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Abstract We consider the problem of recovering elements of a low-dimensional model from
under-determined linear measurements. To perform recovery, we consider the minimization of a
convex regularizer subject to a data fit constraint. Given a model, we ask ourselves what is the
“best” convex regularizer to perform its recovery. To answer this question, we define an optimal
regularizer as a function that maximizes a compliance measure with respect to the model. We
introduce and study several notions of compliance. We give analytical expressions for compliance
measures based on the best-known recovery guarantees with the restricted isometry property.
These expressions permit to show the optimality of the ¢!-norm for sparse recovery and of the
nuclear norm for low-rank matrix recovery for these compliance measures. We also investigate
the construction of an optimal convex regularizer using the example of sparsity in levels.

Keywords inverse problems - convex regularization - low dimensional modeling - sparse
recovery - low rank matrix recovery
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1 Introduction

In a finite-dimensional Hilbert space H (with associated inner product (-,-), and norm || - ||3),
we consider the observation model:

y = Muzg (1)

where y is an m-dimensional vector of measurements, M is an under-determined linear operator
(from H = C", or R", to C™), and x¢ € H is the unknown vector we want to recover. The problem
of recovering z¢ from y is typically ill-posed. It is thus necessary to use prior information on zg
to recover it with a guarantee of success.
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In this work, we suppose that zy belongs to a low-dimensional cone X' (a positively homo-
geneous set, i.e., for every x € X and A > 0, Az € X) that models known properties of the
unknown. Examples of such models include sparse as well as low-rank models and many of their
generalizations. Note that in these examples the models belong to the slightly less general class
of models that are (finite or infinite) unions of subspaces (homogeneous sets).

To recover xp, a classical method is to solve the minimization problem

= arg]\r}iiily R(x) (2)

where R is a function — the regularizer — that ensures the existence of the minimum.

Many works [18,12,30,11] give practical regularizers ensuring that a* = x for several low-
dimensional models (in particular sparse and low-rank models, see [22] for a most complete
review of these results). A practical regularizer is a function that permits the effective calculation
of z*. Without computational constraint, the best possible regularizer would be R = ¢x: the
characteristic function of X' defined by vx(z) =0if z € ¥, 1x(x) = +00 otherwise (see Section 2
for a review of this fact). Unfortunately, this function is generally not convex (unless X itself is a
convex set) and can lead to an intractable optimization problem in general, even though recent
works show that using R = ¢y and a dedicated minimization technique is a possible route for
certain particular low-dimensional models that can be smoothly embedded in R™ [16,34,35].

In this work, we focus on continuous convex regularizers that guarantee the existence of a
minimizer 2* and the existence of practical optimization algorithms to perform minimization (2)
such as the primal-dual method [13] (provided their proximity operators can be calculated). Note
that convexity in itself is not sufficient to guarantee the practical feasibility of minimization (2)
(R(x) could be N P-hard to calculate, e.g., the nuclear norm for tensors [23], and/or the proximal
operator of R could be N P-hard to compute).

Under conditions on the measurement operator M that typically involve the number of mea-
surements and its structure (e.g., random for compressed sensing), the fact that xy € X permits
to give recovery guarantees when the convex regularizer R is well chosen. For example, when
X = X is the set of k-sparse vectors in R” and R(-) = || - |1 (¢*-norm), or when X = X, is the
set of matrices of rank lower than r in RP*P and R(-) = || ||« (nuclear norm), zo can be recovered
as long as the number of measurements is of the order of the dimension of the model (up to some
log factors) : m > O(klog(n/k)) for sparse recovery or m > O(rp) for low rank recovery.

Our approach to provide these results is to exhibit a regularizer R for a given model set
XY and to give the best possible recovery guarantees for the pair (R,X). Recent works aim
at giving guidelines to obtain guarantees as tight as possible for general sparse models and
convex regularizers [14,2,41,36,3,26]. With such frameworks, it becomes possible to compare
the performance of different regularizers. This leads naturally to the following question which we
address in this work: what is the “best” convex regularizer to recover a given low-dimensional
model X7

To tackle this problem, it is necessary to define the notion of “best” based on recovery guar-
antees. We propose different possibilities and follow one route that permits us to give optimality
results in the sparse and low-rank cases and show the difficulties that arise when considering
more complex generalized sparsity models. This work can be viewed as a way to give meaning
to the expression “convexification” of a low-dimensional model, that is often used and rarely
defined.
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1.1 Related works

Low-complexity models induced by convex reqularization. Many regularizers encountered in signal
processing and machine learning are known to induce a specific type of model. Without aiming
for exhaustivity, the use of the ¢! norm [15] induces a sparse pattern in the solution, while
group regularization with mixed ¢! — ¢ norms restricts this sparse pattern to satisfy a specific
block structure [42]. More advanced model sets, such as low-rank matrices are linked to the use
of the nuclear norm [20]. For a wide class of regularizers, including decomposable norms [10],
decomposable M-estimator [27], atomic norms [14] and partly smooth functions [39,40], the
connection between nonsmooth convexity and model space can be made explicit. Note that all
these works take the following stance: given a convex regularizer R, what is the model set X
induced by minimizing R(x)?

Convezification of combinatorial functions. Given a real function f, it is known that its bicon-
jugate f** is a convex and closed function, whatever the initial properties of f. For instance, if
f is the constant function equal to 1 except in 0 — that is the counting function #° in dimension
1 — restricted to [—1,1], i.e.,

1 if x € [-1,1] \ {0},
f(z)=<0 if x =0,
+o00  otherwise,

then its biconjugate is the absolute value | - | restricted to [—1,1]. Unfortunately, this construc-
tion is harder to generalize on an unbounded domain or in higher dimension. For instance, the
biconjugate of the ¢° counting function not restricted to a bounded set is the constant 0. Of
interest, we can mention convex closures of submodular functions (functions of {0,1}") that
can be calculated explicitly using the Lovdsz extension [5] and convex closure of almost convex
functions [24].

Convezification of objective function Many works intent to find a convex proxy to a non-convex
objective function. In [7], adding a Lagrangian term to the regularization of a constrained non-
convex minimization permits to build an equivalent minimization problem that is convex locally.
Another possibility is to try to perform a regularization by infimal regularization [8] for lower
semicontinuous objective functionals. In [28], in a function space setting, Pock et al. propose
a high dimensional lifting of the Lagrangian formulation of (2) where the data-fit functional is
non-convex. In the context of non-convex polynomial optimization, Lasserre’s hierarchies [25]
are used to recast the original problem in a hierarchy of convex semi-definite positive problems
which provide global convergence results. The drawback of this method is the computational cost
that makes it impractical for high-dimensional problems. Finally, convex closure of submodular
functions also permits to cast sparsity inducing objective functions (where the regularizer is a
submodular function of the support) into convex problems [5]. Note that if one aims to find a
non-convex, but continuous, regularization, several works of interest may be cited, such as the
use of P minimization [21], SCAD [19], or CELO [32]. Nevertheless, in this paper, we focus on
convex functions.
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1.2 Contributions

In this paper, we define notions of compliance measures between a low-dimensional model and a
regularizer in finite dimension. The compliance of a function R for a model X is a function

R+ As(R) (3)

that quantifies the recovery capabilities of X with R and minimization (2).

An optimal regularizer for a model X is defined as a regularizer that maximizes the compliance
measure. In this article, we focus on the maximization of compliance measures on the set C of
coercive continuous convex regularizers over H.

— We introduce compliance measures in Section 2 using tight recovery guarantees: a good
regularizer is a regularizer that permits the recovery of X' as often as possible. We discuss the
elementary properties of these measures and show that optimal coercive continuous convex
regularizers can be found in the smaller class of atomic norms with atoms included in the
model set. While such compliance measures can be optimized in basic toy examples, they
require to be approximated in order to deal with sparse and low-rank models.

— We propose in Section 3 compliance measures exploiting best known uniform recovery guar-
antees based on the restricted isometry property (RIP). We give explicit formulations of such
recovery guarantees and show that, indeed, the /!-norm and the nuclear norm are optimal
for sparse and low-rank recovery (respectively).

— We study the case of a generalized sparsity model in Section 4: sparsity in levels. We
show how an optimal regularizer can be explicitly constructed in a small family of convex
regularizers (¢!-norm weighted by levels). This example shows the difficulty of calculating
optimal regularizers for new low-dimensional models and opens many questions for the study
of optimal regularizers.

1.3 Notations

In H, we denote S(1) := {z € H : ||z||x = 1} the unit sphere with respect to || - ||%. Given a
linear operator M : H — C™, we denote M* its Hermitian adjoint.

For X' C H an arbitrary set, we denote ¢y its charateristic function defined by ¢x(x) = 0 if
x € X, 1x(x) = +oo otherwise. We denote £(X) := R, - tonv(X), where conv(X) is the closure
of the convex hull of X. We define R := R U {+00}. Given a function f : % — R, we denote by
dom(f) its domain, i.e., the set dom(f) := {x € H : f(z) < +o0}.

