) ≥ 1.

⊓ ⊔

Discussion

Even without an analytic expression of the sharp RIP constant, it would have been possible to show that R ⋆ optimizes δ sharp Σ if it were simultaneously optimizing its lower and upper bound, i.e., if we had sup

R∈C δ suff Σ (R) = δ suff Σ (R ⋆ ) = δ nec Σ (R ⋆ ) = sup R∈C δ nec Σ (R). ( 63 
)
Unfortunately, this is not the case in the sparse and low rank examples. We observe that for fixed k, n we have in both cases

1 √ 2 = δ suff Σ (R ⋆ ) < δ nec Σ (R ⋆ ). ( 64 
)
Because of this fact, we cannot conclude on the optimality of R ⋆ for δ sharp Σ

. However, indexing all objects of the problem by n the dimension of H (respectively the dimension of the diagonals): the set of regularizers C (n) , the models Σ (n) k and the corresponding R ⋆,(n) (independent of k for k < n/2 as we saw previously). We have (see Remark 4)

inf n≥3 inf k∈{1,...,⌊n/2⌋} sup R∈C (n) δ nec Σ (n) k (R) = 1 √ 2 = δ suff Σ (n) k (R ⋆,(n) ). ( 65 
)
We deduce

inf n≥3 inf k∈{1,...,⌊n/2⌋} sup R∈C (n) δ sharp Σ (n) k (R) = 1 √ 2 . ( 66 
)
and

inf n≥3 inf k∈{1,...,⌊n/2⌋} δ sharp Σ (n) k (R ⋆,(n) ) -sup R∈C (n) δ sharp Σ (n) k (R) = 0. ( 67 
)
This shows that the functions R ⋆,(n) are optimal as a family with respect to a family of models

Σ (n) k
and the worst case of their associated compliance measures δ sharp

Σ (n) k (R).
These results can be interpreted in terms of number of measurements needed to recover uniformly sparse or low rank objects with convex regularization. Under the best known (RIP-based) uniform recovery conditions, it is guaranteed that using the optimal regularization with respect to RIP-based compliance measures will enable the use of fewer measurements. In particular in the case of an operator M built from m random Gaussian measurements, it has been proven (see e.g. [START_REF] Foucart | A mathematical introduction to compressive sensing[END_REF]) that there is a universal constant

C such that if m ≥ C k log(k/n) δ 2
then M satisfies a prescribed RIP constant δ with high probability. Hence, the larger the required RIP constant is, the lower the number of measurement needs to be. Such results on the required number of measurement to verify the RIP have been extended to more general low dimensional models (see e.g. [START_REF] Puy | Recipes for stable linear embeddings from hilbert spaces to R m . Information Theory[END_REF]), making RIP-based optimal regularizers tools of choice to optimize the number of random measurements of elements of a given low dimensional model.

4 Towards the construction of optimal convex regularizers? The examples of sparsity in levels and beyond.

In the previous Section, optimality was shown by exhibiting the optimal regularizer (ℓ 1 -norm and nuclear norm). The only constructive part in these results is given by Theorem 1 that shows that we can look for optimal regularizers in the set of atomic norms C Σ constructed using the model set Σ. Ideally, given a compliance measure, we would like to be able to construct for any model Σ, an optimal regularizer R ⋆ ∈ C Σ . As such an objective seems out of reach with the tools we have developed so far, we study on an example (the case of sparsity in levels) the simpler problem of looking for the optimal regularizer in a smaller set of regularizers. We consider a set of weighted ℓ 1 -norms and explore the explicit construction of an optimal regularizer for the compliance measure δ nec Σ . We then extend this result to the similar setting of Cartesian product of sparse and low-rank models.

Sparsity in levels

Sparsity in levels is a possible extension of plain sparsity, which is useful for the precise modeling of signals such as medical images [START_REF] Adcock | Generalized sampling: stable reconstructions, inverse problems and compressed sensing over the continuum[END_REF][START_REF] Bastounis | On random and deterministic compressed sensing and the restricted isometry property in levels[END_REF]. It is also useful for simultaneous modeling of sparse signal and sparse noise [START_REF] Studer | Stable restoration and separation of approximately sparse signals[END_REF][START_REF] Traonmilin | Robust multi-image processing with optimal sparse regularization[END_REF].

Definition 7 (Sparsity in levels.) In H = R n1 × R n2 × . . . × R nL , given sparsity levels k 1 , . . . , k L , we define the sparsity in levels model with Σ k1,...,kL := {x = (x 1 , . . . , x L ) :

x i ∈ Σ ki } (68)
where

Σ ki is the k i -sparse model in R ni .
While the ℓ 1 -norm was shown to be is a candidate to perform regularization for models that are sparse in levels [START_REF] Adcock | Generalized sampling: stable reconstructions, inverse problems and compressed sensing over the continuum[END_REF], it was also shown that it is possible to obtain better sufficient RIP recovery guarantees when weighting the ℓ 1 norm by √ k i in each level [START_REF] Traonmilin | Stable recovery of low-dimensional cones in hilbert spaces: One rip to rule them all[END_REF]. The following theorem permits to show that this weighting scheme is close to optimal for the compliance measure δ nec Σ by giving explicit expressions for the calculation of optimal weights.

Given weights w = (w 1 , . . . , w L ) ∈ R L + , we define the ℓ 1 -norm weighted by levels.

(x 1 , . . . , x L ) w = L i=1 w i x i 1 . (69) 
We have the following result.

Theorem 7 (Optimal weighted ℓ 1 norms for δ nec Σ for sparsity in levels.)

Consider two integers k 1 , k 2 ≥ 2 and the model set Σ = Σ k1,k2 in H = R n1 × R n2 where we assume that n 1 ≥ 4k 1 , n 2 ≥ 4k 2 . Let ã = 2 √ 3 -3. We define B ⋆ Σ := min ν 1 ∈[ã,1-ã] ν2=1-ν1 max i∈{1,2} max xi∈{⌊ki √ 1+1/νi⌋;⌈ki √ 1+1/νi⌉} x i /k i ν i (x i /k i + 1) 2 + 1 ( 70 
)
where ⌊•⌋ and ⌈•⌉ denote the lower and upper integer part and (ν * 1 , ν * 2 ) minimizing this expression. Then w * ∈ arg max

w δ nec Σ ( • w ) (71) if and only if w * = (w * 1 , w * 2 ) where w * 1 , w * 2 > 0 satisfy w * 2 w * 1 = k 1 k 2 (1/ν * 1 -1). ( 72 
)
Moreover, denoting

w 0 = w 0 (k 1 , k 2 ) := (1/ √ k 1 , 1/ √ k 2 ) we have B Σ ( • w * ) = B ⋆ Σ ≤ B Σ ( • w0 ) ≤ ( √ 3 -1)/2 δ nec Σ ( • w * ) = (1 + 2B ⋆ Σ ) -1 ≥ δ nec Σ ( • w0 ) ≥ 1/ √ 3. ( 73 
)
Finally, we have inf

k1,k2≥1 inf n1≥4k1,n2≥4k2 δ nec Σ ( • w0(k1,k2) ) = 1/ √ 3. ( 74 
)
Proof See Appendix A.6.

This theorem comes from the fact that (see proof) the quantity defined in (53) satisfies

B Σ k 1 ,k 2 ( • (w1,w2) ) = max L1,L2 B L1,L2 Σ k 1 ,k 2 ((w 1 , w 2 )) (75)
where

B L1,L2 Σ k 1 ,k 2 ( • (w1,w2
) ) can be computed explicitly (similarly to B 2k+L Σ from (56) for sparsity). Thanks to the expression of B Σ ( • w * ) from Theorem 7, it becomes tractable to evaluate numerically optimal weights. We simply perform the minimization over ν 1 ∈ [ã, 1ã] over a regular grid (of 10 6 points in our experiment) and take the minimum. The value of w * 1 /w * 2 is returned according to (72). Let

w 0 = w 0 (k 1 , k 2 ) = (1/ √ k 1 , 1/ √ k 2 ).
In Figure 3, we show a representation of the two criteria 

C 1 (k 1 , k 2 ) = |1 -w * ,w0 w * 2 w0 2 | and C 2 (k 1 , k 2 ) = |δ nec Σ ( • w * ) - δ nec Σ ( • w0 )| for different pairs (k 1 , k 2 ). The case C 1 (k 1 , k 2 ) = C 2 (k 1 , k 2 ) = 0 occurs if and only if w 0 is optimal).
w 0 = (1/ √ k 1 , 1/ √ k 2 ) for different k 1 , k 2 ≥ 2 .
We observe numerically that for 2

≤ k 1 , k 2 ≤ 200, C 1 (k 1 , k 2 ) ≤ 10 -5 and C 2 (k 1 , k 2 ) ≤ 5 • 10 -3
and that the error tends to decrease for greater k 1 , k 2 . This comes from the fact that the result of the discrete optimization over the integers L i in (75) gets closer to the result of a continuous optimization that yields w * 2 /w * 1 = √ k 1 / √ k 2 (obtained by dropping the integer parts in Theorem 7).

For the "asymptotically optimal" weighting scheme

w 0 = w 0 (k 1 , k 2 ) = 1 √ k1 , 1 √ k2 , we find inf k ′ 1 ,k ′ 2 ≥1,n ′ 1 ≥4k ′ 1 ,n ′ 2 ≥4k ′ 2 δ nec Σ k ′ 1 ,k ′ 2 ( • w0 ) (74) = 1 √ 3 ( * ) ≤ δ suff Σ k 1 ,k 2 ( • w0 ) ≤ δ sharp Σ k 1 ,k 2 ( • w0 ) ≤ δ nec Σ k 1 ,k 2 ( • w0 ).
(76) The inequality (*) is shown in Theorem 8 below (improving for L = 2 the lower bound

1 √ 2+L = 1/ √ 4 = 1/2
for sparsity in L levels previously given in [37, Theorem 4.2]), and the last inequalities are generic, cf [START_REF] Soubies | A continuous exact ℓ 0 penalty (cel0) for least squares regularized problem[END_REF].

The double-sided bound (76) confirms that the weighting scheme

1 √ k1 , 1 √ k2
is close to an optimal choice (w.r.t the maximization of

δ sharp Σ k 1 ,k 2
) when the sparsities are known.

Theorem 8 (Sufficient RIP condition for near-optimal ℓ 1 norms for sparsity in levels.) Consider two integers k 1 , k 2 ≥ 2 and the model set

Σ = Σ k1,k2 in H = R n1 × R n2 with n i ≥ k i , i = 1, 2, and the norm (x 1 , x 2 ) w = 2 i=1 1 √ ki x i 1 . Then δ suff Σ k 1 ,k 2 ( • w ) ≥ 1 √ 3 . ( 77 
)
Proof See Appendix A.6.

Beyond sparsity in levels

Beyond sparsity in levels, we obtain exactly the same result for the Cartesian product of a sparse model and a low-rank model. Consider

Σ k,r = Σ k × Σ r ⊂ R n × H p
where H p is the set of symmetric matrices of size p × p. This model with n = p 2 can be used to model sums of sparse and low rank matrices. To address associated matrix reconstruction problems it was suggested in [START_REF] Tanner | Compressed sensing of low-rank plus sparse matrices[END_REF] to use a weighted sum of the ℓ 1 -norm and the nuclear norm with weights ratio

√ k √ r , ie (z 1 , z 2 ) w = 1 √ k z 1 1 + 1 √ r z 2 * .
The following Theorem guarantees that the previous numerical experiments hold with this model (by replacing k 1 by k and k 2 by r). It thus confirms that this is a near optimal choice of weights.

Theorem 9 (Optimal mixed norms for δ nec Σ for sparse plus low-rank models.) Consider two integers k, r ≥ 2 and the model set

Σ = Σ k × Σ r in H = R n × H p where we assume that n ≥ 4k, p ≥ 4r. Consider ã = 2 √ 3 -3, B ⋆ Σ and (ν * 1 , ν * 2 ) from Theorem 7 with k 1 = k and k 2 = r. Then, with (z 1 , z 2 ) w := w 1 z 1 1 + w 2 z 2 * , we have: w * ∈ arg max w δ nec Σ ( • w ) (78) if and only if w * = (w * 1 , w * 2 ) where w * 1 , w * 2 > 0 satisfy w * 2 w * 1 = k r (1/ν * 1 -1). ( 79 
)
Moreover, denoting

w 0 = w 0 (k, r) := (1/ √ k, 1/ √ r) we have B Σ ( • w * ) = B ⋆ Σ ≤ B Σ ( • w0 ) ≤ ( √ 3 -1)/2 δ nec Σ ( • w * ) = (1 + 2B ⋆ Σ ) -1 ≥ δ nec Σ ( • w0 ) ≥ 1/ √ 3. ( 80 
)
Finally, we have inf

k,r≥1 inf n≥4k,p≥4r δ nec Σ ( • w0(k,r) ) = 1/ √ 3. ( 81 
)
Proof See Appendix A.6.

These results for sparsity in levels and beyond show that even with a simple model and parametrized family of functions, optimization might lead to complicated expressions. We also remark that we could perform the optimization because restricting to weighted atomic norms leads to an analytical description of atoms generating the regularizers. This in turn leads to an analytical description of descent cones. The question of optimality within more general sets of atomic norms remains. Unfortunately the lack of analytical description of descent cones in the general case makes the direct extension of our proof technique difficult.

Discussion and future work

We gave a general way of defining compliance measures between a regularizer R and a low dimensional model set Σ, and described some elementary properties of such measures. This opens questions on conditions on compliance measures that guarantee the existence of an optimal convex regularizer. Also, the question of manipulating compliance measures for transformations and combinations of models (intersections, unions, sums, ...) is a wide and challenging potential area of research.

We considered noiseless observations instead of the classical noisy model y = M x 0 + e where e is a measurement noise with finite energy e 2 because of the following remark. Suppose we define an optimal regularizer for a given noise level e 2 . There are two possible cases, either the regularizer is also optimal for e 2 = 0 or it is not. In the second case, it means that we would need to trade exact recovery capability for improved stability to noise. This is a possible route to follow especially if there is some latitude on the design of the measurement operator M , i.e., it is possible to increase measurements to improve stability to noise. The analysis of such trade-offs is out of the scope of this article and left for future work.

We have shown that the ℓ 1 -norm is optimal among coercive continuous convex functions for sparse recovery for compliance measures based on necessary and sufficient RIP conditions. This result had to be expected due to the symmetries of the problem. The important point is that we could explicitly quantify the notion of good regularizer. We obtained the same expected results with the nuclear norm for low-rank matrix recovery.

It must be noted that we did not use constructive proofs (we exhibited the candidate maximum of the compliance measure) for the sparsity and low-rank cases. A full constructive proof, i.e., an exact calculation and optimization of the quantities B Σ (R) and D Σ (R) would be intellectually more satisfying as it would not require the prior knowledge of the candidate optimum, which is our ultimate objective. We saw in the case of sparsity in levels and beyond that we can construct the regularizer that achieved optimality among a simple parametrized family of convex functions (weighted ℓ 1 -norms in levels). It is an open question to obtain more general constructions.

We used compliance measures based on (uniform) RIP recovery guarantees to give results for the sparse recovery case, it would be interesting to do such analysis using (non-uniform) recovery guarantees based on the statistical dimension or on the Gaussian width of the descent cones [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF][START_REF] Amelunxen | Living on the edge: phase transitions in convex programs with random data[END_REF]. One would need to precisely lower and upper bound these quantities, similarly to our approach with the RIP, to get satisfying results.

Finally, while these compliance measures are designed to make sense with respect to known results in the area of sparse recovery, one might design other compliance measures tailored for particular needs, in this search for optimal regularizers.

A Appendices

This section describes the tools and proofs used to obtain our results.

A.1 Summary of properties used in proofs

From [37, Table 1] (which summarizes results from [START_REF] Rockafellar | Convex analysis[END_REF] ), the function x ∈ E(A) → x A is always non-negative, lower semi-continuous and subadditive (i.e., it satisfies the triangle inequality). It is furthermore positively homogeneous as soon as 0 ∈ conv(A), continuous as soon as 0 is in the interior of conv(A), and coercive as soon as conv(A) is bounded. Finally, it is indeed a norm if conv(A) = -conv(A).

We refer the reader to [START_REF] Traonmilin | Stable recovery of low-dimensional cones in hilbert spaces: One rip to rule them all[END_REF][Section 2.2] and [START_REF] Argyriou | Sparse Prediction with the k-Support Norm[END_REF] for properties of the atomic norm • Σ (cf Definition 3). We will use the following two properties of • Σ (defined in Section 2.5).

Fact A1 (From e.g. [START_REF] Traonmilin | Stable recovery of low-dimensional cones in hilbert spaces: One rip to rule them all[END_REF]) For all x ∈ Σ, x Σ = x H .

Fact A2 (From [37][Fact 2.1] applied to • Σ ) For all z ∈ H z Σ = inf λ i u i 2 H : λ i ∈ R + , λ i = 1, u i ∈ Σ, z = λ i u i . (82) 
A.2 Proofs for Section 2

A.2.1 Proof of Lemma 1

Consider x ∈ Σ, and z ∈ H. We have

ι Σ (x + z) ≤ ι Σ (x) = 0 if and only if x + z ∈ Σ, i.e., if there is x ′ ∈ Σ such that z = x ′ -x. Hence, Tι Σ (x) = {γ(x ′ -x) : γ ∈ R, x ′ ∈ Σ}. It follows that Tι Σ (Σ) = {γz : γ ∈ R, z ∈ Σ -Σ} ⊇ Σ -Σ. When Σ is positively homogeneous, for any z = x ′ -x ∈ Σ -Σ and γ ∈ R we have: if γ > 0 then γz = γx ′ -γx ∈ Σ -Σ; if γ < 0 then γz = (-γ)x -(-γ)x ′ ∈ Σ -Σ; if γ = 0 then γz = 0 = x -x ∈ Σ -Σ, hence indeed Tι Σ (Σ) ⊆ Σ -Σ.
Now consider y ∈ Tι Σ (Σ) and write it as y = γ(x 1x 2 ) where x 1 , x 2 ∈ Σ and γ ∈ R. Since Σ ⊆ dom(R) we have max(R(x 1 ), R(x 2 )) < ∞. We will prove that y ∈ T R (Σ). We distinguish two cases:

if R(x 1 ) ≤ R(x 2 ) then R(x 2 + (x 1 -x 2 )) = R(x 1 ) ≤ R(x 2 ) hence y = γ(x 1 -x 2 ) ∈ T R (x 2 ), and as x 2 ∈ Σ it follows that y ∈ T R (Σ); otherwise R(x 2 ) < R(x 1 ) hence R(x 1 + (x 2 -x 1 )) = R(x 2 ) < R(x 1 ) hence y = (-γ)(x 2 -x 1 ) ∈ T R (x 1 ) and therefore y ∈ T R (Σ). ⊓ ⊔ A.2.

