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Abstract We consider the problem of recovering elements of a low-dimensional model from
under-determined linear measurements. To perform recovery, we consider the minimization of a
convex regularizer subject to a data fit constraint. Given a model, we ask ourselves what is the
“best” convex regularizer to perform its recovery. To answer this question, we define an optimal
regularizer as a function that maximizes a compliance measure with respect to the model. We
introduce and study several notions of compliance. We give analytical expressions for compliance
measures based on the best-known recovery guarantees with the restricted isometry property.
These expressions permit to show the optimality of the ℓ1-norm for sparse recovery and of the
nuclear norm for low-rank matrix recovery for these compliance measures. We also investigate
the construction of an optimal convex regularizer using the examples of sparsity in levels and of
sparse plus low-rank models.

Keywords inverse problems · convex regularization · low dimensional modeling · sparse
recovery · low rank matrix recovery
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1 Introduction

In a finite-dimensional Hilbert space H (with associated inner product 〈·, ·〉, and norm ‖ · ‖H),
we consider the observation model:

y = Mx0 (1)

where y is an m-dimensional vector of measurements, M is an under-determined linear operator
(fromH = Cn, or Rn, to Cm), and x0 ∈ H is the unknown vector we want to recover. The problem
of recovering x0 from y is typically ill-posed. It is thus necessary to use prior information on x0

to recover it with a guarantee of success.
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In this work, we suppose that x0 belongs to a low-dimensional cone Σ (a positively homo-
geneous set, i.e., for every x ∈ Σ and λ ≥ 0, λx ∈ Σ) that models known properties of the
unknown. Examples of such models include sparse as well as low-rank models and many of their
generalizations. Note that in these examples the models belong to the slightly less general class
of models that are (finite or infinite) unions of subspaces (homogeneous sets).

To recover x0, a classical method is to solve the constrained minimization problem

x∗ ∈ arg min
Mx=y

R(x) (2)

where R is a function – the regularizer – that aims to enforce some structure on the solution x∗.

Many works [18,12,30,11] give practical regularizers ensuring that x∗ = x0 for several low-
dimensional models (in particular sparse and low-rank models, see [22] for a most complete
review of these results). A practical regularizer is a function that permits the effective calculation
of x∗. Without computational constraint, the best possible regularizer would be R = ιΣ : the
characteristic function of Σ defined by ιΣ(x) = 0 if x ∈ Σ, ιΣ(x) = +∞ otherwise (see Section 2
for a review of this fact). Unfortunately, this function is generally not convex (unless Σ itself is a
convex set) and can lead to an intractable optimization problem in general, even though recent
works show that using R = ιΣ and a dedicated minimization technique is a possible route for
certain particular low-dimensional models that can be smoothly embedded in Rn [16,35,36].

In this work, we focus on continuous convex regularizers that guarantee the existence of a
minimizer x∗ and the existence of practical optimization algorithms to perform minimization (2)
such as the primal-dual method [13] (provided their proximity operators can be calculated). Note
that convexity in itself is not sufficient to guarantee the practical feasibility of minimization (2)
(R(x) could be NP -hard to calculate, e.g., the nuclear norm for tensors [23], and/or the proximal
operator of R could be NP -hard to compute).

Under conditions on the measurement operator M that typically involve the number of mea-
surements and its structure (e.g., random for compressed sensing), the fact that x0 ∈ Σ permits
to give recovery guarantees when the convex regularizer R is well-chosen. For example, when
Σ = Σk is the set of k-sparse vectors in Rn and R(·) = ‖ · ‖1 (ℓ1-norm), or when Σ = Σr is the
set of matrices of rank lower than r in Rp×p and R(·) = ‖·‖∗ (nuclear norm), x0 can be recovered
as long as the number of measurements is of the order of the dimension of the model (up to some
log factors) : m ≥ O(k log(n/k)) for sparse recovery or m ≥ O(rp) for low rank recovery.

Our approach to provide these results is to exhibit a regularizer R for a given model set
Σ and to give the best possible recovery guarantees for the pair (R,Σ). Recent works aim
at giving guidelines to obtain guarantees as tight as possible for general sparse models and
convex regularizers [14,2,42,37,3,26]. With such frameworks, it becomes possible to compare
the performance of different regularizers. This leads naturally to the following question which
we address in this work: what is the “best” convex regularizer to recover a given low-
dimensional model Σ?

To tackle this problem, it is necessary to define the notion of “best” based on recovery guar-
antees. We propose different possibilities and follow one route that permits us to give optimality
results in the sparse and low-rank cases and show the difficulties that arise when considering
more complex generalized sparsity models. This work can be viewed as a way to give meaning
to the expression “convexification” of a low-dimensional model, that is often used and rarely
defined.



A theory of optimal convex regularization 3

1.1 Related works

Low-complexity models induced by convex regularization. Many regularizers encountered in signal
processing and machine learning are known to induce a specific type of model. Without aiming
for exhaustivity, the use of the ℓ1 norm [15] induces a sparse pattern in the solution, while
group regularization with mixed ℓ1 − ℓ2 norms restricts this sparse pattern to satisfy a specific
block structure [43]. More advanced model sets, such as low-rank matrices are linked to the use
of the nuclear norm [20]. For a wide class of regularizers, including decomposable norms [10],
decomposable M -estimator [27], atomic norms [14] and partly smooth functions [40,41], the
connection between nonsmooth convexity and model space can be made explicit. Note that all
these works take the following stance: given a convex regularizer R, what is the model set Σ
induced by minimizing R(x)?

Convexification of combinatorial functions. Given a real function f , it is known that its bicon-
jugate f∗∗ is a convex and closed function, whatever the initial properties of f . For instance, if
f is the constant function equal to 1 except in 0 – that is the counting function ℓ0 in dimension
1 – restricted to [−1, 1], i.e.,

f(x) =











1 if x ∈ [−1, 1] \ {0},
0 if x = 0,

+∞ otherwise,

then its biconjugate is the absolute value | · | restricted to [−1, 1]. Unfortunately, this construc-
tion is harder to generalize on an unbounded domain or in higher dimension. For instance, the
biconjugate of the ℓ0 counting function not restricted to a bounded set is the constant 0. Of
interest, we can mention convex closures of submodular functions (functions of {0, 1}p) that
can be calculated explicitly using the Lovász extension [5] and convex closure of almost convex
functions [24].

Convexification of objective function Many works intent to find a convex proxy to a non-convex
objective function. In [7], adding a Lagrangian term to the regularization of a constrained non-
convex minimization permits to build an equivalent minimization problem that is convex locally.
Another possibility is to try to perform a regularization by infimal regularization [8] for lower
semicontinuous objective functionals. In [28], in a function space setting, Pock et al. propose
a high dimensional lifting of the Lagrangian formulation of (2) where the data-fit functional is
non-convex. In the context of non-convex polynomial optimization, Lasserre’s hierarchies [25]
are used to recast the original problem in a hierarchy of convex semi-definite positive problems
which provide global convergence results. The drawback of this method is the computational cost
that makes it impractical for high-dimensional problems. Finally, convex closure of submodular
functions also permits to cast sparsity inducing objective functions (where the regularizer is a
submodular function of the support) into convex problems [5]. Note that if one aims to find a
non-convex, but continuous, regularization, several works of interest may be cited, such as the
use of ℓp minimization [21], SCAD [19], or CEL0 [32]. Nevertheless, in this paper, we focus on
convex functions.
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1.2 Contributions

In this paper, we define notions of compliance measures between a low-dimensional model and a
regularizer in finite dimension. The compliance of a function R for a model Σ is a function

R 7→ AΣ(R) (3)

that quantifies the recovery capabilities of Σ with R and minimization (2).
An optimal regularizer for a model Σ is defined as a regularizer that maximizes the compliance

measure. In this article, we focus on the maximization of compliance measures on the set C of
coercive continuous convex regularizers over H. Note that this idea was first mentioned in the
preliminary work [39] where optimal regularizers for sparse recovery were considered among
weigthed ℓ1-norms.

– We introduce compliance measures in Section 2 using tight recovery guarantees: a good
regularizer is a regularizer that permits the recovery of Σ as often as possible. We discuss the
elementary properties of these measures and show that optimal coercive continuous convex
regularizers can be found in the smaller class of atomic norms with atoms included in the
model set. While such compliance measures can be optimized in basic toy examples, they
require to be approximated in order to deal with sparse and low-rank models.

– We propose in Section 3 compliance measures exploiting best known uniform recovery guar-
antees based on the restricted isometry property (RIP). We give explicit formulations of such
recovery guarantees and show that, indeed, the ℓ1-norm and the nuclear norm are optimal for
sparse and low-rank recovery (respectively) among coercive continuous convex regularizers.

– We study the case of two generalized sparsity models in Section 4: sparsity in levels and
sparse plus low-rank models. We show how an optimal regularizer can be explicitly con-
structed in a small family of convex regularizers (ℓ1-norm weighted by levels and mixed
weighted ℓ1-nuclear norm respectively). While giving optimal weighting schemes for mixed
regularizations, these examples also show the difficulty of calculating optimal regularizers for
new low-dimensional models and opens many questions for the study of optimal regularizers.

1.3 Notations

In H, we denote S(1) := {z ∈ H : ‖z‖H = 1} the unit sphere with respect to ‖ · ‖H. Given a
linear operator M : H → Cm, we denote MH its Hermitian adjoint.

For Σ ⊆ H an arbitrary set, we denote ιΣ its characteristic function defined by ιΣ(x) = 0 if
x ∈ Σ, ιΣ(x) = +∞ otherwise. We denote E(Σ) := R+ · conv(Σ), where conv(Σ) is the closure
of the convex hull of Σ. We define R̄ := R ∪ {+∞}. Given a function f : H → R̄, we denote by
dom(f) its domain, i.e., the set dom(f) := {x ∈ H : f(x) < +∞}.

2 Optimal regularizer for a low dimensional model

In this section, starting from the characterization of exact recovery of a model Σ, we introduce
the notion of compliance measure and associated optimal convex regularizer.

2.1 Characterization of exact recovery using descent cones

Before defining an optimal regularizer, we must characterize when Σ can be recovered by solv-
ing (2). The fact that a given x0 ∈ Σ is recovered by solving (2) with regularizer R (i.e., that
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the solution x∗ of (2) is unique and satisfies x∗ = x0 when y := Mx0) is equivalent to the fact
that R(x+ z) > R(x) for every z ∈ ker(M) \ {0} (see e.g., [14]). To summarize this, we use the
following definition of symmetrized descent cones.

Definition 1 ((Symmetrized) descent cones.) Consider a regularizer R : H → R̄. For any
x ∈ dom(R), the descent cone of R at x is

TR(x) := {γz : γ ∈ R, z ∈ H, R(x+ z) ≤ R(x)} . (4)

For any set Σ ⊂ dom(R), we define TR(Σ) :=
⋃

x∈Σ TR(x).

Other definitions of descent cones (e.g., non-symmetric like in [14]) could be used. The sym-
metrization facilitates technical derivations in the following and permits to characterize recovery
as well. For ease of reading, in the following, symmetrized descent cones will be referred to as
descent cones.
Recovery guarantees with a regularizer R for a linear operator M generally come in two flavors
(recall that x∗ is the result of minimization (2)):

– Non-uniform recovery: If x0 ∈ Σ, then x∗ = x0 is equivalent to TR(x0) ∩ kerM = {0}.
– Uniform recovery: “For all x0 ∈ Σ, x∗ = x0” is equivalent to

TR(Σ) ∩ kerM = {0}. (5)

In the literature, recovery guarantees are obtained when the measurement operator M fulfills
sufficient conditions that imply these characterizations. Distinguishing these two types of recovery
guarantees especially makes sense in the context of compressed sensing when M is chosen at
random. Typical results are then of the form:

– Non-uniform recovery: Given x0 ∈ Σ, with high probability on the draw of M , x∗ = x0.
– Uniform recovery: With high probability on the draw of M , x∗ = x0 for all x0 ∈ Σ.

The main techniques to obtain recovery guarantees using a condition on the number of measure-
ments differ largely between these two cases (see Section 3). In this work, we mostly focus on
uniform recovery guarantees to stay in a fully deterministic setting. For such uniform recovery
guarantees, we see that the only interactions that matter between the model set Σ, the regularizer
R, and the measurement operator M are summarized by equation (5).

2.2 Compliance measures and optimal regularization

To define a notion of optimal regularizer, we simply propose to say that an optimal regularizer is a
function that optimizes a (hopefully well-chosen) criterion. We call such a criterion, a compliance
measure and specifically aim at defining it such that it should be maximized. The objective is
to define a compliance measure that quantifies the recovery capabilities of a given regularizer R
given a model set Σ.

Starting from the characterization of exact recovery, we can make the following remark. If
the descent sets of a regularizer R1 are included in the descent sets of another regularizer R2,
then the recovery capability of R1 are greater in the following way: success of recovery with R2

implies success of recovery with R1. Any “reasonable” compliance measure quantifying recovery
capabilities needs to fulfill the following axiom:

A compliance measure must be monotonously decreasing with respect to the inclusion of
descent sets.
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Fig. 1 A representation of recovery guarantees based on descent cones of a convex function. Recovery of x ∈ Σ
fails if ker(M) intersects TR(x) non trivially. The bigger is the descent cone (red) the more likely recovery will
fail. The bigger the space left by the descent cone (blue), the more likely recovery will succeed

We also see that the kernel of M heavily influences the recovery capability of R. If we had
some knowledge that M ∈ M where M is a set of linear operators, we would want to define
a compliance measure AΣ,M(R) that tells us how good is a regularizer in these situations and
to maximize it. Such maximization might yield a function R∗ that depends on M (e.g., in [32],
when looking for tight continuous relaxation of the ℓ0 penalty a dependency on M appears). In
the following, we propose a more universal notion of optimal convex regularizer that does not
depend on a particular class of linear operators M: we propose compliance measures AΣ(R) that
depend only on the set Σ and on the regularizer R, and consider their maximization on some
set of convex functions C (that are coercive and continuous, see Section 2.4):

sup
R∈C

AΣ(R). (6)

Of course, the existence of a maximizer of AΣ(R) is in itself a general question of interest: we
could ask ourselves what conditions on AΣ(R) and C are necessary and sufficient for the existence
of a maximizer, which is out of the scope of this article. In the sparse recovery and low-rank
matrix recovery examples studied in this article, the existence of a maximizer of the considered
compliance measures will be verified.

To build a compliance measure that does not depend on M , we define the optimal regularizer
as the regularizer which guarantees recovery of Σ in as many situations as possible, i.e., for “as
many linear operators M as possible”. Intuitively, a regularizer R is “good” if the set TR(Σ)
“leaves a lot of space” for kerM to not intersect it (trivially), see Figure 1). Among non-convex
regularizers, the optimal one is the characteristic function of the model set Σ.

Lemma 1 (Optimality of the characteristic function.) Consider an arbitrary non-empty
set Σ ⊆ H and denote ιΣ its characteristic function. The corresponding descent cone is

TιΣ (Σ) = {γz : γ ∈ R, z ∈ Σ −Σ} ⊇ Σ −Σ

where Σ − Σ is the so-called secant set of Σ. For any regularizer R such that Σ ⊆ dom(R) we
have TιΣ (Σ) ⊆ TR(Σ). Finally, if Σ is positively homogeneous then TιΣ (Σ) = Σ −Σ.

Proof See Appendix A.2
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This Lemma shows that ιΣ is at least as successful as any regularizer R for the exact recov-
ery of Σ (without any consideration of compliance measure). Moreover, TιΣ (Σ) is the smallest
possible descent cone with respect to inclusion. Hence ιΣ can be considered as the ideal reg-
ularizer [9] and indeed the optimal one with respect to any compliance measure defined as
AΣ(R) = f(TR(Σ)) where f is some function on subsets of H that is monotonic with respect
to set inclusion. This is why the search for optimal regularizers only makes sense under some
constraint on R.

2.3 A first compliance measure

As a first concrete example, we define here a theoretical compliance measure that reflects the
idea that smaller descent cones are better. However, this compliance measure does not lead
to analytical expressions for the general study of sparse recovery. Our core results in the next
sections rely on compliance measures based on best known uniform recovery guarantees using
the restricted isometry property (RIP).

For convex functions, first, observe that, as only the directions of the descent cones and the
kernel play a role in recovery guarantees, the size of descent cones can be measured by considering
only their intersection with the unit sphere S(1). Choosing the norm ‖ · ‖H to define the unit
sphere is natural (although also somewhat arbitrary) as this is the only metric introduced so far
in the considered setting. It will also appear to define RIP constants soon. Second, if we want to
consider a measure that is invariant by rotation, the uniform measure on the unit sphere S(1)
comes somewhat naturally. It is indeed the unique Haar measure. The uniqueness is essentially
guaranteed when it is a measure in the sense of measure theory (additive, non-negative function
over a σ-algebra). In our setting, using this measure is a way of considering that we do not have
prior information on the orientation of the kernel of M , or on the orientation of the model set
Σ.

Using this measure, given a convex function R, the “amount of space left for the kernel of
M” can be quantified by the “volume” of the intersection TR(Σ)∩S(1) of the descent cone with
the unit sphere. Hence, a compliance measure for uniform recovery can be defined as

AU
Σ(R) := 1− vol (TR(Σ) ∩ S(1))

vol(S(1))
. (7)

Here, the volume vol(E) of a set E is the measure of E with respect to the uniform measure
on the sphere S(1) (i.e., the n − 1-dimensional Hausdorff measure of TR(Σ) ∩ S(1), when H
is n-dimensional). This measure is well-defined as the descent cones of convex functions are
symmetrized convex cones.

When looking at non-uniform recovery for random Gaussian measurements, the quantity

defined by vol(TR(x0)∩S(1))
vol(S(1)) represents the probability that a randomly oriented kernel of dimension

1, defined as the span of a random vector uniformly distributed on the sphere S(1), intersects
(non trivially) TR(x0). The highest probability of intersection with respect to x0 quantifies the
lack of compliance of R, hence we could define:

ANU
Σ (R) := 1− sup

x∈Σ

vol (TR(x) ∩ S(1))

vol(S(1))
. (8)

This can be linked with the Gaussian width and statistical dimension theory of non-uniform
sparse recovery [14,2]. Indeed, if M is a random Gaussian matrix of size (n− 1)× n, we have

P
(

kerM ∩ TR(x0) 6= {0}
)

=
vol (TR(x0) ∩ S(1))

vol(S(1))
. (9)
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As shown in [2], for a random Gaussian matrixM of size m×n with any number of measurements
m, the probability P

(

kerM ∩ TR(x0) 6= {0}
)

can be guaranteed to be small if m is greater than
the statistical dimension of the descent cones. The kinematic formula (Crofton’s formula in this
case) gives the exact value

P
(

kerM ∩ TR(x0) 6= {0}
)

=

n
∑

j=m+1, j even

vj(TR(x0)) (10)

where vj(K) is the j-th intrinsic volume of a cone K. For a polyhedral cone it is the probability
that the orthogonal projection on K of a Gaussian vector lies in a j-dimensional face of K. The
statistical dimension of a descent cone T is defined by [2, Definition 2.2]

statdim(K) =
n
∑

j=0

jvj(K). (11)

As it is used to bound the number of measurements in the non uniform case, its supremum over
all the descent cones K = TR(x0), x0 ∈ Σ could be used as a compliance measure. Moreover, it
was shown that the statistical dimension is a measure of the “size” of the convex cones that is
additive, invariant by rotation, and monotonous.

The above compliance measures are completely dependent on the metric defining S(1) (here
the Hilbert norm ‖ · ‖H), other choices could be considered especially if measurement operators
M showing a particular structure were considered.

In this article, we concentrate on compliance measures based on uniform recovery guarantees.

Remark 1 These compliance measures implicitly force Σ ⊂ dom(R), unless AΣ(R) = 0. Indeed,
suppose there exists x ∈ Σ such that R(x) = +∞, then for all z ∈ H, we have R(x+ z) ≤ +∞ =
R(x). This implies TR(x) = H and AU

Σ(R) = ANU
Σ (R) = 0.

Remark 2 When studying convex regularization for low dimensional recovery in infinite dimen-
sional separated Hilbert spaces, the noiseless recovery only depends on the behavior of the reg-
ularizer R on E(Σ) (defined in Section 1.3). The behavior of R outside E(Σ) is only studied to
obtain properties of robustness to modeling error [37]. In many examples of generalized sparsity
and low-dimensional modeling in infinite dimension, the space E(Σ) has a finite dimension [1].
Our framework still applies in this case.

It is an open question to generalize our framework for low-dimensional recovery in more
general settings such as Banach spaces (e.g., for off-the-grid super-resolution).

Remark 3 In the uniform recovery case, the compliance measure AU
Σ defined in (7) is monotonous

with respect to the partial ordering of descent cones defined by the inclusion property. However,
it does not (at least explicitly) take into account potential effects of the dimension of the kernel
of M , which may be higher than one. For a given dimension ℓ of the kernel of M , the uniform
measure on the corresponding Grassmanian manifold (of all subspaces of dimension ℓ) would be
more natural as it would directly quantify the probability of intersection with a random kernel of
fixed dimension. This measure for kernels of dimension ℓ and a descent cone K is the following:

Vℓ(K) := µO(n) ({Q ∈ O(n) : (QE) ∩K 6= {0}}) (12)

where µO(n) is the uniform measure on the orthogonal group and E is an arbitrary fixed ℓ-
dimensional subspace. The measure Vℓ is invariant by rotation and for ℓ = 1 it matches the Haar
measure used in (7)-(8).
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Given a set Σ, and assuming the existence of a maximizer R∗ of AU
Σ (within a prescribed

family of possible regularizers), there are only two possibilities: either all maximizers of AU
Σ(R)

also minimize Vℓ(TR(Σ)), or not. In this last case, it would mean that there is R∗ maximizing AU
Σ

and not minimizing Vℓ. It is an interesting challenge, left to future work, to understand whether
this case can indeed happen.

2.4 Coercive continuous convex functions

As mentioned before we look for practical regularizers. We define C the set of all functions
R : H → R (i.e., with dom(R) = H) that are convex, continuous, and coercive.

The coercivity condition is typical in the context of convex regularization in order to avoid
constant functions.

With any proper lower semi-continuous regularizer (hence, with any regularizer in C) the
convergence of the primal dual algorithm is guaranteed [13]. This guarantees the existence of
practical algorithms (for the problem minx

1
2‖Mx− y‖2 + λR(x) ) when the proximity operator

y 7→ proxλR(y) := argmin 1
2‖u− y‖2H + λR(u) (13)

can be approximated efficiently.

2.5 Elementary properties and reduction to atomic “norms”

As compliance measures based on uniform recovery guarantees can be written as functions of
descent cones TR(Σ), we have the following immediate Lemma.

Lemma 2 (The compliance measure is monotonic.) Let R1, R2 be two functions such that
TR1(Σ) ⊂ TR2(Σ) then AU

Σ(R1) ≥ AU
Σ(R2).

In other words, the compliance measure is decreasing with respect to the inclusion of descent
cones. We also verify that multiplying a regularizer by a scalar does not change the compliance
measure which is consistent with recovery guarantees.

Lemma 3 (The compliance measure is 0-homogeneous.) Let λ > 0. Then,

AU
Σ(λR) = AU

Σ(R),

ANU
Σ (λR) = ANU

Σ (R).
(14)

Proof Let x ∈ Σ. We remark that, the tangent cone is invariant by scalar multiplication:

TλR(x) = {γz : γ ∈ R, λR(x+ z) ≤ λR(x)}
= {γz : γ ∈ R;R(x+ z) ≤ R(x)}
= TR(x).

(15)

This shows directly that ANU
Σ (λR) = ANU

Σ (R). This also implies that TλR(Σ) = TR(Σ) and
AU

Σ(λR) = AU
Σ(R).

⊓⊔

More generally, any operation on R that leaves TR(Σ) invariant does not change the compliance
measure. This is typically the case of the post-composition of R with an increasing function.

We now recall the notion of atomic “norm” and show that optimal regularizers can be found
in a set of atomic norms.
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Definition 2 (Atomic norm.) The atomic “norm” induced by a set A is defined as:

‖x‖A := inf {t ∈ R+ : x ∈ t · conv(A)} (16)

where conv(A) is the closure of the convex hull conv(A) in H. This “norm” is finite only on

E(A) := R+ · conv(A) = {x = t · y, t ∈ R+, y ∈ conv(A)} ⊂ H. (17)

It is extended to H by setting ‖x‖A = +∞ if x /∈ E(A).

Classical convex regularizer for sparse and low rank models are atomic norms:

– The ℓ1-norm ‖ · ‖1 is the atomic norm induced by signed canonical basis vectors.
– The nuclear norm ‖ · ‖∗ is the atomic norm induced by unitary rank-one matrices.

Atomic norms are convex gauges induced by the convex hull of atoms. Their properties can
be linked with the properties of the set A with classical results on convex gauge functions (see
Appendix A.1).

It is possible to define an atomic norm, denoted ‖ · ‖Σ, specifically induced by the model Σ.

Definition 3 (Atomic norm induced by the model.) Given a coneΣ, we define the atomic
norm induced by Σ as

‖ · ‖Σ := ‖ · ‖Σ∩S(1). (18)

This norm is known as the k-support norm for sparse model, it is not adapted to perform uniform
recovery. In particular, it cannot recover 1-sparse vectors.

In [37, Lemma 2.1], it was shown that there is always an atomic norm with smaller descent
cones than the descent sets of a proper coercive continuous function with convex level sets. We
give a version of this result for our definition of cones and specify the properties of the obtained
atomic norm.

Lemma 4 (Optimality of atomic norms for a given model.)
Let Σ be a cone such that E(Σ) = H and R be a coercive continuous convex function. Then

there exists A ⊂ Σ such that:
T‖·‖A

(Σ) ⊆ TR(Σ). (19)

and ‖ · ‖A is a coercive, continuous, positively homogeneous convex function.

Proof See Appendix A.2.2.

With Lemma 4, for all coercive continuous convex functions R (i.e. elements of C), it is
possible to find an atomic norm R′ with atoms included in Σ such that TR′(Σ) ⊂ TR(Σ). We
define CΣ as the set of coercive continuous positively homogeneous atomic “norms” whose atoms
A are included in Σ:

CΣ := {‖ · ‖A : A ⊂ Σ, ‖ · ‖A ∈ C, ∀x ∈ H, λ > 0, ‖λx‖A = |λ|‖x‖A}. (20)

As a consequence of this Lemma, we have the following immediate result.