2 Optimal regularizer for a low dimensional model

In this section, starting from the characterization of exact recovery of a model X', we introduce
the notion of compliance measure and associated optimal convex regularizer.

2.1 Characterization of exact recovery using descent cones

Before defining an optimal regularizer, we must characterize when X' can be recovered by solv-
ing (2). The fact that a given zg € X' is recovered by solving (2) with regularizer R (i.e., that
the solution z* of (2) is unique and satisfies * = x¢ when y := Mxy) is equivalent to the fact
that R(x + z) > R(x) for every z € ker(M) \ {0} (see e.g., [14]). To summarize this, we use the
following definition of symmetrized descent cones.
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Definition 1 ((Symmetrized) descent cones) Consider a regularizer R : H — R. For any
x € dom(R), the descent cone of R at z is

Ta(e) = (12 17 € Rz € Ho R(x + 2) < R(x)} (1)
For any set X' C dom(R), we define Tr(X) := U,cx Tr(%).

Other definitions of descent cones (e.g., non-symmetric like in [14]) could be used. The sym-
metrization facilitates technical derivations in the following and permits to characterize recovery
as well. For ease of reading, in the following, symmetrized descent cones will be referred to as
descent cones.

Recovery guarantees with a regularizer R for a linear operator M generally come in two flavors
(recall that «* is the result of minimization (2)):

— Non-uniform recovery: If 2y € X, then z* = z¢ is equivalent to Tr(zo) Nker M = {0}.
— Uniform recovery: “For all zp € X, * = x¢” is equivalent to

Tr(2) Nker M = {0}. (5)

In the literature, recovery guarantees are obtained when the measurement operator M fulfills
sufficient conditions that imply these characterizations. Distinguishing these two types of recovery
guarantees especially makes sense in the context of compressed sensing when M is chosen at
random. Typical results are then of the form:

— Non-uniform recovery: Given xg € X, with high probability on the draw of M, x* = x¢.
— Uniform recovery: With high probability on the draw of M, x* = z( for all zg € X.

The main techniques to obtain recovery guarantees using a condition on the number of measure-
ments differ largely between these two cases (see Section 3). In this work, we mostly focus on
uniform recovery guarantees to stay in a fully deterministic setting. For such uniform recovery
guarantees, we see that the only interactions that matter between the model set Y, the regularizer
R, and the measurement operator M are summarized by equation (5).

2.2 Compliance measures and optimal regularization

To define a notion of optimal regularizer, we simply propose to say that an optimal regularizer is a
function that optimizes a (hopefully well-chosen) criterion. We call such a criterion, a compliance
measure and specifically aim at defining it such that it should be maximized. The objective is
to define a compliance measure that quantifies the recovery capabilities of a given regularizer R
given a model set X.

Starting from the characterization of exact recovery, we see that the kernel of M heavily
influences the recovery capability of R. If we had some knowledge that M € M where M is a
set of linear operators, we would want to define a compliance measure Ax a¢(R) that tells us
how good is a regularizer in these situations and to maximize it. Such maximization might yield
a function R* that depends on M (e.g., in [32], when looking for tight continuous relaxation of
the (0 penalty a dependency on M appears).

In the following, we propose a more universal notion of optimal convex regularizer that does
not depend on a particular class of linear operators M: we propose compliance measures Ax(R)
that depend only on the set Y and on the regularizer R, and consider their maximization on
some set of convex functions C (that are coercive and continuous, see Section 2.4):

sup Ax(R). (6)
ReC
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Fig. 1 A representation of recovery guarantees based on descent cones of a convex functions. Recovery of x € X
fails if ker(M) intersects Tr(x) non trivially. The bigger is the descent cone (red) the more likely recovery will
fail. The bigger the space left by the descent cone (blue), the more likely recovery will succeed

Of course, the existence of a maximizer of Ax(R) is in itself a general question of interest: we
could ask ourselves what conditions on Ax(R) and C are necessary and sufficient for the existence
of a maximizer, which is out of the scope of this article. In the sparse recovery and low-rank
matrix recovery examples studied in this article, the existence of a maximizer of the considered
compliance measures will be verified.

To build a compliance measure that does not depend on M, we define the optimal regularizer
as the regularizer which guarantees recovery of X' in as many situations as possible, i.e., for “as
many linear operators M as possible”. Intuitively, a regularizer R is “good” if the set Tr(X)
“leaves a lot of space” for ker M to not intersect it (trivially), see Figure 1). Among non-convex
regularizers, the optimal one is the characteristic function of the model set Y.

Lemma 1 Consider an arbitrary non-empty set X C H and denote vx its characteristic func-
tion. The corresponding descent cone is

To(X)={y2:7€R,2eX-X}D¥—-%

where X — X is the so-called secant set of X. For any regularizer R such that X C dom(R) we
have T,,.(X) C Tr(X). Finally, if X is positively homogeneous then T,,.(X) = X — X.

Proof See Appendix A.2

This Lemma shows that ¢y is at least as successful as any regularizer R for the exact recov-
ery of X (without any consideration of compliance measure). Moreover, 7,,.(X) is the smallest
possible descent cone with respect to inclusion. Hence tx can be considered as the ideal reg-
ularizer [9] and indeed the optimal one with respect to any compliance measure defined as
Ax(R) = f(Tr(X)) where f is some function on subsets of H that is monotonic with respect
to set inclusion. This is why the search for optimal regularizers only makes sense under some
constraint on R.

2.3 A first compliance measure

As a first concrete example, we define here a theoretical compliance measure that reflects the
idea that smaller descent cones are better. However, this compliance measure does not lead
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to analytical expressions for the general study of sparse recovery. Our core results in the next
sections rely on compliance measures based on recovery guarantees using the restricted isometry
property (RIP).

Observe that exact recovery only depends on the orientation of the kernel of M, the natural
uniform measure of orientation is the uniform measure on the unit sphere S(1). In our setting,
using this measure is a way of considering that we do not have prior information on the orientation
of the kernel of M.

Using this measure, given a convex function R, the “amount of space left for the kernel of
M?” can be quantified by the “volume” of Tr(X)NS(1). Hence a compliance measure for uniform
recovery can be defined as

vol (Tr(X) N S(1))
vol(S(1)) ' @

More precisely, here, the volume vol(E) of a set E is the measure of E with respect to the uniform
measure on the sphere S(1) (i.e., the n — 1-dimensional Hausdorff measure of Tr(X) N S(1)).
This measure is well defined as the descent cones of convex functions are symmetrized convex
cones.

AY(R) :==1—

When looking at non-uniform recovery for random Gaussian measurements, the quantity
defined by % represents the probability that a randomly oriented kernel of dimension
1 with uniform probability on the sphere S(1) intersects (non trivially) Tg(xo). The highest
probability of intersection with respect to xg quantifies the lack of compliance of R, hence we
could define: | (Ta(2) (1 S(1))

NU L VO R\T
AsT(R) =1 —swp =205y ®

Note that this can be linked with the Gaussian width and statistical dimension theory of sparse
recovery [14,2].

These compliance measures are completely dependent on the metric defining S(1) (here the
Hilbert norm || - ||%), other choices could be considered especially if measurement operators M
showing a particular structure were considered.

In this article, we concentrate on compliance measures based on uniform recovery guarantees.

Remark 1 These compliance measures implicitly force X' C dom(R), unless Ax(R) = 0. Indeed,
suppose there exists € X such that R(x) = 400, then for all z € H, we have R(x + z) < 400 =
R(x). This implies Tr(z) = H and AY.(R) = AYY(R) = 0.

Remark 2 When studying convex regularization for low dimensional recovery in infinite dimen-
sional separated Hilbert spaces, the noiseless recovery only depends on the behavior of the regu-
larizer R on £(X) (defined in Section 1.3). The behavior of R outside of £(X) is only studied to
obtain properties of robustness to modeling error [36]. In many examples of generalized sparsity
and low-dimensional modeling in infinite dimension, the space £(X) has a finite dimension [1].
Our framework still applies in this case.

It is an open question to generalize our framework for low-dimensional recovery in more
general settings such as Banach spaces (e.g., for off-the-grid super-resolution).

2.4 Coercive continuous convex functions

As mentioned before we look for practical regularizers. We define C the set of all functions
R:H — R (i.e., with dom(R) = H) that are convex, continuous, and coercive.
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The coercivity condition is typical in the context of convex regularization in order to avoid
constant functions.

With any proper lower semi-continuous regularizer (hence, with any regularizer in C) the
convergence of the primal dual algorithm is guaranteed [13]. This guarantees the existence of
practical algorithms (for the problem min, 3||Mx — y||*> + AR(z) ) when the proximity operator

y — prox, p(y) := argmin%HU*yHg{Jr)\R(u) 9)

can be approximated efficiently.