Proof of Lemma 4

Given t > R(0), the level set L(R, t) = {y ∈ H : R(y) ≤ t} is nonempty, convex and closed (by convexity and lower semi-continuity of R), and bounded (by coercivity of R). We define A := L(R, t) ∩ Σ = {x ∈ Σ : R(x) ≤ t}.

Consider z ∈ T • A (Σ). If z = 0 then clearly z ∈ T R (Σ). Let us prove that the same holds when z = 0. By definition, there exists γ ∈ R \ {0} and x ∈ Σ such that

x + z/γ A ≤ x A .
On the one hand we have R(0 • x) = R(0) < t. On the other hand, since R is coercive, we have R(λx) → λ→+∞ +∞.

Since R is continuous, by the mean value theorem, there is λ 0 > 0 such that

R(λ 0 x) = t.
Since Σ is a cone, the vector x ′ = λ 0 x belongs to Σ and, since R(x ′ ) = t, by definition of A we have indeed x ′ ∈ A, hence x ′ A ≤ 1. Furthermore, since • A is positively homogeneous (because 0 ∈ conv(A)), we have

x ′ + λ 0 z/γ A = λ 0 x + z/γ A ≤ λ 0 x A = x ′ A .
We now observe that, on the one hand, the level set L( • A , 1) = conv(A) is the smallest closed convex set containing A; on the other hand A ⊂ L(R, t) and L(R, t) is convex and closed. Thus L( • A , 1) ⊂ L(R, t) and the fact that

x ′ + λ 0 z/γ A ≤ x ′ A ≤ 1 therefore implies R(x ′ + λ 0 z/γ) ≤ t = R(x ′ ). ( 83 
)
This shows that z ∈ T R (Σ) and establishes that

T • A (Σ) ⊆ T R (Σ).
Let us now prove that • A is continuous, convex, coercive and positively homogeneous. First, from the property of gauges (see Appendix A.1), • A is always convex and lower semi-continuous. Second, since R is coercive, its level sets are bounded, hence conv(A) is bounded and • A is coercive. Finally, as R(0) < t and R is continuous, 0 is in the interior of L(R, t). There exists ǫ > 0 such that an open ball O of radius ǫ centered on 0 is included in L(R, t). This implies O∩Σ ⊂ L(R, t)∩Σ = A which in turns imply conv(O∩Σ)

⊂ conv(A) ⊂ conv(A). Remark that E(O ∩ Σ) = E(Σ) = H. Now we need to find O ′ an open ball of radius ǫ ′ such that O ′ ⊂ conv(O ∩ Σ).
In each orthant Ωr, we can find a normalized basis E = (e i ) ∈ Σ such that Ωr ⊂ E(E). We define the norm i µ i e i E = µ i . This norm is equivalent to • H . This implies there is a constant cr depending on the orthant Ωr, such that for x = i µ i e i ∈ O ′ ∩ Ωr, max i µ i < crǫ ′ . This implies

x = t i µ i j µ j ǫe i ( 84 
)
with t = j µ j ǫ ≤ ncr ǫ ′ ǫ . Taking ǫ ′ < ǫ/(ncr) implies t < 1 and x ∈ conv(O ∩ Σ). As there is a finite number of orthants we can chose ǫ ′ such that we always have

x ∈ O ′ implies x ∈ conv(O ∩ Σ). ⊓ ⊔ A.3 Proofs for Section 3.1 Proof (Proof of Lemma 6) Denote α = inf x∈(Σ-Σ)∩S(1) M x 2 2 and β = sup x∈(Σ-Σ)∩S(1) M x 2 2 , so that γ(M ) = β/α. Since Σ is a cone, we have for every x ∈ Σ -Σ, α x 2 H ≤ M x 2 2 ≤ β x 2 H = γ(M )α x 2 H , (85) 
Multiplying x in (85) by any λ > 0, we have

λ 2 α x 2 H ≤ λM x 2 2 ≤ λ 2 γ(M )α x 2 H .
We look for λ > 0, δ = 1 such that λM satisfies a symmetric RIP with constant δ, i.e.,

λ 2 α = 1 -δ and λ 2 γ(M )α = 1 + δ.
Adding these two equalities yields

λ 2 α(1 + γ(M )) = 1, hence λ 2 = 1 α(1+γ(M )) . Dividing them yields 1 -δ 1 + δ = γ(M ) ⇐⇒ δ = γ(M ) -1 γ(M ) + 1 .
We have shown that for any M , there exists λ > 0 such that

δ(λM ) ≤ γ(M ) -1 γ(M ) + 1 .
Remark that the value of λ that makes the RIP bounds symmetrical is unique, and that no better symmetrical RIP bound can be obtained, otherwise we could construct a better restricted conditioning (which is impossible by definition of γ(M )). We deduce 

δ(λM ) = γ(M ) -1 γ(M ) + 1 . ⊓ ⊔
M :ker M ∩T ={0} γ Σ (M ) = inf N∈P:dim ker N=1,ker N∩T ={0} γ Σ (N ). ( 86 
)
Proof The infimum on the r.h.s. of ( 86) is over a more constrained set than on the l.h.s., hence inf

M :ker M ∩T ={0} γ Σ (M ) ≤ inf N∈P:dim ker N=1,ker M ∩T ={0} γ Σ (N ).
If the l.h.s. is infinite, then the right-hand side must also be infinite, and we are done. Assume that the l.h.s. is finite. We now prove the reverse inequality. For this, consider M a linear operator with ker M ∩ T = {0} and γ Σ (M ) < ∞. There exists a nonzero vector t ∈ ker M ∩ T . We build an operator N ∈ P such that ker N = span(t) and with γ Σ (N ) arbitrarily close to γ Σ (M ).

Since γ Σ (M ) < ∞, M is nonzero hence a singular value decomposition allows writing

M = r i=1 σ i u i v H i
where (u i ) r i=1 and (v i ) r i=1 are orthonormal families and min 1≤i≤r σ i > 0. First we deal with the case where dim ker M = 1. We set

N = r i=1 σ i v i v H i so that N ∈ P and dim ker N = 1 too. Since N x 2 2 = r i=1 σ 2 i v i , x 2 = M x 2
2 for any vector x we have γ(N ) = γ(M ), and we are done. Assume now that k := dim ker M ≥ 2. Observe that span(t) ⊂ ker M and let (e 1 , . . . , e k-1 ) be an orthonormal basis of the orthogonal complement of span(t) in ker M , so that (v 1 , . . . , vr, e 1 , . . . , e k-1 ) is an orthonormal family. For each ǫ > 0, define Nǫ =

r i=1 σ i v i v H i + ǫ k-1 j=1
e j e H j . Again, Nǫ ∈ P and span(t) = ker Nǫ so that dim ker Nǫ = 1, and for each x ∈ H we have

Nǫx 2 2 = r i=1 σ 2 i v i , x 2 + ǫ 2 k-1 j=1 e j , x 2 = M x 2 2 + ǫ 2 k-1 j=1 e j , x 2 , hence M x 2 2 ≤ Nǫx 2 2 ≤ M x 2 2 + ǫ 2 x 2 2 . Since γ Σ (M ) < ∞, we get 0 < inf x∈(Σ-Σ)∩S(1) M x 2 2 ≤ inf x∈(Σ-Σ)∩S(1) Nǫx 2 2 ≤ sup x∈(Σ-Σ)∩S(1) Nǫx 2 2 ≤ sup x∈(Σ-Σ)∩S(1) M x 2 2 + ǫ 2 which implies γ Σ (Nǫ) ≤ sup x∈(Σ-Σ)∩S(1) M x 2 2 + ǫ 2 inf x∈(Σ-Σ)∩S(1) M x 2 2 = γ Σ (M ) + ǫ 2 inf x∈(Σ-Σ)∩S(1) M x 2 2 .
This implies that inf ǫ>0 γ Σ (Nǫ) ≤ γ Σ (M ) as claimed.

⊓ ⊔ Proof (Proof of Lemma 7) We define

G(Σ, E, M ) := sup y∈(Σ-Σ)∩E M y 2 2 inf y∈(Σ-Σ)∩E M y 2 2 . ( 87 
)
For any nonzero M , we have

γ F Σ (M ) = sup x∈(F Σ-F Σ)∩S(1) M x 2 2 inf x∈(F Σ-F Σ)∩S(1) M x 2 2 = sup y∈(Σ-Σ)∩F -1 S(1) M F y 2 2 inf y∈(Σ-Σ)∩F -1 S(1) M F y 2 2 . ( 88 
)
Hence,

A RC F Σ (R • F -1 ) = inf M :ker M ∩T R•F -1 (F Σ) ={0} γ F Σ (M ) = inf M :ker M ∩T R•F -1 (F Σ) ={0} G(Σ, F -1 S(1), M F ). By Lemma 5 with R ′ = R • F -1 , T R•F -1 (F Σ) = T R ′ (F Σ) = F (T R ′ •F (Σ)) = F (T R (Σ)). Also, ker M ∩ T R•F -1 (F Σ) = {0} is equivalent to the existence of z ∈ ker M such that z ′ := F -1 z ∈ T R (Σ), i.e., of z ′ ∈ T R (Σ) such that z := F z ′ ∈ ker M . As a result, inf M :ker M ∩T R•F -1 (F Σ) ={0} γ F Σ (M ) = inf M :F -1 ker M ∩T R (Σ) ={0} G(Σ, F -1 S(1), M F ). ( 89 
)
Rewriting M ′ = M F , we have ker M ′ = F -1 ker M and inf

M :ker M ∩T R•F -1 (F Σ) ={0} γ F Σ (M ) = inf M ′ :ker M ′ ∩T R (Σ) ={0} G(Σ, F -1 S(1), M ′ ) ( 90 
)
which gives the desired result using the fact that F -1 S(1) = S(1) since F is a linear isometry.

⊓ ⊔

A.4 Proofs for Section 3.2

Proof (Proof of Lemma 8) Consider z ∈ H \ {0} and M = I -Πz. For every x ∈ S(1), we have

M x 2 2 = 1 - x, z 2 z 2 H (91) hence γ Σ (M ) = sup x∈(Σ-Σ)∩S(1) M x 2 2 inf x∈(Σ-Σ)∩S(1) M x 2 2 = 1 -inf x∈(Σ-Σ)∩S(1) x,z 2 z 2 H 1 -sup x∈(Σ-Σ)∩S(1)
x,z 2 z 2

H

Case 1: By assumption there is x 0 such that x 0 H = 1 and

Σ ⊆ span(x 0 ). Since Σ = {0} is a cone, it follows that (Σ -Σ) ∩ S(1) = span(x 0 ) ∩ S(1) = {-x 0 , +x 0 } and inf x∈(Σ-Σ)∩S(1)
x, z 2 z 2

H = sup x∈(Σ-Σ)∩S(1)
x, z 2 z 2

H = x 0 , z 2 z 2 H . (92) 
Hence, if z ∈ Σ = span(x 0 ) we have γ Σ (M ) = +∞, otherwise

x 0 ,z 2 z 2 H < 1 and γ Σ (M ) = 1. Thus, if T R (Σ) ⊆ Σ
we have A RIP,nec Σ (R) = +∞, otherwise there is z ∈ T R (Σ) \ Σ, and A RIP,nec Σ (R) = 1. Case 2: Let us show that for any z = 0 there is some x ∈ (Σ -Σ) \ {0} such that x, z = 0. This implies inf x∈(Σ-Σ)∩S [START_REF] Adcock | Generalized sampling: stable reconstructions, inverse problems and compressed sensing over the continuum[END_REF] x,z 2 z 2 H = 0 and yields the result. Indeed, by assumption, given any x 1 ∈ Σ \ {0} there is x 2 ∈ Σ such that x 2 / ∈ span(x 1 ) (hence x 2 = 0). If x 1 , z = 0 we take x = x 1 = x 1λx 2 with λ = 0. Otherwise, with λ = x 2 ,z x 1 ,z we set x = λx 1x 2 . In both cases we have x = 0 and, since Σ is a cone, x ∈ Σ -Σ and λx 1x 2 , z = 0.

⊓ ⊔ Proof (Proof of Lemma 9) Since E ∩ S(1) is compact, for any z there exists x ∈ E ∩ S(1) such that

| x, z | 2 = max ỹ∈E∩S(1) | ỹ, z | 2 . ( 93 
)
Since E is a union of subspaces, it is homogeneous. Thus, as x ∈ E, we have x := x, z x ∈ E. If y ∈ E \ {0}, we have ỹ := y/ y H ∈ E ∩ S(1), z, ỹ ỹ is the orthogonal projection of z on ỹ and

z -y 2 H = z -y H • ỹ 2 H ≥ z -z, ỹ ỹ 2 H = z 2 H -| z, ỹ | 2 (93) ≥ z 2 H -| z, x | 2 (94) Since z -x 2 H = z 2 H -2Re z, x + x 2 H = z 2 H -| z, x | 2 , we conclude z -y 2 H ≥ z -x 2 H (95) and x ∈ P E (z) by definition of P E . If x ′ ∈ P E (z), we have z -x ′ 2 H = z -x 2 H = min y∈E z -y 2 H hence the notation z -P E (z) 2
H is unambiguous. Since x ′ ∈ P E (z), there is equality in the above equation with y = x ′ , hence y H = z, ỹ and

| z, ỹ | 2 = | z, x | 2 , therefore z, y = z, y H ỹ = y H z, ỹ = y 2 H = z, ỹ 2 = z, x 2 = x 2
H . This shows that the notations P E (z) 2 H and z, P E (z) are unambiguous and that P E (z) 2 H = z, P E (z) . We also have z 2 x,z 2 z 2

H = x 2 H + z -x 2 H = x ′ 2 ,
H = P Σ-Σ (z) 2 H z 2 
H , hence we have

(B Σ (R) + 1) -1 = sup z∈T R (Σ)\{0} z -P Σ-Σ (z) 2 H P Σ-Σ (z) 2 H + 1 -1 = inf z∈T R (Σ)\{0} P Σ-Σ (z) 2 H z -P Σ-Σ (z) 2 H + P Σ-Σ (z) 2 H = inf z∈T R (Σ)\{0} P Σ-Σ (z) 2 H z 2 H .
Since Σ is a cone and Σ = span(x) for each x ∈ Σ, by Lemma 8, using [START_REF] Traonmilin | The basins of attraction of the global minimizers of non-convex inverse problems with low-dimensional models in infinite dimension[END_REF] we have

γ nec Σ (R) = 1 1-(1+B Σ (R)) -1 = 1 + 1/B Σ (R) hence δ nec Σ (R) = γ nec Σ (R)-1 γ nec Σ (R)+1 = (2B Σ (R) + 1) -1 . We conclude using that b →= 1/(1 + 2b) is decreasing. ⊓ ⊔

A.4.1 Lemmas for the proof of Theorem 3 (sparse recovery)

We begin by some technical lemmas. We recall that T 2 = T 2 (z) ⊆ {1, . . . , n} denotes a set indexing any 2k largest components (in magnitude) of vector z , while T = T (z) ⊆ {1, . . . , n} will denote a set indexing k largest components (in magnitude). Given an index set

∅ = H ⊆ {1, . . . , n}, Q H is the "cube" of all vectors v ∈ R n such that supp(v) = H and |v i | = 1 for every i ∈ H. The restriction of v to H, v H ∈ R n , is such that (v H ) i = v i , i ∈ H and supp(v H ) ⊆ H. Lemma 13 Let Σ = Σ k . Let • w be a weighted ℓ 1 -norm ( for w = (w i ) n i=1 with w i > 0, x w = w i x 1 ). Let z ∈ T • w (Σ). There is a support H of size ≤ k such that z H c w -z H w = inf x∈Σ { x + z w -x w } ≤ 0, (96) 
i.e., the infimum is achieved at

x * = -z H . Moreover, if • w = • 1 , H = T (z).
Proof The result is trivial for z = 0, so we prove it for z ∈ T

• w (Σ)\{0}. Consider H ∈ arg min T :|T |≤k { z T c w -z T w }. By definition of T • w (Σ), since z ∈ T • w (Σ) \ {0}, there are x ′ ∈ Σ, λ ∈ R \ {0} such that x ′ + λz w ≤ x ′ w .
By homogeneity of Σ, x := x ′ /λ ∈ Σ and x + z w ≤ x w . This shows that inf x∈Σ { x + z wx w } ≤ 0 as claimed. For any such x ∈ Σ, consider T = supp(x).

By the reverse triangle inequality |x

i + z i | -|x i | ≥ -|z i |, we have x + z T w -x w = i∈T w i (|x i + z i | -|x i |) ≥ - i∈T w i |z i | = -z T w (97) Hence x + z w -x w = x + z T w + z T c w -x w ≥ z T c w -z w ≥ z H c w -z H w . If • w = • 1 , let T = T (z) and remark that z H c 1 -z H 1 ≥ z T c 1 -zt 1 ⊓ ⊔
The following Lemma permits to construct and to characterize elements of descent cones.