Theorem 1 (Optimization of compliance measures over CΣ.) Let Σ be a cone such that
E(Σ) = H. Suppose AΣ is a compliance measure that is a decreasing function of TR(Σ) with
respect to set inclusion. Then

sup
R∈C

AΣ(R) = sup
R∈CΣ

AΣ(R). (21)

In particular
sup
R∈C

AU
Σ(R) = sup

R∈CΣ

AU
Σ(R). (22)
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Proof Let R ∈ C, with Lemma 4, there exists ‖ · ‖A ∈ CΣ such that T‖·‖A
(Σ) ⊂ TR(Σ). This

implies T‖·‖A
(Σ) ∩ S(1) ⊂ TR(Σ) ∩ S(1) and AΣ(R) ≤ AΣ(‖ · ‖A). ⊓⊔

Theorem 1 shows that we can limit ourselves to atomic norms if our only objective is to maximize
the compliance measure.

With such measures, we can calculate optimal regularizers for elementary linear transforma-
tions of models.

Lemma 5 (Compliance measures are equivariant to linear transformations.) Consider
a compliance measure defined as: AΣ(R) := f(TR(Σ)) with f some scalar valued function defined
on non-empty subsets of H. For any invertible linear map F on H, any model set Σ and any
regularizer R, we have

TR(FΣ) = F (TR◦F (Σ)) (23)

AFΣ(R) = f [F (TR◦F (Σ))]. (24)

Proof First γz ∈ TR(FΣ) if, and only if, there exists x ∈ Σ such that R(Fx + z) ≤ R(Fx),
i.e., such that (R ◦F )(x+ F−1z) ≤ (R ◦F )(x). This is in turn equivalent to γF−1z ∈ TR◦F (Σ),
i.e., γz ∈ F (TR◦F (Σ)). Second, it follows that AFΣ(R) = f(TR(FΣ)) = f [F (TR◦F (Σ))].

Thanks to Lemma 5, we can build optimal regularizers from other optimal regularizers when the
model set is obtained from another one by applying a linear isometry.

Corollary 1 (Compliance measures are invariant under invariant maps.) Consider
a compliance measure defined as: AΣ(R) := f(TR(Σ)) with f some scalar valued function on
subsets of H. Assume that f is invariant to a family F of invertible linear maps on H, i.e., for
any F ∈ F and any non-empty set T ⊆ H, f(FT ) = f(T ). Then, for any F ∈ F , any regularizer
R and any model set Σ, we have

AFΣ(R ◦ F−1) = AΣ(R). (25)

Proof By Lemma 5, AFΣ(R◦F−1) = f [F (T(R◦F−1)◦F (Σ))] = f(FTR(Σ)) = f(TT (Σ)) = AΣ(R).
⊓⊔

Corollary 2 (Compliance measures are invariant by isometries.) Consider F an isom-
etry on H, R a regularizer and Σ a model set. We have

AU
FΣ(R ◦ F−1) = AU

Σ(R). (26)

Proof The volume is invariant to isometries, hence AU
Σ(R) = fU (TR(Σ)) where fU (·) is invariant

to isometries. ⊓⊔

2.6 An exact result in 3D: the most we can do?

Compliance measures AU
Σ(R) and ANU

Σ (R) where effectively optimized [39] in the case of 1-
sparse recovery in dimension 3, i.e., for Σ = Σ1 the set of 1-sparse vectors in R3. In this case,
CΣ = {‖ · ‖A : A ⊂ Σ1}. It was shown that for the set C′

Σ = {‖ · ‖A : A ⊂ Σ1,A = −A} (which
is the set of weighted ℓ1-norms) that

arg max
R∈C′

Σ

AU
Σ(R) = arg max

R∈C′
Σ

ANU
Σ (R) = {λ‖ · ‖1 : λ > 0}. (27)
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Fig. 2 Solid angle of a half descent cone of a weighted ℓ1-norm

To show this, the solid angles of all descent cones of arbitrary weighted ℓ1-norms were calcu-
lated exactly, and their size minimized with respect to the weights.

Unfortunately, calculating exactly these solid angles in dimension d seems out of reach for
any sparsity and atomic norm in CΣ even if some progress in bounds of these quantities [26] in
some particular cases (non-uniform recovery with ℓ1-norm in probability with random matrices).
To the best of our knowledge, no general bound is available for the volume of descent cones of
arbitrary atomic norms in CΣ for sparse recovery. To build a compliance measure that we could
optimize, we would need to first to establish such general bounds with some tightness.

In the next section, we propose to build compliance measures based on best-known uniform
recovery guarantees that have some “tightness” properties. This will enable us to manipulate
analytical expressions and give results for sparse recovery and low-rank recovery.

3 Compliance measures based on the restricted isometry property

The most used tool for the study of uniform recovery is the restricted isometry property (RIP).
This property is adequate for multiple models [37], to be tight in some sense [17] for sparse and
low-rank recovery, to be necessary in some sense [9], and to be well adapted to the study of
random operators [29]. In [37], given a regularizer R, an explicit constant δΣ(R) is given, such
that δΣ(M) < δΣ(R) guarantees the exact recovery of elements of Σ by minimization (2). Hence,
using δΣ(R) as a compliance measure, the higher the value of δΣ(R), the less stringent the RIP
condition on M to ensure recovery of all elements of Σ using R as a regularizer.

To formalize further this idea, we start by recalling definitions and results about RIP recovery
guarantees then apply our methodology. We also give results that emphasize the relevant quantity
(depending on the geometry of the regularizer and the model) to optimize.

Definition 4 (RIP constant.) Consider an arbitrary non-empty set Σ ⊂ H and M a linear
map from H to Cm. The RIP constant of M is defined as

δΣ(M) = sup
x∈Σ−Σ

∣

∣

∣

∣

‖Mx‖22
‖x‖2H

− 1

∣

∣

∣

∣

, (28)

where Σ − Σ (differences of elements of Σ) is called the secant set. For brevity, we will simply
denote δ(M) when the model set Σ is clear from context.

This coincides with the usual notion of RIP for sparse recovery when Σ = Σk is the set of vectors
with at most k nonzero entries (and Σ − Σ = Σ2k); and with the RIP for low-rank recovery
when Σ = Σr is the set of matrices of rank at most r (then, Σ −Σ = Σ2r).
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A natural and sharp RIP-based compliance measure is A
RIP,sharp
Σ (R) = δ

sharp

Σ (R) defined as:

δsharpΣ (R) := inf
M :kerM∩TR(Σ) 6={0}

δΣ(M). (29)

This is the smallest RIP constant of measurement operators where uniform recovery fails [17],
hence the following immediate theorem.

Theorem 2 (The compliance measure δsharpΣ (R) is sharp.) Consider an arbitrary non-

empty set Σ ⊆ H. Suppose M has RIP with constant δΣ(M) < δ
sharp

Σ (R), then for all x0 ∈ Σ
and x∗ the result of minimization (2) satisfies

x∗ = x0. (30)

Conversely, there exists M with δΣ(M) ≥ δsharpΣ (R) and x0 ∈ Σ such that x∗ 6= x0.

Despite this sharp property with respect to recovery, δ
sharp

Σ (R) is not endowed with any known
analytic expression more explicit than its definition, and it is an open question to derive closed-
form formulations of this constant for a general R, even for the particular case of sparse or
low-rank models. This limits the possibility to conduct an exact optimization with respect to
R, and motivates the investigation of more explicit RIP-based compliance measures, with two
flavors:

– Compliance measures δnecΣ (R) based on necessary RIP conditions [17] which yield sharp re-
covery constants for particular set of operators M , e.g.,

δnecΣ (R) := inf
z∈TR(Σ)\{0}

δΣ(I −Πz). (31)

where Πz is the orthogonal projection onto the one-dimensional subspace span(z) (other
intermediate necessary RIP constants can be defined). Such measures upper bound δ

sharp

Σ (R)
(δnecΣ (R) characterizes RIP recovery guarantees of measurement operators having the shape
I −Πz).

– Compliance measures δsuffΣ (R) based on sufficient RIP constants for recovery (e.g., the explicit
sufficient RIP constant δΣ(R) from [37], which is explained in Section 3.3), which are lower
bounds to δsharpΣ (R).

Note that we have the relation

δsuffΣ (R) ≤ δsharpΣ (R) ≤ δnecΣ (R). (32)

The next sections aim at showing that the ℓ1-norm (resp. the nuclear norm) maximizes the
(best known) upper and lower bounds of δ

sharp

Σ (R) for k-sparse model (resp. low rank models).
First, in Section 3.1, we recall that when Σ is a non-trivial cone, the compliance measures

associated to RIP constants can be cast to equivalent compliance measures associated to a
restricted conditioning (RC), which can be written more explicitly.

Second, in Section 3.2, we use the expression of the RC-based compliance measure associated
to δnecΣ (·) (from Equation (31)) to show that the ℓ1 norm (resp. the trace-norm) optimizes δnecΣ (·)
for k-sparse vectors (resp. for matrices of rank at most r), with δnecΣ (R⋆) ≈ 1/

√
2 when n is large

enough.
Finally, in Section 3.3, we give a characterization of δsuffΣ (R) and show the optimality of the

ℓ1-norm (resp. the nuclear norm) with δsuffΣ (R⋆) = 1/
√
2.
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3.1 Restricted conditioning as a compliance measure

When working with a model set Σ that is a cone, instead of working with actual RIP constants,
it is easier to use (equivalently) the restricted conditioning.

Definition 5 (Restricted conditioning.) Consider a cone Σ ⊂ H and a linear operator M
from Rn to Cm. We define the restricted conditioning of M as

γΣ(M) :=
supx∈(Σ−Σ)∩S(1) ‖Mx‖22
infx∈(Σ−Σ)∩S(1) ‖Mx‖22

∈ [1,∞] (33)

where by convention here a/0 = +∞ for any a ≥ 0. For brevity we will simply denote γ(M)
when Σ is clear from context.

As shown below, the RIP constant δΣ(M) is a monotonically increasing function of γΣ(M). The
advantage of the latter is that it is invariant by rescaling M (rescaling leaves unchanged the
recovery properties when measuring x0 with M).

Lemma 6 (The RIP constant δΣ(M) is monotone in γΣ(M).) Consider a cone Σ ⊆ H.
For any M such that γΣ(M) < ∞, there is a unique λ > 0 such that

γΣ(M) =
1 + δΣ(λM)

1− δΣ(λM)
(34)

or equivalently

δΣ(λM) =
γΣ(M)− 1

γΣ(M) + 1
. (35)

Proof See Appendix A.3.

Thus, for cones, RIP-based compliance measures have equivalent RC-based compliance measures
such that

γΣ(R) =
1 + δΣ(R)

1− δΣ(R)
and δΣ(R) =

γΣ(R)− 1

γΣ(R) + 1
. (36)

The sharp RIP constant (29), the necessary RIP constant (31) and the sufficient RIP constant
δsuffΣ (R) of [37] are associated to

γsharpΣ (R) := inf
M :kerM∩TR(Σ) 6={0}

γΣ(M) =
1 + δsharpΣ (R)

1− δsharpΣ (R)
, (37)

γnecΣ (R) := inf
z∈TR(Σ)\{0}

γΣ(I −Πz) =
1 + δnecΣ (R)

1− δnecΣ (R)
, (38)

γsuffΣ (R) :=
1 + δsuffΣ (R)

1− δsuffΣ (R)
. (39)

We deduce from (32) the inequalities

γsuffΣ (R) ≤ γ
sharp

Σ (R) ≤ γnecΣ (R). (40)

The following result shows that γ
sharp

Σ (R) can be simplified.
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Proposition 1 (Explicit expression of γ
sharp

Σ (R).) Consider a cone Σ ⊆ H. Let P be the set
of symmetric positive semi-definite (PSD) linear operators on H: N ∈ P if and only if NH = N
and N � 0. For z ∈ H \ {0} define

fRC
Σ (z) := inf

N∈P:kerN=span(z)
γΣ(N) (41)

and for any non-empty set T ⊆ H such that T 6= {0} define

fRC
Σ (T ) := inf

z∈T \{0}
fRC
Σ (z). (42)

We have

inf
M :kerM∩T 6={0}

γΣ(M) = fRC
Σ (T ). (43)

Proof This is an immediate consequence of Lemma 12 in Appendix A.3. ⊓⊔

Using T = TΣ(R), the sharp RC (or RIP) constant is the smallest RC constant of positive
symmetric definite PSD operators with kernels of dimension 1 for which recovery of Σ fails:

γsharpΣ (R) = fRC
Σ (TR(Σ)). (44)

Since I−Πz ∈ P for any nonzero z, we have fRC
Σ (z) ≤ γΣ(I−Πz) hence we recover the inequality

γsharpΣ (R) ≤ inf
z∈TR(Σ)\{0}

γΣ(I −Πz) = γnecΣ (R),

however it is an open question to determine whether this is an equality in particular cases or in
general. The constant γnecΣ is already sharp in the following sense: for sparse recovery with the
ℓ1-norms, as well as for low-rank recovery with the nuclear norm, it is the biggest possible RIP
constant (δsuffΣ (R) = 1√

2
) that guarantees uniform recovery with ‖ · ‖1 (respectively with the

nuclear norm) for all sparsities k (for all rank levels r respectively) [17].

Similarly, to the compliance measures from Section 2, we can deduce an optimal regularizer
after an isometric linear transformation of the model.

Lemma 7 (Invariance of γ
sharp

Σ (R) under linear isometries.) Consider a cone Σ ⊆ H, an
arbitrary regularizer R such that Σ ⊆ dom(R), and a (linear) isometry F . We have

γ
sharp

FΣ (R ◦ F−1) = γ
sharp

Σ (R). (45)

Hence, for any class C′ of regularizers,

R∗ ∈ argmax
R∈C′

γ
sharp

Σ (R) ⇔ R∗ ◦ F−1 ∈ arg max
R′∈C′

γ
sharp

FΣ (R′). (46)

Proof See Appendix A.3.
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3.2 Compliance measures based on necessary RC conditions

In this section, we characterize the compliance measure

γnecΣ (R) = inf
z∈TR(Σ)\{0}

γΣ(I −Πz). (47)

To show optimality of the ℓ1-norm for sparse recovery and of the nuclear norm for low-rank
recovery, we will use the following characterization of γnecΣ (R) when Σ is a cone.

Lemma 8 (Characterization of γnecΣ (R) for a cone.) Consider a cone Σ ⊆ H such that
Σ 6= {0} and R an arbitrary regularizer such that Σ ⊆ dom(R).

1. If there is x ∈ H such that Σ ⊆ span(x), then

γnecΣ (R) =

{

+∞ if TR(Σ) ⊆ Σ,

1 otherwise.
(48)

2. If Σ ( span(x) for every x ∈ H, then

γnecΣ (R) =
1

1− infz∈TR(Σ)\{0} supx∈(Σ−Σ)∩S(1)
〈x,z〉2
‖z‖2

H

. (49)

Proof See Appendix A.4.

To go further, we exploit two assumptions related to orthogonal projections on certain sets.

Definition 6 (Orthogonal projection.) For any set E we define, for all z ∈ H

PE(z) = argmin
y∈E

‖z − y‖H. (50)

This is a set-valued operator is called the orthogonal projection, and PE(z) may be empty if
the minimum is not achieved.

Some assumptions on E ensure that PE(z) is not empty for any z.

Lemma 9 (Existence of the projection.) Consider a union of subspaces E ⊆ H, and
assume that E ∩ S(1) is compact. Then for every z ∈ H, PE(z) 6= ∅. Moreover, for every
x, x′ ∈ PE(z) we have ‖z − x‖2H = ‖z − x′‖2H and 〈z, x〉 = ‖x‖2H = ‖x′‖2H = 〈z, x′〉, hence
the notations ‖z − PE(z)‖2H, 〈z, PE(z)〉 and ‖PE(z)‖2H are unambiguous. We also have ‖z‖2H =
‖z − PE(z)‖2H + ‖PE(z)‖2H and

〈z, PE(z)〉 = ‖PE(z)‖2H = sup
x∈E∩S(1)

|〈x, z〉|2.

Proof See Appendix A.4.

Even if E is a union of subspaces and E ∩ S(1) is compact, PE(z) may not always be a
singleton. For example, consider E the set of k-sparse vectors and z the vector with all entries
equal to one.

Thanks to Lemma 9, we have the following characterization of the maximizers of δnecΣ .
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Corollary 3 (Characterization of δnecΣ .) Consider a cone Σ ⊂ H and assume that Σ − Σ
is a union of subspaces, (Σ − Σ) ∩ S(1) is compact, and Σ 6= span(x) for each x ∈ Σ. For any
class C′ of regularizers such that Σ ⊆ dom(R) for every R ∈ C′, the set of maximizers of δnecΣ (·)
satisfies (whether this set of maximizers is empty)

argmax
R∈C′

δnecΣ (R) = arg min
R∈C′

BΣ(R) with BΣ(R) := sup
z∈TR(Σ)\{0}

‖z − PΣ−Σ(z)‖2H
‖PΣ−Σ(z)‖2H

. (51)

For any regularizer R we have

δnecΣ (R) = (1 + 2BΣ(R))−1. (52)

Proof See Appendix A.4.

We now have the tools to study optimality for sparse and low rank models.

Optimal regularization for sparse recovery and for low-rank recovery

Consider now Σ = Σk the set of k-sparse vectors in H = Rn (associated with the canonical
scalar product 〈·, ·〉 and the ℓ2-norm ‖ · ‖H = ‖ · ‖2), where 1 ≤ k ≤ n/2, n ≥ 3. We have
Σ−Σ = Σ2k (for n ≤ 2k, in particular for n ≤ 2 and any k ≥ 1, uniform recovery is not possible
for non-invertible M : as Σ−Σ = Rn, by Lemma 1 we have TR(Σ) = Rn for any regularizer, thus
TR(Σ)∩kerM = {0} implies kerM = {0}). It is well-known that Σ and Σ−Σ are both unions of
subspaces (hence Σ is a cone), and it is straightforward that (Σ−Σ)∩S(1) is compact and Σ is
not reduced to a single line. Moreover, for any nonzero z ∈ Rn, PΣ−Σ(z) contains the restriction
zT2 of z to any set T2 = T2(z) ⊆ {1, . . . , n} of size 2k such that mini∈T2 |zi| ≥ maxj∈T c

2
|zj |.

Hence, we can invoke Corollary 3 to replace the maximization of δnecΣ (R) by the minimization of

BΣ(R) = sup
z∈TR(Σ)\{0}

‖zT c
2
‖22

‖zT2‖22
. (53)

Similarly, We consider Σ = Σr the set of matrices of rank at most r in the Hilbert space H of
n × n symmetric matrices (we study the symmetric case for simplicity, but conjecture that our
result can be extended to the non-symmetric case) with ‖ · ‖H = ‖ · ‖F (the Frobenius norm). We
have again Σ − Σ = Σ2r and all conditions are satisfied such that Corollary 3 can be invoked.
Denoting ∆ = eig(z) the vector of eigenvalues of matrix z ∈ H sorted by decreasing absolute
value, so that z = UT∆U for some unitary matrix U , and defining zT := z = UT∆TU for every
index set T , we have PΣ−Σ(z) = zT2 and z − PΣ−Σ(z) = zT c

2
where T2 = T2(z) ⊆ [1, n] is any

index set containing the 2k largest eigenvalues (in magnitude) of z, i.e., such that mini∈T2 |∆i| ≥
maxj∈T c

2
|∆j |. With these observations and notations, we are again left to optimize (53).

Specializing to the class C of convex, coercive, continuous regularizers, we obtain the following
theorems.

Theorem 3 (Optimality of ℓ1-norm for k-sparse vectors for δnecΣ .) With k-sparse vectors,
Σ = Σk ⊆ H = Rn, k < n

2 , and R⋆(·) = ‖ · ‖1, we have

δnecΣ (R⋆) = sup
R∈C

δnecΣ (R) = (2B⋆
k,n + 1)−1 with B⋆

k,n := max
1≤L≤n−2k

L/k

(L/k + 1)2 + 1
. (54)

Moreover, for k = 1, the unique functions R ∈ CΣ maximizing δnecΣ are of the form R(·) = λ‖ · ‖1
with λ > 0.
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Theorem 4 (Optimality of the nuclear norm for rank-r matrices for δnecΣ .) With the
set of rank-r matrices, Σ = Σr, in the space H of symmetric n × n matrices, r < n

2 , and with
R⋆(·) = ‖ · ‖∗ (the nuclear norm), we have

δnecΣ (R⋆) = sup
R∈C

δnecΣ (R) = (2B⋆
r,n + 1)−1 with B⋆

r,n := max
1≤L≤n−2r

L/r

(L/r + 1)2 + 1
. (55)

The proof of the two theorems exploits technical lemmas detailed in Appendix A.4.1 and Ap-
pendix A.4.2.

Proof We give the proof for the case of sparse recovery. To express it for low-rank recovery simply
replace the notation k by r. For 1 ≤ s ≤ n and any regularizer R we define

Bs
Σ(R) := sup

z∈TR(Σ)\{0},z∈Σs

‖zT c
2
‖22

‖zT2‖22
. (56)

For s ≤ 2k and any z ∈ Σs we have zT c
2
= 0 hence Bs

Σ(R) = 0, thus BΣ(R) = max1≤L≤n−2k B
2k+L
Σ (R).

First consider R ∈ CΣ . Since R is positively homogeneous and subadditive, by Lemma 15 for Σk

/ Lemma 19 for Σr,

B2k+L
Σ (R) ≥

L
k

(

L
k + 1

)2
+ 1

, for each 1 ≤ L ≤ n− 2k.

For R⋆ and 1 ≤ L ≤ n− 2k we also have (Lemma 17 / Lemma 20, inspired by [17]) that

BΣ(R
⋆) = max

1≤L≤n−2k

L
k

(

L
k + 1

)2
+ 1

.

As a result,

BΣ(R) ≥ BΣ(R
⋆) = max

1≤L≤n−2k

L
k

(

L
k + 1

)2
+ 1

=: B⋆
k,n

Finally, remark that BΣ(R) is an increasing function of TR(Σ). Using Lemma 4, for any
R ∈ C there is R′ ∈ CΣ such that

BΣ(R) ≥ BΣ(R
′) ≥ B⋆

k,n.

For k = 1, uniqueness comes from the fact that on a given orthant for R ∈ CΣ , R is a weighted
ℓ1 norm: R((x1, . . . , xn)) =

∑

i wi|xi| and the equality case in Lemma 15 forces wi = maxiwi.

⊓⊔

Because of the uniqueness result for k = 1, the ℓ1-norm is the unique convex regularizer in
∩CΣk

that jointly maximizes δnecΣk
for all k < n

2 (the proof of Theorem 3 is valid for CΣk′ , with
k ≤ k′ < n

2 ). It is an open question to determine if we have uniqueness model by model. As the
result might change for tighter compliance measures, we leave this question for future work.

In the next section, we will see that the optimization of the sufficient RIP constant leads to
very similar expressions.
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3.3 Compliance measures based on sufficient RC conditions

When Σ is a union of subspaces and R is an arbitrary regularizer, an “explicit” RIP constant
δsuffΣ (R) is sufficient to guarantee reconstruction [37]. The expression of this constant [37][Eq.
(5)] is recalled in the Appendix (Equation (123)) and can be used as a compliance measure. It
gives rise to the following lemma, which is proved in Appendix A.5.

Lemma 10 (Equality case of the sufficient conditions.) Assume that Σ = ∪V ∈VV is a
union of subspaces and that Σ ∩ S(1) is compact. Consider R any regularizer such that Σ ⊆
dom(R). We have

δsuffΣ (R) ≥ 1
√

sup
z∈TR(Σ)\{0}

‖z−PΣ(z)‖2
Σ

‖PΣ(z)‖2
2

+ 1
=: δsuff2Σ (R).

(57)

Further, assume that PΣ(z) ⊆ argminx∈Σ ‖x−z‖Σ for every z ∈ H and that, for every V ∈ V
and every u ∈ Σ, PV ⊥(u) ∈ Σ. Then, there is equality in (57).

Proof See Appendix A.5. Note that the assumption PΣ(z) ⊆ argminx∈Σ ‖x − z‖Σ could be
replaced by the slightly weaker PΣ(z) ∩ argminx∈Σ ‖x− z‖Σ/‖x‖2 6= ∅. ⊓⊔
We get an immediate corollary of the first claim in the above lemma.

Corollary 4 (Expression of a sufficient condition.) Assume that Σ = ∪V ∈VV is a union
of subspaces and that Σ∩S(1) is compact. For any class C′ of regularizers such that Σ ⊆ dom(R)
for every R ∈ C′, the set of maximizers of δsuff2Σ (·) satisfies (whether this set of maximizers is
empty)

argmax
R∈C′

δsuff2Σ (R) = arg min
R∈C′

DΣ(R) with DΣ(R) := sup
z∈TR(Σ)\{0}

‖z − PΣ(z)‖2Σ
‖PΣ(z)‖2H

. (58)

For any optimal regularizer R⋆ we have

δsuff2Σ (R⋆) = (1 +DΣ(R
⋆)−1/2. (59)

Note the subtle difference in the norm at the numerator in BΣ(R) and DΣ(R).

Optimal regularization for sparse recovery and low-rank recovery

When considering sparse recovery or low-rank recovery, there is indeed equality δsuffΣ (R) =
δsuff2Σ (R) thanks to the following Lemma.

Lemma 11 The assumptions for the equality case of Lemma 10 hold for Σ = Σk the set of
k-sparse vectors in H = Rn, as well as for the set Σ = Σr of symmetric matrices of rank at most
r in H the set of symmetric n× n matrices.

Proof See Appendix A.5.