2.5 Elementary properties and reduction to atomic “norms”

As compliance measures based on uniform recovery guarantees can be written as functions of
descent cones Tr(X), we have the following immediate Lemma.

Lemma 2 Let Ry, Ry be two functions such that Tr,(X) C Tr,(X) then AL(R1) > AY(R2).

In other words, the compliance measure is decreasing with respect to the inclusion of descent
cones. We also verify that multiplying a regularizer by a scalar does not change the compliance
measure which is consistent with recovery guarantees.

Lemma 3 Let A > 0. Then
AT (AR) = AS(R),

10
ARV (AR) = AYY(R). (10)
Proof Let x € 3. We remark that
Tar(x) ={yz: v € R, AR(x + z) < AR(z)}
={yz:v€R;R(z +2) < R(z)} (11)

= Tr().
This shows directly that AYY(AR) = AJXY(R). This also implies that Tar(X) = Tr(¥) and
AY(AR) = AY(R).
a

More generally, any operation on R that leaves Tr(X') invariant does not change the compliance
measure. This is typically the case of the post-composition of R with an increasing function.

We now recall the notion of atomic “norm” and show that optimal regularizers can be found
in a set of atomic norms.

Definition 2 (Atomic norm) The atomic “norm” induced by a set A is defined as:
|zl|a:=inf{t € R, : 2z € t-conv(A)} (12)
where tonv(A) is the closure of the convex hull conv(A) in A. This “norm” is finite only on
E(A) =R, -conv(A) ={z =t -y,t e R,y e conv(A)} C H. (13)
It is extended to H by setting ||z||4 = +oo if z ¢ E(A).

Classical convex regularizer for sparse and low rank models are atomic norms:
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— The ¢!-norm || - ||; is the atomic norm induced by signed canonical basis vectors.
— The nuclear norm || - ||« is the atomic norm induced by unitary rank one matrices.

Atomic norms are convex gauges induced by the convex hull of atoms. Their properties can
be linked with the properties of the set A with classical results on convex gauge functions (see
Appendix A.1).

It is possible to define an atomic norm, denoted || - || 5, specifically induced by the model X.

Definition 3 (Atomic norm induced by the model) Given a cone X, we define

-1z = 1 - llsnsq)- (14)

Known as the k-support norm for sparse model, it is not adapted to perform uniform recovery
(it cannot recover 1-sparse vectors).

In [36, Lemma 2.1], it was shown that there is always an atomic norm with smaller descent
cones than the descent sets of a proper coercive continuous function with convex level sets. We
give a version of this result for our definition of cones and specify the properties of the obtained
atomic norm.

Lemma 4 Let X be a cone such that £(X) = H and R be a coercive continuous convex function.
Then there exists A C X such that:

Tja(X) € Tr(2)- (15)
and || - || 4 is a coercive, continuous, positively homogeneous convex function.
Proof See Appendix A.2.2.

With Lemma 4, for all coercive continuous convex functions R it is possible to find an atomic
norm R’ with atoms included in X such that Tp/ (X) C Tr(X). We define

Cx := {coercive continuous positively homogeneous atomic “norms” || -||4 : AC X}.  (16)

As a consequence of this Lemma, we have the following immediate result.

Theorem 1 Let X be a cone such that E(X) = H. Suppose Ax is a compliance measure that is
a decreasing function of Tr(X) with respect to set inclusion. Then

sup Ax(R) = sup Ax(R). (17)
ReC ReCxs

In particular
sup AY(R) = sup AY(R). (18)
ReC ReCxs

Proof Let R € C, with Lemma 4, there exists || - [[4 € Cx such that 7). ,(X) C Tr(%). This
implies 7., (X) N S(1) C Tr(¥) N S(1) and As(R) < As(][ - |l.a)- O

Theorem 1 shows that we can limit ourselves to atomic norms if our only objective is to maximize
the compliance measure.

With such measures, we can calculate optimal regularizers for elementary linear transforma-
tions of models.
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Lemma 5 Consider a compliance measure defined as: As(R) := f(Tr(X)) with f some scalar
valued function defined on non-empty subsets of H. For any invertible linear map F on H, any
model set X and any regularizer R, we have

Tr(FY) = F(Tror (X)) (19)
Ars(R) = f[F(Tror(X))]- (20)

Proof First vz € Tr(FX) if, and only if, there exists x € X such that R(Fz + z) < R(Fz),
i.e., such that (Ro F)(z + F~'2) < (Ro F)(z). This is in turn equivalent to yF =1z € Tror(X),
i.e., 72 € F(Tror(X)). Second, it follows that Apx(R) = f(Tr(FX)) = f[F(Tror(X))].

A consequence of Lemma 5 is that we can build optimal regularizers from other optimal regu-
larizers when the model set is obtained from another one by applying a linear isometry.

Corollary 1 Consider a compliance measure defined as: As,(R) := f(Tr(X)) with f some scalar
valued function on subsets of H. Assume that f is invariant to a family F of invertible linear
maps on H, i.e., for any F € F and any non-empty set T CH, f(FT)= f(T). Then, for any
F € F, any regularizer R and any model set X, we have

AFZ(ROF_l):AE(R). (21)
Proof By Lemma 5, Aps;(RoF~1) = FIF(Tror—1yor (X)) = f(FTR(Y)) = f(T7 (X)) = As(R).
O

Corollary 2 Consider F an isometry on H, R a reqularizer and X a model set. We have
AV (Ro F7Y) = AY(R). (22)

Proof The volume is invariant to isometries, hence A%L(R) = fU(Tr(Y)) where fY(-) is invariant
to isometries. O

2.6 An exact result in 3D: the most we can do?

Compliance measures AY.(R) and AYY(R) where effectively optimized [38] in the case of 1-
sparse recovery in dimension 3, i.e., for X = X, the set of 1-sparse vectors in R3. In this case,
Cs ={]| - ||a:AC X1} It was shown that for the set C&, = {|| - |4 : A C X1, A = —A} (which
is the set of weighted ¢*-norms) that
arg max AY(R) = arg max AYY(R) = {\|- |1 : A > 0}. (23)
ReCY, ReCY,

To show this, the solid angles of all descent cones of arbitrary weighted ¢'-norms were calcu-
lated exactly and their size minimized with respect to the weights.

Unfortunately, calculating exactly these solid angles in dimension d seems out of reach for
any sparsity and atomic norm in Cx even if some progress in bounds of these quantities [26] in
some particular cases (non-uniform recovery with £!-norm in probability with random matrices).
To the best of our knowledge, no general bound is available for the volume of descent cones of
arbitrary atomic norms in Cy for sparse recovery. To build a compliance measure that we could
optimize, we would need to first to establish such general bounds with some tightness.

In the next section, we propose to build compliance measures based on best-known uniform
recovery guarantees that have some “tightness” properties. This will enable us to manipulate
analytical expressions and give results for sparse recovery and low-rank recovery.
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Fig. 2 Solid angle of a half descent cone of a weighted £'-norm

3 Compliance measures based on the restricted isometry property

The most used tool for the study of uniform recovery is the restricted isometry property (RIP).
This property is adequate for multiple models [36], to be tight in some sense [17] for sparse and
low-rank recovery, to be necessary in some sense [9], and to be well adapted to the study of
random operators [29]. In [36], given a regularizer R, an explicit constant dx(R) is given, such
that (M) < dx(R) guarantees the exact recovery of elements of X' by minimization (2). Hence,
using 05 (R) as a compliance measure, the higher the value of §5(R), the less stringent the RIP
condition on M to ensure recovery of all elements of X' using R as a regularizer.

To formalize further this idea, we start by recalling definitions and results about RIP recovery
guarantees then apply our methodology. We also give results that emphasize the relevant quantity
(depending on the geometry of the regularizer and the model) to optimize.

Definition 4 (RIP constant) Consider an arbitrary non-empty set X' C H and M a linear
map from H to C™. The RIP constant of M is defined as

ox(M) = sup

FISPIED)

(24)

[Mz]5 ‘
[EdiER ’

where X' — X' (differences of elements of X) is called the secant set. For brevity we will simply
denote 6(M) when the model set X' is clear from context.

This coincides with the usual notion of RIP for sparse recovery when X' = Y, is the set of vectors
with at most k nonzero entries (and X — X = Yy;); and with the RIP for low-rank recovery
when X' = X, is the set of matrices of rank at most r (then, X' — X' = X5,).

A natural and sharp RIP-based compliance measure is A% 7" P(R) = 652 P(R) defined as:

ST P(R) = inf S5 (M). 2
» (B) Miker MOTR()£{0} (M) (25)

This is the smallest RIP constant of measurement operators where uniform recovery fails [17],
hence the following immediate theorem.