Lemma 14 Assume that R and Σ are positively homogeneous. For every v 0 ∈ Σ such that R(v 0 ) > 0 and any v 1 ∈ H, we have that z := v 1αv 0 ∈ T R (Σ) where α = max(R(v 1 )/R(v 0 ), 1). If, in addition, Σ is homogeneous and R is even, we have conversely that any z ∈ T R (Σ) can be written as

z = v 1 -v 0 where v 0 ∈ Σ, v 1 ∈ H, and R(v 1 ) ≤ R(v 0 ).
Proof Since Σ is positively homogeneous, x := αv 0 ∈ Σ, and R(x+z

) = R(αv 0 +z) = R(v 1 ). If R(v 1 ) > R(v 0 ) then α > 1 and R(x+z) = R(v 1 ) = αR(v 0 ) = R(αv 0 ) = R(x). Otherwise, α = 1 and R(x+z) = R(v 1 ) ≤ R(v 0 ) = R(x).
In both cases we obtain that z ∈ T R (x) ⊆ T R (Σ).

Regarding the second claim, when z ∈ T R (Σ), by definition there exists x ∈ Σ, u ∈ H and γ ∈ R such that z = γu where R(x + u) ≤ R(x). Denote v 0 := γx and v 1 := v 0 + z. Since Σ is homogeneous, we have v 0 ∈ Σ. Since R is even and positively homogeneous, R(v 1 ) = R(γx

+ γu) = |γ|R(x + u) ≤ |γ|R(x) = R(γx) = R(v 0 ). ⊓ ⊔
The next lemma permits to compare B s Σ (R) with B s Σ ( • 1 ) (see definition in (56)) which was calculated in [START_REF] Davies | Restricted isometry constants where ℓ p sparse recovery can fail for 0 < p ≤ 1. Information Theory[END_REF] to characterize the necessary RIP condition for sparse recovery.

Lemma 15 Let Σ = Σ k be the set of k-sparse vectors in R n with k < n/2 and 1 ≤ L ≤ n -2k. Assume that R is positively homogeneous, subadditive, and nonzero.

Consider

(H 0 , v 0 ) ∈ arg max H⊆{1,...,n}: |H|=k v∈Q H R(v) (98) (H 1 , v 1 ) ∈ arg min H⊆{1,...,n}\H 0 ,|H|=k+L v∈Q H R(v). ( 99 
)
1. We have R(v 0 ) > 0, and for any H of size k ′ ≥ k and any v ∈ Q H , we have

R(v) ≤ k ′ k R(v 0 ). ( 100 
) If R = R ⋆ = • 1 then we have indeed equality R ⋆ (v) = k ′ k R ⋆ (v 0 ). 2. We have B 2k+L Σ (R) := sup z∈T R (Σ)\{0}:|supp(z)|=2k+L z T c 2 2 2 z T 2 2 2 ≥ L k max R(v 1 ) R(v 0 ) 2 , 1 + 1 ≥ L k L k + 1 2 + 1 . ( 101 
)
Proof As a preliminary observe that if

R ⋆ = • 1 then R ⋆ (v) = |H| for any H, v ∈ Q H , hence H 0 , H 1 
can be any pair of disjoint sets of respective sizes k, k + L, and v i ∈ Q H i can be arbitrary, for example

v i = 1 H i . This yields R ⋆ (v 0 ) = k, R ⋆ (v 1 ) = k + L, hence R ⋆ (v 1 ) = (1 + L/k)R ⋆ (v 0 ).
To prove the first claim, consider

{G i } 1≤i≤ k ′ k the collection of all subsets G i ⊆ H of size exactly k. Since v ∈ Q H , we have v G i ∈ Q G i for each i. Also, since |G i | = k for every i, by definition of H 0 , v 0 we obtain max i R(v G i ) ≤ R(v 0 ). Notice that given a coordinate j ∈ H, there are k ′ -1 k-1 sets G i such that j ∈ G i . With λ := 1 k ′ -1 k-1
we get v = λ i v G i hence by positive homogeneity and subadditivity of R (which imply convexity)

R(v) = R(λ k ′ k i=1 v G i ) ≤ k ′ k i=1 R(λv G i ) = λ k ′ k i R(v G i ) ≤ k ′ k k ′ -1 k-1 R(v 0 ) = k ′ k R(v 0 ). (102) 
This establishes (100

). With R = R ⋆ , we have R ⋆ (v) = v 1 = k ′ for v ∈ Q H , hence R ⋆ (v) = (k ′ /k)R ⋆ (v 0 ) as claimed.
For the sake of contradiction, assume that R(v 0 ) ≤ 0. As we have just proved, this implies

R(v) ≤ (n/k)R(v 0 ) ≤ 0 for every v ∈ {-1, +1} n = Q H with H = {1, . . . , n}. By convexity of R it follows that R(v) ≤ 0 for each v ∈ [-1, 1] n = conv(Q H ),

and by positive homogeneity,

R(v) ≤ 0, ∀v ∈ H. ( 103 
)
Positive homogeneity and subadditivity also imply

0 = 0 • R(v 0 ) = R(0 • v 0 ) = R(0) = R(-v + v) ≤ R(-v) + R(v) (103) ≤ R(-v)
for every v ∈ H, hence R(v) = 0 on H, which yields the desired contradiction since we assume that R is nonzero.

Regarding the second claim, since 2k + L ≤ n there is indeed some

H of size k + L such that H ∩ H 0 = ∅, hence H 1 is well defined. By construction, H 1 ∩ H 0 = ∅. Since R(v 0 ) > 0, R is positively homogeneous and Σ is homogeneous, by Lemma 14, z = -αv 0 + v 1 ∈ T R (Σ) with α := max(R(v 1 )/R(v 0 ), 1). Observe that |supp(z)| = |H 0 | + |H 1 | = 2k + L. Since α ≥ 1
and all nonzero entries of v 0 , v 1 have magnitude one, a set of 2k largest components of z is T 2 = H 0 ∪ T ′ 1 with T ′ 1 any subset of H 1 with k components, and we obtain (101). once we observe that

z T c 2 2 2 z T 2 2 2 = L kα 2 + k = L/k α 2 + 1 .

⊓ ⊔

Lemma 16 Consider c∞, c 1 > 0, an integer n ≥ 2, and the optimization problem

sup x∈R n + : x ∞≤c∞; x 1 ≤c 1 x 2 2 . ( 104 
)
If c 1 ≥ c∞ then there exists 1 ≤ L ≤ n -1 and 0 ≤ θ ≤ 1 such that

x * := c∞(1, . . . , 1 L≥1 , θ, 0, . . . , 0 n-(L+1)≥0
) is a maximizer. Otherwise, a maximizer is x * = (c 1 , 0, . . . , 0).

Proof Standard compactness arguments show the existence of a maximizer x * . We distinguish two cases:

• If x * ∞ < c∞ then x * is indeed a maximizer of the Euclidean norm under an ℓ 1 constraint, hence x * is a Dirac: without loss of generality, x * = (c 1 , 0, . . . , 0) so that c 1 = x * ∞ < c∞. • Otherwise x * ∞ = c∞, in which case we show that all entries of x * , except at most one, are either zero or equal to c∞. For the sake of contradiction, assume that x * contains two distinct entries with values 0 < a < b < c∞, then for small enough t > 0, replacing these entries with 0 < at < b + t < c∞ and keeping all other entries unchanged would lead to a vector x satisfying

x ∞ = x * ∞ = c∞, x 1 = x * 1 . However, since x 2 2 -x * 2 2 = (a -t) 2 + (b + t) 2 -(a 2 + b 2 ) = 2t 2 + 2(b -a)t > 0.
Since x * has optimal objective value, this yields the desired contradiction. Since the objective value and the constraints are invariant to index permutations, there is thus a maximizer with the claimed shape, and we have

c 1 ≥ x * 1 ≥ x * ∞ = c∞.
The two cases respectively correspond to c 1 < c∞ or c 1 ≥ c∞, which are mutually exclusive, hence the conclusion.

⊓ ⊔ Lemma 17 ([17]) Consider Σ = Σ k ⊆ R n . We have

B Σ ( • 1 ) = max 1≤L≤n-2k L k L k + 1 2 + 1 . ( 105 
)
Proof With B s Σ (R) defined in (56), and recalling the expression (53) of B Σ (R), we have

B Σ ( • 1 ) = max 1≤L≤n-2k B 2k+L Σ ( • 1 )
By Lemma 15,

R ⋆ (v 1 ) R ⋆ (v 0 ) = (L/k) + 1 > 1 and B 2k+L Σ ( • 1 ) ≥ L k R ⋆ (v 1 ) R ⋆ (v 0 ) 2 +1 = L k ( L k +1) 2 +1
. This implies

B Σ ( • 1 ) ≥ max 1≤L≤n-2k L k L k + 1 2 + 1 , (106) 
and there only remains to show there is indeed equality. We isolate this result from [START_REF] Davies | Restricted isometry constants where ℓ p sparse recovery can fail for 0 < p ≤ 1. Information Theory[END_REF] for completeness. This will also help understand the case of sparsity in levels in Appendix A. [START_REF] Bastounis | On random and deterministic compressed sensing and the restricted isometry property in levels[END_REF].

First, we show we can restrict the maximization used to express B Σ ( • 1 ) (cf (53)) over vectors z having constant amplitude α > 0 on T (z).

Indeed, consider z = 0 such that z ∈ T Σ k ( • 1 ). By Lemma 13, we have z T c 1 ≤ z T 1 with T = T (z) a set of k indices of components of largest magnitude of z. Assume that there are i = j in T such that |z i | = |z j |. Let y such that y l = z l for l / ∈ {i, j} and y i = y j = (|z i | + |z j |)/2. The set T remains a support of the k largest amplitudes in y, and T 2 = T 2 (z) remains a support of the 2k largest amplitudes in y. Moreover, we have

y T 1 = z T 1 ≥ z T c 1 = y T c 1 = -y T + y 1 hence we have y ∈ T Σ k ( • 1 ). Since y T 2 2 2 -z T 2 2 2 = y T 2 2 -z T 2 2 = 2[(|z i | + |z j |)/2] 2 -|z i | 2 -|z j | 2 = -(|z i | -|z j |) 2 /2 < 0 and y T c 2 2 2 = z T c 2 2 2 we have y T c 2 2 2 / y T 2 2 2 > z T c 2 2 2 / z T 2 2 2 .
Second, the same reasoning on T ′ = T 2 \ T , shows that we can further restrict the maximization used to define B Σ ( • 1 ) to vectors having constant amplitude 0 ≤ β ≤ α over T ′ . This leads to

B Σ ( • 1 ) = sup z =0: z T c 1 ≤ z T 1 z T c 2 2 2 z T 2 2 2 = sup α,β:α≥β>0 sup x∈R n-2k : x ∞≤β, x 1 ≤k(α-β) x 2 2 k(α 2 + β 2 ) . ( 107 
)
Using Lemma 16, the supremum with respect to x is reached with vectors with the shape (β, . . . , β L , θ, 0, . . . , 0

n-2k-(L+1)≥0
) with 0 ≤ θ ≤ β and 0 ≤ L ≤ n -2k -1. We deduce 

B Σ ( • 1 ) = sup α,β:α≥β>0 sup L,θ:0≤L≤n-2k-1,0≤θ≤β θ≤kα-(k+L)β Lβ 2 + θ 2 k(α 2 + β 2 ) = max 0≤L≤n-2k-1 sup α,β:α≥β>0 sup θ:0≤θ≤β θ≤kα-(k+L)β Lβ 2 + θ 2 k(α 2 + β 2 ) (108) When 0 ≤ β ≤ kα -(k + L)β we have sup θ:0≤θ≤β,θ≤kα-(k+L)β Lβ 2 + θ 2 k(α 2 + β 2 ) = (L + 1)β 2 k(α 2 + β 2 ) (109) while when β ≥ kα -(k + L)β ≥ 0 we have sup θ:0≤θ≤β,θ≤kα-(k+L)β Lβ 2 + θ 2 k(α 2 + β 2 ) = Lβ 2 + (kα -(k + L)β) 2 k(α 2 + β 2 ) . (110) 
Lβ 2 + θ 2 k(α 2 + β 2 ) = (L + 1)β 2 k(α 2 + β 2 ) = (L + 1)/k (α/β) 2 + 1 ≤ (L + 1)/k [1 + (L + 1)/k] 2 + 1 . ( 111 
)
On the other hand, when 0 

< β ≤ α satisfies β ≥ kα -(k + L)β ≥ 0 we have (1 + (L + 1)/k))β ≥ α ≥ (1 + L/k)β
Lβ 2 + θ 2 k(α 2 + β 2 ) = Lβ 2 + (kα -(k + L)β) 2 k(α 2 + β 2 ) = L/k + k[α/β -(1 + L/k)] 2 (α/β) 2 + 1 = g(α/β-(1+L/k)).
(112) A simple function study shows that g ′ (t) is positively proportional to a second degree polynomial P (t) with positive leading coefficient and such that P (0) < 0. It follows that there is t 0 > 0 such that g ′ (t) ≤ 0 for 0 ≤ t ≤ t 0 and g ′ (t) ≥ 0 for t ≥ t 0 . Hence, g is decreasing on [0, t 0 ] and increasing on [t 0 , +∞), so that

g(α/β -(1 + L/k)) ≤ sup 0≤t≤1/k g(t) = max (g(0), g(1/k)) = max L/k (1 + L/k) 2 + 1 , (L + 1)/k (1 + (L + 1)/k) 2 + 1 .
As all the above bounds also hold if β = 0, we obtain the claimed result. ⊓ ⊔

Remark 4

The maximum value of

L/k ((k+L)/k) 2 +1 (with respect to L) is reached for L/k maximizing f (u) = u/((u + 1) 2 + 1) (which is maximized at √ 2 over R).
We verify that it matches the necessary RIP condition 1

√ 2 from [17], f ( √ 2) = 2 √ 2/(2 + √ 2) which gives γ Σ ( • 1 ) = (4 + 3 √ 2)/ √ 2 = √ 2+1 √ 2-1
.

A.4.2 Lemmas for the proof of Theorem 4

Given a matrix U , we denote U k:l the restriction of U to its rows k, . . . , l. We denote O(n) the orthogonal group. Given a symmetric matrix z, we write eig(z) the vector of eigenvalues ordered decreasingly with respect to their absolute value. Given a vector x of size n, we write diag(x) the diagonal matrix with diagonal equal to x. To match the notations for the case of sparsity, given a matrix z = U T diag(w)U , we write z H = U T diag(w H )U and Q H as in the previous section. We denote T = {1, .., r} and T 2 = {1, .., 2r}. We denote • F the Frobenius norm.

Using the same demonstration as Lemma 13 we characterize the descent cones of the nuclear norm.

Lemma 18 Let Σ = Σr. Let • w be a weighted nuclear-norm. Let z ∈ T • w (Σ). There is a support H of size ≤ r such that z H c w -z H w = inf x∈Σ { x + z w -x w } ≤ 0, (113) 
i.e., the infimum is achieved at

x * = -z H . Moreover, if • w = • * , H = T (z).
Lemma 19 Let Σ = Σr be the set of n × n symmetric matrices with rank at most r with r < n/2, and 1 ≤ L ≤ n -2r. Assume R is positively homogeneous, subadditive and nonzero. Consider the supports H 0 = {1, 2, .., r} and H 1 = {r + 1, . . . , 2r + L}.

(U 0 , v 0 ) ∈ arg max U ∈O(n),v∈Q H 0 U T diag(v)U A , ( 114 
) (U 1 , v 1 ) ∈ arg min U ∈O(n),v∈Q H 1 : U 0,1:r U T r+1:2r+L =0 U T diag(v)U A . ( 115 
)
1. We have R(U T 0 v 0 U 0 ) > 0, and for any

H of size r ′ ≥ r, V ∈ O(n) and w ∈ Q H , we have R(V T diag(w)V ) ≤ r ′ r R(U T 0 v 0 U 0 ). ( 116 
) If R = R ⋆ = • * then we have indeed equality R(V T diag(w)V ) = r ′ r R(U T 0 v 0 U 0 ). 2. We have B L+2r Σ (R) := sup z∈T • A (Σ)\{0}:|supp(eig(z))|=2r+L z T c 2 2 F z T 2 2 F ≥ L r max R(U T 1 diag(v 1 )U 1 ) R(U T 0 diag(v 0 )U 0 ) , 1 2 + 1 ≥ L r L r + 1 2 + 1 . (117) Proof As a preliminary observe that if R ⋆ = • * then R ⋆ (V T wV ) = |H| for any H, w ∈ Q H , V ∈ O(n), hence w i ∈ Q H i can be arbitrary, for example w i = 1 H i . This yields R ⋆ (U T 0 diag(v 0 )U 0 ) = r, R ⋆ (U T 1 diag(v 1 )U 1 ) = r+L, hence R ⋆ (U T 1 diag(v 1 )U 1 ) = (1 + L/r)R ⋆ ((U T 0 diag(v 0 )U 0 ). To prove the first claim, consider {G i } 1≤i≤ r ′ r
the collection of all subsets G i ⊆ H of size exactly r.

Since w ∈ Q H , we have w G i ∈ Q G i for each i. Also, since |G i | = r for every i, by definition of H 0 , v 0 and remarking that the maximization over O(n) permits to consider any permutation of the support, we obtain

max i R(V T diag(v G i )V ) ≤ R(U T 0 diag(v 0 )U 0 ). Notice that given a coordinate j ∈ H, there are r ′ -1 r-1 sets G i such that j ∈ G i . With λ := 1 r ′ -1 r-1 , we get V T diag(w)V = V T λ i diag(w G i )V
hence by positive homogeneity and subadditivity of R (which imply convexity)

R(V T wV ) = R(λV T r ′ r i=1 diag(w G i )V ) ≤ r ′ r i=1 R(V T λdiag(w G i )V ) = λ r ′ r i R(V T diag(w G i )V ) ≤ r ′ r r ′ -1 r-1 R(U T 0 diag(v 0 )U 0 ) = r ′ r R(U T 0 diag(v 0 )U 0 ). ( 118 
)
This establishes (116

). With R = R ⋆ , we have R ⋆ (V T diag(w)V ) = w 1 = r ′ for w ∈ Q H , hence R ⋆ (V T diag(w)V ) = (r ′ /r)R ⋆ (U T 0 diag(v 0 )U 0 ) as claimed.
For the sake of contradiction, assume that R(U T 0 diag(v 0 )U 0 ) ≤ 0. As we have just proved, this implies

R(V T diag(w)V ) ≤ (n/k)R(U T 0 diag(v 0 )U 0 ) ≤ 0 for every w ∈ {-1, +1} n = Q H with H = {1, . . . , n} and V ∈ O(n). By convexity of R it follows that R(V T diag(w)V ) ≤ 0 for each w ∈ [-1, 1] n = conv(Q H ), and by positive homogeneity, R(V T diag(w)V ) ≤ 0, ∀w ∈ R n . ( 119 
)
Positive homogeneity and subadditivity also imply

0 = 0 • R(U T 0 diag(v 0 )U 0 ) = R(0 • U T 0 diag(v 0 )U 0 ) = R(0) = R(-V T diag(w)V + V T diag(w)V ) ≤ R(-V T diag(w)V ) + R(V T diag(w)V ) (119) ≤ R(-V T diag(w)V )
for every V T diag(w)V ∈ H, hence R(V T diag(w)V ) = 0 on H, which yields the desired contradiction since we assume that R is nonzero.