Consider Σ := Σk, and regularizers in CΣ . Similarly to the necessary case, from Lemma 10,
we have (when Σ is a union of subspace and Σ ∩ S(1) is closed)

DΣ(R) = sup
z∈TR(Σ)\{0}

‖zT c‖2Σ
‖zT‖22

(60)

where T denotes the support of the k largest coordinates of z.
We obtain similar results as in the necessary RIP constant case.
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Theorem 5 (Optimality of ℓ1-norm for k-sparse vectors for δsuffΣ .) With k-sparse vectors,
Σ = Σk ⊆ H = Rn, k < n

2 , and R⋆(·) = ‖ · ‖1, we have

δsuffΣ (R⋆) = sup
R∈C

δsuffΣ (R) =
1√
2
. (61)

Moreover, for k = 1, the unique functions R ∈ CΣ maximizing δsuffΣ are of the form R(·) = λ‖·‖1
with λ > 0.

Theorem 6 (Optimality of the nuclear norm for rank-r matrices for δsuffΣ .) With the
set of rank-r matrices, Σ = Σr, in the space H of symmetric n × n matrices, r < n

2 , and with
R⋆(·) = ‖ · ‖∗ (the nuclear norm), we have

δsuffΣ (R⋆) = sup
R∈C

δsuffΣ (R) =
1√
2
. (62)

Proof We give the proof for the case of sparse recovery. To express it for low-rank recovery simply
replace the notation k by r. For 1 ≤ s ≤ n and any regularizer R we define

Ds
Σ(R) := sup

z∈TR(Σ)\{0},z∈Σs

‖zT c‖2Σ
‖zT ‖22

.

For s ≤ k and any z ∈ Σs we have zT c = 0 henceDs
Σ(R) = 0, thusDΣ(R) = max1≤L≤n−k D

k+L
Σ (R).

First consider R ∈ CΣ. Since R is positively homogeneous and subadditive, by Lemma 24 for
Σk / Lemma 26 for Σr,

Dk+L
Σ (R) ≥ min(1,

L

k
), for each 1 ≤ L ≤ n− k.

For R⋆ and 1 ≤ L ≤ n− k we also have (with Lemma 23 / Lemma 25) that

Dk+L
Σ (R⋆) = min(1,

L

k
).

As a result,

DΣ(R) ≥ DΣ(R
⋆) = max

1≤L≤n−k
min(1,

L

k
) = 1.

Finally, remark that DΣ(R) is an increasing function of TR(Σ). Using Lemma 4, for any
R ∈ C there is R′ ∈ CΣ such that

DΣ(R) ≥ DΣ(R
′) ≥ 1.

⊓⊔

3.4 Discussion

Even without an analytic expression of the sharp RIP constant, it would have been possible to
show that R⋆ optimizes δ

sharp

Σ if it were simultaneously optimizing its lower and upper bound,
i.e., if we had

sup
R∈C

δsuffΣ (R) = δsuffΣ (R⋆) = δnecΣ (R⋆) = sup
R∈C

δnecΣ (R). (63)
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Unfortunately, this is not the case in the sparse and low rank examples. We observe that for
fixed k, n we have in both cases

1√
2
= δsuffΣ (R⋆) < δnecΣ (R⋆). (64)

Because of this fact, we cannot conclude on the optimality of R⋆ for δ
sharp

Σ . However, indexing
all objects of the problem by n the dimension of H (respectively the dimension of the diagonals):

the set of regularizers C(n), the models Σ
(n)
k and the corresponding R⋆,(n) (independent of k for

k < n/2 as we saw previously). We have (see Remark 4)

inf
n≥3

inf
k∈{1,...,⌊n/2⌋}

sup
R∈C(n)

δnec
Σ

(n)
k

(R) =
1√
2
= δsuff

Σ
(n)
k

(R⋆,(n)). (65)

We deduce

inf
n≥3

inf
k∈{1,...,⌊n/2⌋}

sup
R∈C(n)

δsharp
Σ

(n)
k

(R) =
1√
2
. (66)

and

inf
n≥3

inf
k∈{1,...,⌊n/2⌋}

∣

∣

∣

∣

∣

δ
sharp

Σ
(n)
k

(R⋆,(n))−
[

sup
R∈C(n)

δ
sharp

Σ
(n)
k

(R)

]∣

∣

∣

∣

∣

= 0. (67)

This shows that the functions R⋆,(n) are optimal as a family with respect to a family of models

Σ
(n)
k and the worst case of their associated compliance measures δsharp

Σ
(n)
k

(R).

These results can be interpreted in terms of number of measurements needed to recover uni-
formly sparse or low rank objects with convex regularization. Under the best known (RIP-based)
uniform recovery conditions, it is guaranteed that using the optimal regularization with respect
to RIP-based compliance measures will enable the use of fewer measurements. In particular in
the case of an operator M built from m random Gaussian measurements, it has been proven

(see e.g. [22]) that there is a universal constant C such that if m ≥ C k log(k/n)
δ2 then M satisfies

a prescribed RIP constant δ with high probability. Hence, the larger the required RIP constant
is, the lower the number of measurement needs to be. Such results on the required number of
measurement to verify the RIP have been extended to more general low dimensional models
(see e.g. [29]), making RIP-based optimal regularizers tools of choice to optimize the number of
random measurements of elements of a given low dimensional model.

4 Towards the construction of optimal convex regularizers? The examples of
sparsity in levels and beyond.

In the previous Section, optimality was shown by exhibiting the optimal regularizer (ℓ1-norm
and nuclear norm). The only constructive part in these results is given by Theorem 1 that shows
that we can look for optimal regularizers in the set of atomic norms CΣ constructed using the
model set Σ. Ideally, given a compliance measure, we would like to be able to construct for any
model Σ, an optimal regularizer R⋆ ∈ CΣ. As such an objective seems out of reach with the tools
we have developed so far, we study on an example (the case of sparsity in levels) the simpler
problem of looking for the optimal regularizer in a smaller set of regularizers. We consider a
set of weighted ℓ1-norms and explore the explicit construction of an optimal regularizer for the
compliance measure δnecΣ . We then extend this result to the similar setting of Cartesian product
of sparse and low-rank models.
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4.1 Sparsity in levels

Sparsity in levels is a possible extension of plain sparsity, which is useful for the precise modeling
of signals such as medical images [1,6]. It is also useful for simultaneous modeling of sparse signal
and sparse noise [33,38].

Definition 7 (Sparsity in levels.) In H = Rn1 × Rn2 × . . . × RnL , given sparsity levels
k1, . . . , kL, we define the sparsity in levels model with

Σk1,...,kL
:= {x = (x1, . . . , xL) : xi ∈ Σki

} (68)

where Σki
is the ki-sparse model in Rni .

While the ℓ1-norm was shown to be is a candidate to perform regularization for models that
are sparse in levels [1], it was also shown that it is possible to obtain better sufficient RIP recovery
guarantees when weighting the ℓ1 norm by

√
ki in each level [37]. The following theorem permits

to show that this weighting scheme is close to optimal for the compliance measure δnecΣ by giving
explicit expressions for the calculation of optimal weights.

Given weights w = (w1, . . . , wL) ∈ RL
+, we define the ℓ1-norm weighted by levels.

‖(x1, . . . , xL)‖w =

L
∑

i=1

wi‖xi‖1. (69)

We have the following result.

Theorem 7 (Optimal weighted ℓ1 norms for δnecΣ for sparsity in levels.) Consider two
integers k1, k2 ≥ 2 and the model set Σ = Σk1,k2 in H = Rn1 × Rn2 where we assume that
n1 ≥ 4k1, n2 ≥ 4k2. Let ã = 2

√
3− 3. We define

B⋆
Σ := min

ν1∈[ã,1−ã]

ν2=1−ν1

max
i∈{1,2}

max
xi∈{⌊ki

√
1+1/νi⌋;⌈ki

√
1+1/νi⌉}

xi/ki
νi(xi/ki + 1)2 + 1

(70)

where ⌊·⌋ and ⌈·⌉ denote the lower and upper integer part and (ν∗1 , ν
∗
2 ) minimizing this expression.

Then

w∗ ∈ argmax
w

δnecΣ (‖ · ‖w) (71)

if and only if w∗ = (w∗
1 , w

∗
2) where w∗

1 , w
∗
2 > 0 satisfy

w∗
2

w∗
1

=

√

k1
k2

(1/ν∗1 − 1). (72)

Moreover, denoting w0 = w0(k1, k2) := (1/
√
k1, 1/

√
k2) we have

BΣ(‖ · ‖w∗) = B⋆
Σ ≤ BΣ(‖ · ‖w0) ≤ (

√
3− 1)/2

δnecΣ (‖ · ‖w∗) = (1 + 2B⋆
Σ)

−1 ≥ δnecΣ (‖ · ‖w0) ≥ 1/
√
3.

(73)

Finally, we have

inf
k1,k2≥1

inf
n1≥4k1,n2≥4k2

δnecΣ (‖ · ‖w0(k1,k2)) = 1/
√
3. (74)

Proof See Appendix A.6.
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This theorem comes from the fact that (see proof) the quantity defined in (53) satisfies

BΣk1,k2
(‖ · ‖(w1,w2)) = max

L1,L2

BL1,L2

Σk1,k2
((w1, w2)) (75)

where BL1,L2

Σk1,k2
(‖·‖(w1,w2)) can be computed explicitly (similarly to B2k+L

Σ from (56) for sparsity).

Thanks to the expression of BΣ(‖ · ‖w∗) from Theorem 7, it becomes tractable to evaluate
numerically optimal weights. We simply perform the minimization over ν1 ∈ [ã, 1 − ã] over a
regular grid (of 106 points in our experiment) and take the minimum. The value of w∗

1/w
∗
2 is

returned according to (72). Let w0 = w0(k1, k2) = (1/
√
k1, 1/

√
k2). In Figure 3, we show a

representation of the two criteria C1(k1, k2) = |1− 〈w∗,w0〉
‖w∗‖2‖w0‖2

| and C2(k1, k2) = |δnecΣ (‖ · ‖w∗)−
δnecΣ (‖ · ‖w0)| for different pairs (k1, k2). The case C1(k1, k2) = C2(k1, k2) = 0 occurs if and only
if w0 is optimal).
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Fig. 3 Then quantities log10(C1(k1, k2)) := log10

(

|1− 〈w∗,w0〉
‖w∗‖2‖w0‖2 |

)

(left) and log10(C2(k1, k2)) :=

log10(|δnecΣ (‖ · ‖w∗ ) − δnecΣ (‖ · ‖w0 )|) (right) where w∗ = (w∗
1 , w

∗
2) is obtained from Theorem 7 and w0 =

(1/
√
k1, 1/

√
k2) for different k1, k2 ≥ 2 .

We observe numerically that for 2 ≤ k1, k2 ≤ 200, C1(k1, k2) ≤ 10−5 and C2(k1, k2) ≤
5 · 10−3 and that the error tends to decrease for greater k1, k2. This comes from the fact that
the result of the discrete optimization over the integers Li in (75) gets closer to the result of a
continuous optimization that yields w∗

2/w
∗
1 =

√
k1/

√
k2 (obtained by dropping the integer parts

in Theorem 7).

For the “asymptotically optimal” weighting scheme w0 = w0(k1, k2) =
(

1√
k1
, 1√

k2

)

, we find

inf
k′
1,k

′
2≥1,n′

1≥4k′
1,n

′
2≥4k′

2

δnecΣk′
1,k′

2

(‖·‖w0)
(74)
=

1√
3

(∗)
≤ δsuffΣk1,k2

(‖·‖w0) ≤ δsharpΣk1,k2
(‖·‖w0) ≤ δnecΣk1,k2

(‖·‖w0).

(76)
The inequality (*) is shown in Theorem 8 below (improving for L = 2 the lower bound 1√

2+L
=

1/
√
4 = 1/2 for sparsity in L levels previously given in [37, Theorem 4.2]), and the last inequalities

are generic, cf (32).

The double-sided bound (76) confirms that the weighting scheme
(

1√
k1
, 1√

k2

)

is close to an

optimal choice (w.r.t the maximization of δ
sharp

Σk1,k2
) when the sparsities are known.



24 Yann Traonmilin, Rémi Gribonval and Samuel Vaiter

Theorem 8 (Sufficient RIP condition for near-optimal ℓ1 norms for sparsity in lev-
els.) Consider two integers k1, k2 ≥ 2 and the model set Σ = Σk1,k2 in H = Rn1 × Rn2 with

ni ≥ ki, i = 1, 2, and the norm ‖(x1, x2)‖w =
∑2

i=1
1√
ki
‖xi‖1. Then

δsuffΣk1,k2
(‖ · ‖w) ≥

1√
3
. (77)

Proof See Appendix A.6.

4.2 Beyond sparsity in levels

Beyond sparsity in levels, we obtain exactly the same result for the Cartesian product of a sparse
model and a low-rank model. Consider Σk,r = Σk × Σr ⊂ Rn × Hp where Hp is the set of
symmetric matrices of size p× p. This model with n = p2 can be used to model sums of sparse
and low rank matrices. To address associated matrix reconstruction problems it was suggested

in [34] to use a weighted sum of the ℓ1-norm and the nuclear norm with weights ratio
√
k√
r
, ie

‖(z1, z2)‖w = 1√
k
‖z1‖1+ 1√

r
‖z2‖∗. The following Theorem guarantees that the previous numerical

experiments hold with this model (by replacing k1 by k and k2 by r). It thus confirms that this
is a near optimal choice of weights.

Theorem 9 (Optimal mixed norms for δnecΣ for sparse plus low-rank models.) Consider
two integers k, r ≥ 2 and the model set Σ = Σk × Σr in H = Rn × Hp where we assume that
n ≥ 4k, p ≥ 4r. Consider ã = 2

√
3−3, B⋆

Σ and (ν∗1 , ν
∗
2 ) from Theorem 7 with k1 = k and k2 = r.

Then, with ‖(z1, z2)‖w := w1‖z1‖1 + w2‖z2‖∗, we have:

w∗ ∈ argmax
w

δnecΣ (‖ · ‖w) (78)

if and only if w∗ = (w∗
1 , w

∗
2) where w∗

1 , w
∗
2 > 0 satisfy

w∗
2

w∗
1

=

√

k

r
(1/ν∗1 − 1). (79)

Moreover, denoting w0 = w0(k, r) := (1/
√
k, 1/

√
r) we have

BΣ(‖ · ‖w∗) = B⋆
Σ ≤ BΣ(‖ · ‖w0) ≤ (

√
3− 1)/2

δnecΣ (‖ · ‖w∗) = (1 + 2B⋆
Σ)

−1 ≥ δnecΣ (‖ · ‖w0) ≥ 1/
√
3.

(80)

Finally, we have
inf

k,r≥1
inf

n≥4k,p≥4r
δnecΣ (‖ · ‖w0(k,r)) = 1/

√
3. (81)

Proof See Appendix A.6.

These results for sparsity in levels and beyond show that even with a simple model and
parametrized family of functions, optimization might lead to complicated expressions. We also
remark that we could perform the optimization because restricting to weighted atomic norms
leads to an analytical description of atoms generating the regularizers. This in turn leads to an
analytical description of descent cones. The question of optimality within more general sets of
atomic norms remains. Unfortunately the lack of analytical description of descent cones in the
general case makes the direct extension of our proof technique difficult.
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5 Discussion and future work

We gave a general way of defining compliance measures between a regularizer R and a low
dimensional model set Σ, and described some elementary properties of such measures. This
opens questions on conditions on compliance measures that guarantee the existence of an optimal
convex regularizer. Also, the question of manipulating compliance measures for transformations
and combinations of models (intersections, unions, sums, ...) is a wide and challenging potential
area of research.

We considered noiseless observations instead of the classical noisy model y = Mx0 + e where
e is a measurement noise with finite energy ‖e‖2 because of the following remark. Suppose we
define an optimal regularizer for a given noise level ‖e‖2. There are two possible cases, either the
regularizer is also optimal for ‖e‖2 = 0 or it is not. In the second case, it means that we would
need to trade exact recovery capability for improved stability to noise. This is a possible route to
follow especially if there is some latitude on the design of the measurement operator M , i.e., it
is possible to increase measurements to improve stability to noise. The analysis of such trade-offs
is out of the scope of this article and left for future work.

We have shown that the ℓ1-norm is optimal among coercive continuous convex functions for
sparse recovery for compliance measures based on necessary and sufficient RIP conditions. This
result had to be expected due to the symmetries of the problem. The important point is that we
could explicitly quantify the notion of good regularizer. We obtained the same expected results
with the nuclear norm for low-rank matrix recovery.

It must be noted that we did not use constructive proofs (we exhibited the candidate maximum
of the compliance measure) for the sparsity and low-rank cases. A full constructive proof, i.e., an
exact calculation and optimization of the quantities BΣ(R) and DΣ(R) would be intellectually
more satisfying as it would not require the prior knowledge of the candidate optimum, which is
our ultimate objective. We saw in the case of sparsity in levels and beyond that we can construct
the regularizer that achieved optimality among a simple parametrized family of convex functions
(weighted ℓ1-norms in levels). It is an open question to obtain more general constructions.

We used compliance measures based on (uniform) RIP recovery guarantees to give results
for the sparse recovery case, it would be interesting to do such analysis using (non-uniform)
recovery guarantees based on the statistical dimension or on the Gaussian width of the descent
cones [14,2]. One would need to precisely lower and upper bound these quantities, similarly to
our approach with the RIP, to get satisfying results.

Finally, while these compliance measures are designed to make sense with respect to known
results in the area of sparse recovery, one might design other compliance measures tailored for
particular needs, in this search for optimal regularizers.
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A Appendices

This section describes the tools and proofs used to obtain our results.

A.1 Summary of properties used in proofs

From [37, Table 1] (which summarizes results from [31] ), the function x ∈ E(A) 7→ ‖x‖A is always non-negative,
lower semi-continuous and subadditive (i.e., it satisfies the triangle inequality). It is furthermore positively ho-
mogeneous as soon as 0 ∈ conv(A), continuous as soon as 0 is in the interior of conv(A), and coercive as soon as
conv(A) is bounded. Finally, it is indeed a norm if conv(A) = −conv(A).

We refer the reader to [37][Section 2.2] and [4] for properties of the atomic norm ‖ · ‖Σ (cf Definition 3). We
will use the following two properties of ‖ · ‖Σ (defined in Section 2.5).

Fact A1 (From e.g. [37]) For all x ∈ Σ, ‖x‖Σ = ‖x‖H.

Fact A2 (From [37][Fact 2.1] applied to ‖ · ‖Σ) For all z ∈ H

‖z‖Σ = inf

{√∑

λi‖ui‖2H : λi ∈ R+,
∑

λi = 1, ui ∈ Σ, z =
∑

λiui

}

. (82)

A.2 Proofs for Section 2

A.2.1 Proof of Lemma 1

Consider x ∈ Σ, and z ∈ H. We have ιΣ(x + z) ≤ ιΣ(x) = 0 if and only if x + z ∈ Σ, i.e., if there is x′ ∈ Σ
such that z = x′ − x. Hence, TιΣ (x) = {γ(x′ − x) : γ ∈ R, x′ ∈ Σ}. It follows that TιΣ (Σ) = {γz : γ ∈ R, z ∈
Σ −Σ} ⊇ Σ −Σ. When Σ is positively homogeneous, for any z = x′ − x ∈ Σ − Σ and γ ∈ R we have: if γ > 0
then γz = γx′ − γx ∈ Σ−Σ; if γ < 0 then γz = (−γ)x− (−γ)x′ ∈ Σ−Σ; if γ = 0 then γz = 0 = x−x ∈ Σ−Σ,
hence indeed TιΣ (Σ) ⊆ Σ −Σ.

Now consider y ∈ TιΣ (Σ) and write it as y = γ(x1 − x2) where x1, x2 ∈ Σ and γ ∈ R. Since Σ ⊆ dom(R) we
have max(R(x1), R(x2)) < ∞. We will prove that y ∈ TR(Σ). We distinguish two cases: if R(x1) ≤ R(x2) then
R(x2 + (x1 − x2)) = R(x1) ≤ R(x2) hence y = γ(x1 − x2) ∈ TR(x2), and as x2 ∈ Σ it follows that y ∈ TR(Σ);
otherwise R(x2) < R(x1) hence R(x1 + (x2 − x1)) = R(x2) < R(x1) hence y = (−γ)(x2 − x1) ∈ TR(x1) and
therefore y ∈ TR(Σ). ⊓⊔
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A.2.2 Proof of Lemma 4

Given t > R(0), the level set L(R, t) = {y ∈ H : R(y) ≤ t} is nonempty, convex and closed (by convexity and
lower semi-continuity of R), and bounded (by coercivity of R). We define A := L(R, t)∩Σ = {x ∈ Σ : R(x) ≤ t}.

Consider z ∈ T‖·‖A(Σ). If z = 0 then clearly z ∈ TR(Σ). Let us prove that the same holds when z 6= 0. By
definition, there exists γ ∈ R \ {0} and x ∈ Σ such that

‖x+ z/γ‖A ≤ ‖x‖A.

On the one hand we have R(0 ·x) = R(0) < t. On the other hand, since R is coercive, we have R(λx) →
λ→+∞

+∞.

Since R is continuous, by the mean value theorem, there is λ0 > 0 such that

R(λ0x) = t.

Since Σ is a cone, the vector x′ = λ0x belongs to Σ and, since R(x′) = t, by definition of A we have indeed
x′ ∈ A, hence ‖x′‖A ≤ 1. Furthermore, since ‖ · ‖A is positively homogeneous (because 0 ∈ conv(A)), we have

‖x′ + λ0z/γ‖A = λ0‖x+ z/γ‖A ≤ λ0‖x‖A = ‖x′‖A.

We now observe that, on the one hand, the level set L(‖ · ‖A, 1) = conv(A) is the smallest closed convex set
containing A; on the other hand A ⊂ L(R, t) and L(R, t) is convex and closed. Thus L(‖ · ‖A, 1) ⊂ L(R, t) and
the fact that ‖x′ + λ0z/γ‖A ≤ ‖x′‖A ≤ 1 therefore implies

R(x′ + λ0z/γ) ≤ t = R(x′). (83)

This shows that z ∈ TR(Σ) and establishes that T‖·‖A(Σ) ⊆ TR(Σ).
Let us now prove that ‖ · ‖A is continuous, convex, coercive and positively homogeneous. First, from the

property of gauges (see Appendix A.1), ‖ · ‖A is always convex and lower semi-continuous. Second, since R is
coercive, its level sets are bounded, hence conv(A) is bounded and ‖ · ‖A is coercive. Finally, as R(0) < t and R is
continuous, 0 is in the interior of L(R, t). There exists ǫ > 0 such that an open ball O of radius ǫ centered on 0 is

included in L(R, t). This implies O∩Σ ⊂ L(R, t)∩Σ = A which in turns imply conv(O∩Σ) ⊂ conv(A) ⊂ conv(A).
Remark that E(O∩Σ) = E(Σ) = H. Now we need to find O′ an open ball of radius ǫ′ such that O′ ⊂ conv(O∩Σ).
In each orthant Ωr, we can find a normalized basis E = (ei) ∈ Σ such that Ωr ⊂ E(E). We define the norm
‖∑i µiei‖E =

∑
µi. This norm is equivalent to ‖ · ‖H. This implies there is a constant cr depending on the

orthant Ωr , such that for x =
∑

i µiei ∈ O′ ∩Ωr , maxi µi < crǫ′. This implies

x = t
∑

i

µi
∑

j µj
ǫei (84)

with t =
∑

j µj

ǫ
≤ ncr

ǫ′

ǫ
. Taking ǫ′ < ǫ/(ncr) implies t < 1 and x ∈ conv(O ∩Σ). As there is a finite number of

orthants we can chose ǫ′ such that we always have x ∈ O′ implies x ∈ conv(O ∩Σ). ⊓⊔

A.3 Proofs for Section 3.1

Proof (Proof of Lemma 6)
Denote α = infx∈(Σ−Σ)∩S(1) ‖Mx‖22 and β = supx∈(Σ−Σ)∩S(1) ‖Mx‖22, so that γ(M) = β/α. Since Σ is a

cone, we have for every x ∈ Σ −Σ,

α‖x‖2H ≤ ‖Mx‖22 ≤ β‖x‖2H = γ(M)α‖x‖2H , (85)

Multiplying x in (85) by any λ > 0, we have

λ2α‖x‖2H ≤ ‖λMx‖22 ≤ λ2γ(M)α‖x‖2H.

We look for λ > 0, δ 6= 1 such that λM satisfies a symmetric RIP with constant δ, i.e.,

λ2α = 1− δ and λ2γ(M)α = 1 + δ.

Adding these two equalities yields λ2α(1 + γ(M)) = 1, hence λ2 = 1
α(1+γ(M))

. Dividing them yields

1− δ

1 + δ
= γ(M) ⇐⇒ δ =

γ(M) − 1

γ(M) + 1
.
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We have shown that for any M , there exists λ > 0 such that

δ(λM) ≤ γ(M) − 1

γ(M) + 1
.

Remark that the value of λ that makes the RIP bounds symmetrical is unique, and that no better symmetrical
RIP bound can be obtained, otherwise we could construct a better restricted conditioning (which is impossible
by definition of γ(M)). We deduce

δ(λM) =
γ(M) − 1

γ(M) + 1
.

⊓⊔

Lemma 12 Consider a cone Σ ⊆ H and T ⊆ H a non-empty set, and denote P the set of symmetric positive
semi-definite linear operators on H, i.e., N ∈ P if and only if NH = N and N � 0. Then

inf
M:kerM∩T 6={0}

γΣ(M) = inf
N∈P:dimkerN=1,kerN∩T 6={0}

γΣ(N). (86)

Proof The infimum on the r.h.s. of (86) is over a more constrained set than on the l.h.s., hence

inf
M:kerM∩T 6={0}

γΣ(M) ≤ inf
N∈P:dimkerN=1,kerM∩T 6={0}

γΣ(N).

If the l.h.s. is infinite, then the right-hand side must also be infinite, and we are done.
Assume that the l.h.s. is finite. We now prove the reverse inequality. For this, consider M a linear operator

with kerM ∩T 6= {0} and γΣ(M) < ∞. There exists a nonzero vector t ∈ kerM ∩T . We build an operator N ∈ P
such that kerN = span(t) and with γΣ(N) arbitrarily close to γΣ(M).