Theorem 2 Consider an arbitrary non-empty set X C H. Suppose M has RIP with constant
65 (M) < 03*P(R), then for all o € X and x* the result of minimization (2) satisfies

¥ = Zo- (26)

Conversely, there exists M with 85 (M) > 652 *(R) and zo € X such that * # .
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Despite this sharp property with respect to recovery, 65" (R) is not endowed with any known

analytic expression more explicit than its definition, and it is an open question to derive closed-
form formulations of this constant for a general R, even for the particular case of sparse or
low-rank models. This limits the possibility to conduct an exact optimization with respect to
R, and motivates the investigation of more explicit RIP-based compliance measures, with two
flavors:

— Compliance measures §5°(R) based on necessary RIP conditions [17] which yield sharp re-
covery constants for particular set of operators M, e.g.,

05°(R) = inf 0x(I —1I1,). 27
BR) = inf oo(I-IL) (27)

where II, is the orthogonal projection onto the one-dimensional subspace span(z) (other
intermediate necessary RIP constants can be defined). Such measures upper bound 6;‘arp(R)
(055°(R) characterizes RIP recovery guarantees of measurement operators having the shape
I1-1I,).

— Compliance measures §5%f(R) based on sufficient RIP constants for recovery (e.g., the explicit
sufficient RIP constant dx(R) from [36], which is explained in Section 3.3), which are lower
bounds to 0% "P(R).

Note that we have the relation
O (R) < 09*P(R) < 0%°(R). (28)

The next sections aim at showing that the !-norm (resp. the nuclear norm) maximizes the
(best known) upper and lower bounds of 0% (R) for k-sparse model (resp. low rank models).

First, in Section 3.1, we recall that when X' is a non-trivial cone, the compliance measures
associated to RIP constants can be cast to equivalent compliance measures associated to a
restricted conditioning (RC), which can be written more explicitly.

Second, in Section 3.2, we use the expression of the RC-based compliance measure associated
to 05%¢(+) (from Equation (27)) to show that the ¢! norm (resp. the trace-norm) optimizes §3$°(-)
for k-sparse vectors (resp. for matrices of rank at most ), with §3°(R*) ~ 1/v/2 when n is large
enough.

Finally, in Section 3.3, we give a characterization of §5%*f(R) and show the optimality of the

¢*-norm (resp. the nuclear norm) with §%f(R*) = 1/v/2.

3.1 Restricted conditioning as a compliance measure

When working with a model set X that is a cone, instead of working with actual RIP constants,
it is easier to use (equivalently) the restricted conditioning.

Definition 5 (Restricted conditioning) Consider a cone ¥ C H and a linear operator M
from R™ to C™, and define

_ SWPse(x-5)ns(1) | M]3 1, 5]

. 29)
inf,ex—s)ns) M]3 (

¥z (

where by convention here a/0 = +oo for any a > 0. For brevity we will simply denote (M)
when X' is clear from context.
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As shown below, the RIP constant dx (M) is a monotonically increasing function of 5 (M). The
advantage of the latter is that it is invariant by rescaling M (rescaling leaves unchanged the
recovery properties when measuring xg with M).

Lemma 6 Consider a cone ¥ C H. For any M such that v (M) < oo, there is a unique A > 0
such that

_ 1+0s(AM)
z(M) = T= o5 (\M) (30)
or equivalently
_ (M) -1
dx(AM) = gy (31)

Proof See Appendix A.3.

Thus, for cones, RIP-based compliance measures have equivalent RC-based compliance measures
such that
1+02(R) Te(R) -1
= —— = d 0x(R) = .
1—os(R) =B = m 1

The sharp RIP constant (25), the necessary RIP constant (27) and the sufficient RIP constant
d5¥E(R) of [36] are associated to

75(R) (32)

14+ 05%7P(R)

WIR) = E 1) = =t (33)
R = e — 1) = P 3
R = g . (35)
We deduce from (28) the inequalities
YR (R) <ARF(R) < A3C(R). (36)

The following result shows that 75 ="P(R) can be simplified.

Proposition 1 Consider a cone X C H. Let P be the set of symmetric positive semi-definite
(PSD) linear operators on H: N € P if and only if N = N and N = 0. For z € H\ {0} define

RC .
= f N 37
= (Z) NGP:kerHJ%/:span(z) ’YZ( ) ( )

and for any non-empty set T C H such that T # {0} define

RC — RC
BOT) = _ind | TECC). (38)

We have
5(M) = f39(T). (39)

inf y
M :ker MNT #{0}

Proof This is an immediate consequence of Lemma 12 in Appendix A.3. a
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Using 7 = Tx(R), the sharp RC (or RIP) constant is the smallest RC constant of positive
symmetric definite PSD operators with kernels of dimension 1 for which recovery of X' fails:

VEP(R) = [EC(TR()). (40)
Since [ —II, € P for any nonzero z, we have fgc(z) < vx(I—11,) hence we recover the inequality

sharp py < inf I—1I,) = v$°(R),
Ts ( )_ZeTR(E)\{O}’YE( ) =75°(R)

however it is an open question to determine whether this is an equality in particular cases or in

nec

general. The constant ~35¢ is already sharp in the following sense: for sparse recovery with the
¢ -norms, as well as for low-rank recovery with the nuclear norm, it is the biggest possible RIP
constant (05¥*(R) = %) that guarantees uniform recovery with || - ||1 (respectively with the

nuclear norm) for all sparsities k (for all rank levels r respectively) [17].
Similarly, to the compliance measures from Section 2, we can deduce an optimal regularizer
after an isometric linear transformation of the model.

Lemma 7 Consider a cone ¥ C H, an arbitrary regularizer R such that X C dom(R), and a
(linear) isometry F. We have

Vs P (Ro F7Y) = /3" R(R). (41)
Hence, for any class C' of reqularizers,

R* € sharp Y o R*o Fl e sharp pry. 42
argmax~yy" (R) o arg max vy (R') (42)

Proof See Appendix A.3.

3.2 Compliance measures based on necessary RC conditions

In this section, we characterize the compliance measure

V3 (R) = =(I — II). (43)

inf
z€Tr(X)\{0} g

To show optimality of the ¢!-norm for sparse recovery and of the nuclear norm for low-rank

nec

recovery, we will use the following characterization of 43°(R) when X is a cone.

Lemma 8 Consider a cone X C H such that X # {0} and R an arbitrary regularizer such that
¥ C dom(R).

1. If there is © € H such that X C span(z), then

nec +00 ZfTR(E) C Za
V5 (R) = : (44)
1 otherwise.
2. If ¥ C span(x) for every x € H, then
nec 1
V5 (R) = (45)

- . z,2)2
1- 1nfzeTR(E)\{O} SUPge(2—x)nS(1) W

Proof See Appendix A 4.
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To go further, we exploit two assumptions related to orthogonal projections on certain sets.

Definition 6 (Orthogonal projection) For any set E we define, for all z € H
Pg(z) = argmin ||z — yl|%. (46)
yek
This is a set-valued operator, and Pg(z) may be empty if the minimum is not achieved.

Some assumptions on E ensure that Pg(z) is not empty for any z.

Lemma 9 Consider a union of subspaces E C H, and assume that E N S(1) is compact. Then
for every z € H, Pg(z) # 0. Moreover, for every z,z' € Pg(z) we have ||z—z||3, = ||z —2'||3, and

(5,) = all% = I2'], = (="}, hence the notations |2 — Pe(2)|E, (= Po(2) and |Pe ()|,
are unambiguous. We also have |z||3, = ||z — Pg(2)|13, + | Pe(2)|% and
(2. Pe(2)) = |Pe(2)7 = sup [(o2).
z€ENS(1)

Proof See Appendix A.4.

Even if E is a union of subspaces and F N S(1) is compact, Pg(z) may not always be a
singleton. For example, consider E the set of k-sparse vectors and z the vector with all entries
equal to one.

Thanks to Lemma 9, we have the following characterization of the maximizers of §35°.

Corollary 3 Consider a cone X C H and assume that X — X is a union of subspaces, (X —
X)NS(1) is compact, and X # span(x) for each x € X. For any class C' of regularizers such
that X C dom(R) for every R € C', the set of mazimizers of 655°(-) satisfies (whether or not this
set of maximizers is empty)

|z — Ps_s(2)|3

argmax 05 °(R) = arg min Bx(R) with Bx(R) := sup (47)
Rec = Rec ceTrzn{o} IPs—5(2)[3
For any optimal regularizer R* we have
§°(R*) = (1+2Bx(R*))™". (48)

Proof See Appendix A 4.

We now have the tools to study optimality for sparse and low rank models.