Regarding the second claim, since 2r + L ≤ n, by construction,

H 1 ∩ H 0 = ∅. Since R(U T 0 diag(v 0 )U 0 ) > 0, R is positively homogeneous and Σ is homogeneous, by Lemma 14, z = -αU T 0 diag(v 0 )U 0 + U T 1 diag(v 1 )U 1 ∈ T R (Σ) with α := max(R(U T 1 diag(v 1 )U 1 )/R(U T 0 diag(v 0 )U 0 ), 1). Observe that |supp(eig(z))| = |H 0 | + |H 1 | = 2r + L. Since α ≥ 1
and all nonzero entries of v 0 , v 1 have magnitude one, a set of the 2r largest components of eig(z) is

T 2 = H 0 ∪ T ′ 1 with T ′
1 any subset of H 1 with k components, and we obtain (117). once we observe that

z T c 2 2 2 z T 2 2 2 = L rα 2 + r = L/r α 2 + 1 . ( 120 
) ⊓ ⊔ Lemma 20 Let Σ = Σr. Then B Σ ( • * ) = max 0≤L≤n-2r L r L r + 1 2 + 1 . ( 121 
) Proof We have z ∈ T • * (Σr) is equivalent to z T c 2 * + z T ′ * ≤ z T * where T ′ = supp(z)\(T c 2 ∪T ) (Lemma 18). Hence, B L+2r Σ ( • * ) = sup z: z T c 2 * + z T ′ * ≤ z T * z T c 2 2 F z T 2 2 F . ( 122 
)
Using the fact that z * = eig(z) 1 and z F = eig(z) 2 , we fall on the expression of B L+2r Σ ( • 1 ) and get the result using Lemma 17.

⊓ ⊔

A.5 Proofs for Section 3.3

Proof (Proof of Lemma 10) The constant δ suff Σ (R) [START_REF] Traonmilin | Stable recovery of low-dimensional cones in hilbert spaces: One rip to rule them all[END_REF][Eq. ( 5)] has the following expression:

δ suff Σ (R) = inf z∈T R (Σ)\{0} sup x∈Σ -Re x, z x H x + z 2 Σ -x 2 H -2Re x, z . (123) 
Considering any nonzero z ∈ H, since Σ is a union of subspaces and Σ ∩ S( 1) is compact, by Lemma 9 the set P Σ (z) is not empty and P Σ (z), z = P Σ (z) 2 H is unambiguous. Choosing an arbitrary y ∈ P Σ (z) and setting x = -y, we obtain

sup x∈Σ -Re x, z x H x + z 2 Σ -x 2 H -2Re x, z ≥ P Σ (z) 2 H P Σ (z) H z -P Σ (z) 2 Σ -P Σ (z) 2 H + 2 P Σ (z) 2 H = 1 sup z∈T R (Σ)\{0} z-P Σ (z) 2 Σ P Σ (z) 2 H + 1
.

Considering the infimum over z ∈ T R (Σ) \ {0} yields the first claim. Let us now proceed to the second claim. Given z ∈ T R (Σ) \ {0}, consider an arbitrary x ∈ Σ, and

V ∈ V such that x ∈ V . With Fact A2, for every v ∈ H, v 2 Σ is the infimum of i λ i u i 2 H over convex decompositions v = i λ i u i over Σ, hence there exists u i ∈ Σ, λ i ≥ 0 such that i λ i = 1, i λ i u i = x + z and x + z 2 Σ = i λ i u i 2 H .
Since V ⊂ Σ, u i,V := P V u i ∈ Σ. By the additional assumption, since u i ∈ Σ we also have and u i,V ⊥ := P V ⊥ u i ∈ Σ for each i. Observe also that P V ⊥ x = 0. Hence, with the notations z V = P V z, z V ⊥ = P V ⊥ z, we have the convex decompositions

z V ⊥ = P V ⊥ (x + z) = λ i u i,V ⊥ x + z V = P V (x + z) = λ i u i,V .
Using Jensen's inequality for the convex functions

• 2 Σ and • 2 H and the identity v 2 Σ = v 2 H for v ∈ Σ (Fact A1), we have z V ⊥ 2 Σ + x + z V 2 H ≤ i λ i u i,V ⊥ 2 Σ + i λ i u i,V 2 
H = i λ i u i,V ⊥ 2 H + i λ i u i,V 2 
H = i λ i u i 2 H = x + z 2 Σ .
Since P V is the (linear and self-adjoint) orthogonal projection onto V , we have Re x, z V = Re x, P V z = Re P V x, z = Re x, z , and we obtain

z V ⊥ 2 Σ + z V 2 H ≤ x + z 2 Σ -x + z V 2 H + z V 2 H z V ⊥ 2 Σ + z V 2 H ≤ x + z 2 Σ -x 2 H -2Re x, z V z V ⊥ 2 Σ + z V 2 H ≤ x + z 2 Σ -x 2 H -2Re x, z . (124) 
Using Cauchy-Schwarz inequality, we have (Re( x, z

) 2 = (Re( x, z V ) 2 ≤ x 2 H z V 2 H . Denoting V 0 such that P V 0 (z) ∈ P Σ (z), we get (Re x, z ) 2 z V ⊥ 2 Σ + z V 2 H ≤ x 2 H z V 2 H x + z 2 Σ -x 2 H -2Re x, z (Re x, z ) 2 x 2 H x + z 2 Σ -x 2 H -2Re x, z ≤ z V 2 H z V ⊥ 2 Σ + z V 2 H = 1 z V ⊥ 2 Σ z V 2 H + 1 ≤ 1 z-P V z 2 Σ P Σ (z) 2 H + 1
, where the last inequality (we could use here the weaker alternative assumption P Σ (z)∩arg min x∈Σ x-z Σ / x H = ∅) uses that z V ⊥ = z -P V z and

P V 0 z H = P Σ (z) H ≥ P V (z) H = z V H .
To conclude, we use the additional hypothesis

P Σ (z) ⊆ arg min x∈Σ x -z Σ , which implies z -P Σ (z) Σ ≤ z -P V z Σ since P V z ∈ Σ sup x∈Σ -Re x, z x H x + z 2 Σ -x 2 H -2Re x, z ≤ 1 sup z∈T R (Σ)\{0} z-P Σ (z) 2 Σ P Σ (z) 2 H + 1
.

⊓ ⊔

To replicate the proof used in the necessary case, we show a monotony property of • Σ .

Lemma 

:= sup v H ≤1 Dv H ≤ 1 then Dv Σ ≤ v Σ , ∀v ∈ H. ( 125 
) Proof Let λ i , u i such that u i ∈ Σ, i λ i = 1, i λ i u i = v. Denoting u ′ i = Du i we have u ′ i ∈ Σ and Dv = λ i u ′ i
. By Jensen's inequality and the fact that u Σ = u H for any u ∈ Σ (Fact A1), it follows that 

Dv 2 Σ ≤ λ i u ′ i 2 Σ = λ i u ′ i 2 H = λ i Du i 2 H ≤ λ i u i 2 H . ( 
z T Σ = z T k Σ (127) min |T |≤k z -z T Σ = z -z T k Σ . ( 128 
)
Proof We show the three properties separately.

-Property 1: Let π be a permutation of (1, . . . , n) and ǫ 1 , . . . , ǫn ∈ {±1}. Define D by (Du) i = ǫ i u π(i) .

Observe that DΣ k ⊆ Σ k and D op = 1. Conclude using Lemma 21 that Du Σ ≤ u Σ for any u ∈ H. The same holds with

D ′ = D -1 , hence u Σ = D -1 Du Σ ≤ Du Σ for any u. This shows D • Σ = • Σ .
-Property 2: Given the assumptions on v, v ′ , the linear operator defined by (Du

) i = v i u i /v ′ i if v ′ i = 0 (and (Du) i = 0 otherwise) satisfies DΣ ⊆ Σ and D op ≤ 1 hence, using Lemma 21 again, v Σ = Dv ′ Σ ≤ v ′ Σ .
-Property 3: By the invariance by permutation and coordinate sign changes of • Σ , it is sufficient to prove the result when z 1 ≥ . . . ≥ zn ≥ 0 and T k = {1, . . . , k}. Given T of size k, there is a permutation φ of (1, . . . , n) such that T = {φ(1), . . . , φ(k)} where φ(1) < . . . < φ(k). It follows that z φ(i) ≤ z i for 1 ≤ i ≤ k.

Hence by Property 2, we have z T Σ = (z φ(1) , . . . , z φ(k) , 0, . . . , 0) Σ ≤ (z 1 , . . . , z k , 0, . . . , 0

) Σ = z T k Σ . A similar argument using T c yields z -z T Σ ≥ z -z T k Σ . ⊓ ⊔
Corollary 6 With Σ := Σr the set of matrices of rank lower than r in H the set of symmetric matrices in R n×n , we have: 1. for any matrices Proof We show the two properties separately.

V T diag(w)V, V T diag(w ′ )V with V ∈ O(n) such that |w j | ≤ |w ′ j | for all j we have V T diag(w)V Σ ≤ V T diag(w ′ )V Σ ; 2.
-Property 1: Given the assumptions on w, w ′ , the linear operator defined by Dz = V T W V z where W is the diagonal matrix such that W ii = w i /w ′ i if w ′ i = 0 (and W ii = 0 otherwise) satisfies DΣ ⊆ Σ and

D op ≤ 1. We have D(V T diag(w ′ )V ) = V T W w ′ V = V T wV . With Lemma 21, we get V T diag(w)V Σ = D(V T diag(w ′ )V ) Σ ≤ V T diag(w ′ )V Σ .
-Property 2: This property is direct using the eigenvalue decomposition

z = U T diag(eig(z))U T = U T diag(eig(z) T + eig(z) T c )U T
and Property 1.

⊓ ⊔

We now prove Lemma 11.

Proof (Proof of Lemma 11) Consider first Σ = Σ k . First, the properties of • Σ established in Corollary 5 directly show that the minimum of xz Σ with respect to x ∈ Σ is reached at any x ∈ P Σ (z). Then, we can write Σ = ∪ V ∈V V where V ∈ V if, and only if there is an index set T ⊆ {1, . . . , n} such that |T | ≤ k and

V = span(e i ) i∈T . Given V ∈ V and u ∈ Σ k , let us show that P V ⊥ u ∈ Σ k . Writing V = span(e i ) i∈T where |T | ≤ k, we have P V (u) = u T and P V ⊥ (u) = u T c . As supp(u T c ) ⊆ supp(u) it follows that u T c 0 ≤ k, hence P V ⊥ (u) ∈ Σ k .
In the case of low rank matrices Σ = Σr. We take

V = {span(U i ) i∈I , |I| ≤ r, U i F = 1, rank(U i ) = 1, U i , U j = 0, i = j} . With Corollary 6, the minimum of x -z Σ with respect to x ∈ Σ is reached at any x ∈ P Σ (z). Let z ∈ Σr and V ∈ V. We have P V (z) = V T 1 S 1 V 1 has rank r ′ lower than r. We can write z = V T 1 S 1 V 1 + V T 2 S 2 V 2 with V 1 V T 2 = 0.
Hence, P V ⊥ (z) has rank at most rr ′ ≤ r and P V ⊥ (z) ∈ Σr otherwise z would be of rank greater than r.

⊓ ⊔

We need the following Lemma to control • Σ .

Lemma 22 Let Σ = Σ k ⊂ R n . Then for any v v 2 Σ ≥ v 2 1 k . ( 131 
) Let Σ = Σr. Then for any v v 2 Σ ≥ v 2 * r . ( 132 
) Proof Case Σ = Σ k : Let λ i ≥ 0, u i ∈ Σ such that v 2 Σ = λ i u i 2 2 and v = λ i u i from Fact A2.
We have, by convexity

v 1 = i λ i u i 1 ≤ i λ i u i 1 . (133) 
Using the fact that

x 1 ≤ √ k x 2 if |supp(x)|
≤ k and the concavity of the square root,

v 1 ≤ √ k i λ i u i 2 ≤ √ k i λ i u i 2 2 = √ k v Σ . (134) 
Case Σ = Σr : Let

λ i ≥ 0, u i ∈ Σ such that v 2 Σ = λ i u i 2 F and v = λ i u i from Fact A2.
We have, by convexity

v 1 = i λ i u i * ≤ i λ i u i * . (135) 
Using the fact that x * ≤ √ r x F if rank(x) ≤ r and the concavity of the square root,

v * ≤ √ k i λ i u i F ≤ √ k i λ i u i 2 F = √ k v Σ . (136) 
⊓ ⊔

A.5.1 Sparsity

We prove several intermediates lemmas to obtain D Σ ( • 1 ).

Lemma 23 Consider Σ = Σ k the set of k-sparse vectors in H = R n , and 0 ≤ L ≥ nk. We have

D k+L Σ ( • 1 ) := sup z∈T • 1 (Σ)\{0}:|supp(z)|=k+L z T c 2 Σ z T 2 2 = min 1, L k . ( 137 
)
Proof It was already proven in [37, Theorem 4.1] that

δ suff Σ ( • 1 ) ≥ 1 √ 2
hence by Lemma 10

sup z∈T • 1 (Σ)\{0} z T c 2 Σ z T 2 2 = D Σ ( • 1 ) ≤ 1. (138) 
Hence,

D k+L Σ ( • 1 ) ≤ 1 Consider H 0 of cardinality k, H 1 of cardinality L such that H 0 ∩ H 1 = ∅ (this is possible as k + L ≤ n), and define z = α1 H 0 + 1 H 1 where α = max(1, L/k). As α ≥ 1, a set of the k largest components of z is T = H 0 . Moreover, z H 0 1 = αk = max(k, L) ≥ L = z H 1 1 = z H c 0 1 . We distinguish two cases: -Case 1: L ≥ k, from Lemma 22, z T c 2 Σ ≥ 1 k z H 1 2 1 = L 2 /k. Moreover, z T 2 2 = kα 2 = L 2 /k, thus z T c 2 Σ / z T 2 2 ≥ 1. Combining with (138) yields D k+L Σ ( • 1 ) = 1 = min(1, L/k).
-Case 2: L < k, we have z

T c = z H 1 ∈ Σ k hence z T c 2 Σ = z T c 2 2 = z H 1 2 2 = L and z T c 2 Σ / z T 2 2 = L/k. This shows that D k+L Σ ( • 1 ) ≥ L/k = min(1, L/k). To conclude, we show that D k+L Σ ( • 1 ) ≤ L/k. Consider any z ′ ∈ T • 1 (Σ) such that |supp(z ′ )| = k + L, with Lemma 13, there is a support H of size lower than k such that, z ′ H 1 ≥ z ′ H c 1 , let T a set of the k largest components of z ′ . We have z ′ T 1 -z ′ T c 1 ≥ z ′ H 1 -z ′ H c 1 . As z ′ 0 ≤ k + L and L < k, z ′ T c ∈ Σ L ⊂ Σ k hence z ′ T c Σ = z ′ T c 2 . Moreover, |z ′ i | ≥ z ′ T c ∞ for any i ∈ T , hence z ′ T 2 2 ≥ k z ′ T c 2 ∞ . As a result z ′ T c 2 Σ z ′ T 2 2 = z ′ T c 2 2 z ′ T 2 2 ≤ L z ′ T c 2 ∞ k z ′ T c 2 ∞ = L/k. ⊓ ⊔ Lemma 24 Let Σ = Σ k be the set of k-sparse vectors in R n with k < n/2 and 1 ≤ L ≤ n -k.
Assume that R is positively homogeneous, subadditive and nonzero. Consider

(H 0 , v 0 ) ∈ arg max H⊆{1,...,n}: |H|=k v∈Q H R(v) (139) 
(H 1 , v 1 ) ∈ arg min H⊆{1,...,n}\H 0 ,|H|=L v∈Q H R(v). ( 140 
)
We have

D k+L Σ (R) := sup z∈T R (Σ)\{0}:|supp(z)|=k+L z T c 2 Σ z T 2 2 ≥ min 1, L k . ( 141 
) Proof From Lemma 15, R ⋆ (v 1 ) = L k R ⋆ (v 0 ). Since k + L ≤ n there is indeed some H of cardinality L such that H ∩ H 0 = ∅, hence H 1 is well-defined. By construction, H 1 ∩ H 0 = ∅. From Lemma 15, we also have R(v 0 ) > 0 and R(v 1 )/R(v 0 ) ≤ L/k. Since R(v 0 ) > 0, R is positively homogeneous and Σ is homogeneous, by Lemma 14, z = -αv 0 + v 1 ∈ T R (Σ) with α := max(R(v 1 )/R(v 0 ), 1). Observe that |supp(z)| = |H 0 | + |H 1 | = k + L. Since α ≥ 1 and all nonzero entries of v 0 , v 1 have magnitude one, a set of the k largest components of z is T = H 0 . We have z T c 2 Σ z T 2 2 = v 1 2 Σ kα 2 . ( 142 
) With Lemma 22, v 1 2 Σ ≥ v 1 2 1 k ≥ L 2 k if L ≥ k and v 1 2 Σ = v 1 2 2 otherwise (Fact A1). If L ≥ k z T c 2 Σ z T 2 2 ≥ L 2 k 2 α 2 ≥ L 2 k 2 max(L/k, 1) 2 = 1. ( 143 
) If L < k, z T c 2 Σ z T 2 2 = L kα 2 ≥ L k (144) 
which leads to the conclusion. ⊓ ⊔