Since γΣ(M) < ∞, M is nonzero hence a singular value decomposition allows writing M =
∑r

i=1 σiuivHi
where (ui)

r
i=1 and (vi)

r
i=1 are orthonormal families and min1≤i≤r σi > 0. First we deal with the case where

dim kerM = 1.We setN =
∑r

i=1 σiviv
H
i so that N ∈ P and dimkerN = 1 too. Since ‖Nx‖22 =

∑r
i=1 σ

2
i 〈vi, x〉2 =

‖Mx‖22 for any vector x we have γ(N) = γ(M), and we are done. Assume now that k := dimkerM ≥ 2.
Observe that span(t) ⊂ kerM and let (e1, . . . , ek−1) be an orthonormal basis of the orthogonal complement
of span(t) in kerM , so that (v1, . . . , vr , e1, . . . , ek−1) is an orthonormal family. For each ǫ > 0, define Nǫ =
∑r

i=1 σiviv
H
i + ǫ

∑k−1
j=1 eje

H
j . Again, Nǫ ∈ P and span(t) = kerNǫ so that dimkerNǫ = 1, and for each x ∈ H

we have

‖Nǫx‖22 =
r∑

i=1

σ2
i 〈vi, x〉2 + ǫ2

k−1∑

j=1

〈ej , x〉2 = ‖Mx‖22 + ǫ2
k−1∑

j=1

〈ej , x〉2,

hence ‖Mx‖22 ≤ ‖Nǫx‖22 ≤ ‖Mx‖22 + ǫ2‖x‖22. Since γΣ(M) < ∞, we get

0 < inf
x∈(Σ−Σ)∩S(1)

‖Mx‖22 ≤ inf
x∈(Σ−Σ)∩S(1)

‖Nǫx‖22 ≤ sup
x∈(Σ−Σ)∩S(1)

‖Nǫx‖22 ≤ sup
x∈(Σ−Σ)∩S(1)

‖Mx‖22 + ǫ2

which implies

γΣ(Nǫ) ≤
supx∈(Σ−Σ)∩S(1) ‖Mx‖22 + ǫ2

infx∈(Σ−Σ)∩S(1) ‖Mx‖22
= γΣ(M) +

ǫ2

infx∈(Σ−Σ)∩S(1) ‖Mx‖22
.

This implies that infǫ>0 γΣ(Nǫ) ≤ γΣ(M) as claimed. ⊓⊔

Proof (Proof of Lemma 7) We define

G(Σ,E,M) :=
supy∈(Σ−Σ)∩E ‖My‖22
infy∈(Σ−Σ)∩E ‖My‖22

. (87)

For any nonzero M , we have

γFΣ(M) =
supx∈(FΣ−FΣ)∩S(1) ‖Mx‖22
infx∈(FΣ−FΣ)∩S(1) ‖Mx‖22

=
supy∈(Σ−Σ)∩F−1S(1) ‖MFy‖22
infy∈(Σ−Σ)∩F−1S(1) ‖MFy‖22

. (88)

Hence,

ARC
FΣ(R ◦ F−1) = inf

M:kerM∩T
R◦F−1 (FΣ) 6={0}

γFΣ(M)

= inf
M:kerM∩T

R◦F−1 (FΣ) 6={0}
G(Σ,F−1S(1),MF ).
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By Lemma 5 with R′ = R ◦ F−1, TR◦F−1(FΣ) = TR′ (FΣ) = F (TR′◦F (Σ)) = F (TR(Σ)). Also, kerM ∩
TR◦F−1(FΣ) 6= {0} is equivalent to the existence of z ∈ kerM such that z′ := F−1z ∈ TR(Σ), i.e., of z′ ∈ TR(Σ)
such that z := Fz′ ∈ kerM . As a result,

inf
M:kerM∩T

R◦F−1 (FΣ) 6={0}
γFΣ(M) = inf

M:F−1 kerM∩TR(Σ) 6={0}
G(Σ,F−1S(1),MF ). (89)

Rewriting M ′ = MF , we have kerM ′ = F−1 kerM and

inf
M:kerM∩T

R◦F−1 (FΣ) 6={0}
γFΣ(M) = inf

M′:kerM′∩TR(Σ) 6={0}
G(Σ,F−1S(1),M ′) (90)

which gives the desired result using the fact that F−1S(1) = S(1) since F is a linear isometry. ⊓⊔

A.4 Proofs for Section 3.2

Proof (Proof of Lemma 8)
Consider z ∈ H \ {0} and M = I −Πz . For every x ∈ S(1), we have

‖Mx‖22 = 1− 〈x, z〉2
‖z‖2H

(91)

hence

γΣ(M) =
supx∈(Σ−Σ)∩S(1) ‖Mx‖22
infx∈(Σ−Σ)∩S(1) ‖Mx‖22

=
1− infx∈(Σ−Σ)∩S(1)

〈x,z〉2
‖z‖2

H

1− supx∈(Σ−Σ)∩S(1)
〈x,z〉2
‖z‖2H

Case 1: By assumption there is x0 such that ‖x0‖H = 1 and Σ ⊆ span(x0). Since Σ 6= {0} is a cone, it follows
that (Σ −Σ) ∩ S(1) = span(x0) ∩ S(1) = {−x0,+x0} and

inf
x∈(Σ−Σ)∩S(1)

〈x, z〉2
‖z‖2H

= sup
x∈(Σ−Σ)∩S(1)

〈x, z〉2
‖z‖2H

=
〈x0, z〉2
‖z‖2H

. (92)

Hence, if z ∈ Σ = span(x0) we have γΣ(M) = +∞, otherwise
〈x0,z〉2
‖z‖2

H

< 1 and γΣ(M) = 1. Thus, if TR(Σ) ⊆ Σ

we have ARIP,nec
Σ (R) = +∞, otherwise there is z ∈ TR(Σ) \Σ, and ARIP,nec

Σ (R) = 1.
Case 2: Let us show that for any z 6= 0 there is some x ∈ (Σ − Σ) \ {0} such that 〈x, z〉 = 0. This implies

infx∈(Σ−Σ)∩S(1)
〈x,z〉2
‖z‖2

H

= 0 and yields the result. Indeed, by assumption, given any x1 ∈ Σ \ {0} there is x2 ∈ Σ

such that x2 /∈ span(x1) (hence x2 6= 0). If 〈x1, z〉 = 0 we take x = x1 = x1 − λx2 with λ = 0. Otherwise,

with λ =
〈x2,z〉
〈x1,z〉 we set x = λx1 − x2. In both cases we have x 6= 0 and, since Σ is a cone, x ∈ Σ − Σ and

〈λx1 − x2, z〉 = 0. ⊓⊔

Proof (Proof of Lemma 9) Since E ∩ S(1) is compact, for any z there exists x̃ ∈ E ∩ S(1) such that

|〈x̃, z〉|2 = max
ỹ∈E∩S(1)

|〈ỹ, z〉|2. (93)

Since E is a union of subspaces, it is homogeneous. Thus, as x̃ ∈ E, we have x := 〈x̃, z〉x̃ ∈ E. If y ∈ E \ {0}, we
have ỹ := y/‖y‖H ∈ E ∩ S(1), 〈z, ỹ〉ỹ is the orthogonal projection of z on ỹ and

‖z − y‖2H =
∥
∥z − ‖y‖H · ỹ

∥
∥2

H ≥ ‖z − 〈z, ỹ〉ỹ‖2H = ‖z‖2H − |〈z, ỹ〉|2

(93)

≥ ‖z‖2H − |〈z, x̃〉|2
(94)

Since ‖z − x‖2H = ‖z‖2H − 2Re〈z, x〉+ ‖x‖2H = ‖z‖2H − |〈z, x̃〉|2, we conclude

‖z − y‖2H ≥ ‖z − x‖2H (95)
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and x ∈ PE(z) by definition of PE .
If x′ ∈ PE(z), we have ‖z − x′‖2H = ‖z − x‖2H = miny∈E ‖z − y‖2H hence the notation ‖z − PE(z)‖2H is

unambiguous. Since x′ ∈ PE(z), there is equality in the above equation with y = x′, hence ‖y‖H = 〈z, ỹ〉 and
|〈z, ỹ〉|2 = |〈z, x̃〉|2, therefore 〈z, y〉 = 〈z, ‖y‖H ỹ〉 = ‖y‖H〈z, ỹ〉 = ‖y‖2H = 〈z, ỹ〉2 = 〈z, x̃〉2 = ‖x‖2H. This shows
that the notations ‖PE(z)‖2H and 〈z, PE(z)〉 are unambiguous and that ‖PE(z)‖2H = 〈z, PE(z)〉.

We also have ‖z‖2H = ‖x‖2H + ‖z − x‖2H = ‖x′‖2, and 〈z, y〉 = ‖y‖H hence the notations ‖z − PE(z)‖2H and
‖PE(z)‖2H are unambiguous. ⊓⊔

Proof (Proof of Corollary 3) Since Σ −Σ is a union of subspaces and (Σ −Σ) ∩ S(1) is compact, by Lemma 9,

supx∈(Σ−Σ)∩S(1)
〈x,z〉2
‖z‖2

H

=
‖PΣ−Σ(z)‖2H

‖z‖2
H

, hence we have

(BΣ(R) + 1)−1 =

(

sup
z∈TR(Σ)\{0}

‖z − PΣ−Σ(z)‖2H
‖PΣ−Σ(z)‖2H

+ 1

)−1

= inf
z∈TR(Σ)\{0}

‖PΣ−Σ(z)‖2H
‖z − PΣ−Σ(z)‖2H + ‖PΣ−Σ(z)‖2H

= inf
z∈TR(Σ)\{0}

‖PΣ−Σ(z)‖2H
‖z‖2H

.

SinceΣ is a cone and Σ 6= span(x) for each x ∈ Σ, by Lemma 8, using (36) we have γnecΣ (R) = 1
1−(1+BΣ(R))−1 =

1 + 1/BΣ(R) hence δnecΣ (R) =
γnec
Σ (R)−1

γnec
Σ

(R)+1
= (2BΣ(R) + 1)−1.

We conclude using that b 7→= 1/(1 + 2b) is decreasing. ⊓⊔

A.4.1 Lemmas for the proof of Theorem 3 (sparse recovery)

We begin by some technical lemmas. We recall that T2 = T2(z) ⊆ {1, . . . , n} denotes a set indexing any 2k
largest components (in magnitude) of vector z , while T = T (z) ⊆ {1, . . . , n} will denote a set indexing k largest
components (in magnitude). Given an index set ∅ 6= H ⊆ {1, . . . , n}, QH is the “cube” of all vectors v ∈ Rn such
that supp(v) = H and |vi| = 1 for every i ∈ H. The restriction of v to H, vH ∈ Rn, is such that (vH )i = vi, i ∈ H
and supp(vH ) ⊆ H.

Lemma 13 Let Σ = Σk. Let ‖ · ‖w be a weighted ℓ1-norm ( for w = (wi)
n
i=1 with wi > 0, ‖x‖w =

∑
wi‖x‖1).

Let z ∈ T‖·‖w (Σ). There is a support H of size ≤ k such that

‖zHc‖w − ‖zH‖w = inf
x∈Σ

{‖x+ z‖w − ‖x‖w} ≤ 0, (96)

i.e., the infimum is achieved at x∗ = −zH .

Moreover, if ‖ · ‖w = ‖ · ‖1, H = T (z).

Proof The result is trivial for z = 0, so we prove it for z ∈ T‖·‖w (Σ)\{0}. ConsiderH ∈ argminT :|T |≤k {‖zTc‖w − ‖zT ‖w}.
By definition of T‖·‖w (Σ), since z ∈ T‖·‖w (Σ) \ {0}, there are x′ ∈ Σ, λ ∈ R \ {0} such that ‖x′ + λz‖w ≤ ‖x′‖w.
By homogeneity of Σ, x := x′/λ ∈ Σ and ‖x + z‖w ≤ ‖x‖w . This shows that infx∈Σ {‖x+ z‖w − ‖x‖w} ≤ 0 as
claimed. For any such x ∈ Σ, consider T = supp(x).

By the reverse triangle inequality |xi + zi| − |xi| ≥ −|zi|, we have

‖x+ zT ‖w − ‖x‖w =
∑

i∈T

wi(|xi + zi| − |xi|) ≥ −
∑

i∈T

wi|zi| = −‖zT ‖w (97)

Hence ‖x+ z‖w − ‖x‖w = ‖x+ zT ‖w + ‖zTc‖w − ‖x‖w ≥ ‖zTc‖w − ‖z‖w ≥ ‖zHc‖w − ‖zH‖w.

If ‖ · ‖w = ‖ · ‖1, let T = T (z) and remark that ‖zHc‖1 − ‖zH‖1 ≥ ‖zTc‖1 − ‖zt‖1
⊓⊔

The following Lemma permits to construct and to characterize elements of descent cones.

Lemma 14 Assume that R and Σ are positively homogeneous. For every v0 ∈ Σ such that R(v0) > 0 and any
v1 ∈ H, we have that z := v1 −αv0 ∈ TR(Σ) where α = max(R(v1)/R(v0), 1). If, in addition, Σ is homogeneous
and R is even, we have conversely that any z ∈ TR(Σ) can be written as z = v1 − v0 where v0 ∈ Σ, v1 ∈ H, and
R(v1) ≤ R(v0).
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Proof Since Σ is positively homogeneous, x := αv0 ∈ Σ, and R(x+z) = R(αv0+z) = R(v1). If R(v1) > R(v0) then
α > 1 and R(x+z) = R(v1) = αR(v0) = R(αv0) = R(x). Otherwise, α = 1 and R(x+z) = R(v1) ≤ R(v0) = R(x).
In both cases we obtain that z ∈ TR(x) ⊆ TR(Σ).

Regarding the second claim, when z ∈ TR(Σ), by definition there exists x ∈ Σ, u ∈ H and γ ∈ R such that
z = γu where R(x + u) ≤ R(x). Denote v0 := γx and v1 := v0 + z. Since Σ is homogeneous, we have v0 ∈ Σ.
Since R is even and positively homogeneous, R(v1) = R(γx+ γu) = |γ|R(x+ u) ≤ |γ|R(x) = R(γx) = R(v0). ⊓⊔

The next lemma permits to compare Bs
Σ(R) with Bs

Σ(‖ · ‖1) (see definition in (56)) which was calculated
in [17] to characterize the necessary RIP condition for sparse recovery.

Lemma 15 Let Σ = Σk be the set of k-sparse vectors in Rn with k < n/2 and 1 ≤ L ≤ n− 2k. Assume that R
is positively homogeneous, subadditive, and nonzero.

Consider

(H0, v0) ∈ arg max
H⊆{1,...,n}: |H|=k

v∈QH

R(v) (98)

(H1, v1) ∈ arg min
H⊆{1,...,n}\H0,|H|=k+L

v∈QH

R(v). (99)

1. We have R(v0) > 0, and for any H of size k′ ≥ k and any v ∈ QH , we have

R(v) ≤ k′

k
R(v0). (100)

If R = R⋆ = ‖ · ‖1 then we have indeed equality R⋆(v) = k′

k
R⋆(v0).

2. We have

B2k+L
Σ (R) := sup

z∈TR(Σ)\{0}:|supp(z)|=2k+L

‖zTc
2
‖22

‖zT2
‖22

≥
L
k

max

((
R(v1)
R(v0)

)2
, 1

)

+ 1

≥
L
k

(
L
k
+ 1
)2

+ 1
. (101)

Proof As a preliminary observe that if R⋆ = ‖ · ‖1 then R⋆(v) = |H| for any H, v ∈ QH , hence H0,H1 can be
any pair of disjoint sets of respective sizes k, k + L, and vi ∈ QHi

can be arbitrary, for example vi = 1Hi
. This

yields R⋆(v0) = k, R⋆(v1) = k + L, hence R⋆(v1) = (1 + L/k)R⋆(v0).
To prove the first claim, consider {Gi}

1≤i≤
(

k′

k

) the collection of all subsets Gi ⊆ H of size exactly k. Since

v ∈ QH , we have vGi
∈ QGi

for each i. Also, since |Gi| = k for every i, by definition of H0, v0 we obtain

maxi R(vGi
) ≤ R(v0). Notice that given a coordinate j ∈ H, there are

(k′−1
k−1

)
sets Gi such that j ∈ Gi. With

λ := 1
(

k′−1
k−1

) we get v = λ
∑

i vGi
hence by positive homogeneity and subadditivity of R (which imply convexity)

R(v) = R(λ

(

k′

k

)

∑

i=1

vGi
) ≤

(

k′

k

)

∑

i=1

R(λvGi
) = λ

(

k′

k

)

∑

i

R(vGi
) ≤

(k′

k

)

(k′−1
k−1

)R(v0) =
k′

k
R(v0). (102)

This establishes (100). With R = R⋆, we have R⋆(v) = ‖v‖1 = k′ for v ∈ QH , hence R⋆(v) = (k′/k)R⋆(v0) as
claimed.

For the sake of contradiction, assume that R(v0) ≤ 0. As we have just proved, this impliesR(v) ≤ (n/k)R(v0) ≤
0 for every v ∈ {−1,+1}n = QH with H = {1, . . . , n}. By convexity of R it follows that R(v) ≤ 0 for each
v ∈ [−1, 1]n = conv(QH), and by positive homogeneity,

R(v) ≤ 0, ∀v ∈ H. (103)

Positive homogeneity and subadditivity also imply

0 = 0 · R(v0) = R(0 · v0) = R(0) = R(−v + v) ≤ R(−v) +R(v)
(103)

≤ R(−v)

for every v ∈ H, hence R(v) = 0 on H, which yields the desired contradiction since we assume that R is nonzero.
Regarding the second claim, since 2k + L ≤ n there is indeed some H of size k + L such that H ∩ H0 = ∅,

hence H1 is well defined. By construction, H1 ∩ H0 = ∅. Since R(v0) > 0, R is positively homogeneous and
Σ is homogeneous, by Lemma 14, z = −αv0 + v1 ∈ TR(Σ) with α := max(R(v1)/R(v0), 1). Observe that
|supp(z)| = |H0|+ |H1| = 2k + L. Since α ≥ 1 and all nonzero entries of v0, v1 have magnitude one, a set of 2k
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largest components of z is T2 = H0 ∪ T ′
1 with T ′

1 any subset of H1 with k components, and we obtain (101). once
we observe that

‖zTc
2
‖22

‖zT2
‖22

=
L

kα2 + k
=

L/k

α2 + 1
.

⊓⊔

Lemma 16 Consider c∞, c1 > 0, an integer n ≥ 2, and the optimization problem

sup
x∈Rn

+:‖x‖∞≤c∞;‖x‖1≤c1

‖x‖22. (104)

If c1 ≥ c∞ then there exists 1 ≤ L ≤ n− 1 and 0 ≤ θ ≤ 1 such that

x∗ := c∞(1, . . . , 1
︸ ︷︷ ︸

L≥1

, θ, 0, . . . , 0
︸ ︷︷ ︸

n−(L+1)≥0

)

is a maximizer. Otherwise, a maximizer is x∗ = (c1, 0, . . . , 0).

Proof Standard compactness arguments show the existence of a maximizer x∗. We distinguish two cases:

• If ‖x∗‖∞ < c∞ then x∗ is indeed a maximizer of the Euclidean norm under an ℓ1 constraint, hence x∗ is a
Dirac: without loss of generality, x∗ = (c1, 0, . . . , 0) so that c1 = ‖x∗‖∞ < c∞.

• Otherwise ‖x∗‖∞ = c∞, in which case we show that all entries of x∗, except at most one, are either zero
or equal to c∞. For the sake of contradiction, assume that x∗ contains two distinct entries with values
0 < a < b < c∞, then for small enough t > 0, replacing these entries with 0 < a− t < b+ t < c∞ and keeping
all other entries unchanged would lead to a vector x satisfying ‖x‖∞ = ‖x∗‖∞ = c∞, ‖x‖1 = ‖x∗‖1. However,
since ‖x‖22 − ‖x∗‖22 = (a − t)2 + (b + t)2 − (a2 + b2) = 2t2 + 2(b − a)t > 0. Since x∗ has optimal objective
value, this yields the desired contradiction. Since the objective value and the constraints are invariant to index
permutations, there is thus a maximizer with the claimed shape, and we have c1 ≥ ‖x∗‖1 ≥ ‖x∗‖∞ = c∞.

The two cases respectively correspond to c1 < c∞ or c1 ≥ c∞, which are mutually exclusive, hence the conclusion.
⊓⊔

Lemma 17 ([17]) Consider Σ = Σk ⊆ Rn. We have

BΣ(‖ · ‖1) = max
1≤L≤n−2k

L
k

(
L
k
+ 1
)2

+ 1
. (105)

Proof With Bs
Σ(R) defined in (56), and recalling the expression (53) of BΣ(R), we have

BΣ(‖ · ‖1) = max
1≤L≤n−2k

B2k+L
Σ (‖ · ‖1)

By Lemma 15,
R⋆(v1)
R⋆(v0)

= (L/k) + 1 > 1 and B2k+L
Σ (‖ · ‖1) ≥

L
k

(

R⋆(v1)

R⋆(v0)

)2
+1

=
L
k

(L
k
+1)2+1

. This implies

BΣ(‖ · ‖1) ≥ max
1≤L≤n−2k

L
k

(
L
k
+ 1
)2

+ 1
, (106)

and there only remains to show there is indeed equality. We isolate this result from [17] for completeness. This
will also help understand the case of sparsity in levels in Appendix A.6.

First, we show we can restrict the maximization used to express BΣ(‖ · ‖1) (cf (53)) over vectors z having
constant amplitude α > 0 on T (z).

Indeed, consider z 6= 0 such that z ∈ TΣk
(‖ · ‖1). By Lemma 13, we have ‖zTc‖1 ≤ ‖zT ‖1 with T = T (z) a

set of k indices of components of largest magnitude of z. Assume that there are i 6= j in T such that |zi| 6= |zj |.
Let y such that yl = zl for l /∈ {i, j} and yi = yj = (|zi| + |zj |)/2. The set T remains a support of the k
largest amplitudes in y, and T2 = T2(z) remains a support of the 2k largest amplitudes in y. Moreover, we have
‖yT ‖1 = ‖zT ‖1 ≥ ‖zTc‖1 = ‖yTc‖1 = ‖ − yT + y‖1 hence we have y ∈ TΣk

(‖ · ‖1). Since ‖yT2
‖22 − ‖zT2

‖22 =
‖yT ‖22 − ‖zT ‖22 = 2[(|zi| + |zj |)/2]2 − |zi|2 − |zj |2 = −(|zi| − |zj |)2/2 < 0 and ‖yTc

2
‖22 = ‖zTc

2
‖22 we have

‖yTc
2
‖22/‖yT2

‖22 > ‖zTc
2
‖22/‖zT2

‖22.



34 Yann Traonmilin, Rémi Gribonval and Samuel Vaiter

Second, the same reasoning on T ′ = T2 \ T , shows that we can further restrict the maximization used to
define BΣ(‖ · ‖1) to vectors having constant amplitude 0 ≤ β ≤ α over T ′. This leads to

BΣ(‖ · ‖1) = sup
z 6=0:‖zTc‖1≤‖zT ‖1

‖zTc
2
‖22

‖zT2
‖22

= sup
α,β:α≥β>0

sup
x∈Rn−2k:‖x‖∞≤β,‖x‖1≤k(α−β)

‖x‖22
k(α2 + β2)

. (107)

Using Lemma 16, the supremum with respect to x is reached with vectors with the shape

(β, . . . , β
︸ ︷︷ ︸

L

, θ, 0, . . . , 0
︸ ︷︷ ︸

n−2k−(L+1)≥0

)

with 0 ≤ θ ≤ β and 0 ≤ L ≤ n− 2k − 1. We deduce

BΣ(‖ · ‖1) = sup
α,β:α≥β>0

sup
L,θ:0≤L≤n−2k−1,0≤θ≤β

θ≤kα−(k+L)β

Lβ2 + θ2

k(α2 + β2)

= max
0≤L≤n−2k−1

sup
α,β:α≥β>0

sup
θ:0≤θ≤β

θ≤kα−(k+L)β

Lβ2 + θ2

k(α2 + β2)

(108)

When 0 ≤ β ≤ kα− (k + L)β we have

sup
θ:0≤θ≤β,θ≤kα−(k+L)β

Lβ2 + θ2

k(α2 + β2)
=

(L+ 1)β2

k(α2 + β2)
(109)

while when β ≥ kα− (k + L)β ≥ 0 we have

sup
θ:0≤θ≤β,θ≤kα−(k+L)β

Lβ2 + θ2

k(α2 + β2)
=

Lβ2 + (kα− (k + L)β)2

k(α2 + β2)
. (110)

On the one hand, when 0 < β ≤ α satisfies β ≤ kα− (k + L)β we have α ≥ (1 + (L+ 1)/k)β hence

sup
θ:0≤θ≤β,θ≤kα−(k+L)β

Lβ2 + θ2

k(α2 + β2)
=

(L + 1)β2

k(α2 + β2)
=

(L+ 1)/k

(α/β)2 + 1
≤ (L+ 1)/k

[1 + (L+ 1)/k]2 + 1
. (111)

On the other hand, when 0 < β ≤ α satisfies β ≥ kα− (k+L)β ≥ 0 we have (1 + (L+1)/k))β ≥ α ≥ (1+L/k)β

and, denoting g(t) := L/k+kt2

(1+L/k+t)2+1
for t ≥ 0, we get

sup
θ:0≤θ≤β,θ≤kα−(k+L)β

Lβ2 + θ2

k(α2 + β2)
=

Lβ2 + (kα− (k + L)β)2

k(α2 + β2)
=

L/k + k[α/β − (1 + L/k)]2

(α/β)2 + 1
= g(α/β−(1+L/k)).

(112)
A simple function study shows that g′(t) is positively proportional to a second degree polynomial P (t) with positive
leading coefficient and such that P (0) < 0. It follows that there is t0 > 0 such that g′(t) ≤ 0 for 0 ≤ t ≤ t0 and
g′(t) ≥ 0 for t ≥ t0. Hence, g is decreasing on [0, t0] and increasing on [t0,+∞), so that

g(α/β − (1 + L/k)) ≤ sup
0≤t≤1/k

g(t) = max (g(0), g(1/k)) = max

(
L/k

(1 + L/k)2 + 1
,

(L+ 1)/k

(1 + (L+ 1)/k)2 + 1

)

.