Optimal regularization for sparse recovery and for low-rank recovery

Consider now X = X} the set of k-sparse vectors in H = R"™ (associated with the canonical
scalar product (-,-) and the f>norm || - [|% = || - |l2), where 1 < k < n/2, n > 3. We have
Y — X = Xy (for n < 2k, in particular for n < 2 and any k > 1, uniform recovery is not possible
for non-invertible M: as ¥ — ¥ = R", by Lemma 1 we have Tr(X) = R"™ for any regularizer, thus
Tr(X)Nker M = {0} implies ker M = {0}). It is well-known that X' and X' — X are both unions of
subspaces (hence X is a cone), and it is straightforward that (X — X)NS(1) is compact and X' is
not reduced to a single line. Moreover, for any nonzero z € R"™, Px_x(z) contains the restriction
21, of z to any set Ty = Ta(z) C {1,...,n} of size 2k such that min;er, [2;| > max;erg [2;].
Hence, we can invoke Corollary 3 to replace the maximization of §53°(R) by the minimization of

2
zZTe
BalH) = 5L

2, (49)
2€Tr(2)\{0} [EZAIE:
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Similarly, We consider X' = Y, the set of matrices of rank at most r in the Hilbert space H of
n X n symmetric matrices (we study the symmetric case for simplicity, but conjecture that our
result can be extended to the non-symmetric case) with || || = || - || (the Frobenius norm). We
have again X' — X' = Y5, and all conditions are satisfied such that Corollary 3 can be invoked.
Denoting A = eig(z) the vector of eigenvalues of matrix z € H sorted by decreasing absolute
value, so that z = UT AU for some unitary matrix U, and defining z7 := z = UT ApU for every
index set 7', we have Py_x(z) = 27, and z — Px_x(2) = 21 where Ty = T»(z) C [1,n] is any
index set containing 2k largest eigenvalues (in magnitude) of z, i.e., such that miner, |4;] >
maxjere |A;|. With these observations and notations, we are again left to optimize (49).

Specializing to the class C of convex, coercive, continuous regularizers, we obtain the following
theorems.

Theorem 3 With k-sparse vectors, X = X CH =R", k< &, and R*(-) = || - ||1, we have

L/k
S°(R*) =sup 65°(R) = (2B, +1)™"  with  Bj, := /

: — . (50
REC 1<L2n—ok (L/k+1)24+1 (50)

Moreover, for k =1, the unique functions R € Cx, mazimizing 0%°¢ are of the form R(-) = A|| - |1
with A > 0.

Theorem 4 With the set of rank-r matrices, X = X, in the space H of symmetric n X n

matrices, r < %, and with R*(-) = || - [|« (the nuclear norm), we have

L
P (RY) = sup O2°(R) = (2BX, + 1) with B, = /r

———. (51
ReC ' ' 1<Lncar (L/r+1)24+1 (51)

The proof of the two theorems exploits technical lemmas detailed in Appendix A.4.1 and Ap-
pendix A.4.2.

Proof We give the proof for the case of sparse recovery. To express it for low-rank recovery simply
replace the notation k by r. For 1 < s < n and any regularizer R we define

[EZA[E:

BL(R) == (52)

.
2eTr(D\{0},2e 2, 121213

For s < 2k and any z € X5 we have ¢ = 0 hence B3.(R) = 0, thus Bx(R) = maxi<r<n—2 B22k+L(R).
First consider R € Cx. Since R is positively homogeneous and subadditive, by Lemma 15 for X}
/ Lemma 19 for X,

=t~

Bék+L (R) >

— foreach 1 < L <n — 2k.
(oo

For R* and 1 < L < n — 2k we also have (Lemma 17 / Lemma 20, inspired by [17]) that

L
BE(R*): max %
1<L<n—2k (%—i—l) +1

As a result,
L
Bx(R) > By(R*) = T
=(R) = Bs(R") 1521385(—% (% + 1)2 +1 o
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Finally, remark that By (R) is an increasing function of 7r(X). Using Lemma 4, for any
R € C there is R’ € Cx; such that

Bs(R) > Bs(R') > By ..

For k = 1, unicity comes from the fact that on a given orthant for R € Cx, R is a weighted
0 norm: R((x1,...,2n)) = Y, w;|z;| and the equality case in Lemma 15 forces w; = max; w;.
O

Because of the uniqueness result for k& = 1, the ¢/!-norm is the unique convex regularizer in
NCy, that jointly maximizes 035° for all k < (the proof of Theorem 3 is valid for Cy,,, with
k <k < %). It is an open question to determine if we have unicity model by model. As the
result might change for tighter compliance measures, we leave this question for future work.

In the next section, we will see that the optimization of the sufficient RIP constant leads to
very similar expressions.

3.3 Compliance measures based on sufficient RC conditions

When X' is a union of subspaces and R is an arbitrary regularizer, an “explicit” RIP constant
05¥f(R) is sufficient to guarantee reconstruction [36]. The expression of this constant [36][Eq.
(5)] is recalled in the Appendix (Equation (111)) and can be used as a compliance measure. It
gives rise to the following lemma, which is proved in Appendix A.5.

Lemma 10 Assume that X = UyeyV is a union of subspaces and that X N S(1) is compact.
Consider R any regularizer such that X C dom(R). We have

1
SR (R) > = BH2(R),

- llz—Ps ()%
sup “heoee t1
\/ZGTR(E)\{O} 1P (2)113

(53)

Further assume that Px(z) C argmingey |z — z||x for every z € H and that, for every V €V
and every u € X, Py (u) € X. Then, there is equality in (53).

Proof See Appendix A.5. Note that the assumption Px(z) C argminges || — z||x could be
replaced by the slightly weaker Px(z) Nargmingex ||z — 2| =/||z||2 # 0. O

We get an immediate corollary of the first claim in the above lemma.

Corollary 4 Assume that X = UyeyV is a union of subspaces and that X N S(1) is compact.
For any class C' of regularizers such that X C dom(R) for every R € C’, the set of mazximizers of
05¥22(.) satisfies (whether or mot this set of mazimizers is empty)

|z = Ps_s(2)%

arg max 05 *2(R) = arg min Dx(R) with Dx(R) := sup
Rec’ ReEC! ceTn(Engoy  Pe—s(2)ll5
(54)
For any optimal regularizer R* we have
SH(RY) = (14 Dg(R*) ™12, (55)

Note the subtle difference in the norm at the numerator in Bs(R) and Dx(R).
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Optimal reqularization for sparse recovery and low-rank recovery

When considering sparse recovery or low-rank recovery, there is indeed equality 65%**(R) =
d5¥%2(R) thanks to the following Lemma.

Lemma 11 The assumptions for the equality case of Lemma 10 hold for X = Xy the set of
k-sparse vectors in H = R"™, as well as for the set X = X, of symmetric matrices of rank at most
r in H the set of symmetric n X n matrices.

Proof See Appendix A.5.

Consider X' := X%, and regularizers in Cyx. Similarly to the necessary case, from Lemma 10,
we have (when X' is a union of subspace and X' N S(1) is closed)

275

Dx(R) = 5 (56)
2€Tr(2)\{0} (EZALIE:
where T denotes the support of k largest coordinates of z.
We obtain similar results as in the necessary RIP constant case.
Theorem 5 With k-sparse vectors, ¥ = 5, CH =R", k < 3, and R*(-) = || - |1, we have
1
SR (R*) = sup 6 (R) = —. (57)

ReC V2

Moreover, for k = 1, the unique functions R € Cx, mazimizing 05%% are of the form R(-) = || -||1
with A > 0.

Theorem 6 With the set of rank-r matrices, X = X, in the space H of symmetric n X n

matrices, r < &, and with R*(-) = || - ||« (the nuclear norm), we have
1
S (RY) = sup 0% (R) = —. (58)

ReC V2

Proof We give the proof for the case of sparse recovery. To express it for low-rank recovery simply
replace the notation k by r. For 1 < s < n and any regularizer R we define

l|27e]l3%

D3(R) := sup 5
el

z€Tr(X)\{0},z€X
For s < k and any z € X; we have zr. = 0 hence D%.(R) = 0, thus Dx(R) = maxi<r<n—k DSFL(R).
First consider R € Cyx. Since R is positively homogeneous and subadditive, by Lemma 24 for
Y% / Lemma 26 for X,

L
D§+L(R) > min(1, E)’ foreach 1 < L <n —k.