A.5.2 Low rank

Lemma 25 Consider Σ = Σr the set of symmetric matrices of rank lower than r. For any L ≥ 0 such that r + L ≤ n we have,

D r+L Σ ( • * ) := sup z∈T • * (Σ)\{0}:rank(z)=r+L z T c 2 Σ z T 2 F = min 1, L r (145) 
where z T is z restricted to its r biggest eigenvalues, and

z T c = z -z T Proof It was already proven in [37, Theorem 4.1] that δ suff Σ ( • * ) ≥ 1 √ 2
hence by Lemma 10 sup

z∈T • * (Σ)\{0} z T c 2 Σ z T 2 F = D Σ ( • * ) ≤ 1. (146) 
Consider

H 0 = {1, ..r} , H 1 = {r + 1, .., r + L}, let U ∈ O(n) and define z = U T diag(α1 H 0 + 1 H 1 )U where α = max(1, L/r). As α ≥ 1, a set of the r largest components of eig(z) is T = H 0 . Moreover, z T * = αr = max(r, L) ≥ L = z -z T * = z T c * . If L ≥ r, from Lemma 22, z T c 2 Σ ≥ 1 r ( z T c * ) 2 = L 2 /r. Moreover, z T 2 F = rα 2 = L 2 /r, thus z T c 2 Σ / z T 2 F ≥ 1. Combining with (146) yields D L ( • * ) = 1 = min(1, L/r). If L < r, we have z T c ∈ Σr hence z T c 2 Σ = L and z T c 2 Σ / z T 2 2 = L/r. This shows that D L ( • * ) ≥ L/r = min(1, L/r). To conclude, we show that D L ( • * ) ≤ L/r. Consider any z ′ ∈ T • * (Σ) such that |supp(z ′ )| = r +L, with Lemma 18, there is a support r ′ and H = 1, .., r ′ such that z ′ H * ≥ z ′ H c * , let T a set of r largest components of z ′ . We have z ′ T * -z ′ T c * ≥ z ′ H * -z ′ H c * . As eig(z ′ ) 0 ≤ r + L and L < r, z ′ T c ∈ Σ L ⊂ Σr hence z ′ T c Σ = z ′ T c F . Moreover, |eig(z ′ ) i | ≥ eig(z ′ T c ) ∞ for any i ∈ T , hence z ′ T 2 F ≥ r eig(z ′ T c ) 2 ∞ . As a result z ′ T c 2 Σ z ′ T 2 F = z ′ T c 2 F z ′ T 2 F ≤ L eig(z ′ T c ) 2 ∞ r eig(z ′ T c ) 2 ∞ = L/r.

⊓ ⊔

Lemma 26 Let Σ = Σr be the set of n × n symmetric matrices with rank at most r with r < n/2, and 1 ≤ L ≤ nr. Assume R is positively homogeneous, subadditive and nonzero. Consider the supports H 0 = {1, 2, .., r} and H 1 = {r + 1, . . . , r + L}.

(U 0 , v 0 ) ∈ arg max U ∈O(n),v∈Q H 0 U T diag(v)U A (147) (U 1 , v 1 ) ∈ arg min U ∈O(n),v∈Q H 1 : U 0,1:r U T r+1:r+L =0 U T diag(v)U A . (148) 
We have

D r+L Σ (R) := sup z∈T R (Σ)\{0}:|supp(z)|=r+L z T c 2 Σ z T 2 F ≥ min 1, L r . ( 149 
) Proof From Lemma 19, R ⋆ (U T 1 diag(v 1 )U 1 = L r R ⋆ (U T 0 diag(v 0 )U 0 ), R(U T 0 diag(v 0 )U 0 ) > 0 and R(U T 1 diag(v 1 )U 1 )/R(U T 0 diag(v 0 )U 0 ) ≤ L/r.
Since R(v 0 ) > 0, R is positively homogeneous and Σ is homogeneous, by Lemma 14, z = -αU

T 0 diag(v 0 )U 0 + U T 1 diag(v 1 )U 1 ∈ T R (Σ) with α := max(R(U T 1 diag(v 1 )U 1 )/R(U T 0 diag(v 0 )U 0 ), 1). Observe that |supp(eig(z))| = |H 0 | + |H 1 | = r + L. Since α ≥ 1
and all nonzero entries of v 0 , v 1 have magnitude one, a set of the r largest components of z is T = H 0 . We have

z T c 2 Σ z T 2 F = U T 1 diag(v 1 )U 1 2 Σ rα 2 . ( 150 
)
With Lemma 22, we have

U T 1 diag(v 1 )U 1 2 Σ ≥ 1 r U T 1 diag(v 1 )U 1 2 * = L 2 r if L ≥ r U T 1 diag(v 1 )U 1 2 Σ = U T 1 diag(v 1 )U 1 2 F otherwise (Fact A1). ( 151 
) If L ≥ r z T c 2 Σ z T 2 F ≥ L 2 r 2 α 2 ≥ L 2 r 2 max(L/r, 1) 2 = 1. ( 152 
) If L < r, z T c 2 Σ z T 2 F = L rα 2 ≥ L r (153) 
which leads to the conclusion. ⊓ ⊔

A.6 Proofs for Section 4

We extend notations for classical sparsity to sparsity in levels (Σ = Σ k 1 ,k 2 ). For z = (z 1 , z 2 ) ∈ H, we we define the following projections P 1 (z) := z 1 and P 2 (z) := z 2 and denote T = (S 1 , S 2 ) = T (z) where for i ∈ {1, 2},

S i ⊆ {1, . . . , n i } is a support containing k i largest coordinates (in absolute value) of z i , i.e. |S i | = k i and min j∈S 1 |z i,j | ≥ max j∈S c i |z i,j |. For every U = (U 1 , U 2 ) where U i ⊆ {1, . . . , n i } and |U i | = k i , we also have (z i ) S i 1 ≥ (z i ) U i 1 hence z T w ≥ z U w and similarly z T c w ≤ z U c w .
We define similarly T 2 = T 2 (z) = (S ′ 1 , S ′ 2 ) with S ′ i containing the 2k i largest coordinates of z i . We begin by simplifying the condition z ∈ T • w (Σ) \ {0}.

Lemma 27 Let w = (w 1 , w 2 ) ∈ R 2 + . Let • w = w 1 P 1 (•) 1 + w 2 P 2 (•) 1 Let z ∈ T • w (Σ k 1 ,k 2 ) \ {0} then z T c w ≤ z T w . (154) 
Reciprocally,

z T c w ≤ z T w (155) implies z ∈ T • w (Σ k 1 ,k 2 ). Proof By definition, if z ∈ T • w (Σ k 1 ,k 2 ) \ {0} then there exists x ∈ Σ k 1 ,k 2 and γ ∈ R \ {0} such that z = γy and x + y w ≤ x w . With U := supp(x) we have y U c w + (x + y) U w = x + y w ≤ x w = x U w .
By the triangle inequality this implies

y U c w ≤ x U w -(x + y) U w ≤ y U w . (156) 
As γ = 0, we obtain z U c w ≤ z U w . We have

z T w ≥ z U w ≥ z U c w ≥ z T c w . (157) 

⊓ ⊔

To calculate B Σ ( • w ) (see definition in Corollary 3), we need a few lemmas.

Lemma 28 Consider w 1 , w 2 , k 1 , k 2 > 0 and β 1 , β 2 , λ ≥ 0 and V := min α 1 ,α 2 ≥0 k 1 α 2 1 + k 2 α 2 2 s.t. α 1 ≥ β 1 , α 2 ≥ β 2 , k 1 w 1 α 1 + k 2 w 2 α 2 ≥ λ (158) -If λ < k 1 w 1 β 1 + k 2 w 2 β 2 then V = k 1 β 2 1 + k 2 β 2 2 . -If λ ≥ k 1 w 1 β 1 + k 2 w 2 β 2 then the minimum is achieved at α * 1 , α * 2 such that k 1 w 1 α * 1 + k 2 w 2 α * 2 = λ. Moreover, -if λ ≥ (k 1 w 2 1 + k 2 w 2 2 ) max(β 1 /w 1 , β 2 /w 2 ) then V = min α 1 ,α 2 ≥0,w 1 α 1 +k 2 w 2 α 2 =λ k 1 α 2 1 + k 2 α 2 2 = λ 2 /(k 1 w 2 1 + k 2 w 2 2 ); -otherwise V = min k 1 β 2 1 + (λ -k 1 w 1 β 1 ) 2 k 2 w 2 2 , k 2 β 2 2 + (λ -k 2 w 2 β 2 ) 2 k 1 w 2 1 > λ 2 /(k 1 w 2 1 + k 2 w 2 2 ).
Proof Consider the change of variables

x = √ k 1 α 1 , y = √ k 2 α 2 and denote x 0 := √ k 1 β 1 , y 0 := √ k 2 β 2 , a := √ k 1 w 1 , b := √ k 2 w 2 .
This leads to the equivalent problem min

x,y≥0

x 2 + y 2 s.t. x ≥ x 0 , y ≥ y 0 , ax + by ≥ λ which involves a convex objective to be minimized over a polyhedral constraint set. If ax 0 + by 0 > λ, i.e., if

k 1 w 1 β 1 + k 2 w 2 β 2 > λ, then this problem is equivalent to min x,y≥0
x 2 + y 2 s.t. x ≥ x 0 , y ≥ y 0 which is minimized at (x 0 , y 0 ), with value

x 2 0 + y 2 0 = k 1 β 2 1 + k 2 β 2 2 .
Otherwise, the candidate optima must satisfy the constraint ax + by = λ, hence y = (λax)/b and the problem is equivalent to min

x 0 ≤x≤(λ-by 0 )/a x 2 + (ax -λ) 2 /b 2 . ( 159 
)
The unconstrained minimum of (159) is at x * satisfying 2x * + 2a(ax *λ)/b 2 = 0, i.e., , x * = aλ a 2 +b 2 , leading to y * = (λax * )/b = bλ a 2 +b 2 and to an optimal unconstrained problem value

(x * ) 2 + (y * ) 2 = λ 2 /(a 2 + b 2 ) = λ 2 /(k 1 w 2 1 + k 2 w 2 2 ).
This is also the value of the constrained minimum of (159), provided that x 0 ≤ x * ≤ (λby 0 )/a, i.e., that

λ ≥ (a 2 + b 2 ) max(x 0 /a, y 0 /b) = (k 1 w 2 1 + k 2 w 2 2 ) max(β 1 /w 1 , β 2 /w 2 )
. Otherwise, the constrained minimum is either at x = x 0 and y = (λax 0 )/b, so that x 2 + y 2 = x 2 0 + (λax 0 ) 2 /b 2 ; or at y = y 0 and x = (λby 0 )/a, so that x 2 + y 2 = y 2 0 + (λby 0 ) 2 /a 2 . The value at the optimum is then min(x 2 0 + (λax 0 ) 2 /b 2 , y 2 0 + (λby 0 ) 2 /a 2 ), which is necessarily larger than that of the unconstrained minimum. Once translated in terms of the original variables, this yields the result.

⊓ ⊔

Lemma 29 Let ρ ≥ 0, k 1 , k 2 , L 1 , L 2 , w 1 , w 2 , λ > 0 max β 1 ≥0,β 2 ≥0 L 1 β 2 1 + L 2 β 2 2 ρ + k 1 β 2 1 + k 2 β 2 2 s.t. w 1 (k 1 + L 1 )β 1 + w 2 (k 2 + L 2 )β 2 = λ (160) is equal to max i∈{1,2} L i λ 2 ρw 2 i (k i + L i ) 2 + k i λ 2 . ( 161 
)
Denoting i * the index maximizing this expression, the maximum is reached for

β i * = λ w i * (k i * +L i * ) (and β j = 0 for j = i). Proof Let c ≥ 0. Observe that L 1 β 2 1 + L 2 β 2 2 ρ + k 1 β 2 1 + k 2 β 2 2 ≥ c (162) 
is equivalent to

(L 1 -ck 1 )β 2 1 + (L 2 -ck 2 )β 2 2 ≥ cρ. (163) 
With the change of variable b i = w i (k i + L i )β i we have b 1 + b 2 = λ and (163) reads

(L 1 -ck 1 ) w 2 1 (k 1 + L 1 ) 2 b 2 1 + (L 2 -ck 2 ) w 2 2 (k 2 + L 2 ) 2 (b 1 -λ) 2 ≥ cρ. (164) 
The left side is maximized (with respect to 0 ≤ b 1 ≤ λ) for either b 1 = 0 or b 1 = λ. The initial inequality (162) is thus feasible if, and only if, the maximum of the left-hand side of (164) over these two values verifies the inequality max i∈{1,2}

(L i -ck i ) w 2 i (k i + L i ) 2 λ 2 ≥ cρ (165) i.e., if there is i ∈ {1, 2} such that (L i -ck i )λ 2 ≥ cρw 2 i (k i + L i ) 2 . This is equivalent to L i λ 2 ≥ c(ρw 2 i (k i + L i ) 2 + k i λ 2 ) and c ≤ L i λ 2 ρw 2 i (k i + L i ) 2 + k i λ 2 . ( 166 
) ⊓ ⊔ Lemma 30 Consider w 1 , w 2 , β 1 , β 2 , c ≥ 0 and V := sup 0≤θ i ≤β i ,w 1 θ 1 +w 2 θ 2 ≤c θ 2 1 + θ 2 2 . ( 167 
)
Denoting (ℓ, r) ∈ {(1, 2), (2, 1)} such that w ℓ β ℓ ≤ wrβr, we have

1. if c < w ℓ β ℓ then V = max i∈{1,2} (c/w i ) 2 ; 2. if w ℓ β ℓ ≤ c < wrβr then V = max((c/wr) 2 , β 2 ℓ + [(c -w ℓ β ℓ )/wr] 2 ; 3. if wrβr ≤ c < w 1 β 1 + w 2 β 2 then V = max (i,j)∈{(1,2),(2,1)} β 2 i + [(c -w i β i )/w j ] 2 ; 4. if c ≥ w 1 β 1 + w 2 β 2 then V = β 2 1 + β 2 2 ;
Proof The optimum V is the maximization of a quadratic form within the intersection of a rectangle and a halfspace delimited by an affine function. Using standard compactness arguments there exists at least a maximizer (θ * 1 , θ * 2 ) of the considered expression. If θ * i < β i for some i ∈ {1, 2} then the constraint c = w 1 θ * 1 + w 2 θ * 2 is satisfied (otherwise, we would have 0 ≤ θ * i < β i and w 1 θ 1 + w 2 θ 2 < c, and we could exhibit other θ i > θ i * still satisfying the constraints and such that θ 2 1 + θ 2 2 is increased), hence

w 1 β 1 + w 2 β 2 > w 1 θ * 1 + w 2 θ * 2 = c. Vice-versa if w 1 β 1 + w 2 β 2 > c then since (θ * 1 , θ *
2 ) satisfies all constraints we have w 1 θ * 1 + w 2 θ * 2 ≤ c < w 1 β 1 + w 2 β 2 , hence there is at least one index i ∈ {1, 2} such that θ * i < β i . We can thus consider the following cases (depending on the shape of the domain):

• if w 1 β 1 + w 2 β 2 ≤ c then for each i ∈ {1, 2}, θ * i = β i hence V = β 2 1 + β 2 2
as claimed; • otherwise, i.e., if w 1 β 1 + w 2 β 2 > c, we have w 1 θ * 1 + w 2 θ * 2 = c and we distinguish three cases: (a) θ * 1 < β 1 , θ * 2 < β 2 : then, since θ * 2 = (cw 1 θ * 1 )/w 2 where θ * 1 is a maximizer of θ 2 1 + [(cw 1 θ 1 )/w 2 ] 2 under the constraint 0 ≤ θ 1 and cw 1 θ 1 ≥ 0, there is (i, j) ∈ {(1, 2), (2, 1)} such that θ * j = 0 and θ * i = c/w i . This is feasible provided that c/w

i < β i . (b) θ * 1 = β 1 , θ * 2 < β 2 , hence θ * 2 = (c -w 1 β 1 )/w 2 . This satisfies 0 ≤ θ * 2 < β 2 if, and only if, c ≥ w 1 β 1 . (c) θ * 1 < β 1 , θ * 2 = β 2 , hence θ * 1 = (c -w 2 β 2 )/w 1 .
This is feasible provided that c ≥ w 2 β 2 . We now discuss the possible cases depending on the value of c:

- w ℓ β ℓ ≤ c < wrβr: (a) is feasible with (i, j) such that c < w i β i , i.e., , with (i, j) = (r, ℓ), leading to a value (θ * j ) 2 + (θ * i ) 2 = (c/w i ) 2 = (c/wr) 2 ; (b) is feasible provided that c ≥ w 1 β 1 , i.e., that (r, ℓ) = (2, 1), leading to a value (θ

* 1 ) 2 + (θ * 2 ) 2 = β 2 1 + [(c -w 1 β 1 )/w 2 ] 2 = β 2 ℓ + [(c -w ℓ β ℓ )/wr] 2 ; similarly, (c) is feasible provided that (r, ℓ) = (2, 1), leading to a value (θ * 2 ) 2 + (θ * 1 ) 2 = β 2 2 + [(c -w 2 β 2 )/w 1 ] 2 = β 2 ℓ + [(c -w ℓ β ℓ )/wr] 2 .
Overall, this leads to V = max((c/wr) 2 , β 2 ℓ + [(cw ℓ β ℓ )/wr] 2 . As in the case of the ℓ 1 norm for sparsity and the nuclear norm for low-rank matrices, we compute B Σ ( • w ) (see definition in Corollary 3) via intermediate quantities B L 1 ,L 2 (w) that we now introduce and control. We find an expression consistent with the ℓ 1 case.