As all the above bounds also hold if β = 0, we obtain the claimed result.

⊓⊔

Remark 4 The maximum value of L/k
((k+L)/k)2+1

(with respect to L) is reached for L/k maximizing f(u) =

u/((u + 1)2 + 1) (which is maximized at
√
2 over R). We verify that it matches the necessary RIP condition 1√

2

from [17], f(
√
2) = 2

√
2/(2 +

√
2) which gives γΣ(‖ · ‖1) = (4 + 3

√
2)/

√
2 =

√
2+1√
2−1

.
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A.4.2 Lemmas for the proof of Theorem 4

Given a matrix U , we denote Uk:l the restriction of U to its rows k, . . . , l. We denote O(n) the orthogonal group.
Given a symmetric matrix z, we write eig(z) the vector of eigenvalues ordered decreasingly with respect to their
absolute value. Given a vector x of size n, we write diag(x) the diagonal matrix with diagonal equal to x. To
match the notations for the case of sparsity, given a matrix z = UT diag(w)U , we write zH = UT diag(wH )U and
QH as in the previous section. We denote T = {1, .., r} and T2 = {1, .., 2r}. We denote ‖ · ‖F the Frobenius norm.

Using the same demonstration as Lemma 13 we characterize the descent cones of the nuclear norm.

Lemma 18 Let Σ = Σr. Let ‖ · ‖w be a weighted nuclear-norm. Let z ∈ T‖·‖w (Σ). There is a support H of size
≤ r such that

‖zHc‖w − ‖zH‖w = inf
x∈Σ

{‖x+ z‖w − ‖x‖w} ≤ 0, (113)

i.e., the infimum is achieved at x∗ = −zH . Moreover, if ‖ · ‖w = ‖ · ‖∗, H = T (z).

Lemma 19 Let Σ = Σr be the set of n× n symmetric matrices with rank at most r with r < n/2, and 1 ≤ L ≤
n − 2r. Assume R is positively homogeneous, subadditive and nonzero. Consider the supports H0 = {1, 2, .., r}
and H1 = {r + 1, . . . , 2r + L}.

(U0, v0) ∈ arg max
U∈O(n),v∈QH0

‖UT diag(v)U‖A, (114)

(U1, v1) ∈ arg min
U∈O(n),v∈QH1

: U0,1:rU
T
r+1:2r+L

=0
‖UT diag(v)U‖A . (115)

1. We have R(UT
0 v0U0) > 0, and for any H of size r′ ≥ r, V ∈ O(n) and w ∈ QH , we have

R(V T diag(w)V ) ≤ r′

r
R(UT

0 v0U0). (116)

If R = R⋆ = ‖ · ‖∗ then we have indeed equality R(V T diag(w)V ) = r′

r
R(UT

0 v0U0).
2. We have

BL+2r
Σ (R) := sup

z∈T‖·‖A
(Σ)\{0}:|supp(eig(z))|=2r+L

‖zTc
2
‖2F

‖zT2
‖2F

≥
L
r

(

max

(
R(UT

1 diag(v1)U1)

R(UT
0 diag(v0)U0)

, 1

))2

+ 1

≥
L
r

(
L
r
+ 1
)2

+ 1
.

(117)

Proof As a preliminary observe that if R⋆ = ‖ · ‖∗ then R⋆(V TwV ) = |H| for any H,w ∈ QH , V ∈ O(n), hence
wi ∈ QHi

can be arbitrary, for example wi = 1Hi
. This yieldsR⋆(UT

0 diag(v0)U0) = r,R⋆(UT
1 diag(v1)U1) = r+L,

hence R⋆(UT
1 diag(v1)U1) = (1 + L/r)R⋆((UT

0 diag(v0)U0).
To prove the first claim, consider {Gi}

1≤i≤
(

r′

r

) the collection of all subsets Gi ⊆ H of size exactly r.

Since w ∈ QH , we have wGi
∈ QGi

for each i. Also, since |Gi| = r for every i, by definition of H0, v0 and
remarking that the maximization over O(n) permits to consider any permutation of the support, we obtain
maxi R(V T diag(vGi

)V ) ≤ R(UT
0 diag(v0)U0).

Notice that given a coordinate j ∈ H, there are
(r′−1
r−1

)
sets Gi such that j ∈ Gi. With λ := 1

(

r′−1
r−1

) , we

get V T diag(w)V = V T λ
∑

i diag(wGi
)V hence by positive homogeneity and subadditivity of R (which imply

convexity)

R(V TwV ) = R(λV T

(

r′

r

)

∑

i=1

diag(wGi
)V ) ≤

(

r′

r

)

∑

i=1

R(V Tλdiag(wGi
)V ) = λ

(

r′

r

)

∑

i

R(V T diag(wGi
)V )

≤
(r′

r

)

(r′−1
r−1

)R(UT
0 diag(v0)U0) =

r′

r
R(UT

0 diag(v0)U0).

(118)

This establishes (116). WithR = R⋆, we have R⋆(V T diag(w)V ) = ‖w‖1 = r′ for w ∈ QH , hence R⋆(V T diag(w)V ) =
(r′/r)R⋆(UT

0 diag(v0)U0) as claimed.



36 Yann Traonmilin, Rémi Gribonval and Samuel Vaiter

For the sake of contradiction, assume that R(UT
0 diag(v0)U0) ≤ 0. As we have just proved, this implies

R(V T diag(w)V ) ≤ (n/k)R(UT
0 diag(v0)U0) ≤ 0 for every w ∈ {−1,+1}n = QH with H = {1, . . . , n} and

V ∈ O(n). By convexity of R it follows that R(V T diag(w)V ) ≤ 0 for each w ∈ [−1, 1]n = conv(QH ), and by
positive homogeneity,

R(V T diag(w)V ) ≤ 0, ∀w ∈ Rn. (119)

Positive homogeneity and subadditivity also imply

0 = 0 ·R(UT
0 diag(v0)U0) = R(0 · UT

0 diag(v0)U0) = R(0) = R(−V T diag(w)V + V T diag(w)V )

≤ R(−V T diag(w)V ) + R(V T diag(w)V )

(119)

≤ R(−V T diag(w)V )

for every V T diag(w)V ∈ H, hence R(V T diag(w)V ) = 0 on H, which yields the desired contradiction since we
assume that R is nonzero.

Regarding the second claim, since 2r+L ≤ n, by construction, H1 ∩H0 = ∅. Since R(UT
0 diag(v0)U0) > 0, R

is positively homogeneous and Σ is homogeneous, by Lemma 14, z = −αUT
0 diag(v0)U0+UT

1 diag(v1)U1 ∈ TR(Σ)
with α := max(R(UT

1 diag(v1)U1)/R(UT
0 diag(v0)U0), 1). Observe that |supp(eig(z))| = |H0| + |H1| = 2r + L.

Since α ≥ 1 and all nonzero entries of v0, v1 have magnitude one, a set of the 2r largest components of eig(z) is
T2 = H0 ∪ T ′

1 with T ′
1 any subset of H1 with k components, and we obtain (117). once we observe that

‖zTc
2
‖22

‖zT2
‖22

=
L

rα2 + r
=

L/r

α2 + 1
. (120)

⊓⊔

Lemma 20 Let Σ = Σr. Then

BΣ(‖ · ‖∗) = max
0≤L≤n−2r

L
r

(
L
r
+ 1
)2

+ 1
. (121)

Proof We have z ∈ T‖·‖∗(Σr) is equivalent to ‖zTc
2
‖∗+‖zT ′‖∗ ≤ ‖zT ‖∗ where T ′ = supp(z)\(T c

2 ∪T ) (Lemma 18).
Hence,

BL+2r
Σ (‖ · ‖∗) = sup

z:‖zTc
2
‖∗+‖zT′‖∗≤‖zT ‖∗

‖zTc
2
‖2F

‖zT2
‖2F

. (122)

Using the fact that ‖z‖∗ = ‖eig(z)‖1 and ‖z‖F = ‖eig(z)‖2, we fall on the expression of BL+2r
Σ (‖ · ‖1) and get

the result using Lemma 17. ⊓⊔

A.5 Proofs for Section 3.3

Proof (Proof of Lemma 10) The constant δsuffΣ (R) [37][Eq. (5)] has the following expression:

δsuffΣ (R) = inf
z∈TR(Σ)\{0}

sup
x∈Σ

−Re〈x, z〉
‖x‖H

√

‖x+ z‖2Σ − ‖x‖2H − 2Re〈x, z〉
. (123)

Considering any nonzero z ∈ H, since Σ is a union of subspaces and Σ ∩ S(1) is compact, by Lemma 9 the set
PΣ(z) is not empty and 〈PΣ(z), z〉 = ‖PΣ(z)‖2H is unambiguous. Choosing an arbitrary y ∈ PΣ(z) and setting
x = −y, we obtain

sup
x∈Σ

−Re〈x, z〉
‖x‖H

√

‖x+ z‖2Σ − ‖x‖2H − 2Re〈x, z〉
≥ ‖PΣ(z)‖2H

‖PΣ(z)‖H
√

‖z − PΣ(z)‖2Σ − ‖PΣ(z)‖2H + 2‖PΣ(z)‖2H

=
1

√

sup
z∈TR(Σ)\{0}

‖z−PΣ(z)‖2
Σ

‖PΣ(z)‖2
H

+ 1

.
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Considering the infimum over z ∈ TR(Σ) \ {0} yields the first claim. Let us now proceed to the second claim.
Given z ∈ TR(Σ) \ {0}, consider an arbitrary x ∈ Σ, and V ∈ V such that x ∈ V . With Fact A2, for every

v ∈ H, ‖v‖2Σ is the infimum of
∑

i λi‖ui‖2H over convex decompositions v =
∑

i λiui over Σ, hence there exists
ui ∈ Σ, λi ≥ 0 such that

∑

i λi = 1,
∑

i λiui = x+ z and

‖x+ z‖2Σ =
∑

i

λi‖ui‖2H.

Since V ⊂ Σ, ui,V := PV ui ∈ Σ. By the additional assumption, since ui ∈ Σ we also have and ui,V ⊥ :=
PV ⊥ui ∈ Σ for each i. Observe also that PV ⊥x = 0. Hence, with the notations zV = PV z, zV ⊥ = PV ⊥z, we
have the convex decompositions

zV ⊥ = PV ⊥ (x+ z) =
∑

λiui,V ⊥

x+ zV = PV (x+ z) =
∑

λiui,V .

Using Jensen’s inequality for the convex functions ‖ · ‖2Σ and ‖ · ‖2H and the identity ‖v‖2Σ = ‖v‖2H for v ∈ Σ
(Fact A1), we have

‖zV ⊥‖2Σ + ‖x+ zV ‖2H ≤
∑

i

λi‖ui,V ⊥‖2Σ +
∑

i

λi‖ui,V ‖2H =
∑

i

λi‖ui,V ⊥‖2H +
∑

i

λi‖ui,V ‖2H

=
∑

i

λi‖ui‖2H = ‖x+ z‖2Σ .

Since PV is the (linear and self-adjoint) orthogonal projection onto V , we have Re〈x, zV 〉 = Re〈x, PV z〉 =
Re〈PV x, z〉 = Re〈x, z〉, and we obtain

‖zV ⊥‖2Σ + ‖zV ‖2H ≤ ‖x+ z‖2Σ − ‖x+ zV ‖2H + ‖zV ‖2H
‖zV ⊥‖2Σ + ‖zV ‖2H ≤ ‖x+ z‖2Σ − ‖x‖2H − 2Re〈x, zV 〉
‖zV ⊥‖2Σ + ‖zV ‖2H ≤ ‖x+ z‖2Σ − ‖x‖2H − 2Re〈x, z〉.

(124)

Using Cauchy-Schwarz inequality, we have (Re(〈x, z〉)2 = (Re(〈x, zV 〉)2 ≤ ‖x‖2H‖zV ‖2H. Denoting V0 such that
PV0

(z) ∈ PΣ(z), we get

(Re〈x, z〉)2
(
‖zV ⊥‖2Σ + ‖zV ‖2H

)
≤ ‖x‖2H‖zV ‖2H

(
‖x+ z‖2Σ − ‖x‖2H − 2Re〈x, z〉

)

(Re〈x, z〉)2
‖x‖2H

(
‖x+ z‖2Σ − ‖x‖2H − 2Re〈x, z〉

) ≤ ‖zV ‖2H
(
‖zV ⊥‖2Σ + ‖zV ‖2H

) =
1

‖z
V ⊥‖2

Σ

‖zV ‖2
H

+ 1
≤ 1

‖z−PV z‖2
Σ

‖PΣ(z)‖2
H

+ 1
,

where the last inequality (we could use here the weaker alternative assumption PΣ(z)∩argminx∈Σ ‖x−z‖Σ/‖x‖H 6=
∅) uses that zV ⊥ = z−PV z and ‖PV0

z‖H = ‖PΣ(z)‖H ≥ ‖PV (z)‖H = ‖zV ‖H. To conclude, we use the additional
hypothesis PΣ(z) ⊆ argminx∈Σ ‖x− z‖Σ , which implies ‖z − PΣ(z)‖Σ ≤ ‖z − PV z‖Σ since PV z ∈ Σ

sup
x∈Σ

−Re〈x, z〉
‖x‖H

√

‖x+ z‖2Σ − ‖x‖2H − 2Re〈x, z〉
≤ 1
√

sup
z∈TR(Σ)\{0}

‖z−PΣ(z)‖2
Σ

‖PΣ(z)‖2
H

+ 1

.

⊓⊔

To replicate the proof used in the necessary case, we show a monotony property of ‖ · ‖Σ .

Lemma 21 Consider a model set Σ ⊂ H, ‖ · ‖Σ the atomic “norm” induced by Σ, and D : H → H a linear
operator. If DΣ ⊆ Σ and ‖D‖op := sup‖v‖H≤1 ‖Dv‖H ≤ 1 then

‖Dv‖Σ ≤ ‖v‖Σ , ∀v ∈ H. (125)

Proof Let λi, ui such that ui ∈ Σ,
∑

i λi = 1,
∑

i λiui = v. Denoting u′
i = Dui we have u′

i ∈ Σ and Dv =
∑

λiu
′
i.

By Jensen’s inequality and the fact that ‖u‖Σ = ‖u‖H for any u ∈ Σ (Fact A1), it follows that

‖Dv‖2Σ ≤
∑

λi‖u′
i‖2Σ =

∑

λi‖u′
i‖2H =

∑

λi‖Dui‖2H ≤
∑

λi‖ui‖2H. (126)

With Fact A2, ‖v‖2Σ is the infimum of the right-hand side over all such decompositions v =
∑

λiui. ⊓⊔
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Corollary 5 With Σ := Σk the set of k-sparse vectors in H = Rn, we have:

1. the norm ‖ · ‖Σ is invariant by permutation and coordinate sign changes;
2. for any vectors v, v′ ∈ H such that |vj | ≤ |v′j | for all j we have ‖v‖Σ ≤ ‖v′‖Σ ;

3. consider any vector z, and Tk a subset indexing k components of the largest magnitude, i.e., mini∈T |zi| ≥
maxj /∈T |zj |, with |T | = k. Then

max
|T |≤k

‖zT ‖Σ = ‖zTk
‖Σ (127)

min
|T |≤k

‖z − zT ‖Σ = ‖z − zTk
‖Σ . (128)

Proof We show the three properties separately.

– Property 1: Let π be a permutation of (1, . . . , n) and ǫ1, . . . , ǫn ∈ {±1}. Define D by (Du)i = ǫiuπ(i).
Observe that DΣk ⊆ Σk and ‖D‖op = 1. Conclude using Lemma 21 that ‖Du‖Σ ≤ ‖u‖Σ for any u ∈ H. The
same holds with D′ = D−1, hence ‖u‖Σ = ‖D−1Du‖Σ ≤ ‖Du‖Σ for any u. This shows ‖D · ‖Σ = ‖ · ‖Σ .

– Property 2: Given the assumptions on v, v′, the linear operator defined by (Du)i = viui/v′i if v′i 6= 0 (and
(Du)i = 0 otherwise) satisfies DΣ ⊆ Σ and ‖D‖op ≤ 1 hence, using Lemma 21 again, ‖v‖Σ = ‖Dv′‖Σ ≤
‖v′‖Σ .

– Property 3: By the invariance by permutation and coordinate sign changes of ‖ · ‖Σ , it is sufficient to prove
the result when z1 ≥ . . . ≥ zn ≥ 0 and Tk = {1, . . . , k}. Given T of size k, there is a permutation φ of
(1, . . . , n) such that T = {φ(1), . . . , φ(k)} where φ(1) < . . . < φ(k). It follows that zφ(i) ≤ zi for 1 ≤ i ≤ k.
Hence by Property 2, we have ‖zT ‖Σ = ‖(zφ(1), . . . , zφ(k), 0, . . . , 0)‖Σ ≤ ‖(z1, . . . , zk, 0, . . . , 0)‖Σ = ‖zTk

‖Σ .
A similar argument using T c yields ‖z − zT ‖Σ ≥ ‖z − zTk

‖Σ .
⊓⊔

Corollary 6 With Σ := Σr the set of matrices of rank lower than r in H the set of symmetric matrices in
Rn×n, we have:

1. for any matrices V T diag(w)V, V T diag(w′)V with V ∈ O(n) such that |wj| ≤ |w′
j | for all j we have

‖V T diag(w)V ‖Σ ≤ ‖V T diag(w′)V ‖Σ ;
2. For any symmetric matrix z, and Tr a subset indexing r components of largest magnitude of eig(z), i.e.,

min
i∈T

|eig(z)i| ≥ max
j /∈T

|eig(z)j |,

with |T | = r. Then

max
|T |≤r

‖zT ‖Σ = ‖zTr
‖Σ (129)

min
|T |≤r

‖z − zT ‖Σ = ‖z − zTr
‖Σ . (130)

Proof We show the two properties separately.

– Property 1: Given the assumptions on w,w′, the linear operator defined by Dz = V TWV z where W is
the diagonal matrix such that Wii = wi/w′

i if w′
i 6= 0 (and Wii = 0 otherwise) satisfies DΣ ⊆ Σ and

‖D‖op ≤ 1. We have D(V T diag(w′)V ) = V TWw′V = V TwV . With Lemma 21, we get ‖V T diag(w)V ‖Σ =
‖D(V T diag(w′)V )‖Σ ≤ ‖V T diag(w′)V ‖Σ .

– Property 2: This property is direct using the eigenvalue decomposition

z = UT diag(eig(z))UT = UT diag(eig(z)T + eig(z)Tc )UT

and Property 1.
⊓⊔

We now prove Lemma 11.

Proof (Proof of Lemma 11) Consider first Σ = Σk. First, the properties of ‖ · ‖Σ established in Corollary 5
directly show that the minimum of ‖x − z‖Σ with respect to x ∈ Σ is reached at any x ∈ PΣ(z). Then, we
can write Σ = ∪V ∈VV where V ∈ V if, and only if there is an index set T ⊆ {1, . . . , n} such that |T | ≤ k and
V = span(ei)i∈T . Given V ∈ V and u ∈ Σk, let us show that PV ⊥u ∈ Σk. Writing V = span(ei)i∈T where
|T | ≤ k, we have PV (u) = uT and PV ⊥(u) = uTc . As supp(uTc ) ⊆ supp(u) it follows that ‖uTc‖0 ≤ k, hence
PV ⊥(u) ∈ Σk.

In the case of low rank matrices Σ = Σr. We take V = {span(Ui)i∈I , |I| ≤ r, ‖Ui‖F = 1, rank(Ui) =
1, 〈Ui, Uj〉 = 0, i 6= j} . With Corollary 6, the minimum of ‖x − z‖Σ with respect to x ∈ Σ is reached at
any x ∈ PΣ(z). Let z ∈ Σr and V ∈ V . We have PV (z) = V T

1 S1V1 has rank r′ lower than r. We can write
z = V T

1 S1V1 + V T
2 S2V2 with V1V T

2 = 0. Hence, PV ⊥(z) has rank at most r− r′ ≤ r and PV ⊥ (z) ∈ Σr otherwise
z would be of rank greater than r.

⊓⊔



A theory of optimal convex regularization 39

We need the following Lemma to control ‖ · ‖Σ .

Lemma 22 Let Σ = Σk ⊂ Rn. Then for any v

‖v‖2Σ ≥ ‖v‖21
k

. (131)

Let Σ = Σr. Then for any v

‖v‖2Σ ≥ ‖v‖2∗
r

. (132)

Proof Case Σ = Σk : Let λi ≥ 0, ui ∈ Σ such that ‖v‖2Σ =
∑

λi‖ui‖22 and v =
∑

λiui from Fact A2. We have,
by convexity

‖v‖1 =

∥
∥
∥
∥
∥

∑

i

λiui

∥
∥
∥
∥
∥
1

≤
∑

i

λi‖ui‖1. (133)

Using the fact that ‖x‖1 ≤
√
k‖x‖2 if |supp(x)| ≤ k and the concavity of the square root,

‖v‖1 ≤
√
k
∑

i

λi‖ui‖2 ≤
√
k

√
∑

i

λi‖ui‖22 =
√
k‖v‖Σ . (134)

Case Σ = Σr : Let λi ≥ 0, ui ∈ Σ such that ‖v‖2Σ =
∑

λi‖ui‖2F and v =
∑

λiui from Fact A2. We have, by
convexity

‖v‖1 =

∥
∥
∥
∥
∥

∑

i

λiui

∥
∥
∥
∥
∥
∗
≤
∑

i

λi‖ui‖∗. (135)

Using the fact that ‖x‖∗ ≤ √
r‖x‖F if rank(x) ≤ r and the concavity of the square root,

‖v‖∗ ≤
√
k
∑

i

λi‖ui‖F ≤
√
k

√
∑

i

λi‖ui‖2F =
√
k‖v‖Σ . (136)

⊓⊔

A.5.1 Sparsity

We prove several intermediates lemmas to obtain DΣ(‖ · ‖1).

Lemma 23 Consider Σ = Σk the set of k-sparse vectors in H = Rn, and 0 ≤ L ≥ n− k. We have

Dk+L
Σ (‖ · ‖1) := sup

z∈T‖·‖1
(Σ)\{0}:|supp(z)|=k+L

‖zTc‖2Σ
‖zT ‖22

= min

(

1,
L

k

)

. (137)

Proof It was already proven in [37, Theorem 4.1] that δsuffΣ (‖ · ‖1) ≥ 1√
2
hence by Lemma 10

sup
z∈T‖·‖1

(Σ)\{0}

‖zTc‖2Σ
‖zT ‖22

= DΣ(‖ · ‖1) ≤ 1. (138)

Hence, Dk+L
Σ (‖ · ‖1) ≤ 1

Consider H0 of cardinality k, H1 of cardinality L such that H0 ∩H1 = ∅ (this is possible as k+ L ≤ n), and
define z = α1H0

+ 1H1
where α = max(1, L/k). As α ≥ 1, a set of the k largest components of z is T = H0.

Moreover, ‖zH0
‖1 = αk = max(k, L) ≥ L = ‖zH1

‖1 = ‖zHc
0
‖1.

We distinguish two cases:

– Case 1: L ≥ k, from Lemma 22, ‖zTc‖2Σ ≥ 1
k
‖zH1

‖21 = L2/k. Moreover, ‖zT ‖22 = kα2 = L2/k, thus

‖zTc‖2Σ/‖zT ‖22 ≥ 1. Combining with (138) yields Dk+L
Σ (‖ · ‖1) = 1 = min(1, L/k).
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– Case 2: L < k, we have zTc = zH1
∈ Σk hence ‖zTc‖2Σ = ‖zTc‖22 = ‖zH1

‖22 = L and ‖zTc‖2Σ/‖zT ‖22 = L/k.

This shows that Dk+L
Σ (‖ · ‖1) ≥ L/k = min(1, L/k). To conclude, we show that Dk+L

Σ (‖ · ‖1) ≤ L/k. Consider
any z′ ∈ T‖·‖1(Σ) such that |supp(z′)| = k + L, with Lemma 13, there is a support H of size lower than
k such that, ‖z′H‖1 ≥ ‖z′Hc‖1, let T a set of the k largest components of z′. We have ‖z′T ‖1 − ‖z′Tc‖1 ≥
‖z′H‖1 − ‖z′Hc‖1. As ‖z′‖0 ≤ k + L and L < k, z′Tc ∈ ΣL ⊂ Σk hence ‖z′Tc‖Σ = ‖z′Tc‖2. Moreover,
|z′i| ≥ ‖z′Tc‖∞ for any i ∈ T , hence ‖z′T ‖22 ≥ k‖z′Tc‖2∞. As a result

‖z′Tc‖2Σ
‖z′T ‖22

=
‖z′Tc‖22
‖z′T ‖22

≤ L‖z′Tc‖2∞
k‖z′Tc‖2∞

= L/k.

⊓⊔

Lemma 24 Let Σ = Σk be the set of k-sparse vectors in Rn with k < n/2 and 1 ≤ L ≤ n− k. Assume that R
is positively homogeneous, subadditive and nonzero.

Consider

(H0, v0) ∈ arg max
H⊆{1,...,n}: |H|=k

v∈QH

R(v) (139)

(H1, v1) ∈ arg min
H⊆{1,...,n}\H0,|H|=L

v∈QH

R(v). (140)

We have

Dk+L
Σ (R) := sup

z∈TR(Σ)\{0}:|supp(z)|=k+L

‖zTc‖2Σ
‖zT ‖22

≥ min

(

1,
L

k

)

. (141)

Proof From Lemma 15, R⋆(v1) = L
k
R⋆(v0). Since k + L ≤ n there is indeed some H of cardinality L such that

H ∩H0 = ∅, hence H1 is well-defined. By construction, H1 ∩ H0 = ∅. From Lemma 15, we also have R(v0) > 0
and R(v1)/R(v0) ≤ L/k.