For R* and 1 < L <n — k we also have (with Lemma 23 / Lemma 25) that
DYE(RY) = min(1, %).
As a result,
Ds(R) > D5() = min(l ) = 1

Finally, remark that Dx(R) is an increasing function of Tr(X). Using Lemma 4, for any
R € C there is R’ € Cx; such that

Ds(R) > Dx(R') > 1.
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3.4 Discussion

Even without an analytic expression of the sharp RIP constant, it would have been possible to
show that R* optimizes 6szharp if it were simultaneously optimizing its lower and upper bound,
i.e., if we had
sup 05 (R) = 05 (R*) = 05°(R*) = sup 0%°(R). (59)
ReC ReC
Unfortunately this is not the case in the sparse and low rank examples. We observe that for
a fixed k,n we have in both cases

1
- 6suff R* < gnec R* . 60
A (R") < 65°(R") (60)

Because of this fact, we cannot conclude on the optimality of R* for 65>"P. However, indexing
all objects of the problem by n the dimension of H (respectively the dimension of the diagonals):
the set of regularizers C(™, the models Z,(C") and the corresponding R* (™) (independent of k for
k < n/2 as we saw previously). We have (see Remark 3)

1
inf inf su necn R)= — :5sufnf R*v(") . 61
nZBke{l,...,\_n/2j}Recl()n) = () V2 = ) ( ) (61)
We deduce
1
inf inf sup 6TP(R) = —. 62
n23 ke {1, ln/2]} poctn s () V2 (62)
and
inf inf 5P (R () — | sup §"P(R)|| = 0. 63
n>3ke{l,...n/2)} | Zk ) ( ) RECI?M bl r (1) (63)

This shows that the functions R* (") are optimal as a family with respect to a family of models

E,(Cn) and the worst case of their associated compliance measures 5;1(1?(1%).
k

4 Towards the construction of optimal convex regularizers? The example of
sparsity in levels.

In the previous Section, optimality was shown by exhibiting the optimal regularizer (¢/!-norm
and nuclear norm). The only constructive part in these results is given by Theorem 1 that shows
that we can look for optimal regularizers in the set of atomic norms Cy constructed using the
model set Y. Ideally, given a compliance measure, we would like to be able to construct for any
model Y| an optimal regularizer R* € Cy. As such an objective seems out of reach with the tools
we have developed so far, we study on an example (the case of sparsity in levels) the simpler
problem of looking for the optimal regularizer in a smaller set of regularizers. We consider a
set of weighted ¢'-norms and explore the explicit construction of an optimal regularizer for the
compliance measure 65%°.

Sparsity in levels is a possible extension of plain sparsity, which is useful for the precise
modeling of signals such as medical images [1,6]. It is also useful for simultaneous modeling of
sparse signal and sparse noise [33,37].
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Definition 7 (Sparsity in levels) In H = R™ xR"2 x...xR"L | given sparsity levels k1, ..., kr,
we define the “sparsity in levels” model with

2k1,...,kL = {,T: (acl,...,xL) L X GEki} (64)
where Y, is the k;-sparse model in R™.

While the ¢!-norm was shown to be is a candidate to perform regularization for models that
are sparse in levels [1]. It was also shown that it is possible to obtain better sufficient RIP recovery
guarantees when weighting the ¢! norm by v/k; in each level [36]. The following theorem permits
to show that this weighting scheme is close to optimal for the compliance measure 65°° by giving
explicit expressions for the calculation of optimal weights.

Given weights w = (w1, ...,wr) € RY, we define the ¢*-norm weighted by levels.

L
@1,z = Y willzi]s. (65)
i=1

We have the following result.

Theorem 7 Consider two integers ki,ka > 2 and the model set X = Xy, 1, in H =R™ x R™
where we assume that nq > 4k, no > 4ks. Consider a = 2v/3 — 3 and (vi,v3) minimizing

. xi/k;
min  max max 5 (66)
?Qi‘ﬁ’i;‘}] {12} e { | kin/TH1 /v )i [hin /141 /v 1} vi(zi/ki +1)2 +1
where |-] and [-] denote the lower and upper integer part. Then
(wi,wy) € arg max I [l ws)) (67)
if and only if
’LU; kl
— =/ —=1/vf -1). 68
4 JRam-y (63)

Proof See Appendix A.6.

This theorem comes from the fact that (see proof) the quantity defined in (49) satisfies

Lq,L2
BEkl,kz (H ) ||(w1,w2)) = gllaL)Z BEkl,kZ ((wla wQ)) (69)

where Béi’f;z (Il [l ¢wr,wz)) can be computed explicitly (similarly to B+ from (52) for sparsity).

Thanks to the expression from Theorem 7, it becomes tractable to evaluate numerically
optimal weights. We simply perform the minimization over v; € [a,1 — @] over a regular grid (of
10 points in our experiment) and take the minimum. The value of w} /w3 is returned according

to (68). Let wo = (1/v/k1,1/v/k2). In Figure 3, we show a representation of the two criteria
Cy(kr, ko) = |1 — 2200 | and Cy(ka, ko) = 102°(]| - [lwe) — 022°(]| - [luo )| for different pairs

llw* [[2llwoll2
(k1,k2). The case C1(ky, ka) = Ca(k1, ko) = 0 occurs if and only if wy is optimal).
We observe numerically that for 2 < ki, ks < 200, O (k1, k2) < 107° and Cy(k1, k2) < 5-1073
and that the error has a tendency to decrease for greater ki, k. This comes from the fact that

the result of the discrete optimization over the integers L; in By gets closer to the result of a
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Fig. 3 Then quantities log;o(Ci(k1,k2)) = log;q (|l—m|) (left) and log;o(C2(k1,k2)) :=

log1o(|055°(I - llw=) — 05°(Il - [lwo)l) (right) where w* = (wj,w3) is obtained from Theorem 7 and wo =
(1/V'k1,1/v/k2) for different ki,ke > 2 .

continuous optimization that yields wj /w} = v/k1/v/k2 (obtained by dropping the integer parts
in Theorem 7).

. . . L L . . .
This study confirms that the weighting scheme ( NG «/E) is close to the optimal choice when

the sparsities are known (up to a multiplicative constant). This also shows that even with a simple
model and parametrized family of functions, optimization might lead to complicated expressions.
We also remark that we could perform the optimization because restricting to weighted atomic
norms leads to an analytical description of atoms generating the regularizers. This in turn leads
to an analytical description of descent cones. The approach seems difficult to extend to generic
atomic norms.

5 Discussion and future work

We gave a general way of defining compliance measures between a regularizer R and a low
dimensional model set X, and described some elementary properties of such measures. This
opens questions on conditions on compliance measures that guarantee the existence of an optimal
convex regularizer. Also, the question of manipulating compliance measures for transformations
and combinations of models (intersections, unions, sums, ...) is a wide and challenging potential
area of research.

We considered noiseless observations instead of the classical noisy model y = Mzy + e where
e is a measurement noise with finite energy |le||2 because of the following remark. Suppose we
define an optimal regularizer for a given noise level |le||2. There are two possible cases, either the
regularizer is also optimal for ||e||2 = 0 or it is not. In the second case, it means that we would
need to trade exact recovery capability for improved stability to noise. This is a possible route to
follow especially if there is some latitude on the design of the measurement operator M, i.e., it
is possible to increase measurements to improve stability to noise. The analysis of such trade-offs
is out of the scope of this article and left for future work.

We have shown that the ¢!-norm is optimal among coercive continuous convex functions for
sparse recovery for compliance measures based on necessary and sufficient RIP conditions. This
result had to be expected due to the symmetries of the problem. The important point is that we
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could explicitly quantify the notion of good regularizer. We obtained the same expected results
with the nuclear norm for low-rank matrix recovery.

It must be noted that we did not use constructive proofs (we exhibited the candidate maximum
of the compliance measure) for the sparsity and low-rank cases. A full constructive proof, i.e., an
exact calculation and optimization of the quantities Bx(R) and Dx(R) would be intellectually
more satisfying as it would not require the prior knowledge of the candidate optimum, which
is our ultimate objective. We saw in the case of sparsity in levels that we can construct the
regularizer that achieved optimality among a simple parametrized family of convex functions
(weighted ¢!-norms in levels). It is an open question to obtain more general constructions.

We used compliance measures based on (uniform) RIP recovery guarantees to give results
for the sparse recovery case, it would be interesting to do such analysis using (non-uniform)
recovery guarantees based on the statistical dimension or on the Gaussian width of the descent
cones [14,2]. One would need to precisely lower and upper bound these quantities, similarly to
our approach with the RIP, to get satisfying results.

Finally, while these compliance measures are designed to make sense with respect to known
results in the area of sparse recovery, one might design other compliance measures tailored for
particular needs, in this search for optimal regularizers.
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A Appendices

This section describes the tools and proofs used to obtain our results.
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A.1 Summary of properties used in proofs

From [36, Table 1] (which summarizes results from [31] ), the function = € £(A) — ||z|| 4 is always non-negative,
lower semi-continuous and subadditive (i.e., it satisfies the triangle inequality). It is furthermore positively ho-
mogeneous as soon as 0 € conv(A), continuous as soon as 0 is in the interior of conv(A), and coercive as soon as
conv(A) is bounded. Finally, it is indeed a norm if conv(.A) = —conv(A).

We refer the reader to [36][Section 2.2] and [4] for properties of the atomic norm || - || x (cf Definition 3). We
will use the following two properties of || - || 5 (defined in Section 2.5).