Lemma 31 Consider weights w = (w 1 , w 2 ) with w i > 0 and integers k i ≥ 0. Denote for any integers L 1 , L 2 ≥ 0

B L 1 ,L 2 (w) := sup α i ≥β i ≥0,β 1 +β 2 >0 2 i=1 (k i w i α i -w i (k i +L i )β i )=0 2 i=1 L i β 2 i 2 i=1 k i (α 2 i + β 2 i ) . ( 168 
)
For m ∈ {1, 2}, consider

gm(L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) := L 1 β 2 1 + L 2 β 2 2 + [( 2 i=1 (k i w i α i -(k i + L i )w i β i )/wm] 2 2 i=1 k i (α 2 i + β 2 i )
.

We have

sup α i ,β i :0≤β i ≤α i ;β 1 +β 2 >0 2 i=1 (k i +L i )w i β i ≤ 2 i=1 k i w i α i gm(L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) ≤ B L 1 ,L 2 (w). ( 169 
) (170)
Proof First we show that there exist

α * i ∈ R + , β * i ∈ R + such that gm(L 1 , L 2 , α * 1 , α * 2 , β * 1 , β * 2 ) = sup α i ,β i :0≤β i ≤α i ;β 1 +β 2 >0 2 i=1 (k i +L i )w i β i ≤ 2 i=1 k i w i α i gm(L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) (171) with 0 ≤ β * i ≤ α * i ; β * 1 + β * 2 > 0, and 2 
i=1 (k i + L i )w i β * i ≤ 2 i=1 k i w i α * i . Indeed, given any α i , β i satis- fying these constraints, setting β ′ j = β j /(β 1 + β 2 ), α ′ j = α j /(β i + β j ), we have gm(L 1 , L 2 , α ′ 1 , α ′ 2 , β ′ 1 , β ′ 2 ) = gm(L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) hence the supremum is unchanged if we impose β ′ 1 + β ′ 2 = 1 instead of β 1 + β 2 > 0.
Given any such pair β ′ 1 , β ′ 2 , Lemma 28 yields the optimum over α i satisfying the constraints, and as the resulting expression is continuous with respect to β ′ j , the existence of a maximizer follows using a compactness argument. We will soon prove that

i (k i + L i )w i β * i = i k i w i α * i . If this equality is verified, since 0 ≤ β * i ≤ α * i , we obtain the desired result gm(L 1 , L 2 , α * 1 , α * 2 , β * 1 , β * 2 ) = 2 i=1 (L i β * i ) 2 2 i=1 k i ((α * i ) 2 + (β * i ) 2 ) ≤ sup α i ,β i :0≤β i ≤α i ;β 1 +β 2 >0 2 i=1 (k i +L i )w i β i = 2 i=1 k i w i α i 2 i=1 L i β 2 i 2 i=1 k i ((α i ) 2 + (β i ) 2 ) = B L 1 ,L 2 (w). ( 172 
)
For the sake of contradiction, assume that

i (k i + L i )w i β * i < i k i w i α * i , then with the shorthand C := gm(L 1 , L 2 , α * 1 , α * 2 , β * 1 , β * 2 ), we have [( i k i w i α * i - i (k i + L i )w i β * i )/wm] 2 + i (L i -Ck i )(β * i ) 2 = C i k i (α * i ) 2 . ( 173 
) Since gm(L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) ≤ C within the constraints of (169), (β * 1 , β * 2 ) maximize h(β 1 , β 2 ) := [( i k i w i α * i - i (k i + L i )w i β i )/wv] 2 + i (L i -Ck i )(β i ) 2 among all β 1 , β 2 such that 0 ≤ β i ≤ α * i , β 1 + β 2 > 0 and 2 i=1 (k i + L i )w i β i ≤ 2 i=1 k i w i α * i . Consider j ∈ {1, 2}.
If C > L j /k j , then h is decreasing with respect to β j on the considered range, hence β * j = 0. Otherwise C ≤ L j /k j , and since h is a second degree polynomial in β j with positive leading coefficient, its maximum is at one of the extremities of the optimization interval, i.e., since we assumed i (k i + L i )w i β * i < i k i w i α * i , at least one of the constraints β * j = 0, β * j = α * j is reached. Since the optimum satisfies all constraints of (169), we have β * 1 + β * 2 > 0, hence in light of the above observations there is at least one index j ∈ {1, 2} such that C ≤ L j /k j , and for which we have β * j = α * j > 0. Since

2 i=1 k i w i β * i ≤ 2 i=1 (k i + L i )w i β * i < 2 i=1 k i w i α * i , both constraints β * 1 = α * 1 , β * 2 = α *
2 cannot be reached at the same time hence there is (i, j) ∈ {(1, 2), (2, 1)} such that β * i = 0, β * j = α * j and

C = gm(L 1 , L 2 , α * 1 , α * 2 , β * 1 , β * 2 ) = L j (β * j ) 2 + [(k i w i α * i + k j w j α * j -(k j + L j )w j β * j )/wm] 2 k i (α * i ) 2 + k j (α * j ) 2 + k j (β * j ) 2 (174) = L j (α * j ) 2 + [(k i w i α * i -L j w j α * j )/wm] 2 k i (α * i ) 2 + 2k j (α * j ) 2 . ( 175 
)
This can be rewritten

(L j -2Ck j )(α * j ) 2 + [(k i w i α * i -L j w j α * j )/wm] 2 = Ck i (α * i ) 2 . Observe that any α 1 , α 2 , β 1 , β 2 such that β i = 0, β j = α j > 0, α i = α *
i , and L j w j α j ≤ k i w i α * i satisfy the constraints of (169), hence

gm(L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) ≤ C, or equivalently (L j -2Ck j )(α j ) 2 + [(k i w i α * i -L j w j α j )/wm] 2 ≤ Ck i (α * i ) 2 (176) 
Thus, α * j maximizes the left hand side of (176) under the constraint 0 ≤ L j w j α j ≤ k i w i α * i . If L -2Ck j ≤ 0, then the left hand side of (176) is decreasing with respect to α j in the considered range, hence α * j = 0, which is not possible since 0 < β 1 +β 2 = β * j = α * j . Therefore we must have L j -2Ck j > 0, hence the left hand side of (176) is a second degree polynomial in α j with positive leading coefficient. Its maximum is achieved at one extremity of the interval constraint : the case α * j = 0 was already ruled out as impossible, hence L j w j α * j = k i w i α * i . This implies (k i + L i )w i β * i + (k j + L j )w j β * j = (k j + L j )w j α * j = k j w j α * j + k i w i α * i , which yields the desired contradiction to the assumption that i (k

i + L i )w i β * i < i k i w i α * i . ⊓ ⊔
Lemma 32 Consider weights w = (w 1 , w 2 ) and integers k i , n i such that 1 ≤ 2k i < n i and

Σ = Σ k 1 ,k 2 ⊂ R n 1 × R n 2 , i ∈ {1, 2}. We have B Σ ( • w ) = max 0≤L i ≤n-2k i B L 1 ,L 2 (w) ( 177 
)
where B L 1 ,L 2 (w) is defined in (168).

Proof We use the same proof method as in Lemma 17. With the notations T = T (z), T 2 = T 2 (z) from the beginning of Appendix A.6, denote T ′ = T 2 \ T so that z T c 2 w + z T ′ w = z T c w . By Lemma 27, we have

B Σ ( • w ) = sup z:z =0, z T c 2 w + z T ′ w ≤ z T w z T c 2 2 2 z T 2 2 2 . ( 178 
)
We now show that this expression can be simplified by maximizing over vectors z with a particular shape. Consider z a vector satisfying the constraint in (178). Replacing each entry z i of z with its magnitude |z i | leaves the constraint (as well as the maximized quantity) unchanged, hence without loss of generality we can assume that z has nonnegative entries z i ≥ 0. Similarly, we can assume without loss of generality that for each i ∈ {1, 2}, the index set S i = [1, k i ] indexes k i largest entries of P i (z) and S ′ i = [1, 2k i ] indexes the 2k i largest entries. Given some j ∈ {1, 2}, consider two (equal or distinct) indices in S j and the vector z obtained by keeping unchanged all entries of z, except those indexed by these indices which are replaced by their average. This has the following effect:

1. Each S i (resp. S ′ i ), i ∈ {1, 2}, is a set of the k i (resp. 2k i ) largest coordinates of P i (z), hence

T (z) = T = (S 1 , S 2 ), T 2 (z) = T 2 = (S ′ 1 , S ′ 2 ), T ′ (z) = T ′ = T 2 \T , zT c 2 = z T c 2 , zT ′ = z T ′
, and the support of P i (z), i ∈ {1, 2} is the same as that of P i (z). All the above imply that, without loss of generality, we can restrict the optimization to vectors z such that, for i ∈ {1, 2}, all entries of z S i are equal. We denote α i > 0 their common value. A similar reasoning with S ′ j \S j instead of S j shows that we can also assume without loss of generality that all entries of z S ′ i \S i , i ∈ {1, 2}, are equal. We denote β i ≥ 0 their common value.

The value of the smallest component of

[P i (z)] S i is α i , while the smallest component of [P i (z)] S ′ i is min(α i , β i ). Denoting x i = P i (z) (S ′ i ) c , we have x i ∈ R n i -2k i + and the largest component of [P i (z)] (S ′ i ) c is x i ∞.
Hence, S i and S ′ i are respectively a set of the k i and 2k i largest components of P i (z) if, and only if,

x i ∞ ≤ β i ≤ α i . Finally, we observe that z T w -z T ′ w -z T c 2 w = w 1 k 1 α 1 + w 2 k 2 α 2 -w 1 k 1 β 1 -w 2 k 2 β 2 -w 1 x 1 1 - w 2 x 2 1 , z T c 2 2 2 = x 1 2 2 + x 2 2 2 and z T 2 2 2 = k 1 α 2 1 + k 2 α 2 2 + k 1 β 2 1 + k 2 β 2 2 . This establishes B Σ ( • w ) = sup β i :β i ≥0 β 1 +β 2 >0 sup α i :α i ≥β i sup x i ∞≤βi 2 i=1 w i x i 1 ≤ 2 i=1 k i w i (α i -β i ) 2 i=1 x i 2 2 2 i=1 k i (α 2 i + β 2 i ) , (179) 
where the restriction β 1 + β 2 > 0 simply follows from the fact that when β 1 + β 2 = 0 we have x 1 = x 2 = 0 which leads to a sub-optimal objective value. To show that the supremum in (179) is achieved, observe that both the constraints on y := (α 1 , α 2 , β 1 , β 2 , x 1 , x 2 ) and the quantity f (y) that is maximized are invariant by multiplication by a positive constant factor. Hence, the supremum is unchanged if we add a scaling constraint. e.g. by fixing y ∞ . This leads to the supremum of a continuous function over a compact set (the unit ℓ∞ ball), hence there exists α * i , β * i , x * i reaching the supremum in (179). Thanks to Lemma 16, given the constraints (depending on α i and β i ), the maximization w.r.t x i is reached with vectors with the shape (β i , . . . , β i L i

, θ i , 0, . . . , 0

n i -2k i -(L i +1)≥0 ) with 0 ≤ θ i ≤ β i , 0 ≤ L i ≤ n i -2k i - 1 
, including potentially L i = 0 (case of vector x i with a single nonzero coordinate θ i ). We deduce

B Σ ( • w ) = sup β i :β i ≥0 β 1 +β 2 >0 sup α i :α i ≥β i sup L i ,θ i :0≤L i ≤n-2k i -1,0≤θ i ≤β i 2 i=1 w i θ i ≤ 2 i=1 (k i w i α i -w i (k i +L i )β i ) 2 i=1 L i β 2 i + θ 2 i 2 i=1 k i (α 2 i + β 2 i ) . (180) 
Hence, denoting

f (L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) := sup θ i :0≤θ i ≤β i 2 i=1 w i θ i ≤ 2 i=1 (k i w i α i -w i (k i +L i )β i ) 2 i=1 L i β 2 i + θ 2 i 2 i=1 k i (α 2 i + β 2 i ) , (181) 
for parameters α

i , β i , L i such that c := 2 i=1 (k i w i α i -w i (k i + L i )β i ) ≥ 0, we have B Σ ( • w ) = max 0≤L i ≤n i -2k i -1 sup β 1 ,β 2 ≥0 β 1 +β 2 >0 sup α i :α i ≥β i 2 i=1 k i w i α i ≥ 2 i=1 (k i +L i )w i β i f (L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) f (L 1 ,L 2 ) . (182) 
To continue, we bound f

(L 1 , L 2 ) via characterizations of f (L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) in different parameter ranges.
The supremum in (181) is covered by Lemma 30 hence we need to primarily distinguish cases depending on relative order of c =

2 i=1 (k i w i α i -w i (k i + L i )β i ) ≥ 0, w 1 β 1 + w 2 β 2 , w 1 β 1 , and w 2 β 2 . This suggests writing f (L 1 , L 2 ) = max u∈{0,1} fu(L 1 , L 2 ) where f 0 (L 1 , L 2 ) := sup β i ,α i :0≤β i ≤α i ,β 1 +β 2 >0 2 i=1 k i w i α i ≥ 2 i=1 (k i +L i +1)w i β i f (L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) (183) f 1 (L 1 , L 2 ) := sup β i ,α i :0≤β i ≤α i ,β 1 +β 2 >0 2 i=1 (k i +L i )w i β i ≤ 2 i=1 k i w i α i < 2 i=1 (k i +L i +1)w i β i f (L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ). (184) 
To express f 0 (L 1 , L 2 ) and bound f 1 (L 1 , L 2 ), we use the functions gm, m ∈ {1, 2}, from Lemma 31.

Expressing and bounding f 0 :

if 2 i=1 k i w i α i ≥ 2 i=1 (k i +L i +1)w i β i then c ≥ w 1 β 1 +w 2 β 2 hence Lemma 30, case 4 yields f (L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) = 2 i=1 (L i + 1)β 2 i 2 i=1 k i (α 2 i + β 2 i ) (185) f 0 (L 1 , L 2 ) = sup 0≤β i ≤α i ,β 1 +β 2 >0 2 i=1 k i w i α i ≥ 2 i=1 (k i +L i +1)w i β i 2 i=1 (L i + 1)β 2 i 2 i=1 k i (α 2 i + β 2 i ) (186) Lemma 28 = sup 0≤β i ≤α i ,β 1 +β 2 >0 2 i=1 k i w i α i = 2 i=1 (k i +L i +1)w i β i 2 i=1 (L i + 1)β 2 i 2 i=1 k i (α 2 i + β 2 i ) = B L 1 +1,L 2 +1 (w). ( 187 
)
As a result

f 0 (L 1 , L 2 ) ≤ max 0≤L i ≤n i -2k i -1 B L 1 +1,L 2 +1 (w) ≤ max 0≤L ′ i ≤n i -2k i B L ′ 1 ,L ′ 2 (w) (188) 
Bounding

f 1 : we denote (ℓ, r) ∈ {(1, 2), (2, 1)} a pair such that w ℓ β ℓ = min i w i β i ≤ max i w i β i = wrβr. When 2 i=1 (k i + L i )w i β i ≤ 2 i=1 k i w i α i < 2 i=1 (k i + L i + 1)w i β i we can distinguish three cases. 1. if (k ℓ + L ℓ )w ℓ β ℓ + (kr + Lr + 1)wrβr ≤ 2 i=1 k i w i α i < 2 i=1 (k i + L i + 1)w i β i then max(w 1 β 1 , w 2 β 2 ) = wrβr ≤ c < w 1 β 1 + w 2 β 2 hence Lemma 30, case 3 yields f (L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) = max (u,v)∈{(1,2),(2,1)} (Lu + 1)β 2 u + Lvβ 2 v + [(c -wuβu)/wv ] 2 2 i=1 k i (α 2 i + β 2 i ) =gv (L ′ 1 ,L ′ 2 ,α 1 ,α 2 ,β 1 ,β 2 ), L ′ u =Lu+1,L ′ v =Lv . ( 189 
) 2. if (k ℓ +L ℓ +1)w ℓ β ℓ +(kr+Lr)wrβr ≤ 2 i=1 k i w i α i < (k ℓ +L ℓ )w ℓ β ℓ +(kr+Lr+1)wrβr then min(w 1 β 1 , w 2 β 2 ) = w ℓ β ℓ ≤ c < wrβr = max(w 1 β 1 , w 2 β 2 ) hence Lemma 30, case 2 yields f (L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) = max        L 1 β 2 1 + L 2 β 2 2 + (c/wr) 2 2 i=1 k i (α 2 i + β 2 i ) gr (L 1 ,L 2 ,α 1 ,α 2 ,β 1 ,β 2 ) , (L ℓ + 1)β 2 ℓ + Lrβ 2 r + [(c -w ℓ β ℓ )/wr] 2 2 i=1 k i (α 2 i + β 2 i ) gr (L ′ 1 ,L ′ 2 ,α 1 ,α 2 ,β 1 ,β 2 ), L ′ ℓ =L ℓ +1,L ′ r =Lr        . (190) 3. otherwise, 2 i=1 (k i +L i )w i β i ≤ 2 i=1 k i w i α i < (k ℓ +L ℓ +1)w ℓ β ℓ +(kr +Lr)wrβr, hence c < min(w 1 β 1 , w 2 β 2 ) and by Lemma 30, case 1 f (L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) = max        L 1 β 2 1 + L 2 β 2 2 + (c/w 1 ) 2 2 i=1 k i (α 2 i + β 2 i ) g 1 (L 1 ,L 2 ,α 1 ,α 2 ,β 1 ,β 2 ) , L 1 β 2 1 + L 2 β 2 2 + (c/w 2 ) 2 2 i=1 k i (α 2 i + β 2 i ) g 2 (L 1 ,L 2 ,α 1 ,α 2 ,β 1 ,β 2 )        . ( 191 
)
Thus, in the range of α i , β i involved in the definition of f 1 (L 1 , L 2 ) as a supremum, there are integers 0 ≤ L

′ i ≤ n i -2k i and v ∈ {1, 2} such that f (L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) = gv(L ′ 1 , L ′ 2 , α 1 , α 2 , β 1 , β 2 
). We will shortly prove that given the relations between L ′ i and the considered range of α i , β i we have

i=1 (k i + L ′ i )w i β i ≤ 2 i=1 k i w i α i . (192) 
hence using Lemma 31 we obtain gv

(L ′ 1 , L ′ 2 , α 1 , α 2 , β 1 , β 2 ) ≤ B L ′ 1 ,L ′ 2 (w). This implies f 1 (L 1 , L 2 ) ≤ max 0≤L ′ i ≤n i -2k i B L ′ 1 ,L ′ 2 (w)
and, combined with (182)-( 188), yields the upper bound

B Σ ( • w ) = max 0≤L i ≤n i -2k i max(f 0 (L 1 , L 2 ), f 1 (L 1 , L 2 )) ≤ max 0≤L ′ i ≤n i -2k i B L ′ 1 ,L ′ 2 (w). ( 193 
)
Proof of (192). We treat separately the three cases respectively associated to (189), (190), (191). 