Since R(v0) > 0, R is positively homogeneous and Σ is homogeneous, by Lemma 14, z = −αv0 + v1 ∈ TR(Σ)
with α := max(R(v1)/R(v0), 1). Observe that |supp(z)| = |H0|+ |H1| = k+L. Since α ≥ 1 and all nonzero entries
of v0, v1 have magnitude one, a set of the k largest components of z is T = H0. We have

‖zTc‖2Σ
‖zT ‖22

=
‖v1‖2Σ
kα2

. (142)

With Lemma 22, ‖v1‖2Σ ≥ ‖v1‖21
k

≥ L2

k
if L ≥ k and ‖v1‖2Σ = ‖v1‖22 otherwise (Fact A1). If L ≥ k

‖zTc‖2Σ
‖zT ‖22

≥ L2

k2α2
≥ L2

k2 max(L/k, 1)2
= 1. (143)

If L < k,

‖zTc‖2Σ
‖zT ‖22

=
L

kα2
≥ L

k
(144)

which leads to the conclusion.

⊓⊔

A.5.2 Low rank

Lemma 25 Consider Σ = Σr the set of symmetric matrices of rank lower than r. For any L ≥ 0 such that
r + L ≤ n we have,

Dr+L
Σ (‖ · ‖∗) := sup

z∈T‖·‖∗
(Σ)\{0}:rank(z)=r+L

‖zTc‖2Σ
‖zT ‖2F

= min

(

1,
L

r

)

(145)

where zT is z restricted to its r biggest eigenvalues, and zTc = z − zT
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Proof It was already proven in [37, Theorem 4.1] that δsuffΣ (‖ · ‖∗) ≥ 1√
2
hence by Lemma 10

sup
z∈T‖·‖∗

(Σ)\{0}

‖zTc‖2Σ
‖zT ‖2F

= DΣ(‖ · ‖∗) ≤ 1. (146)

Consider H0 = {1, ..r} , H1 = {r + 1, .., r + L}, let U ∈ O(n) and define z = UT diag(α1H0
+ 1H1

)U where
α = max(1, L/r). As α ≥ 1, a set of the r largest components of eig(z) is T = H0. Moreover, ‖zT ‖∗ = αr =
max(r, L) ≥ L = ‖z − zT ‖∗ = ‖zTc‖∗.

If L ≥ r, from Lemma 22, ‖zTc‖2Σ ≥ 1
r
(‖zTc‖∗)2 = L2/r. Moreover, ‖zT ‖2F = rα2 = L2/r, thus ‖zTc‖2Σ/‖zT ‖2F ≥

1. Combining with (146) yields DL(‖ · ‖∗) = 1 = min(1, L/r).
If L < r, we have zTc ∈ Σr hence ‖zTc‖2Σ = L and ‖zTc‖2Σ/‖zT ‖22 = L/r. This shows that DL(‖·‖∗) ≥ L/r =

min(1, L/r). To conclude, we show that DL(‖·‖∗) ≤ L/r. Consider any z′ ∈ T‖·‖∗(Σ) such that |supp(z′)| = r+L,
with Lemma 18, there is a support r′ and H = 1, .., r′ such that ‖z′H‖∗ ≥ ‖z′Hc‖∗, let T a set of r largest
components of z′. We have ‖z′T ‖∗−‖z′Tc‖∗ ≥ ‖z′H‖∗−‖z′Hc‖∗. As ‖eig(z′)‖0 ≤ r+L and L < r, z′Tc ∈ ΣL ⊂ Σr

hence ‖z′Tc‖Σ = ‖z′Tc‖F . Moreover, |eig(z′)i| ≥ ‖eig(z′Tc )‖∞ for any i ∈ T , hence ‖z′T ‖2F ≥ r‖eig(z′Tc )‖2∞. As
a result

‖z′Tc‖2Σ
‖z′T ‖2F

=
‖z′Tc‖2F
‖z′T ‖2F

≤ L‖eig(z′Tc )‖2∞
r‖eig(z′Tc )‖2∞

= L/r.

⊓⊔

Lemma 26 Let Σ = Σr be the set of n× n symmetric matrices with rank at most r with r < n/2, and 1 ≤ L ≤
n− r. Assume R is positively homogeneous, subadditive and nonzero. Consider the supports H0 = {1, 2, .., r} and
H1 = {r + 1, . . . , r + L}.

(U0, v0) ∈ arg max
U∈O(n),v∈QH0

‖UT diag(v)U‖A (147)

(U1, v1) ∈ arg min
U∈O(n),v∈QH1

: U0,1:rU
T
r+1:r+L

=0
‖UT diag(v)U‖A. (148)

We have

Dr+L
Σ (R) := sup

z∈TR(Σ)\{0}:|supp(z)|=r+L

‖zTc‖2Σ
‖zT ‖2F

≥ min

(

1,
L

r

)

. (149)

Proof From Lemma 19, R⋆(UT
1 diag(v1)U1 = L

r
R⋆(UT

0 diag(v0)U0), R(UT
0 diag(v0)U0) > 0 and

R(UT
1 diag(v1)U1)/R(UT

0 diag(v0)U0) ≤ L/r.

Since R(v0) > 0, R is positively homogeneous and Σ is homogeneous, by Lemma 14, z = −αUT
0 diag(v0)U0 +

UT
1 diag(v1)U1 ∈ TR(Σ) with α := max(R(UT

1 diag(v1)U1)/R(UT
0 diag(v0)U0), 1). Observe that |supp(eig(z))| =

|H0| + |H1| = r + L. Since α ≥ 1 and all nonzero entries of v0, v1 have magnitude one, a set of the r largest
components of z is T = H0. We have

‖zTc‖2Σ
‖zT ‖2F

=
‖UT

1 diag(v1)U1‖2Σ
rα2

. (150)

With Lemma 22, we have

{

‖UT
1 diag(v1)U1‖2Σ ≥ 1

r
‖UT

1 diag(v1)U1‖2∗ = L2

r
if L ≥ r

‖UT
1 diag(v1)U1‖2Σ = ‖UT

1 diag(v1)U1‖2F otherwise (Fact A1).
(151)

If L ≥ r
‖zTc‖2Σ
‖zT ‖2F

≥ L2

r2α2
≥ L2

r2 max(L/r, 1)2
= 1. (152)

If L < r,
‖zTc‖2Σ
‖zT ‖2F

=
L

rα2
≥ L

r
(153)

which leads to the conclusion.
⊓⊔
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A.6 Proofs for Section 4

We extend notations for classical sparsity to sparsity in levels (Σ = Σk1,k2
). For z = (z1, z2) ∈ H, we we define

the following projections P1(z) := z1 and P2(z) := z2 and denote T = (S1, S2) = T (z) where for i ∈ {1, 2},
Si ⊆ {1, . . . , ni} is a support containing ki largest coordinates (in absolute value) of zi, i.e. |Si| = ki and
minj∈S1

|zi,j | ≥ maxj∈Sc
i
|zi,j |. For every U = (U1, U2) where Ui ⊆ {1, . . . , ni} and |Ui| = ki, we also have

‖(zi)Si
‖1 ≥ ‖(zi)Ui

‖1 hence ‖zT ‖w ≥ ‖zU‖w and similarly ‖zTc‖w ≤ ‖zUc‖w.
We define similarly T2 = T2(z) = (S′

1, S
′
2) with S′

i containing the 2ki largest coordinates of zi. We begin by
simplifying the condition z ∈ T‖·‖w (Σ) \ {0}.

Lemma 27 Let w = (w1, w2) ∈ R2
+. Let ‖ · ‖w = w1‖P1(·)‖1 + w2‖P2(·)‖1 Let z ∈ T‖·‖w (Σk1,k2

) \ {0} then

‖zTc‖w ≤ ‖zT ‖w. (154)

Reciprocally,
‖zTc‖w ≤ ‖zT ‖w (155)

implies z ∈ T‖·‖w (Σk1,k2
).

Proof By definition, if z ∈ T‖·‖w (Σk1,k2
) \ {0} then there exists x ∈ Σk1,k2

and γ ∈ R \ {0} such that z = γy
and ‖x+ y‖w ≤ ‖x‖w. With U := supp(x) we have ‖yUc‖w + ‖(x+ y)U‖w = ‖x+ y‖w ≤ ‖x‖w = ‖xU‖w . By the
triangle inequality this implies

‖yUc‖w ≤ ‖xU‖w − ‖(x+ y)U‖w ≤ ‖yU‖w . (156)

As γ 6= 0, we obtain ‖zUc‖w ≤ ‖zU‖w. We have

‖zT ‖w ≥ ‖zU‖w ≥ ‖zUc‖w ≥ ‖zTc‖w. (157)

⊓⊔

To calculate BΣ(‖ · ‖w) (see definition in Corollary 3), we need a few lemmas.

Lemma 28 Consider w1, w2, k1, k2 > 0 and β1, β2, λ ≥ 0 and

V := min
α1,α2≥0

k1α
2
1 + k2α

2
2 s.t. α1 ≥ β1, α2 ≥ β2, k1w1α1 + k2w2α2 ≥ λ (158)

– If λ < k1w1β1 + k2w2β2 then V = k1β2
1 + k2β2

2 .
– If λ ≥ k1w1β1+k2w2β2 then the minimum is achieved at α∗

1, α
∗
2 such that k1w1α∗

1 +k2w2α∗
2 = λ. Moreover,

– if λ ≥ (k1w2
1 + k2w2

2)max(β1/w1, β2/w2) then

V = min
α1,α2≥0,w1α1+k2w2α2=λ

k1α
2
1 + k2α

2
2 = λ2/(k1w

2
1 + k2w

2
2);

– otherwise

V = min

(

k1β
2
1 +

(λ− k1w1β1)2

k2w2
2

, k2β
2
2 +

(λ − k2w2β2)2

k1w2
1

)

> λ2/(k1w
2
1 + k2w

2
2).

Proof Consider the change of variables x =
√
k1α1, y =

√
k2α2 and denote x0 :=

√
k1β1, y0 :=

√
k2β2, a :=√

k1w1, b :=
√
k2w2. This leads to the equivalent problem

min
x,y≥0

x2 + y2 s.t. x ≥ x0, y ≥ y0, ax+ by ≥ λ

which involves a convex objective to be minimized over a polyhedral constraint set. If ax0 + by0 > λ, i.e., if
k1w1β1 + k2w2β2 > λ, then this problem is equivalent to

min
x,y≥0

x2 + y2 s.t. x ≥ x0, y ≥ y0

which is minimized at (x0, y0), with value x2
0 + y20 = k1β2

1 + k2β2
2 . Otherwise, the candidate optima must satisfy

the constraint ax+ by = λ, hence y = (λ− ax)/b and the problem is equivalent to

min
x0≤x≤(λ−by0)/a

x2 + (ax− λ)2/b2. (159)
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The unconstrained minimum of (159) is at x∗ satisfying 2x∗ +2a(ax∗ − λ)/b2 = 0, i.e., , x∗ = aλ
a2+b2

, leading to

y∗ = (λ− ax∗)/b = bλ
a2+b2

and to an optimal unconstrained problem value

(x∗)2 + (y∗)2 = λ2/(a2 + b2) = λ2/(k1w
2
1 + k2w

2
2).

This is also the value of the constrained minimum of (159), provided that x0 ≤ x∗ ≤ (λ − by0)/a, i.e., that
λ ≥ (a2 + b2)max(x0/a, y0/b) = (k1w2

1 + k2w2
2)max(β1/w1, β2/w2). Otherwise, the constrained minimum is

either at x = x0 and y = (λ− ax0)/b, so that x2 + y2 = x2
0 + (λ− ax0)2/b2; or at y = y0 and x = (λ− by0)/a, so

that x2 + y2 = y20 +(λ− by0)2/a2. The value at the optimum is then min(x2
0 +(λ−ax0)2/b2, y20 +(λ− by0)2/a2),

which is necessarily larger than that of the unconstrained minimum. Once translated in terms of the original
variables, this yields the result. ⊓⊔

Lemma 29 Let ρ ≥ 0, k1, k2, L1, L2, w1, w2, λ > 0

max
β1≥0,β2≥0

L1β2
1 + L2β2

2

ρ+ k1β2
1 + k2β2

2

s.t. w1(k1 + L1)β1 + w2(k2 + L2)β2 = λ (160)

is equal to

max
i∈{1,2}

Liλ
2

ρw2
i (ki + Li)2 + kiλ2

. (161)

Denoting i∗ the index maximizing this expression, the maximum is reached for βi∗ = λ
wi∗ (ki∗+Li∗ )

(and βj = 0

for j 6= i).

Proof Let c ≥ 0. Observe that
L1β2

1 + L2β2
2

ρ+ k1β2
1 + k2β2

2

≥ c (162)

is equivalent to

(L1 − ck1)β
2
1 + (L2 − ck2)β

2
2 ≥ cρ. (163)

With the change of variable bi = wi(ki + Li)βi we have b1 + b2 = λ and (163) reads

(L1 − ck1)

w2
1(k1 + L1)2

b21 +
(L2 − ck2)

w2
2(k2 + L2)2

(b1 − λ)2 ≥ cρ. (164)

The left side is maximized (with respect to 0 ≤ b1 ≤ λ) for either b1 = 0 or b1 = λ. The initial inequality (162) is
thus feasible if, and only if, the maximum of the left-hand side of (164) over these two values verifies the inequality

max
i∈{1,2}

(Li − cki)

w2
i (ki + Li)2

λ2 ≥ cρ (165)

i.e., if there is i ∈ {1, 2} such that (Li − cki)λ2 ≥ cρw2
i (ki +Li)2. This is equivalent to Liλ2 ≥ c(ρw2

i (ki +Li)2 +
kiλ2) and

c ≤ Liλ2

ρw2
i (ki + Li)2 + kiλ2

. (166)

⊓⊔

Lemma 30 Consider w1, w2, β1, β2, c ≥ 0 and

V := sup
0≤θi≤βi,w1θ1+w2θ2≤c

θ21 + θ22. (167)

Denoting (ℓ, r) ∈ {(1, 2), (2, 1)} such that wℓβℓ ≤ wrβr, we have

1. if c < wℓβℓ then V = maxi∈{1,2}(c/wi)2;

2. if wℓβℓ ≤ c < wrβr then V = max((c/wr)2, β2
ℓ + [(c− wℓβℓ)/wr ]2;

3. if wrβr ≤ c < w1β1 + w2β2 then V = max(i,j)∈{(1,2),(2,1)} β2
i + [(c−wiβi)/wj ]2;

4. if c ≥ w1β1 +w2β2 then V = β2
1 + β2

2 ;
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Proof The optimum V is the maximization of a quadratic form within the intersection of a rectangle and a half-
space delimited by an affine function. Using standard compactness arguments there exists at least a maximizer
(θ∗1 , θ

∗
2) of the considered expression. If θ∗i < βi for some i ∈ {1, 2} then the constraint c = w1θ∗1 +w2θ∗2 is satisfied

(otherwise, we would have 0 ≤ θ∗i < βi and w1θ1 +w2θ2 < c, and we could exhibit other θi > θi∗ still satisfying
the constraints and such that θ21 + θ22 is increased), hence w1β1 + w2β2 > w1θ∗1 + w2θ∗2 = c.
Vice-versa if w1β1+w2β2 > c then since (θ∗1 , θ

∗
2) satisfies all constraints we have w1θ∗1 +w2θ∗2 ≤ c < w1β1+w2β2,

hence there is at least one index i ∈ {1, 2} such that θ∗i < βi. We can thus consider the following cases (depending
on the shape of the domain):
• if w1β1 + w2β2 ≤ c then for each i ∈ {1, 2}, θ∗i = βi hence V = β2

1 + β2
2 as claimed;

• otherwise, i.e., if w1β1 + w2β2 > c, we have w1θ∗1 + w2θ∗2 = c and we distinguish three cases:
(a) θ∗1 < β1, θ∗2 < β2: then, since θ∗2 = (c−w1θ∗1)/w2 where θ∗1 is a maximizer of θ21 +[(c−w1θ1)/w2]2 under

the constraint 0 ≤ θ1 and c − w1θ1 ≥ 0, there is (i, j) ∈ {(1, 2), (2, 1)} such that θ∗j = 0 and θ∗i = c/wi.

This is feasible provided that c/wi < βi.
(b) θ∗1 = β1, θ∗2 < β2, hence θ∗2 = (c− w1β1)/w2. This satisfies 0 ≤ θ∗2 < β2 if, and only if, c ≥ w1β1.
(c) θ∗1 < β1, θ∗2 = β2, hence θ∗1 = (c− w2β2)/w1. This is feasible provided that c ≥ w2β2.
We now discuss the possible cases depending on the value of c:
– c < wℓβℓ: (a) with any (i, j) ∈ {(1, 2), (2, 1)} is feasible; (b)-(c) are unfeasible, hence V = maxi∈{1,2}(c/wi)2.
– c ≥ wrβr: (a) is unfeasible; (b)-(c) are both feasible, hence the claimed value of V for this case.
– wℓβℓ ≤ c < wrβr: (a) is feasible with (i, j) such that c < wiβi, i.e., , with (i, j) = (r, ℓ), leading to a value

(θ∗j )
2 +(θ∗i )

2 = (c/wi)2 = (c/wr)2; (b) is feasible provided that c ≥ w1β1, i.e., that (r, ℓ) = (2, 1), leading

to a value (θ∗1 )
2+(θ∗2)

2 = β2
1 +[(c−w1β1)/w2]2 = β2

ℓ +[(c−wℓβℓ)/wr ]2; similarly, (c) is feasible provided
that (r, ℓ) = (2, 1), leading to a value (θ∗2)

2 + (θ∗1)
2 = β2

2 + [(c − w2β2)/w1]2 = β2
ℓ + [(c − wℓβℓ)/wr ]2.

Overall, this leads to V = max((c/wr)2, β2
ℓ + [(c− wℓβℓ)/wr ]2.

As in the case of the ℓ1 norm for sparsity and the nuclear norm for low-rank matrices, we compute BΣ(‖ · ‖w)
(see definition in Corollary 3) via intermediate quantities BL1,L2 (w) that we now introduce and control. We find
an expression consistent with the ℓ1 case.

Lemma 31 Consider weights w = (w1, w2) with wi > 0 and integers ki ≥ 0. Denote for any integers L1, L2 ≥ 0

BL1,L2(w) := sup
αi≥βi≥0,β1+β2>0

∑2
i=1(kiwiαi−wi(ki+Li)βi)=0

∑2
i=1 Liβ

2
i

∑2
i=1 ki(α

2
i + β2

i )
. (168)

For m ∈ {1, 2}, consider

gm(L1, L2, α1, α2, β1, β2) :=
L1β2

1 + L2β2
2 + [(

∑2
i=1(kiwiαi − (ki + Li)wiβi)/wm]2
∑2

i=1 ki(α
2
i + β2

i )
.

We have

sup
αi,βi:0≤βi≤αi;β1+β2>0

∑2
i=1(ki+Li)wiβi≤

∑2
i=1 kiwiαi

gm(L1, L2, α1, α2, β1, β2) ≤ BL1 ,L2(w). (169)

(170)

Proof First we show that there exist α∗
i ∈ R+, β∗

i ∈ R+ such that

gm(L1, L2, α
∗
1, α

∗
2 , β

∗
1 , β

∗
2 ) = sup

αi,βi:0≤βi≤αi;β1+β2>0
∑

2
i=1(ki+Li)wiβi≤

∑

2
i=1 kiwiαi

gm(L1, L2, α1, α2, β1, β2) (171)

with 0 ≤ β∗
i ≤ α∗

i ;β
∗
1 + β∗

2 > 0, and
∑2

i=1(ki + Li)wiβ∗
i ≤ ∑2

i=1 kiwiα∗
i . Indeed, given any αi, βi satis-

fying these constraints, setting β′
j = βj/(β1 + β2), α′

j = αj/(βi + βj), we have gm(L1, L2, α′
1, α

′
2, β

′
1, β

′
2) =

gm(L1, L2, α1, α2, β1, β2) hence the supremum is unchanged if we impose β′
1 + β′

2 = 1 instead of β1 + β2 > 0.
Given any such pair β′

1, β
′
2, Lemma 28 yields the optimum over αi satisfying the constraints, and as the resulting

expression is continuous with respect to β′
j , the existence of a maximizer follows using a compactness argument.

We will soon prove that
∑

i(ki + Li)wiβ
∗
i =

∑

i kiwiα
∗
i . If this equality is verified, since 0 ≤ β∗

i ≤ α∗
i , we

obtain the desired result

gm(L1, L2, α
∗
1, α

∗
2 , β

∗
1 , β

∗
2 ) =

∑2
i=1(Liβ

∗
i )

2

∑2
i=1 ki((α

∗
i )

2 + (β∗
i )

2)

≤ sup
αi,βi:0≤βi≤αi;β1+β2>0

∑2
i=1

(ki+Li)wiβi=
∑2

i=1
kiwiαi

∑2
i=1 Liβ2

i
∑2

i=1 ki((αi)2 + (βi)2)
= BL1,L2(w). (172)
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For the sake of contradiction, assume that
∑

i(ki + Li)wiβ
∗
i <

∑

i kiwiα
∗
i , then with the shorthand C :=

gm(L1, L2, α∗
1, α

∗
2, β

∗
1 , β

∗
2 ), we have

[(
∑

i

kiwiα
∗
i −

∑

i

(ki + Li)wiβ
∗
i )/wm]2 +

∑

i

(Li − Cki)(β
∗
i )

2 = C
∑

i

ki(α
∗
i )

2. (173)

Since gm(L1, L2, α1, α2, β1, β2) ≤ C within the constraints of (169), (β∗
1 , β

∗
2 ) maximize

h(β1, β2) := [(
∑

i

kiwiα
∗
i −

∑

i

(ki + Li)wiβi)/wv]
2 +

∑

i

(Li − Cki)(βi)
2

among all β1, β2 such that 0 ≤ βi ≤ α∗
i , β1 + β2 > 0 and

∑2
i=1(ki + Li)wiβi ≤

∑2
i=1 kiwiα∗

i .
Consider j ∈ {1, 2}.
If C > Lj/kj , then h is decreasing with respect to βj on the considered range, hence β∗

j = 0. Otherwise

C ≤ Lj/kj , and since h is a second degree polynomial in βj with positive leading coefficient, its maximum is at
one of the extremities of the optimization interval, i.e., since we assumed

∑

i(ki +Li)wiβ∗
i <

∑

i kiwiα∗
i , at least

one of the constraints β∗
j = 0, β∗

j = α∗
j is reached.

Since the optimum satisfies all constraints of (169), we have β∗
1 + β∗

2 > 0, hence in light of the above
observations there is at least one index j ∈ {1, 2} such that C ≤ Lj/kj , and for which we have β∗

j = α∗
j > 0.

Since
∑2

i=1 kiwiβ∗
i ≤ ∑2

i=1(ki + Li)wiβ∗
i <

∑2
i=1 kiwiα∗

i , both constraints β∗
1 = α∗

1, β
∗
2 = α∗

2 cannot be
reached at the same time hence there is (i, j) ∈ {(1, 2), (2, 1)} such that β∗

i = 0, β∗
j = α∗

j and

C = gm(L1, L2, α
∗
1, α

∗
2, β

∗
1 , β

∗
2 ) =

Lj(β∗
j )

2 + [(kiwiα∗
i + kjwjα∗

j − (kj + Lj)wjβ∗
j )/wm]2

ki(α∗
i )

2 + kj(α∗
j )

2 + kj(β∗
j )

2
(174)

=
Lj(α

∗
j )

2 + [(kiwiα
∗
i − Ljwjα

∗
j )/wm]2

ki(α∗
i )

2 + 2kj(α∗
j )

2
. (175)

This can be rewritten (Lj −2Ckj)(α
∗
j )

2+[(kiwiα
∗
i −Ljwjα

∗
j )/wm]2 = Cki(α

∗
i )

2. Observe that any α1, α2, β1, β2

such that βi = 0, βj = αj > 0, αi = α∗
i , and Ljwjαj ≤ kiwiα∗

i satisfy the constraints of (169), hence
gm(L1, L2, α1, α2, β1, β2) ≤ C, or equivalently

(Lj − 2Ckj)(αj )
2 + [(kiwiα

∗
i − Ljwjαj)/wm]2 ≤ Cki(α

∗
i )

2 (176)

Thus, α∗
j maximizes the left hand side of (176) under the constraint 0 ≤ Ljwjαj ≤ kiwiα∗

i . If L−2Ckj ≤ 0, then

the left hand side of (176) is decreasing with respect to αj in the considered range, hence α∗
j = 0, which is not

possible since 0 < β1+β2 = β∗
j = α∗

j . Therefore we must have Lj−2Ckj > 0, hence the left hand side of (176) is a
second degree polynomial in αj with positive leading coefficient. Its maximum is achieved at one extremity of the
interval constraint : the case α∗

j = 0 was already ruled out as impossible, hence Ljwjα
∗
j = kiwiα

∗
i . This implies

(ki + Li)wiβ
∗
i + (kj + Lj)wjβ

∗
j = (kj + Lj)wjα

∗
j = kjwjα

∗
j + kiwiα

∗
i , which yields the desired contradiction to

the assumption that
∑

i(ki + Li)wiβ∗
i <

∑

i kiwiα∗
i .

⊓⊔

Lemma 32 Consider weights w = (w1, w2) and integers ki, ni such that 1 ≤ 2ki < ni and Σ = Σk1,k2
⊂

Rn1 × Rn2 , i ∈ {1, 2}. We have
BΣ(‖ · ‖w) = max

0≤Li≤n−2ki

BL1,L2(w) (177)

where BL1,L2(w) is defined in (168).

Proof We use the same proof method as in Lemma 17. With the notations T = T (z), T2 = T2(z) from the
beginning of Appendix A.6, denote T ′ = T2 \ T so that ‖zTc

2
‖w + ‖zT ′‖w = ‖zTc‖w. By Lemma 27, we have

BΣ(‖ · ‖w) = sup
z:z 6=0,‖zTc

2
‖w+‖zT ′‖w≤‖zT ‖w

‖zTc
2
‖22

‖zT2
‖22

. (178)

We now show that this expression can be simplified by maximizing over vectors z with a particular shape.
Consider z a vector satisfying the constraint in (178). Replacing each entry zi of z with its magnitude |zi| leaves
the constraint (as well as the maximized quantity) unchanged, hence without loss of generality we can assume
that z has nonnegative entries zi ≥ 0. Similarly, we can assume without loss of generality that for each i ∈ {1, 2},
the index set Si = [1, ki] indexes ki largest entries of Pi(z) and S′

i = [1, 2ki] indexes the 2ki largest entries.
Given some j ∈ {1, 2}, consider two (equal or distinct) indices in Sj and the vector z̃ obtained by keeping

unchanged all entries of z, except those indexed by these indices which are replaced by their average. This has
the following effect:
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1. Each Si (resp. S′
i), i ∈ {1, 2}, is a set of the ki (resp. 2ki) largest coordinates of Pi(z̃), hence T (z̃) = T =

(S1, S2), T2(z̃) = T2 = (S′
1, S

′
2), T ′(z̃) = T ′ = T2\T , z̃Tc

2
= zTc

2
, z̃T ′ = zT ′ , and the support of Pi(z̃),

i ∈ {1, 2} is the same as that of Pi(z).