Fact Al (From e.g. [36]) Forallz € X, |z||x = ||z|/x-

Fact A2 (From [36][Fact 2.1] applied to || - ||s) For allz€ H

lzlls = inf{,/ZAinuing{ PN ERLY Ni=lu €Xz= Z)\u} (70)

A .2 Proofs for Section 2

A.2.1 Proof of Lemma 1

Consider z € X, and z € H. We have tx(z + 2) < tx(z) =0 if and only if z + 2z € X, d.e., if there is 2/ € ¥
such that z = 2’ — x. Hence, T, (z) = {v(z' —z) : v € R,z’ € X}. It follows that 7., (X) = {vz: vy € R,z €
Y — X} D XY — X When X is positively homogeneous, for any z =z’ —z € ¥ — X and v € R we have: if v > 0
then vz =2’ —yz € ¥ — X;if y <O0then vz = (—y)z — (—y)2’ € ¥ — X;if y=0thenyz=0=2z—2z€ ¥ - %,
hence indeed 7, (¥X) C X — X.

Now consider y € 7,5, (X) and write it as y = y(x1 — x2) where z1,z2 € X and v € R. Since X' C dom(R) we
have max(R(z1), R(z2)) < co. We will prove that y € Tr(X). We distinguish two cases: if R(x1) < R(z2) then
R(z2 + (z1 — z2)) = R(z1) < R(w2) hence y = v(z1 — z2) € Tr(z2), and as z2 € X' it follows that y € Tr(X);
otherwise R(z2) < R(z1) hence R(z1 + (z2 — 1)) = R(xz2) < R(x1) hence y = (—7)(x2 — x1) € Tr(x1) and
therefore y € Tr(X). O

A.2.2 Proof of Lemma 4

Given ¢t > R(0), the level set L(R,t) = {y € H : R(y) < t} is non empty, convex and closed (by convexity and
lower semi-continuity of R), and bounded (by coercivity of R). We define A := L(R,t)N X ={z € X : R(z) < t}.

Consider z € 7). ,(¥). If z = 0 then clearly z € Tr(X). Let us prove that the same holds when z # 0. By
definition, there exists v € R\ {0} and z € X such that

Iz +z/7]la < [lz|la-

On the one hand we have R(0-z) = R(0) < ¢. On the other hand, since R is coercive, we have R(Ax) Nl ~+o00.

— o0
Since R is continuous, by the mean value theorem, there is Ag > 0 such that

R()\():L‘) =t.

Since X is a cone, the vector ' = Aoz belongs to X and, since R(z’) = t, by definition of A we have indeed
x’ € A, hence ||z’|| 4 < 1. Furthermore, since || - || 4 is positively homogeneous (because 0 € conv(.A)), we have

lz" + Xoz/~lla = Xollz + z/vlla < Xollzlla = ll2'[l.4-

We now observe that, on the one hand, the level set L£(|| - ||.4,1) = conv(A) is the smallest closed convex set
containing A; on the other hand A C L(R,t) and L(R,t) is convex and closed. Thus L(]| - ||4,1) C L(R,t) and
the fact that ||’ + Xoz/v[la < ||#'[|.a < 1 therefore implies

R(z' + Xoz/v) <t = R(z'). (71)

This shows that z € Tr(X) and establishes that 7). ,(X) C Tr(2).
Let us now prove that || - ||.4 is continuous, convex, coercive and positively homogeneous. First, from the
property of gauges (see Appendix A.1), || - ||.4 is always convex and lower semi-continuous. Second, since R is

coercive, its level sets are bounded, hence tonv(A) is bounded and || - || 4 is coercive. Finally, as R(0) < ¢t and R is
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continuous, 0 is in the interior of £(R,t). There exists € > 0 such that an open ball O of radius € centered on 0 is
included in £(R, t). This implies ONXY C L(R,t)NXY = A which in turns imply conv(ONZX) C conv(A) C conv(A).
Remark that £(ONX) = £(X) = H. Now we need to find O’ an open ball of radius €’ such that O’ C conv(ONX).
In each orthant (2., we can find a normalised basis E = (e;) € X such that 2, C £(E). We define the norm
1>, mieslle = > ps. This norm is equivalent to || - |[%. This implies there is a constant ¢, depending on the
orthant 2, such that for x = >, use; € O’ N 2, max; p; < cr€’. This implies

Hi
r=t €e; (72)
zi: E]’ Hj '

with ¢ = @ < ncr%. Taking € < ¢/(ncy) implies t < 1 and = € conv(O N X). As there is a finite number of
orthants we can chose € such that we always have 2 € O’ implies z € conv(O N X). O

A .3 Proofs for Section 3.1

Proof (Proof of Lemma 6)
Denote a = inf,c(s_5)ns(1) |Mz||2 and B = SUP,e(x—2)NS(1) |Mz||3, so that v(M) = 8/a. Since X' is a
cone, we have for every x € X — X,
lzlF, < IMz|3 < Bllel3, = y(M)alz|? (73)
allz||lz < x|z < Bllz|lz = allz||3,
Multiplying z in (73) by any A > 0, we have
Nallz|l3, < IAMz|3 < XN2y(M)allz||3,.
We look for A > 0, § # 1 such that AM satisfies a symmetric RIP with constant 9, i.e.,

AMNa=1-§ and Xy(M)a=1+46

Adding these two equalities yields A2a(1 + v(M)) = 1, hence \? = W(M)) Dividing them yields
1-96 M) -1
—— =9(M) <= 6= M
1446 y(M)+1

We have shown that for any M, there exists A > 0 such that

(M) -1
S(AM) < SOhT1

Remark that the value of A that makes the RIP bounds symmetrical is unique, and that no better symmetrical
RIP bound can be obtained, otherwise we could construct a better restricted conditioning (which is impossible
by definition of (M)). We deduce
S(AM) = M
(M) +1

O

Lemma 12 Consider a cone ¥ C H and T C H a non-empty set, and denote P the set of symmetric positive
semi-definite linear operators on H, i.e., N € P if and only if NH = N and N = 0. Then

=(M =(N). (74)

inf . = inf o7
M:ker MNT#{0} NeP:dimker N=1,ker NNT#{0}

Proof The infimum on the r.h.s. of (74) is over a more constrained set than on the Lh.s., hence

inf M) < inf N).
M:kerl\l/?ﬁT#{O}’yz‘( )_NeP:dimkerN1£1,kerMmT¢{0}’yz( )

If the Lh.s. is infinite, then the right hand side must also be infinite and we are done.

Assume that the Lh.s. is finite. We now prove the reverse inequality. For this, consider M a linear operator
with ker MNT # {0} and v (M) < co. There exists a nonzero vector t € ker M NT. We build an operator N € P
such that ker N = span(t) and with yx (N) arbitrarily close to vx(M).
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Since vz (M) < oo, M is nonzero hence a singular value decomposition allows to write M = 3 7_; oiuile
where (u;);_; and (v;);_; are orthonormal families and minj<;<,0; > 0. First we deal with the case where
dimker M = 1. Weset N = >.1_, oyv;0 sothat N € P and dimker N = 1 too. Since |[Nz||% = 37_; 02 (v;,z)% =
|Mz||3 for any vector z we have y(N) = (M) and we are done. Assume now that k := dimker M > 2.
Observe that span(t) C ker M and let (e1,...,ex_1) be an orthonormal basis of the orthogonal complement
of span(t) in ker M, so that (vi,...,vr,€1,...,€x—1) is an orthonormal family. For each ¢ > 0, define N =
Z:fll ovivf + 525;11 ejeJH. Again, Ne € P and span(t) = ker Ne so that dimker Ne = 1, and for each z € H
we have

T k—1 k—1
[Ne|3 = of(vi,a)? + Y (ej,2)° = [Mz|F +€ ) (ej,x)?,
i=1 j=1 j=1
hence || M3 < [[Neall3 < |Ma|3 + €2[|e|3. Since 75 (M) < oo, we get
0< inf ||Mx||% < inf ||N€$||% < sup ||N€$||§ < sup ||MJ:||§ +é2
z€(X-X)NS(1) ze(X—-2)NS(1) z€(ZT-2)NS(1) z€(Z-2)NS(1)
which implies
SUPge(z—x)ns(1) IMz|3 + € €2
yo(Ne) < —==EZ=2050) =7z (M) + - 5.
infye(x—synsq) IMz]|3 infre(z—s)nsq) IMz||3
This implies that infcso vy (Ne) < v (M) as claimed. O

Proof (Proof of Lemma 7) We define

SUp, e (s—nw I1Myll3

G(Z,E, M) := - . (75)
inf,c(x—syne |Myl3
For any nonzero M, we have
A = SPe(rr-FE)NsQ) [Mz||3  sup,e(s_synr-1s) IMFyll3
vre(M) = 15 Mz|2 ~ inf MFy|2 (76)
infye(ro_roynsqy IMzl3  inf e o_s)np-150) IMFYlI3
Hence
ARC(RoF~Y) = inf M
ro(Ro ) M:kerMﬁTRir;,l(FZ‘);&{O}WFZ( )
= inf G(Z,F~15(1), MF).