1. When 2 i=1 (k i + L i )w i β i ≤ 2 i=1 k i w i α i < (k ℓ + L ℓ + 1)w ℓ β ℓ + (kr + Lr)wrβr, by (191) there is v ∈ {1, 2} such that f (L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) = gv(L ′ 1 , L ′ 2 , α 1 , α 2 , β 1 , β 2 ) with (L ′ 1 , L ′ 2 ) = (L 1 , L 2 ). We observe that 2 i=1 (k i + L ′ i )w i β i = 2 i=1 (k i + L i )w i β i ≤ 2 i=1 k i w i α i . 2. When (k ℓ + L ℓ )w ℓ β ℓ + (kr + Lr + 1)wrβr ≤ 2 i=1 k i w i α i < 2 i=1 (k i + L i + 1)w i β i , by (189), we have f (L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) = gv(L ′ 1 , L ′ 2 , α 1 , α 2 , β 1 , β 2 ) where (L ′ 1 , L ′ 2 , v) ∈ {(L 1 + 1, L 2 , 2), (L 1 , L 2 + 1, 1)}. If (L ′ ℓ , L ′ r ) = (L ℓ , Lr + 1) then 2 i=1 (k i + L ′ i )w i β i = (k ℓ + L ℓ )w ℓ β ℓ + (kr + Lr + 1)wrβr. Otherwise we have (L ′ ℓ , L ′ r ) = (L ℓ +1, Lr), hence 2 i=1 (k i +L ′ i )w i β i = (k ℓ +L ℓ +1)w ℓ β ℓ +(
(k i + L ′ i )w i β i ≤ 2 i=1 k i w i α i . 3. When (k ℓ + L ℓ + 1)w ℓ β ℓ + (kr + Lr)wrβr ≤ 2 i=1 k i w i α i < (k ℓ + L ℓ )w ℓ β ℓ + (kr + Lr + 1)wrβr, (190) yields f (L 1 , L 2 , α 1 , α 2 , β 1 , β 2 ) = gr(L ′ 1 , L ′ 2 , α 1 , α 2 , β 1 , β 2 ) with (L ′ ℓ , L ′ r ) ∈ {(L ℓ , Lr), (L ℓ + 1, Lr)}, hence we have 2 i=1 (k i + L ′ i )w i β i ≤ (k ℓ + L ℓ + 1)w ℓ β ℓ + (kr + Lr)wrβr ≤ 2 i=1 k i w i α i .
As these three cases cover all possibilities, we deduce bound (192) as claimed.

To conclude, we obtain a lower bound on B Σ ( • w ). Consider any integers 0 ≤ L i ≤ n i -2k i and any scalars

α i , β i such that 0 ≤ β i ≤ α i , β 1 + β 2 > 0 and 2 i=1 (k i + L i )w i β i = 2 i=1 k i w i α i , and let z = (z 1 , z 2 )
where

z i = (α i , . . . , α i k i , β i , . . . , β i k i +L i , 0, . . . , 0 n i -(2k i +L i )
).

We have

z T w = k 1 w 1 α 1 + k 2 w 2 α 2 = (k 1 + L 1 )w 1 β 1 + (k 2 + L 2 )w 2 β 2 = z T c w hence, by Lemma 27 and the definition of B Σ ( • w ), B Σ ( • w ) ≥ z T c 2 2 2 z T 2 2 2 = 2 i=1 L i β 2 i 2 i=1 k i (α 2 i + β 2 i ) . ( 194 
)
Taking the supremum over α i , β i under the considered constraints yields B Σ ( • w ) ≥ B L 1 ,L 2 (w). We deduce

B Σ ( • w ) ≥ max 0≤L i ≤n i -2k i B L 1 ,L 2 (w).

⊓ ⊔

We give a characterization/lower bound (depending on w) of the intermediate B L 1 ,L 2 (w).

Lemma 33 Consider w = (w 1 , w 2 ), 0 ≤ L i ≤ n i -2k, and B L 1 ,L 2 (w) defined as in Lemma 31. We have

max (i,j)∈{(1,2),(2,1)} L i /k i ν i 1-ν i (L i /k i ) 2 + 2 ≤ B L 1 ,L 2 (w) ≤ max (i,j)∈{(1,2),(2,1)} L i /k i ν i (L i /k i + 1) 2 + 1 ( 195 
)
with ν i = 1 1+k j /(k i µ 2 i ) and µ i = w i w j for (i, j) ∈ {(1, 2), (2, 1)}. The rhs is an equality if ν i ≥ k i k i +L i , ∀i ∈ {1, 2}. Proof For L 1 , L 2 such that L 1 + L 2 > 0, we rewrite B L 1 ,L 2 defined in (168) as B L 1 ,L 2 (w) = sup λ>0 sup β i :β 1 ,β 2 ≥0 2 i=1 w i (k i +L i )β i =λ sup α i :α i ≥β i 2 i=1 k i w i α i =λ L 1 β 2 1 + L 2 β 2 2 k 1 α 2 1 + k 2 α 2 2 + k 1 β 2 1 + k 2 β 2 2 . ( 196 
)
For fixed λ > 0 and

β 1 , β 2 such that 2 i=1 w i (k i + L i )β i = λ, we have λ > 2 i=1 w i k i β i hence, by Lemma 28, B L 1 ,L 2 (w) ≤ sup λ>0 sup β 1 ≥0,β 2 ≥0 w 1 (k 1 +L 1 )β 1 +w 2 (k 2 +L 2 )β 2 =λ L 1 β 2 1 + L 2 β 2 2 λ 2 k 1 w 2 1 +k 2 w 2 2 + k 1 β 2 1 + k 2 β 2 2 . ( 197 
)
with equality if the maximizers λ, βi of the right side satisfy the constraints λ ≥ (k 1 w 2 1 +k 1 w 2 2 ) max( β1 /w 1 , β2 /w 2 ). Consider (i, j) ∈ {(1, 2), (2, 1)}. Since ν i :=

1 1+k j w 2 j /(k i w 2 i ) = k i w 2 i k i w 2 i +k j w 2 j
, we obtain by Lemma 29

B L 1 ,L 2 (w) ≤ sup λ>0 max i∈{1,2} L i λ 2 λ 2 k 1 w 2 1 +k 2 w 2 2 w 2 i (k i + L i ) 2 + k i λ 2 = max (i,j)∈{(1,2),(2,1)} L i /k i ν i (L i /k i + 1) 2 + 1 . (198) 
This establishes the upper bound in (195). Denoting (i * , j * ) maximizing the right-hand-side expression above, and using the optimal values from Lemma 29, βi * = λ w i * (k i * +L i * ) (with βj * = 0 and an arbitrary λ > 0), we have max( β1

/w 1 , β2 /w 2 ) = βi * /w i * = λ w 2 i * (k i * +L i * ) hence equality holds in (198) if the following inequality is satisfied (k 1 w 2 1 + k 1 w 2 2 ) 1 w 2 i * (k i * + L i * ) ≤ 1,
or equivalently if

k i * ν i * (k i * +L i * ) ≤ 1. This is guaranteed as soon as ν ℓ ≥ k ℓ k ℓ +L ℓ
for every ℓ ∈ {1, 2}. This establishes the equality case in the rhs of (195).

We now treat the lower bound in (195). For fixed β i ≥ 0 and λ > 0 such that (k

1 +L 1 )w 1 β 1 +(k 2 +L 2 )w 2 β 2 = λ, we still have λ > k 1 w 1 β 1 + k 2 w 2 β 2 . By Lemma 28, letting V = min α i :α i ≥β i 2 i=1 k i w i α i =λ k 1 α 2 1 + k 2 α 2 2 , (199) 
we either have

-V = min k 1 β 2 1 + k 2 ( λ-k 1 w 1 β 1 k 2 w 2 ) 2 , k 2 β 2 2 + k 1 ( λ-k 2 w 2 β 2 k 1 w 1 ) 2 ; -or V = λ 2 /(k 1 w 2 1 + k 2 w 2 2 ) = min α i :α i ≥0 2 i=1 k i α i =λ k 1 α 2 1 + k 2 α 2 2 ≤ min k 1 β 2 1 + k 2 ( λ -k 1 w 1 β 1 k 2 w 2 ) 2 , k 2 β 2 2 + k 1 ( λ -k 2 w 2 β 2 k 1 w 1 ) 2 (200) 
where the last inequality was obtained by evaluating k 1 α 2 1 + k 2 α 2 2 at α 1 = β 1 (resp. at α 2 = β 2 ) with α 2 (resp. α 1 ) tuned so that k 1 w 1 α 1 + k 2 w 2 α 2 = λ.

We deduce that V ≤ min k

1 β 2 1 + k 2 ( λ-k 1 w 1 β 1 k 2 w 2 ) 2 , k 2 β 2 2 + k 1 ( λ-k 2 w 2 β 2 k 1 w 1
) 2 and it follows using (196) that

B L 1 ,L 2 (w) ≥ sup λ>0 sup β i :β 1 ,β 2 ≥0 2 i=1 w i (k i +L i )β i =λ L 1 β 2 1 + L 2 β 2 2 min k 1 β 2 1 + k 2 ( λ-k 1 w 1 β 1 k 2 w 2 ) 2 , k 2 β 2 2 + k 1 ( λ-k 2 w 2 β 2 k 1 w 1 ) 2 + k 1 β 2 1 + k 2 β 2 2 = sup β i :β 1 ,β 2 ≥0 2 i=1 w i (k i +L i )β i =1 L 1 β 2 1 + L 2 β 2 2 min k 1 β 2 1 + k 2 ( 1-k 1 w 1 β 1 k 2 w 2 ) 2 , k 2 β 2 2 + k 1 ( 1-k 2 w 2 β 2 k 1 w 1 ) 2 + k 1 β 2 1 + k 2 β 2 2 = sup β i :β 1 ,β 2 ≥0 2 i=1 w i (k i +L i )β i =1 max   L 1 β 2 1 + L 2 β 2 2 2k 1 β 2 1 + k 2 β 2 2 + k 2 ( 1-k 1 w 1 β 1 k 2 w 2 ) 2 , L 1 β 2 1 + L 2 β 2 2 k 1 β 2 1 + 2k 2 β 2 2 + k 1 ( 1-k 2 w 2 β 2 k 1 w 1 ) 2   . (201) 
For (i, j) ∈ {(1, 2), (2, 1)}, using the values βi = 1 w i (k i +L i ) , βj = 0, we have

B L 1 ,L 2 (w) ≥ L 1 β2 i 2k i β2 i + k j ( 1-k i w i βi k j w j ) 2 . ( 202 
)
Since 1k i w i βi = w i (k i + L i ) βik i w i βi = w i L i βi , we have

L i β2 i 2k i β2 i + k j ( 1-k i w i βi k j w j ) 2 = L i β2 i 2k i β2 i + k j ( w i L i k j w j ) 2 β 2 i = L i 2k i + k j ( w i L i k j w j ) 2 .
Since ν i = 1 1+k j w 2 j /(k i w 2

i ) , we have (1ν i )/ν i = 1/ν i -1 = k j w 2 j /k i w 2 i . We deduce

B L 1 ,L 2 (w) ≥ L i 2k i + (w i L i ) 2 k j w 2 j = L i /k i k i w 2 i k j w 2 j (L i /k i ) 2 + 2 = L i /k i ν i 1-ν i (L i /k i ) 2 + 2 . ( 203 
)
Finally, we compute

g 2 (2, ã) = 1 -(2 √ 3 -3) 1 + 2 √ 3 -3 = 4 -2 √ 3 2 √ 3 -2 = (4 -2 √ 3)(2 √ 3 + 2) (2 √ 3) 2 -2 2 = 8 √ 3 -12 + 8 -4 √ 3 8 = 4 √ 3 -4 8 = √ 3 -1 2 .
Item 3. The function H 1 is defined as the maximum of a finite number of continuous functions of a. By continuity of the maximum, H 1 is continuous and its minimum on the compact set [ã, 1ã] is reached.

Item 4. Consider a ∈ [ã, 1ã]. By Lemma 34 the function u → g 1 (u; a) is maximized at a u * 1 = 1 + 1/a. Similarly, v → g 1 (v; 1a) is maximized at u * 2 = 1 + 1/(1a). Since 1/3 ≤ ã ≤ 1/2, with ν 1 = a, ν 2 = 1a we have ν i ≥ 1/3 hence u * i = 1 + 1/ν i ≤ 2. Moreover, since we assume n i ≥ 4k i , we have n i -2k i ≥ 2k i ≥ k i 1 + 1/ν i = k i u * i . It follows that for i ∈ {1, 2} we have max

0≤L i ≤n i -2k i g 1 (L i /k i ; ν i ) = max L i ∈{⌊k i u * i ⌋;⌈k i u * i ⌉} g 1 (L i /k i ; ν i ).
As a result, the maximizers L * i of both sides are identical, and we have H 1 (a) = max(g 1 (L * 1 /k 1 ; a), g 1 (L * 2 /k 2 ; 1-a)) with

L * 1 ∈ arg max L 1 ∈{⌊k 1 u * 1 ⌋;⌈k 1 u * 1 ⌉} g 1 (L 1 /k 1 ; a) L * 2 ∈ arg max L 2 ∈{⌊k 2 u * 2 ⌋;⌈k 2 u * 2 ⌉} g 1 (L 2 /k 2 1 -a).
There remains to show that L * i /k i ≥ 1/ν 1 -1. For this, we first observe that since k i ≥ 2 we have

L * i /k i ≥ ⌊k i u * i ⌋/k i ≥ (k i u * i -1)/k i = u * i -1/k i ≥ u * i -1/2 = 1 + 1/ν i -1/2.
The derivative of x → √ 1 + x -1/2 -(x -1) = √ 1 + xx + 1/2 at any x ≥ 0 is 1/(2 √ 1 + x) -1 ≤ -1/2 hence this function is monotonically decreasing. Since a ∈ [ã, 1ã] and ν 1 = a, ν 2 = 1a we have ν i ≥ ã hence 1/ν i ≤ 1/ã for i ∈ {1, 2}, hence 1 + 1/ν i -1/2 -(1/ν i -1) ≥ 1 + 1/ã -1/2 -(1/ã -1) ≈ 0.12 > 0.

We deduce that L * i /k i ≥ 1/ν i -1 as claimed.

⊓ ⊔

We can conclude with the proof of Theorem 7.

Proof (Proof of Theorem 7) The proof starts from the fact (Corollary 3) that arg max

R∈C ′ δ nec Σ (R) = arg min R∈C ′ B Σ (R) (209) 
with C ′ = {R(•) = • w : w = (w 1 , w 2 ), w 1 > 0, w 2 > 0}. Using Lemma 32, for each w we have

B Σ ( • w ) = max 0≤L i ≤n-2k i ,i∈{1,2} B L 1 ,L 2 (w). ( 210 
)
With the notations of Lemma 33 we have µ 1 = w 1 /w 2 and µ 2 = w 2 /w 1 hence µ 1 = 1/µ 2 , and one can check that ν 1 + ν 2 = 1 where ν 1 = ν 1 (w) := (1 + k 2 w 2 2 /(k 1 w 2 1 )) -1 . Hence, by Lemma 33 (taking u = L 1 /k 1 , v = L 2 /k 2 , a = ν 1 and using (207)) and with the notation of Lemma 35, for all integers 0 ≤ L i ≤ n i -2k i we have

h 2 (L 1 /k 1 , L 2 /k 2 ; ν 1 ) ≤ B L 1 ,L 2 (w) ≤ h 1 (L 1 /k 1 , L 2 /k 2 ; ν 1 ) (211) 
with equality in the right hand s if for each i ∈ {1, 2} we have ν i ≥ L i /(k i + L i ), i.e., L i /k i ≥ 1/ν i -1. Using (210) we get max

0≤L i ≤n-2k i ,i∈{1,2} h 2 (L 1 /k 1 , L 2 /k 2 ; ν 1 ) ≤ B Σ ( • w ) ≤ max 0≤L i ≤n-2k i ,i∈{1,2} h 1 (L 1 /k 1 , L 2 /k 2 ; ν 1 ), (212) 
and if the maximizers L * i of the right-hand side of (212) satisfy L * i /k i ≥ 1/ν i -1 for each i ∈ {1, 2} then in fact

B Σ ( • w ) = H 1 (ν 1 ) := h 1 (L * 1 /k 1 , L * 2 /k 2 ; ν 1 ) (213) 
where H 1 is defined as the maximum of h 1 over the L i /k i (Lemma 35). In particular for ν i = 1/2, this is verified if L * i ≥ k i . Next we proceed in three steps. We set ã := 2 √ 3 -3 ≈ 0.46. Now, using the fact that (u 1 , u 2 ) 2 Σ = u 1 2

Σ k 1 + u 2 2 Σ k 2
(from [37, Lemma 4.2]) we obtain

z -P Σ (z) 2 Σ = z T c 2 Σ = 2 i=1 (z i ) S c i 2 Σ k i (226) 
With Lemma 36, we obtain an explicit expression of the ratio z -P Σ (z) 2 Σ / P Σ (z) 2 2 . For i ∈ {1, 2}, let L i = |supp((z i ) S c i )|. There exists 0 ≤ r i ≤ k i -1 and β i ∈ R n i , γ i ≥ 0 such that β i ∞ ≤ min l∈S i |z i (l)|,

β i 0 = k i -r i -1 ≤ L i and (z i ) S i 2 Σ k i = β i 2 2 + 1 r i + 1 γ 2 i ( 227 
) (z i ) S c i 1 = β i 1 + γ i . ( 228 
)
where, if k ir i -1 ≥ 1, we further have

γ i < (r i + 1) min l∈supp(β i ) |β i (l)|. ( 229 
)
Consider i ∈ {1, 2}. Depending on the value of k ir i -1, we have the following properties

• If k ir i -1 = 0 then β i 0 = 0 and β i = 0. Hence by (228) we have γ = (z i ) S c i 1 and

β i 2 2 + 1 r i + 1 γ 2 i = (z i ) S c i 2 1 k i . ( 230 
) • If k i -r i -1 ≥ 1 then, since k i β i 2 ∞ ≤ k i min l∈S |z i (l)| 2 ≤ (z i ) S i 2 
2 and β i 0 = k ir i -1, we have

β i 2 2 + 1 r i + 1 γ 2 i (229) ≤ β i 2 2 + (r i + 1) • min l∈supp(β i ) |β i (l)| 2 ≤ [(k i -r i -1) + (r i + 1)] • β i 2 ∞ = k i β i 2 ∞ ≤ (z i ) S i 2 2 . (231) 
Thanks to these properties, we distinguish two easy cases to bound z -P Σ (z) 2 Σ / P Σ (z) 

≤ ( i z S i 1 / k i ) 2 ≤( i z S i 2 ) 2 (|a|+|b|) 2 ≤2(|a| 2 +|b| 2 ) ≤ 2 i z S i 2 2 = 2 P Σ (z) 2 2 .
In both cases we obtain z -P Σ (z) 2 Σ / P Σ (z) 2 2 ≤ 2. When these easy cases do not hold we have e.g. 0 = k 1r 1 -1 and k 2r 2 -1 ≥ 1 (the same reasoning holds if k 2r 2 -1 = 0 and k 1r 1 -1 ≥ 1), z S c As this a quadratic function of γ ≥ 0 with positive leading coefficient it is maximized, at either bound of the range of γ, i.e γ = 0 or γ → (r 2 + 1) min l∈supp(β 2 ) |β 2 (l)| =: (r 2 + 1) β2 .