2. Denoting a, b ≥ 0 the values of the two considered entries, since (a + b)/2 + (a + b)/2 = a + b, we have
‖[Pj(z̃)]Sj

‖1 = ‖[Pj(z)]Sj
‖1, and we obtain that ‖z̃T ‖w = ‖zT ‖w, hence z̃ still satisfies the optimization

constraint;

3. As ‖z̃Tc
2
‖2 = ‖zTc

2
‖2 and ‖z̃T2

‖22−‖zT2
‖22 = 2[(a+b)/2]2−a2−b2 = −(a−b)2/2 ≤ 0, hence ‖z̃Tc

2
‖22/‖z̃T2

‖22 ≥
‖z̃Tc

2
‖22/‖z̃T2

‖22 where the inequality is strict as soon as a 6= b.

All the above imply that, without loss of generality, we can restrict the optimization to vectors z such that, for
i ∈ {1, 2}, all entries of zSi

are equal. We denote αi > 0 their common value. A similar reasoning with S′
j\Sj

instead of Sj shows that we can also assume without loss of generality that all entries of zS′
i
\Si

, i ∈ {1, 2}, are
equal. We denote βi ≥ 0 their common value.

The value of the smallest component of [Pi(z)]Si
is αi, while the smallest component of [Pi(z)]S′

i
is min(αi, βi).

Denoting xi = Pi(z)(S′
i
)c , we have xi ∈ R

ni−2ki
+ and the largest component of [Pi(z)](S′

i
)c is ‖xi‖∞. Hence, Si

and S′
i are respectively a set of the ki and 2ki largest components of Pi(z) if, and only if, ‖xi‖∞ ≤ βi ≤ αi.

Finally, we observe that ‖zT ‖w − ‖zT ′‖w − ‖zTc
2
‖w = w1k1α1 + w2k2α2 − w1k1β1 − w2k2β2 − w1‖x1‖1 −

w2‖x2‖1, ‖zTc
2
‖22 = ‖x1‖22 + ‖x2‖22 and ‖zT2

‖22 = k1α2
1 + k2α2

2 + k1β2
1 + k2β2

2 . This establishes

BΣ(‖ · ‖w) = sup
βi:βi≥0

β1+β2>0

sup
αi:αi≥βi

sup
‖xi‖∞≤βi

∑2
i=1 wi‖xi‖1≤

∑2
i=1 kiwi(αi−βi)

∑2
i=1 ‖xi‖22

∑2
i=1 ki(α

2
i + β2

i )
, (179)

where the restriction β1 + β2 > 0 simply follows from the fact that when β1 + β2 = 0 we have x1 = x2 = 0 which
leads to a sub-optimal objective value. To show that the supremum in (179) is achieved, observe that both the
constraints on y := (α1, α2, β1, β2, x1, x2) and the quantity f(y) that is maximized are invariant by multiplication
by a positive constant factor. Hence, the supremum is unchanged if we add a scaling constraint. e.g. by fixing
‖y‖∞. This leads to the supremum of a continuous function over a compact set (the unit ℓ∞ ball), hence there
exists α∗

i , β
∗
i , x

∗
i reaching the supremum in (179).

Thanks to Lemma 16, given the constraints (depending on αi and βi), the maximization w.r.t xi is reached
with vectors with the shape

(βi, . . . , βi
︸ ︷︷ ︸

Li

, θi, 0, . . . , 0
︸ ︷︷ ︸

ni−2ki−(Li+1)≥0

)

with 0 ≤ θi ≤ βi, 0 ≤ Li ≤ ni − 2ki − 1, including potentially Li = 0 (case of vector xi with a single nonzero
coordinate θi). We deduce

BΣ(‖ · ‖w) = sup
βi:βi≥0

β1+β2>0

sup
αi:αi≥βi

sup
Li,θi:0≤Li≤n−2ki−1,0≤θi≤βi

∑2
i=1 wiθi≤

∑2
i=1(kiwiαi−wi(ki+Li)βi)

∑2
i=1 Liβ2

i + θ2i
∑2

i=1 ki(α
2
i + β2

i )
. (180)

Hence, denoting

f(L1, L2, α1, α2, β1, β2) := sup
θi:0≤θi≤βi

∑2
i=1 wiθi≤

∑2
i=1(kiwiαi−wi(ki+Li)βi)

∑2
i=1 Liβ2

i + θ2i
∑2

i=1 ki(α
2
i + β2

i )
, (181)

for parameters αi, βi, Li such that c :=
∑2

i=1(kiwiαi − wi(ki + Li)βi) ≥ 0, we have

BΣ(‖ · ‖w) = max
0≤Li≤ni−2ki−1

sup
β1,β2≥0

β1+β2>0

sup
αi:αi≥βi

∑2
i=1 kiwiαi≥

∑2
i=1(ki+Li)wiβi

f(L1, L2, α1, α2, β1, β2)

︸ ︷︷ ︸

f(L1,L2)

.

(182)

To continue, we bound f(L1, L2) via characterizations of f(L1, L2, α1, α2, β1, β2) in different parameter ranges.
The supremum in (181) is covered by Lemma 30 hence we need to primarily distinguish cases depending on
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relative order of c =
∑2

i=1(kiwiαi − wi(ki + Li)βi) ≥ 0, w1β1 + w2β2, w1β1, and w2β2. This suggests writing
f(L1, L2) = maxu∈{0,1} fu(L1, L2) where

f0(L1, L2) := sup
βi,αi:0≤βi≤αi,β1+β2>0

∑2
i=1 kiwiαi≥

∑2
i=1(ki+Li+1)wiβi

f(L1, L2, α1, α2, β1, β2) (183)

f1(L1, L2) := sup
βi,αi:0≤βi≤αi,β1+β2>0

∑

2
i=1(ki+Li)wiβi≤

∑

2
i=1 kiwiαi<

∑

2
i=1(ki+Li+1)wiβi

f(L1, L2, α1, α2, β1, β2). (184)

To express f0(L1, L2) and bound f1(L1, L2), we use the functions gm, m ∈ {1, 2}, from Lemma 31.
Expressing and bounding f0: if

∑2
i=1 kiwiαi ≥

∑2
i=1(ki+Li+1)wiβi then c ≥ w1β1+w2β2 hence Lemma 30,

case 4 yields

f(L1, L2, α1, α2, β1, β2) =

∑2
i=1(Li + 1)β2

i
∑2

i=1 ki(α
2
i + β2

i )
(185)

f0(L1, L2) = sup
0≤βi≤αi,β1+β2>0

∑2
i=1 kiwiαi≥

∑2
i=1(ki+Li+1)wiβi

∑2
i=1(Li + 1)β2

i
∑2

i=1 ki(α
2
i + β2

i )
(186)

Lemma 28
= sup

0≤βi≤αi,β1+β2>0
∑2

i=1
kiwiαi=

∑2
i=1

(ki+Li+1)wiβi

∑2
i=1(Li + 1)β2

i
∑2

i=1 ki(α
2
i + β2

i )
= BL1+1,L2+1(w). (187)

As a result

f0(L1, L2) ≤ max
0≤Li≤ni−2ki−1

BL1+1,L2+1(w) ≤ max
0≤L′

i
≤ni−2ki

BL′
1,L

′
2(w) (188)

Bounding f1: we denote (ℓ, r) ∈ {(1, 2), (2, 1)} a pair such that wℓβℓ = mini wiβi ≤ maxi wiβi = wrβr.
When

∑2
i=1(ki + Li)wiβi ≤

∑2
i=1 kiwiαi <

∑2
i=1(ki + Li + 1)wiβi we can distinguish three cases.

1. if (kℓ + Lℓ)wℓβℓ + (kr + Lr + 1)wrβr ≤ ∑2
i=1 kiwiαi <

∑2
i=1(ki + Li + 1)wiβi then max(w1β1, w2β2) =

wrβr ≤ c < w1β1 + w2β2 hence Lemma 30, case 3 yields

f(L1, L2, α1, α2, β1, β2) = max
(u,v)∈{(1,2),(2,1)}

(Lu + 1)β2
u + Lvβ2

v + [(c−wuβu)/wv ]2
∑2

i=1 ki(α
2
i + β2

i )
︸ ︷︷ ︸

=gv(L
′
1,L

′
2,α1,α2,β1,β2), L′

u=Lu+1,L′
v=Lv

. (189)

2. if (kℓ+Lℓ+1)wℓβℓ+(kr+Lr)wrβr ≤∑2
i=1 kiwiαi < (kℓ+Lℓ)wℓβℓ+(kr+Lr+1)wrβr then min(w1β1, w2β2) =

wℓβℓ ≤ c < wrβr = max(w1β1, w2β2) hence Lemma 30, case 2 yields

f(L1, L2, α1, α2, β1, β2) = max










L1β2
1 + L2β2

2 + (c/wr)2
∑2

i=1 ki(α
2
i + β2

i )
︸ ︷︷ ︸

gr(L1,L2,α1,α2,β1,β2)

,
(Lℓ + 1)β2

ℓ + Lrβ2
r + [(c− wℓβℓ)/wr ]2

∑2
i=1 ki(α

2
i + β2

i )
︸ ︷︷ ︸

gr(L
′
1,L

′
2,α1,α2,β1,β2), L′

ℓ
=Lℓ+1,L′

r=Lr










. (190)

3. otherwise,
∑2

i=1(ki+Li)wiβi ≤
∑2

i=1 kiwiαi < (kℓ+Lℓ+1)wℓβℓ+(kr+Lr)wrβr, hence c < min(w1β1, w2β2)
and by Lemma 30, case 1

f(L1, L2, α1, α2, β1, β2) = max










L1β2
1 + L2β2

2 + (c/w1)2
∑2

i=1 ki(α
2
i + β2

i )
︸ ︷︷ ︸

g1(L1,L2,α1,α2,β1,β2)

,
L1β2

1 + L2β2
2 + (c/w2)2

∑2
i=1 ki(α

2
i + β2

i )
︸ ︷︷ ︸

g2(L1,L2,α1,α2,β1,β2)










. (191)

Thus, in the range of αi, βi involved in the definition of f1(L1, L2) as a supremum, there are integers 0 ≤
L′
i ≤ ni − 2ki and v ∈ {1, 2} such that f(L1, L2, α1, α2, β1, β2) = gv(L′

1, L
′
2, α1, α2, β1, β2). We will shortly prove

that given the relations between L′
i and the considered range of αi, βi we have
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2∑

i=1

(ki + L′
i)wiβi ≤

2∑

i=1

kiwiαi. (192)

hence using Lemma 31 we obtain gv(L′
1, L

′
2, α1, α2, β1, β2) ≤ BL′

1,L
′
2 (w).

This implies

f1(L1, L2) ≤ max
0≤L′

i
≤ni−2ki

BL′
1,L

′
2(w)

and, combined with (182)-(188), yields the upper bound

BΣ(‖ · ‖w) = max
0≤Li≤ni−2ki

max(f0(L1, L2), f1(L1, L2)) ≤ max
0≤L′

i
≤ni−2ki

BL′
1,L

′
2 (w). (193)

Proof of (192). We treat separately the three cases respectively associated to (189), (190), (191).

1. When
∑2

i=1(ki +Li)wiβi ≤
∑2

i=1 kiwiαi < (kℓ +Lℓ + 1)wℓβℓ + (kr +Lr)wrβr , by (191) there is v ∈ {1, 2}
such that f(L1, L2, α1, α2, β1, β2) = gv(L′

1, L
′
2, α1, α2, β1, β2) with (L′

1, L
′
2) = (L1, L2). We observe that

∑2
i=1(ki + L′

i)wiβi =
∑2

i=1(ki + Li)wiβi ≤
∑2

i=1 kiwiαi.

2. When (kℓ + Lℓ)wℓβℓ + (kr + Lr + 1)wrβr ≤ ∑2
i=1 kiwiαi <

∑2
i=1(ki + Li + 1)wiβi, by (189), we have

f(L1, L2, α1, α2, β1, β2) = gv(L′
1, L

′
2, α1, α2, β1, β2) where (L′

1, L
′
2, v) ∈ {(L1 + 1, L2, 2), (L1, L2 + 1, 1)}. If

(L′
ℓ, L

′
r) = (Lℓ, Lr + 1) then

∑2
i=1(ki + L′

i)wiβi = (kℓ + Lℓ)wℓβℓ + (kr + Lr + 1)wrβr. Otherwise we have

(L′
ℓ, L

′
r) = (Lℓ+1, Lr), hence

∑2
i=1(ki+L′

i)wiβi = (kℓ+Lℓ+1)wℓβℓ+(kr+Lr)wrβr ≤ (kℓ+Lℓ)wℓβℓ+(kr+

Lr +1)wrβr since wℓβℓ ≤ wrβr by definition of r, ℓ. In both cases we get
∑2

i=1(ki+L′
i)wiβi ≤

∑2
i=1 kiwiαi.

3. When (kℓ +Lℓ +1)wℓβℓ + (kr +Lr)wrβr ≤∑2
i=1 kiwiαi < (kℓ +Lℓ)wℓβℓ + (kr +Lr +1)wrβr, (190) yields

f(L1, L2, α1, α2, β1, β2) = gr(L′
1, L

′
2, α1, α2, β1, β2) with (L′

ℓ, L
′
r) ∈ {(Lℓ, Lr), (Lℓ + 1, Lr)}, hence we have

∑2
i=1(ki + L′

i)wiβi ≤ (kℓ + Lℓ + 1)wℓβℓ + (kr + Lr)wrβr ≤∑2
i=1 kiwiαi.

As these three cases cover all possibilities, we deduce bound (192) as claimed.
To conclude, we obtain a lower bound on BΣ(‖ · ‖w). Consider any integers 0 ≤ Li ≤ ni −2ki and any scalars

αi, βi such that 0 ≤ βi ≤ αi, β1 + β2 > 0 and
∑2

i=1(ki + Li)wiβi =
∑2

i=1 kiwiαi, and let z = (z1, z2) where

zi = (αi, . . . , αi
︸ ︷︷ ︸

ki

, βi, . . . , βi
︸ ︷︷ ︸

ki+Li

, 0, . . . , 0
︸ ︷︷ ︸

ni−(2ki+Li)

).

We have ‖zT ‖w = k1w1α1 + k2w2α2 = (k1 + L1)w1β1 + (k2 + L2)w2β2 = ‖zTc‖w hence, by Lemma 27 and the
definition of BΣ(‖ · ‖w),

BΣ(‖ · ‖w) ≥
‖zTc

2
‖22

‖zT2
‖22

=

∑2
i=1 Liβ2

i
∑2

i=1 ki(α
2
i + β2

i )
. (194)

Taking the supremum over αi, βi under the considered constraints yields BΣ(‖ · ‖w) ≥ BL1,L2(w). We deduce

BΣ(‖ · ‖w) ≥ max
0≤Li≤ni−2ki

BL1,L2(w).

⊓⊔

We give a characterization/lower bound (depending on w) of the intermediate BL1,L2(w).

Lemma 33 Consider w = (w1, w2), 0 ≤ Li ≤ ni − 2k, and BL1,L2 (w) defined as in Lemma 31. We have

max
(i,j)∈{(1,2),(2,1)}

Li/ki
νi

1−νi
(Li/ki)2 + 2

≤ BL1,L2(w) ≤ max
(i,j)∈{(1,2),(2,1)}

Li/ki

νi(Li/ki + 1)2 + 1
(195)

with νi =
1

1+kj/(kiµ
2
i
)
and µi =

wi
wj

for (i, j) ∈ {(1, 2), (2, 1)}. The rhs is an equality if νi ≥ ki
ki+Li

, ∀i ∈ {1, 2}.

Proof For L1, L2 such that L1 + L2 > 0, we rewrite BL1,L2 defined in (168) as

BL1,L2(w) = sup
λ>0

sup
βi:β1,β2≥0

∑2
i=1 wi(ki+Li)βi=λ

sup
αi:αi≥βi
∑2

i=1 kiwiαi=λ

L1β2
1 + L2β2

2

k1α2
1 + k2α2

2 + k1β2
1 + k2β2

2

.
(196)
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For fixed λ > 0 and β1, β2 such that
∑2

i=1 wi(ki + Li)βi = λ, we have λ >
∑2

i=1 wikiβi hence, by Lemma 28,

BL1,L2 (w) ≤ sup
λ>0

sup
β1≥0,β2≥0

w1(k1+L1)β1+w2(k2+L2)β2=λ

L1β2
1 + L2β2

2
λ2

k1w
2
1+k2w

2
2
+ k1β2

1 + k2β2
2

.
(197)

with equality if the maximizers λ̂, β̂i of the right side satisfy the constraints λ̂ ≥ (k1w2
1+k1w2

2)max(β̂1/w1, β̂2/w2).

Consider (i, j) ∈ {(1, 2), (2, 1)}. Since νi :=
1

1+kjw
2
j
/(kiw

2
i
)
=

kiw
2
i

kiw
2
i
+kjw

2
j

, we obtain by Lemma 29

BL1,L2 (w) ≤ sup
λ>0

max
i∈{1,2}

Liλ2

λ2

k1w
2
1+k2w

2
2
w2

i (ki + Li)2 + kiλ2
= max

(i,j)∈{(1,2),(2,1)}

Li/ki

νi(Li/ki + 1)2 + 1
. (198)

This establishes the upper bound in (195). Denoting (i∗, j∗) maximizing the right-hand-side expression above,

and using the optimal values from Lemma 29, β̂i∗ = λ̂
wi∗ (ki∗+Li∗ )

(with β̂j∗ = 0 and an arbitrary λ̂ > 0), we

have max(β̂1/w1, β̂2/w2) = β̂i∗/wi∗ = λ̂
w2

i∗
(ki∗+Li∗ )

hence equality holds in (198) if the following inequality is

satisfied

(k1w
2
1 + k1w

2
2)

1

w2
i∗ (ki∗ + Li∗ )

≤ 1,

or equivalently if
ki∗

νi∗ (ki∗+Li∗ )
≤ 1. This is guaranteed as soon as νℓ ≥ kℓ

kℓ+Lℓ
for every ℓ ∈ {1, 2}. This establishes

the equality case in the rhs of (195).
We now treat the lower bound in (195). For fixed βi ≥ 0 and λ > 0 such that (k1+L1)w1β1+(k2+L2)w2β2 =

λ, we still have λ > k1w1β1 + k2w2β2. By Lemma 28, letting

V = min
αi:αi≥βi

∑2
i=1

kiwiαi=λ

k1α
2
1 + k2α

2
2,

(199)

we either have

– V = min
(

k1β2
1 + k2(

λ−k1w1β1
k2w2

)2, k2β2
2 + k1(

λ−k2w2β2
k1w1

)2
)

;
– or

V = λ2/(k1w
2
1 + k2w

2
2) = min

αi:αi≥0
∑2

i=1
kiαi=λ

k1α
2
1 + k2α

2
2

≤ min

(

k1β
2
1 + k2(

λ− k1w1β1

k2w2
)2, k2β

2
2 + k1(

λ− k2w2β2

k1w1
)2
)

(200)

where the last inequality was obtained by evaluating k1α2
1 + k2α2

2 at α1 = β1 (resp. at α2 = β2) with α2

(resp. α1) tuned so that k1w1α1 + k2w2α2 = λ.

We deduce that V ≤ min
(

k1β2
1 + k2(

λ−k1w1β1
k2w2

)2, k2β2
2 + k1(

λ−k2w2β2
k1w1

)2
)

and it follows using (196) that

BL1,L2 (w) ≥ sup
λ>0

sup
βi:β1,β2≥0

∑2
i=1 wi(ki+Li)βi=λ

L1β2
1 + L2β2

2

min
(

k1β2
1 + k2(

λ−k1w1β1
k2w2

)2, k2β2
2 + k1(

λ−k2w2β2
k1w1

)2
)

+ k1β2
1 + k2β2

2

= sup
βi:β1,β2≥0

∑2
i=1

wi(ki+Li)βi=1

L1β2
1 + L2β2

2

min
(

k1β2
1 + k2(

1−k1w1β1
k2w2

)2, k2β2
2 + k1(

1−k2w2β2
k1w1

)2
)

+ k1β2
1 + k2β2

2

= sup
βi:β1,β2≥0

∑2
i=1 wi(ki+Li)βi=1

max




L1β2

1 + L2β2
2

2k1β2
1 + k2β2

2 + k2(
1−k1w1β1

k2w2
)2

,
L1β2

1 + L2β2
2

k1β2
1 + 2k2β2

2 + k1(
1−k2w2β2

k1w1
)2



 .

(201)

For (i, j) ∈ {(1, 2), (2, 1)}, using the values β̃i =
1

wi(ki+Li)
, β̃j = 0, we have

BL1,L2 (w) ≥ L1β̃2
i

2kiβ̃2
i + kj(

1−kiwiβ̃i
kjwj

)2
. (202)



50 Yann Traonmilin, Rémi Gribonval and Samuel Vaiter

Since 1− kiwiβ̃i = wi(ki + Li)β̃i − kiwiβ̃i = wiLiβ̃i, we have

Liβ̃2
i

2kiβ̃2
i + kj(

1−kiwiβ̃i
kjwj

)2
=

Liβ̃2
i

2kiβ̃2
i + kj(

wiLi
kjwj

)2β2
i

=
Li

2ki + kj(
wiLi
kjwj

)2
.

Since νi =
1

1+kjw
2
j
/(kiw

2
i
)
, we have (1 − νi)/νi = 1/νi − 1 = kjw2

j/kiw
2
i . We deduce

BL1,L2(w) ≥ Li

2ki +
(wiLi)

2

kjw
2
j

=
Li/ki

kiw
2
i

kjw
2
j

(Li/ki)2 + 2
=

Li/ki
νi

1−νi
(Li/ki)2 + 2

.
(203)

⊓⊔

The following function study will be used to deal with the optimization of the BL1,L2 (w).

Lemma 34 Consider a such that 0 < a ≤ 1. The function

g1 : u ≥ 0 7→ g1(u; a) :=
u

a(u+ 1)2 + 1
(204)

is maximized at u∗
1 =

√
1 + 1/a, increasing for u ≤ u∗

1, decreasing for u ≥ u∗
1 and

g1(u
∗
1; a) =

1

2
(
√

1 + 1/a− 1). (205)

Proof Since g′1(u; a) = −au2+a+1
(a(u+1)2+1)2

, the equality g′1(u
∗
1; a) = 0 implies a(u∗

1)
2 = a + 1 and u∗

1 =
√

1 + 1/a.

Given the sign of g′1(u; a), g1(·; a) is increasing for u ≤ u∗
1 and decreasing for u ≥ u∗

1. As a = [(u∗
1)

2 − 1]−1 we get

f1(a) := g1(u
∗
1, a) =

u∗
1((u

∗
1)

2 − 1)

(u∗
1 + 1)2 + (u∗

1)
2 − 1

=
u∗
1((u

∗
1)

2 − 1)

2(u∗
1)

2 + 2u∗
1

=
1

2
(u∗

1 − 1) =
1

2
(
√

1 + 1/a − 1) (206)

which is decreasing with respect to a.

Lemma 35 Consider 0 ≤ a ≤ 1, g1(u; a) :=
u

a(u+1)2+1
and g2(u; a) :=

u
a

1−a
u2+2

and define

hi(u, v; a) := max(gi(u; a), gi(v; 1− a)), i ∈ {1, 2}. (207)

1. For a = 1/2 we have h1(u, v; 1/2) ≤
√

3−1
2

for every u, v ≥ 0.

2. If a /∈ [ã, 1− ã], where ã := 2
√
3− 3 ≈ 0.46 then h2(2, 2, a) >

√
3−1
2

.

Consider integers such that ki ≥ 2, 1 ≤ 4ki ≤ ni for i ∈ {1, 2} and

H1(a) := max
0≤Li≤ni−2ki

h1(L1/k1, L2/k2; a). (208)

3. There exists a∗ ∈ [ã, 1− ã] such that H1(a∗) = mina∈[ã,1−ã] H1(a).
4. Consider a ∈ [ã, 1− ã] then

H1(a) = max

(

max
L1∈{⌊k1

√
1+1/a⌋;⌈k1

√
1+1/a⌉}

g1(L1/k1; a), max
L2∈{⌊k2

√
1+1/(1−a)⌋;⌈k2

√
1+1/(1−a)⌉}

g1(L2/k2; 1− a)

)

.

where ⌊·⌋ and ⌈·⌉ denote the lower and upper integer part. Moreover, the L∗
i maximizing the above expression

are also maximizing (208) and are such that L∗
1/k1 ≥ 1/a− 1 and L∗

2/k2 ≥ 1/(1 − a) − 1.

Proof Item 1. By Lemma 34, with a = 1/2 and any u, v ≥ 0 we have g1(u; a) ≤ g1(u∗
1 ; a) =

1
2
(
√

1 + 1/a− 1) =

(
√
3− 1)/2 and similarly g1(v; 1− a) = (

√
3− 1)/2 hence h1(u, v; a) = (

√
3− 1)/2.

Item 2. We prove the inequality for a < ã. Since h2(2, 2; 1 − a) = h2(2, 2; a) by definition of h2, the same
inequality holds if a > 1− ã. For a < ã since a < 1/2 we have a/(1− a) < (1− a)/a hence using the definition of
g2 we have g2(2, a) > g2(2, 1− a). By monotonicity of a 7→ (1− a)/(1 + a) we get

h2 (2, 2; a) = max(g2(2, a), g2(2, 1− a)) = g2(2, a) =
2

4 a
1−a

+ 2
=

1− a

1 + a
>

1− ã

1 + ã
= g2(2, ã).
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Finally, we compute

g2(2, ã) =
1− (2

√
3− 3)

1 + 2
√
3− 3

=
4− 2

√
3

2
√
3− 2

=
(4− 2

√
3)(2

√
3 + 2)

(2
√
3)2 − 22

=
8
√
3− 12 + 8− 4

√
3

8
=

4
√
3− 4

8
=

√
3− 1

2
.