For the case, γ → (r 2 + 1) β2 , z -P Σ (z) This implies that there is (an integer -but we relax this constraint ) 0 ≤ s ≤ β 2 0 = k 2r 2 -1 such that

z -P Σ (z) 2 Σ ≤ ( z S 1 2 + z S 2 2 -(s β 2 ∞ + (k 2 -r 2 -1 -s) β2 + (r 2 + 1) β2 )/ k 2 ) 2 + s β 2 2 ∞ + (k 2 -r 2 -1 -s) β2 2 + (r 2 + 1) β2 2 . (234) 
Again the right side is a quadratic function of β2 under the constraint 0 < β2 ≤ β ∞, and bounded at either β2 → 0 or β2 = β 2 ∞:

z -P Σ (z) Similarly, for γ = 0

z -P Σ (z) 2 Σ ≤ ( z S 1 2 + z S 2 2 -β 2 1 / k 2 ) 2 + β 2 2 2
(238) which implies using the same argument used to obtain (237) 

z -P Σ (z) 2 Σ ≤ max

⊓ ⊔

Proof (Proof of Theorem 9)

We follow the same proof structure (cf Appendix A.6) as for Theorem 7, with analog definitions of P 1 (z) = z 1 and P 2 (z) = z 2 for z = (z 1 , s 2 ) ∈ H. We also denote T = (S 1 , S 2 ) = T (z) where S 1 denotes a support of the k largest coordinates in absolute values and S 2 = {1, . . . , r} the set indexing the first r (largest) eigenvalues collected in vector eig(u) (this index set was denoted T in Appendix A.4.2). We modify accordingly the notation T 2 for the 2k (resp. 2r) largest coordinates (resp eigenvalues).

Remark that Lemma 27 is still valid with • w = w 1 P 1 (•) 1 + w 2 P 2 (•) * . This permits in turns to obtain the expression (with T ′ = T 2 \ T )

B Σ ( • w ) = sup z:z =0, z T c 2 w + z T ′ w ≤ z T w z T c 2 2 H z T 2 2 H (240)
from the proof of Lemma 32. Now remark that this is exactly the same expression as in the sparsity in levels case using the vector of ordered eigenvalues for the part in Hp: (u 1 , u 2 ) 2 H = u 1 2 2 + eig(u 2 ) 2 2 and (u 1 , u 2 ) w = w 1 u 1 1 + w 2 eig(u 2 ) 1 . This in turns show that (using the same proof as Lemma 32)

B Σ ( • w ) = max 0≤L 1 ≤n-2k,0≤L 2 ≤p-2r B L 1 ,L 2 (w) (241) 
where B L 1 ,L 2 (w) is defined in (168). This is the first step of Theorem 7.

The rest of the proof then exactly matches the next steps of the proof of Theorem 7. ⊓ ⊔

Fig. 1 A

 1 Fig. 1 A representation of recovery guarantees based on descent cones of a convex function. Recovery of x ∈ Σ fails if ker(M ) intersects T R (x) non trivially. The bigger is the descent cone (red) the more likely recovery will fail. The bigger the space left by the descent cone (blue), the more likely recovery will succeed

Fig. 3

 3 Fig. 3 Then quantities log 10 (C 1 (k 1 , k 2 )) := log 10 |1 -w * ,w 0 w * 2 w 0 2 | (left) and log 10 (C 2 (k 1 , k 2 )) := log 10 (|δ nec Σ ( • w * )δ nec Σ ( • w 0 )|) (right) where w * = (w * 1 , w * 2 ) is obtained from Theorem 7 and w 0 = (1/ √ k 1 , 1/ √ k 2 ) for different k 1 , k 2 ≥ 2 .

  On the one hand, when 0 < β ≤ α satisfies β ≤ kα -(k + L)β we have α ≥ (1 + (L + 1)/k)β hence sup θ:0≤θ≤β,θ≤kα-(k+L)β

  For any symmetric matrix z, and Tr a subset indexing r components of largest magnitude of eig(z), i.e., min i∈T |eig(z) i | ≥ max j / ∈T |eig(z) j |, with |T | = r. Then max |T |≤r z T Σ = z Tr Σ (129) min |T |≤r zz T Σ = zz Tr Σ . (130)

  c < w ℓ β ℓ : (a) with any (i, j) ∈ {(1, 2), (2, 1)} is feasible; (b)-(c) are unfeasible, hence V = max i∈{1,2} (c/w i ) 2 . -c ≥ wrβr: (a) is unfeasible; (b)-(c) are both feasible, hence the claimed value of V for this case.

2 . 2 = z T c 2 2 and zT 2 2 2 -z T 2 2 2 = 2 [ 2 2 / zT 2 2 2 ≥ zT c 2 22 / zT 2 2 2

 22222222222 Denoting a, b ≥ 0 the values of the two considered entries, since (a + b)/2 + (a + b)/2 = a + b, we have [P j (z)] S j 1 = [P j (z)] S j 1 , and we obtain that zT w = z T w , hence z still satisfies the optimization constraint; 3. As zT c 2 (a+b)/2] 2 -a 2 -b 2 = -(a-b) 2 /2 ≤ 0, hence zT c 2 where the inequality is strict as soon as a = b.

2 2 . 1 . 2 Σ 2 i=1(z i ) S i 2 2 2 . 2 . 2 Σ

 1222222 If k ir i -1 ≥ 1 for each i ∈ {1, 2} then z -P Σ (z) = P Σ (z) 2 If k ir i -1 = 0 for each i ∈ {1, 2} then z -P Σ (z)

1 2 Σ k 1 = z S c 1 2 1 /k 1 and z S c 2 2 Σ k 2 = β 2 2 2 +

 1111222 γ 2 /(r + 1) .

0≤s ′ ≤k 2 ( z S 1 2 1 2 2 + z S 2 2 2 ) = 2 P Σ (z) 2 2 .For s ′ = k 2 z -P Σ (z) 2 ΣP Σ (z) 2 2 ≤ 2 i=1 z S i 2 2 .c = 1 - √ k 2 [S 2 2 ∈

 2212222222222122 + z S 2 2s ′ min l∈S |z(l)|]/ k 2 ) 2 + s ′ [min l∈S |z(l)|] 2 . (239)Still using the same argument about quadratic functions the right side of the maximum is bounded by either of the cases s ′ = 0 or s ′ = k 2 . For s ′ = 0z -P Σ (z) 2 Σ ≤ ( z S 1 2 + z S 2 2 ) 2 ≤ 2( z S V := ( z S 1 2 + z S 2 2 -√ k 2 min l∈S |z(l)|]) 2 + k 2 [min l∈S |z(l)|] 2 Denote min l∈S |z(l)|] z [0, 1) and consider r > 0, θ ∈ [0, π/2] such that z S 1 2 = r cos θ, z S 2 2 = r sin θ V = (r cos θ + cr sin θ) 2 + (1c) 2 r 2 sin 2 θ r 2 cos 2 θ + r 2 sin 2 θ = cos 2 θ + c 2 sin 2 θ + (1c) 2 sin 2 θ + 2c sin θ cos θ cos 2 θ + sin 2 θ = 1 + (2c 2 -2c) sin 2 θ + 2c sin θ cos θ.This is a quadratic function of c with positive leading coefficient hence it is maximized at c = 0 or c = 1 . Hence V ≤ max(1, 1 + 2 sin θ cos θ)= max(1, 1 + sin(2θ))≤ 2.

  Lemma 12 Consider a cone Σ ⊆ H and T ⊆ H a non-empty set, and denote P the set of symmetric positive semi-definite linear operators on H, i.e., N ∈ P if and only if N H = N and N 0. Then inf

  and z, y = y H hence the notations z -P E (z)2 

	P E (z) 2 H are unambiguous.	H and ⊓ ⊔
	Proof (Proof of Corollary 3) Since Σ -Σ is a union of subspaces and (Σ -Σ) ∩ S(1) is compact, by Lemma 9, sup x∈(Σ-Σ)∩S(1)

  With Σ := Σ k the set of k-sparse vectors in H = R n , we have: 1. the norm • Σ is invariant by permutation and coordinate sign changes; 2. for any vectors v, v ′ ∈ H such that |v j | ≤ |v ′ j | for all j we have v Σ ≤ v ′ Σ ; 3. consider any vector z, and T k a subset indexing k components of the largest magnitude, i.e., min i∈T |z i | ≥ max j / ∈T |z j |, with |T | = k. Then

	Corollary 5 max |T |≤k		
			126)
	With Fact A2, v 2 Σ is the infimum of the right-hand side over all such decompositions v =	λ i u i .	⊓ ⊔

  kr +Lr)wrβr ≤ (k ℓ +L ℓ )w ℓ β ℓ +(kr + Lr + 1)wrβr since w ℓ β ℓ ≤ wrβr by definition of r, ℓ. In both cases we get 2 i=1

  ≤ ( z S 1 1 / k 1 + z S 2 1 / k 1z S c 2 1 / k 2 ) 2 + β 2 = ( z S 1 1 / k 1 + z S 2 1 / k 1 -( β 2 1 + γ)/ k 2 ) 2 + β 2 2 2 + γ 2 /(r + 1).We have 0≤ z S 1 1 / √ k 1 + z S 2 1 / √ k 1 -( β 2 1 + γ)/ √ k 2 ) 2 ≤ z S 1 2 + z S 2 2 -( β 2 1 + γ)/ √ k 2 ) 2 and z -P Σ (z) 2 Σ ≤ ( z S 1 2 + z S 2 2 -( β 2 1 + γ)/ k 2 ) 2 + β 2

	This gives		
	z -P Σ (z) 2 Σ = z S c 1	2 1 /k 1 + β 2	2 2 + γ 2 /(r + 1)
	(225)		2 2 + γ 2 /(r + 1)
	(228)		
			2 2 + γ 2 /(r + 1).	(232)

  2 Σ ≤ ( z S 1 2 + z S 2 2 -( β 2 1 + (r 2 + 1) β2 )/ k 2 ) 2 + β 2 Let us call f (β 2 ) the numerator. For fixed β2 , β 2 ∞ , consider β * 2 the maximizer of f under the constraint β2 ≤ |β 2 (l)| ≤ β 2 ∞.We remark that given l ∈ supp(β 2 ) , we have that f (β 2 ) where we fixedβ 2 (l ′ ) = β * 2 (l ′ ) for l ′ ∈ supp(β 2 ) \ {l} is a quadratic function of |β 2 (l)| with positive leading coefficient. Under the constraint β2 ≤ |β 2 (l)| ≤ β 2 ∞, itis maximized at either of the two bounds on |β 2 (l)|, we deduce that β * 2 (l) = β2 or β * 2 (l) = β 2 ∞.

	2 2 + (r 2 + 1) β2 2 .	(233)

2 Σ

 2 ≤ max ( z S 1 2 + z S 2 2s β 2 ∞/ k 2 ) 2 + s β 2 2 ∞ , ( z S 1 2 + z S 2 2k 2 β 2 ∞ )) 2 + k 2 β 2 ( z S 1 2 + z S 2 2s ′ β 2 ∞ / k 2 ) 2 + s ′ β 2 ≤ s ′ ≤ k 2 the denominator in the last line is a quadratic function of of β 2 ∞ with 0 < β 2 ∞ ≤ min l∈S 2 |z(l)| (from Lemma 36) hence z -P Σ (z) 2 max ( z S 1 2 + z S 2 2 ) 2 , ( z S 1 2 + z S 2 2s ′ min l∈S 2 |z(l)|]/ k 2 ) 2 + s ′ [ min ( z S 1 2 + z S 2 2s ′ min l∈S 2 |z(l)|]/ k 2 ) 2 + s ′ [ min

				2 ∞
	≤ max 0≤s ′ ≤k 2	2 ∞ .			(235)
	For each 0 Σ			
	≤ max 0≤s ′ ≤k 2		l∈S 2	|z(l)|] 2	(236)
	= max 0≤s ′ ≤k 2	l∈S 2	|z(l)|] 2 .		(237)
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⊓ ⊔

The following function study will be used to deal with the optimization of the B L 1 ,L 2 (w).

Lemma 34 Consider a such that 0 < a ≤ 1. The function

is maximized at u * 1 = 1 + 1/a, increasing for u ≤ u * 1 , decreasing for u ≥ u * 1 and

Proof Since g ′ 1 (u; a) = -au 2 +a+1 (a(u+1) 2 +1) 2 , the equality g ′ 1 (u * 1 ; a) = 0 implies a(u * 1 ) 2 = a + 1 and u * 1 = 1 + 1/a.

Given the sign of g ′ 1 (u; a), g 1 (•; a) is increasing for u ≤ u * 1 and decreasing for u ≥ u * 1 . As a = [(u * 1 ) 2 -1] -1 we get

which is decreasing with respect to a.

and define

for every u, v ≥ 0.

If

3. There exists

where ⌊•⌋ and ⌈•⌉ denote the lower and upper integer part. Moreover, the L * i maximizing the above expression are also maximizing (208) and are such that

Proof Item 1. By Lemma 34, with a = 1/2 and any u, v ≥ 0 we have

We prove the inequality for a < ã. Since h 2 (2, 2; 1a) = h 2 (2, 2; a) by definition of h 2 , the same inequality holds if a > 1ã. For a < ã since a < 1/2 we have a/(1a) < (1a)/a hence using the definition of

Step 1. We show that if w ′ , w ′′ are such that ν

A first consequence is to establish (73), using Corollary 3 to convert the bound on

A second consequence is that the optimization of w = (w 1 , w 2 ) can be restricted to a range corresponding to

Indeed, on the one hand, for ν 1 (w ′′ ) = 1/2, by Lemma 35-Item 4 we have ,

where g 1 is defined in Lemma 35.

Hence, L * i ≥ k i so that (213) holds, and we deduce that B Σ (

and we obtain B Σ ( • w ) ≤ ( √ 3 -1)/2 as claimed. We can also establish the conclusion of the theorem (74) by considering sup k ′

Using Lemma 34, as g 1 is continuous and ⌊k

Again using Corollary 3 to link δ nec

Σ and B Σ yields (74). On the other hand, if ν 1 / ∈ [ã, 1ã] then by Lemma 35-Item 2 we have h 2 (2, 2; ν 1 ) > ( √ 3 -1)/2. Since n i ≥ 4k i , the integers L i := 2k i , i ∈ {1, 2} satisfy 0 < L i ≤ n i -2k i hence, by the left-hand side in (212),

Step 2. We show that if w satisfies

Since k i ≥ 2 and n i ≥ 4k i , by Lemma 35-Item 4, we have the equality 212)-( 213) we deduce that the equality B Σ ( • w ) = H 1 (ν 1 (w)) holds.

Step 3. By Lemma 35-Item 3, there is a * ∈ [ã, 1ã] such that H 1 (a * ) = min ã≤a≤1-ã H 1 (a). In light of Steps 1 and 2, the infimum over w of B Σ ( • w ) is thus achieved, and a weight vector w * satisfies

if, and only if

, combining all the above yields

where ν * 1 is an optimum of

⊓ ⊔

The following Lemma is needed for the proof of Theorem 8.

Lemma 36 Consider integers

Proof We use the fact that for any integer k the norm • Σ k coincides with the so-called k-support norm [4, Definition 2.1], that is invariant by permutation of the coordinates and has the following expression for each y ∈ R n sorted in descending order:

where r is the unique integer in {0, . . . , k -1} such that We define β ∈ R n and γ ≥ 0 as Since y is a decreasing rearrangement of z S c and • Σ k is invariant by permutation we have

This establishes (219). Finally when kr -1 ≥ 1 we have min l∈supp

We now give the proof of Theorem 8.

Proof (Proof of Theorem 8)

The assumptions of Lemma 10 hold, so we can rely on expression (57): to lower bound δ suff We will use that, by Lemma 27, we have