Item 3. The function H1 is defined as the maximum of a finite number of continuous functions of a. By
continuity of the maximum, H1 is continuous and its minimum on the compact set [ã, 1− ã] is reached.

Item 4. Consider a ∈ [ã, 1− ã]. By Lemma 34 the function u 7→ g1(u; a) is maximized at a u∗
1 =

√
1 + 1/a.

Similarly, v 7→ g1(v; 1 − a) is maximized at u∗
2 =

√
1 + 1/(1 − a). Since 1/3 ≤ ã ≤ 1/2, with ν1 = a, ν2 = 1 − a

we have νi ≥ 1/3 hence u∗
i =

√
1 + 1/νi ≤ 2. Moreover, since we assume ni ≥ 4ki, we have ni − 2ki ≥ 2ki ≥

ki
√

1 + 1/νi = kiu∗
i . It follows that for i ∈ {1, 2} we have

max
0≤Li≤ni−2ki

g1(Li/ki; νi) = max
Li∈{⌊kiu

∗
i
⌋;⌈kiu

∗
i
⌉}

g1(Li/ki; νi).

As a result, the maximizers L∗
i of both sides are identical, and we have H1(a) = max(g1(L∗

1/k1; a), g1(L
∗
2/k2; 1−a))

with

L∗
1 ∈ arg max

L1∈{⌊k1u
∗
1⌋;⌈k1u

∗
1⌉}

g1(L1/k1; a)

L∗
2 ∈ arg max

L2∈{⌊k2u
∗
2⌋;⌈k2u

∗
2⌉}

g1(L2/k2; 1− a).

There remains to show that L∗
i /ki ≥ 1/ν1 − 1. For this, we first observe that since ki ≥ 2 we have

L∗
i /ki ≥ ⌊kiu∗

i ⌋/ki ≥ (kiu
∗
i − 1)/ki = u∗

i − 1/ki ≥ u∗
i − 1/2 =

√

1 + 1/νi − 1/2.

The derivative of x →
√
1 + x − 1/2 − (x − 1) =

√
1 + x − x + 1/2 at any x ≥ 0 is 1/(2

√
1 + x) − 1 ≤ −1/2

hence this function is monotonically decreasing. Since a ∈ [ã, 1− ã] and ν1 = a, ν2 = 1− a we have νi ≥ ã hence
1/νi ≤ 1/ã for i ∈ {1, 2}, hence

√

1 + 1/νi − 1/2− (1/νi − 1) ≥
√

1 + 1/ã − 1/2 − (1/ã − 1) ≈ 0.12 > 0.

We deduce that L∗
i /ki ≥ 1/νi − 1 as claimed. ⊓⊔

We can conclude with the proof of Theorem 7.

Proof (Proof of Theorem 7) The proof starts from the fact (Corollary 3) that

arg max
R∈C′

δnecΣ (R) = arg min
R∈C′

BΣ(R) (209)

with C′ = {R(·) = ‖ · ‖w : w = (w1, w2), w1 > 0, w2 > 0}. Using Lemma 32, for each w we have

BΣ(‖ · ‖w) = max
0≤Li≤n−2ki,i∈{1,2}

BL1,L2 (w). (210)

With the notations of Lemma 33 we have µ1 = w1/w2 and µ2 = w2/w1 hence µ1 = 1/µ2, and one can
check that ν1 + ν2 = 1 where ν1 = ν1(w) := (1 + k2w2

2/(k1w
2
1))

−1. Hence, by Lemma 33 (taking u = L1/k1, v =
L2/k2, a = ν1 and using (207)) and with the notation of Lemma 35, for all integers 0 ≤ Li ≤ ni − 2ki we have

h2(L1/k1, L2/k2; ν1) ≤ BL1 ,L2(w) ≤ h1(L1/k1, L2/k2; ν1) (211)

with equality in the right hand s if for each i ∈ {1, 2} we have νi ≥ Li/(ki+Li), i.e., Li/ki ≥ 1/νi−1. Using (210)
we get

max
0≤Li≤n−2ki,i∈{1,2}

h2(L1/k1, L2/k2; ν1) ≤ BΣ(‖ · ‖w) ≤ max
0≤Li≤n−2ki,i∈{1,2}

h1(L1/k1, L2/k2; ν1), (212)

and if the maximizers L∗
i of the right-hand side of (212) satisfy L∗

i /ki ≥ 1/νi − 1 for each i ∈ {1, 2} then in fact

BΣ(‖ · ‖w) = H1(ν1) := h1(L
∗
1/k1, L

∗
2/k2; ν1) (213)

where H1 is defined as the maximum of h1 over the Li/ki (Lemma 35). In particular for νi = 1/2, this is verified
if L∗

i ≥ ki. Next we proceed in three steps. We set ã := 2
√
3− 3 ≈ 0.46.
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Step 1. We show that if w′, w′′ are such that ν1(w′) /∈ [ã, 1− ã] and ν1(w′′) = 1/2 ∈ [ã, 1− ã] then

BΣ(‖ · ‖w′ ) >

√
3− 1

2
≥ BΣ(‖ · ‖w′′ ).

A first consequence is to establish (73), using Corollary 3 to convert the bound on BΣ(‖ · ‖w), for w ∈ {w∗, w0},
to a bound on δnecΣ (‖ · ‖w). Indeed, since ν1(w′′) = k1(w′′

1 )
2/(k1(w′′

1 )
2 + k2(w′′

2 )
2), the fact that ν1(w′′) = 1/2

corresponds to w′′ ∝ (1/
√
k1, 1/

√
k2) =: w0(k1, k2), hence B∗

Σ ≤ BΣ(‖ · ‖w0 ) ≤ (
√
3− 1)/2.

A second consequence is that the optimization of w = (w1, w2) can be restricted to a range corresponding to
ν1 = ν1(w) ∈ [ã, 1− ã].

Indeed, on the one hand, for ν1(w′′) = 1/2, by Lemma 35-Item 4 we have ,

H1(1/2) = max

(

max
L1∈{⌊k1

√
3⌋;⌈k1

√
3⌉}

g1(L1/k1; 1/2), max
L2∈{⌊k2

√
3⌋;⌈k2

√
3⌉}

g1(L2/k2; 1/2)

)

where g1 is defined in Lemma 35.
Hence, L∗

i ≥ ki so that (213) holds, and we deduce that BΣ(‖ · ‖w′′ ) = H1(1/2).
From Lemma 35-Item 1, we have

H1(1/2) ≤
√
3− 1

2
,

and we obtain BΣ(‖ · ‖w) ≤ (
√
3− 1)/2 as claimed.

We can also establish the conclusion of the theorem (74) by considering supk′
1,k

′
2≥1,n′

1≥4k′
1,n

′
2≥4k′

2
BΣ(‖·‖w′′ ).

Using the expression of H(1/2) we have that

sup
k′
1,k

′
2≥1,n′

1≥4k′
1,n

′
2≥4k′

2

BΣ(‖ · ‖w′′ ) = sup
k′
1≥1,n′

1≥4k′
1

max
L1∈{⌊k′

1

√
3⌋;⌈k′

1

√
3⌉}

g1(L1/k
′
1; 1/2)

= sup
k≥1

max
L∈{⌊k

√
3⌋;⌈k

√
3⌉}

g1(L/k; 1/2)
(214)

Using Lemma 34, as g1 is continuous and ⌊k
√
3⌋/k →k→∞

√
3 = u∗

1 the maximizer of g1(·; 1/2) (because

(k
√
3 − 1)/k ≤ ⌊k

√
3⌋/k ≤

√
3), we have supk maxL∈{⌊k

√
3⌋;⌈k

√
3⌉} g1(L/k; 1/2) = g1(u∗

1; 1/2) = (
√
3 − 1)/2.

Again using Corollary 3 to link δnecΣ and BΣ yields (74).

On the other hand, if ν1 /∈ [ã, 1 − ã] then by Lemma 35-Item 2 we have h2(2, 2; ν1) > (
√
3 − 1)/2. Since

ni ≥ 4ki, the integers Li := 2ki, i ∈ {1, 2} satisfy 0 < Li ≤ ni − 2ki hence, by the left-hand side in (212),

BΣ(‖ · ‖w′ ) ≥ h2(L1/k1, L2/k2, ν1) = h2(2, 2; ν1) >

√
3− 1

2
.

Step 2. We show that if w satisfies ν1 = ν1(w) ∈ [ã, 1− ã] then BΣ(‖ · ‖w) = H1(ν1(w)).
Since ki ≥ 2 and ni ≥ 4ki, by Lemma 35-Item 4, we have the equality H1(ν1) = h1(L∗

1/k1, L
∗
2/k2, ν1) where

L∗
1 ∈ {⌊k1

√
1 + 1/ν1⌋; ⌈k1

√
1 + 1/ν1⌉}, L∗

2 ∈ {⌊k2
√

1 + 1/(1 − ν1)⌋; ⌈k2
√

1 + 1/(1 − ν1)⌉} and L∗
i /ki ≥ 1/νi−1.

By (212)- (213) we deduce that the equality BΣ(‖ · ‖w) = H1(ν1(w)) holds.
Step 3. By Lemma 35-Item 3, there is a∗ ∈ [ã, 1 − ã] such that H1(a∗) = minã≤a≤1−ã H1(a). In light of

Steps 1 and 2, the infimum over w of BΣ(‖ · ‖w) is thus achieved, and a weight vector w∗ satisfies

BΣ(‖ · ‖w∗ ) = min
w

BΣ(‖ · ‖w)) = H1(a
∗) (215)

if, and only if H1(ν1(w∗)) = H1(a∗). Since ν1(w) =
(

1 + k2
k1

(w2/w1)2
)−1

, combining all the above yields

w∗
2

w∗
1

=

√

k1

k2
(1/ν∗1 − 1)

where ν∗1 is an optimum of

BΣ(‖ · ‖w∗ ) = min
ν1∈[ã,1−ã],ν2=1−ν1

max
i∈{1,2}

max
xi∈{⌊ki

√
1+1/νi⌋;⌈ki

√
1+1/νi⌉}

g1(xi/ki; νi).

⊓⊔

The following Lemma is needed for the proof of Theorem 8.
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Lemma 36 Consider integers n ≥ k ≥ 1, a nonzero vector z ∈ Rn, S a set of the k largest entries of z. There
exists 0 ≤ r ≤ k − 1, β ∈ Rn, γ ≥ 0 such that

‖β‖0 = k − r − 1 ≤ L := |supp(zSc)| ≤ n− 1 (216)

‖β‖∞ ≤ min
l∈S

|z(l)| (217)

‖zSc‖1 = ‖β‖1 + γ (218)

‖zSc‖2Σk
= ‖β‖22 +

1

r + 1
γ2 (219)

Moreover if k − r − 1 ≥ 1 then

γ < (r + 1) min
l∈supp(β)

|β(l)| ; (220)

Proof We use the fact that for any integer k the norm ‖ · ‖Σk
coincides with the so-called k-support norm [4,

Definition 2.1], that is invariant by permutation of the coordinates and has the following expression for each
y ∈ Rn sorted in descending order:

‖y‖2Σk
=

k−r−1∑

l=1

|y(l)|2 +
1

r + 1





n∑

l=k−r

|y(l)|





2

(221)

where r is the unique integer in {0, . . . , k − 1} such that

|y(k − r − 1)| > 1

r + 1

n∑

l=k−r

|y(l)| ≥ |y(k − r)|, (222)

with the convention |y(0)| = +∞, see [4, Proposition 2.1].
We apply the above characterization with y ∈ Rn the sorting of zSc by descending order of absolute values.

Notice that k − r − 1 ≤ L := |supp(zSc)| = |supp(yi)| ≤ n − 1 (since z 6= 0, |S| ≥ 1), which establishes the rhs
inequality in (216): otherwise we would have y(k − r − 1) = y(k − r) = 0 which would contradict (222).

We define β ∈ Rn and γ ≥ 0 as

β(l) := |y(l)|, 1 ≤ l ≤ k − r − 1; β(l) := 0, k − r ≤ l ≤ n; (223)

γ :=
n∑

l=k−r

|y(l))| (224)

Since β(l) is non-increasing with l, with β(k−r−1) = |y(k−r−1)| > 0 and β(k−r) = 0 we have ‖β‖0 = k−r−1
hence (216) holds. Moreover, by definition of S, we also have minl∈S |z(l)| ≥ ‖zSc‖∞ = ‖y‖∞ = ‖β‖∞ hence (217)
holds. We also obviously have ‖zSc‖1 = ‖y‖1 = ‖β‖1 + γ, i.e. the required identity (218).

Since y is a decreasing rearrangement of zSc and ‖ · ‖Σk
is invariant by permutation we have

‖zSc‖2Σk
= ‖y‖2Σk

(221)+(223)+(224)
= ‖β‖22 +

1

r + 1
γ2.

This establishes (219). Finally when k− r− 1 ≥ 1 we have minl∈supp(β) β(l) = β(k− r− 1) = |y(k− r− 1)| hence
(220) is a direct consequence of (222). ⊓⊔

We now give the proof of Theorem 8.

Proof (Proof of Theorem 8) The assumptions of Lemma 10 hold, so we can rely on expression (57): to lower
bound δsuffΣk1,k2

(‖ · ‖w) by 1/
√
3, we thus upper bound ‖z−PΣ(z)‖2Σ by 2‖PΣ(z)‖22 for every z ∈ TΣ(‖ · ‖w). First

we characterize PΣ(z) for any z. With T = T (z) = (S1, S2) defined as in the beginning of Appendix A.6 we have
PΣ(z) = zT because for z = (z1, z2) ∈ H we have

min
y∈Σ

‖z − y‖22 = min
y1∈Σk1

,y2∈Σk2

(
‖z1 − y1‖22 + ‖z2 − y2‖22

)
= ‖z1 − (z1)S1

‖2 + ‖z2 − (z2)S2
‖22 = ‖z − zT ‖22.

We will use that, by Lemma 27, we have

z ∈ TΣ(‖ · ‖w) ⇔
2∑

i=1

‖(zi)Sc
i
‖1/
√

ki ≤
2∑

i=1

‖(zi)Si
‖1/
√

ki. (225)
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Now, using the fact that ‖(u1, u2)‖2Σ = ‖u1‖2Σk1
+ ‖u2‖2Σk2

(from [37, Lemma 4.2]) we obtain

‖z − PΣ(z)‖2Σ = ‖zTc‖2Σ =
2∑

i=1

‖(zi)Sc
i
‖2Σki

(226)

With Lemma 36, we obtain an explicit expression of the ratio ‖z − PΣ(z)‖2Σ/‖PΣ(z)‖22. For i ∈ {1, 2}, let
Li = |supp((zi)Sc

i
)|. There exists 0 ≤ ri ≤ ki − 1 and βi ∈ Rni , γi ≥ 0 such that ‖βi‖∞ ≤ minl∈Si

|zi(l)|,
‖βi‖0 = ki − ri − 1 ≤ Li and

‖(zi)Si
‖2Σki

= ‖βi‖22 +
1

ri + 1
γ2
i (227)

‖(zi)Sc
i
‖1 = ‖βi‖1 + γi. (228)

where, if ki − ri − 1 ≥ 1, we further have

γi < (ri + 1) min
l∈supp(βi)

|βi(l)|. (229)

Consider i ∈ {1, 2}. Depending on the value of ki − ri − 1, we have the following properties

• If ki − ri − 1 = 0 then ‖βi‖0 = 0 and βi = 0. Hence by (228) we have γ = ‖(zi)Sc
i
‖1 and

‖βi‖22 +
1

ri + 1
γ2
i =

‖(zi)Sc
i
‖21

ki
. (230)

• If ki − ri − 1 ≥ 1 then, since ki‖βi‖2∞ ≤ ki minl∈S |zi(l)|2 ≤ ‖(zi)Si
‖22 and ‖βi‖0 = ki − ri − 1, we have

‖βi‖22 +
1

ri + 1
γ2
i

(229)

≤ ‖βi‖22 + (ri + 1) ·
(
minl∈supp(βi)

|βi(l)|
)2

≤ [(ki − ri − 1) + (ri + 1)] · ‖βi‖2∞ = ki‖βi‖2∞ ≤ ‖(zi)Si
‖22. (231)

Thanks to these properties, we distinguish two easy cases to bound ‖z − PΣ(z)‖2Σ/‖PΣ(z)‖22.

1. If ki − ri − 1 ≥ 1 for each i ∈ {1, 2} then

‖z − PΣ(z)‖2Σ
(219)
=

2∑

i=1

(

‖βi‖22 +
1

ri + 1
γ2
i

)
(231)

≤
2∑

i=1

‖(zi)Si
‖22 = ‖PΣ(z)‖22.

2. If ki − ri − 1 = 0 for each i ∈ {1, 2} then

‖z − PΣ(z)‖2Σ
(219)
=

2∑

i=1

(

‖βi‖22 +
1

ri + 1
γ2
i

)
(230)
=
∑

i

‖zSc
i
‖21/ki

|a|2+|b|2≤(|a|+|b|)2
≤ (

∑

i

‖zSc
i
‖1/
√

ki)
2

(225)

≤ (
∑

i

‖zSi
‖1/
√

ki)
2

≤(
∑

i

‖zSi
‖2)2

(|a|+|b|)2≤2(|a|2+|b|2)
≤ 2

∑

i

‖zSi
‖22 = 2‖PΣ(z)‖22.

In both cases we obtain ‖z − PΣ(z)‖2Σ/‖PΣ(z)‖22 ≤ 2.
When these easy cases do not hold we have e.g. 0 = k1 − r1 − 1 and k2 − r2− 1 ≥ 1 (the same reasoning holds

if k2 − r2 − 1 = 0 and k1 − r1 − 1 ≥ 1), ‖zSc
1
‖2Σk1

= ‖zSc
1
‖21/k1 and ‖zSc

2
‖2Σk2

= ‖β2‖22 + γ2/(r + 1) .
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This gives

‖z − PΣ(z)‖2Σ = ‖zSc
1
‖21/k1 + ‖β2‖22 + γ2/(r + 1)

(225)

≤ (‖zS1
‖1/
√

k1 + ‖zS2
‖1/
√

k1 − ‖zSc
2
‖1/
√

k2)
2 + ‖β2‖22 + γ2/(r + 1)

(228)
= (‖zS1

‖1/
√

k1 + ‖zS2
‖1/
√

k1 − (‖β2‖1 + γ)/
√

k2)
2 + ‖β2‖22 + γ2/(r + 1).

We have 0 ≤ ‖zS1
‖1/

√
k1 + ‖zS2

‖1/
√
k1 − (‖β2‖1 + γ)/

√
k2)2 ≤ ‖zS1

‖2 + ‖zS2
‖2 − (‖β2‖1 + γ)/

√
k2)2 and

‖z − PΣ(z)‖2Σ ≤ (‖zS1
‖2 + ‖zS2

‖2 − (‖β2‖1 + γ)/
√

k2)
2 + ‖β2‖22 + γ2/(r + 1). (232)

As this a quadratic function of γ ≥ 0 with positive leading coefficient it is maximized, at either bound of the
range of γ, i.e γ = 0 or γ → (r2 + 1)minl∈supp(β2) |β2(l)| =: (r2 + 1)β̃2.

For the case, γ → (r2 + 1)β̃2,

‖z − PΣ(z)‖2Σ ≤ (‖zS1
‖2 + ‖zS2

‖2 − (‖β2‖1 + (r2 + 1)β̃2)/
√

k2)
2 + ‖β2‖22 + (r2 + 1)β̃2

2 . (233)

Let us call f(β2) the numerator. For fixed β̃2, ‖β2‖∞, consider β∗
2 the maximizer of f under the constraint

β̃2 ≤ |β2(l)| ≤ ‖β2‖∞. We remark that given l ∈ supp(β2) , we have that f(β2) where we fixed β2(l′) = β∗
2 (l

′)
for l′ ∈ supp(β2) \ {l} is a quadratic function of |β2(l)| with positive leading coefficient. Under the constraint
β̃2 ≤ |β2(l)| ≤ ‖β2‖∞, it is maximized at either of the two bounds on |β2(l)|, we deduce that β∗

2 (l) = β̃2 or
β∗
2 (l) = ‖β2‖∞.

This implies that there is (an integer – but we relax this constraint ) 0 ≤ s ≤ ‖β2‖0 = k2 − r2 − 1 such that

‖z − PΣ(z)‖2Σ ≤ (‖zS1
‖2 + ‖zS2

‖2 − (s‖β2‖∞ + (k2 − r2 − 1− s)β̃2 + (r2 + 1)β̃2)/
√

k2)
2

+ s‖β2‖2∞ + (k2 − r2 − 1− s)β̃2
2 + (r2 + 1)β̃2

2 . (234)

Again the right side is a quadratic function of β̃2 under the constraint 0 < β̃2 ≤ ‖β‖∞, and bounded at either
β̃2 → 0 or β̃2 = ‖β2‖∞:

‖z − PΣ(z)‖2Σ
≤ max

(

(‖zS1
‖2 + ‖zS2

‖2 − s‖β2‖∞/
√

k2)
2 + s‖β2‖2∞, (‖zS1

‖2 + ‖zS2
‖2 −

√

k2‖β2‖∞))2 + k2‖β2‖2∞
)

≤ max
0≤s′≤k2

(

(‖zS1
‖2 + ‖zS2

‖2 − s′‖β2‖∞/
√

k2)
2 + s′‖β2‖2∞

)

. (235)

For each 0 ≤ s′ ≤ k2 the denominator in the last line is a quadratic function of of ‖β2‖∞ with 0 < ‖β2‖∞ ≤
minl∈S2

|z(l)| (from Lemma 36) hence

‖z − PΣ(z)‖2Σ

≤ max
0≤s′≤k2

max

(

(‖zS1
‖2 + ‖zS2

‖2)2, (‖zS1
‖2 + ‖zS2

‖2 − s′ min
l∈S2

|z(l)|]/
√

k2)
2 + s′[min

l∈S2

|z(l)|]2
)

(236)

= max
0≤s′≤k2

(

(‖zS1
‖2 + ‖zS2

‖2 − s′ min
l∈S2

|z(l)|]/
√

k2)
2 + s′[min

l∈S2

|z(l)|]2
)

. (237)

Similarly, for γ = 0

‖z − PΣ(z)‖2Σ ≤ (‖zS1
‖2 + ‖zS2

‖2 − ‖β2‖1/
√

k2)
2 + ‖β2‖22 (238)

which implies using the same argument used to obtain (237)

‖z − PΣ(z)‖2Σ ≤ max
0≤s′≤k2

(‖zS1
‖2 + ‖zS2

‖2 − s′ min
l∈S

|z(l)|]/
√

k2)
2 + s′[min

l∈S
|z(l)|]2. (239)

Still using the same argument about quadratic functions the right side of the maximum is bounded by either
of the cases s′ = 0 or s′ = k2. For s′ = 0
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‖z − PΣ(z)‖2Σ ≤ (‖zS1
‖2 + ‖zS2

‖2)2 ≤ 2(‖zS1
‖22 + ‖zS2

‖22) = 2‖PΣ(z)‖22.

For s′ = k2

‖z − PΣ(z)‖2Σ
‖PΣ(z)‖22

≤ V :=
(‖zS1

‖2 + ‖zS2
‖2 −

√
k2 minl∈S |z(l)|])2 + k2[minl∈S |z(l)|]2
∑2

i=1 ‖zSi
‖22

.

Denote c = 1 −
√
k2

[minl∈S |z(l)|]
‖zS2

‖2 ∈ [0, 1) and consider r > 0, θ ∈ [0, π/2] such that ‖zS1
‖2 = r cos θ,

‖zS2
‖2 = r sin θ

V =
(r cos θ + cr sin θ)2 + (1− c)2r2 sin2 θ

r2 cos2 θ + r2 sin2 θ

=
cos2 θ + c2 sin2 θ + (1 − c)2 sin2 θ + 2c sin θ cos θ

cos2 θ + sin2 θ

= 1 + (2c2 − 2c) sin2 θ + 2c sin θ cos θ.

This is a quadratic function of c with positive leading coefficient hence it is maximized at c = 0 or c = 1 . Hence

V ≤ max(1, 1 + 2 sin θ cos θ)

= max(1, 1 + sin(2θ))

≤ 2.

⊓⊔

Proof (Proof of Theorem 9)
We follow the same proof structure (cf Appendix A.6) as for Theorem 7, with analog definitions of P1(z) = z1

and P2(z) = z2 for z = (z1, s2) ∈ H. We also denote T = (S1, S2) = T (z) where S1 denotes a support of the
k largest coordinates in absolute values and S2 = {1, . . . , r} the set indexing the first r (largest) eigenvalues
collected in vector eig(u) (this index set was denoted T in Appendix A.4.2). We modify accordingly the notation
T2 for the 2k (resp. 2r) largest coordinates (resp eigenvalues).

Remark that Lemma 27 is still valid with ‖ · ‖w = w1‖P1(·)‖1 + w2‖P2(·)‖∗.
This permits in turns to obtain the expression (with T ′ = T2 \ T )

BΣ(‖ · ‖w) = sup
z:z 6=0,‖zTc

2
‖w+‖zT ′‖w≤‖zT ‖w

‖zTc
2
‖2H

‖zT2
‖2H

(240)

from the proof of Lemma 32. Now remark that this is exactly the same expression as in the sparsity in levels case
using the vector of ordered eigenvalues for the part in Hp: ‖(u1, u2)‖2H = ‖u1‖22 + ‖eig(u2)‖22 and ‖(u1, u2)‖w =
w1‖u1‖1 + w2‖eig(u2)‖1. This in turns show that (using the same proof as Lemma 32)

BΣ(‖ · ‖w) = max
0≤L1≤n−2k,0≤L2≤p−2r

BL1,L2 (w) (241)

where BL1,L2 (w) is defined in (168). This is the first step of Theorem 7.
The rest of the proof then exactly matches the next steps of the proof of Theorem 7. ⊓⊔
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