M:ker MOTp, p—1 (FZ)#{0}
By Lemma 5 with ' = Ro F™!, Tpop-1(FX) = Tr/(FX) = F(Trop(X)) = F(Tr(X)). Also, ker M N

Trorp—1(FX) # {0} is equivalent to the existence of z € ker M such that 2/ := F~1z € Tr(X), i.e., of 2/ € Tr(X)
such that z := Fz’ € ker M. As a result,

inf M) = inf G(X,F~1S(1), MF).
M:kerMﬁTRZI;,l(FE)#{O}’YFZ‘( ) M:F*lkerﬁlﬂTR(Z‘ﬁé{O} ( ( ) ) (77)

Rewriting M’ = MF, we have ker M’ = F~lker M and

inf M) = inf G(X,F~1s(1), M’
M:kerMmTRtr;,l(FZ#{o} e (M) M7 iker M/ (5)£{0} ( (1), M') (78)
which gives the desired result using the fact that F~15(1) = S(1) since F is a linear isometry. O
A .4 Proofs for Section 3.2
Proof (Proof of Lemma 8)
Consider z € H\ {0} and M =1 — II.. For every x € S(1), we have
(z,2)?
[Mz|3 =1 (79)

- 2
ll211%
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hence

2

1 — inf {zuz)”
SUpe (- m)ns(1) | M]3 2€(Z-Z)NSA) 2
(M) = (Z-2)NS() _ %

infxE(E—E)mS(l) ”Mx”% 1-— Supxe(z_z)ms(l) %
H

Case 1: By assumption there is zg such that ||zg|l% = 1 and X C span(zo). Since X' # {0} is a cone, it follows
that (X' — X) N S(1) = span(zo) N S(1) = {—z0,+z0} and

x, z)2 x, z)2 x0, 2)?
in ( 2> = sup < 2> = < 0 2> . (80)
ee(2-2ns() |22, sez—mnsq) 1213 =113,

2
ence if z € Y = span(xzg) we have vy = +o00, otherwise 25— < 1 and vy =1. us, if T -
H fzex h M h <‘70H2> d vs (M Thus, if Tr(¥) C ¥

we have ARIPneC(R) +00, otherwise there is z € Tr(X) \ X, and ARIP "C(R) = 1.

Case 2: Let us show that for any z # O there is some z € (2 2) \ {0} such that (z,z) = 0. This implies
infre(x—x)ns() I ﬁ% = 0 and yields the result. Indeed, by assumption, given any x1 € X'\ {0} there is 2 € X
such that zo ¢ span(xl) (hence z2 # 0). If (z1,2z) = 0 we take * = 1 = z1 — Az2 with A = 0. Otherwise,
with A = g?—:z; we set £ = Az1 — x2. In both cases we have x # 0 and, since X' is a cone, x € XY — ¥ and
(Az1 —x2,2) = 0. [}

Proof (Proof of Lemma 9) Since E N S(1) is compact, for any z there exists & € E N .S(1) such that

~ 2 _ ~ 2
@ = max 165,21 (81)

Since E is a union of subspaces, it is homogeneous. Thus, as & € F, we have z := (%,2)Z € E. If y € E\ {0}, we
have § :=y/||lyllx € ENS(1), (2, 9)7 is the orthogonal projection of z on § and

~112 g ~
Iz =l = = = llyllw - 9ll3, 2 1z = (= D3l = =13, — 1= 9)]

COI e (82)
> 1213, - (2 @)
Since ||z — z[13, = ||z]13, — 2Re(z, z) + ||z||3, = l|2I13, — |{2,&)|?, we conclude
Iz = yl3 > Iz — =l (83)
and z € Pg(z) by definition of Pg.

If 2/ € Pg(z), we have ||z — 2/||3, = ||z — /|3, = minyer ||z — yl|3, hence the notation ||z — PE(ZZH%‘ is
unambiguous. Since z’ € Pg(z), there is equality in the above equation with y = z’, hence |ly||lx = (z,7) and
(5B = I{2, B2, therefore (2,4 = (=, lyllnd) = lyllae(z:3) = w3, = (5,9 = (5,8)? = |lzl3,- This shows
that the notations ||PE( z)||2, and (z, PE(z)) are unambiguous and that ||Pe(2)||2, = (z, Pp(2)).

We also have ||z||2, = ||z|2, + llz — z||3, = ||2/||?, and (z,y) = |ly|l3x hence the notations ||z — Pg(2)||3, and
| P (2)||Z, are unambiguous. O

Proof (Proof of Corollary 3) Since ¥ — X' is a union of subspaces and (X — X) N .S(1) is compact, by Lemma 9,

2 P
SUPze(2—x2)nS(1) <||Z|TL =1 ZH ﬂé M , hence we have
-1
-P P
(Bs(R)+1)"' = sp T Poos@lR )L |1Ps— 5 (2)I13, 2
zeTr(EN{0}  1Ps—s(2)3 ETR(EN{0} ||z — P @5, + I1Ps—s(2)|3
_ 1Ps—s(2)3
2e€Tr(2)\{0} 12115,

Since ¥ is a cone and X' # span(x) for each € X, by Lemma 8, using (32) we have v§3°(R) =

1+ 1/Bx(R) hence 63°(R) = % = (2Bs(R) + 1)~

We conclude using that b +—=1/(1 + 2b) is decreasing. O

1 —
1-(1+Bx(R)~1
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A.4.1 Lemmas for the proof of Theorem 3 (sparse recovery)

We begin by some technical lemmas. We recall that T> = T»(z) C {1,...,n} denotes a set indexing any 2k
largest components (in magnitude) of vector z , while T'=T(z) C {1,...,n} will denote a set indexing k largest
components (in magnitude). Given an index set § # H C {1,...,n}, Qg is the “cube” of all vectors v € R™ such
that supp(v) = H and |v;| = 1 for every ¢ € H. The restriction of v to H, vy € R™, is such that (vg); = v;, i € H
and supp(vy) C H.

Lemma 13 Let ¥ = Xy. Let || - ||w be a weighted £ -norm ( for w = (w;)P; with w; > 0, ||z|lw = > wi|lz|l1).
Let z € 7)., (¥). There is a support H of size < k such that

lzmellw = lzallw = inf {l|lz + z[lw — 2]} <0, (84)
rzeX
i.e., the infimum is achieved at x* = —zp.
Moreover, if || - |lw = || |11, H=T(z2).

Proof The result is trivial for 2 = 0, so we prove it for z € 7)., (£)\{0}. Consider H € arg ming. <k {[lzre|lw — [l27[|w}-
By definition of 7)., (), since z € Ty, (X) \ {0}, there are 2’ € X, A € R\ {0} such that [lz' + Az[lw < [|2/]|w.

By homogeneity of ¥, z := 2'/A € X and ||z + 2||lw < ||#]|w. This shows that infrcx {||z + 2||lw — [|z|lw} < 0 as
claimed. For any such z € ¥, consider T' = supp(x).

By the reverse triangle inequality |z; + z;| — |xs| > —|zi|, we have
Iz + zrllw — lellw = Y willes + 2| = |zil) 2 =Y wilzil = —llzr |l (85)
ieT i€T
Hence ||z + z[lw = |Z]lw = [|£ + 27[lw + [|27¢[lw = |Z]lw > [l27¢]lw = [I2]lw 2 286 [lo = |2E]lw-
If||lw=1"Il,let T =T(z) and remark that |zgc|1 — [|zrll1 > llzrell1 — ||2t]1

The following Lemma permits to construct and characterize elements of descent cones.

Lemma 14 Assume that R and X are positively homogeneous. For every vg € X such that R(vg) > 0 and any
v1 € H, we have that z :== v1 — avg € Tr(X) where « = max(R(v1)/R(vo),1). If, in addition, X is homogeneous
and R is even, we have conversely that any z € Tr(X) can be written as z = v1 — vg where vg € X, v1 € H, and
R(v1) < R(vo).

Proof Since X is positively homogeneous, z := avg € ¥, and R(z+z) = R(avg+z) = R(v1). If R(v1) > R(vg) then
a>1and R(z+2z) = R(v1) = aR(vo) = R(awp) = R(z). Otherwise « = 1 and R(z+2z) = R(v1) < R(vo) = R(z).
In both cases we obtain that z € Tr(z) C Tr(X).

Regarding the second claim, when z € Tr(X), by definition there exists z € X, u € H and v € R such that
z = yu where R(z + u) < R(z). Denote vg := vz and v1 := vg + 2. Since ¥ is homogeneous, we have vg € X.
Since R is even and positively homogeneous, R(vi) = R(yx 4+ vyu) = |y|R(x +u) < |y|R(zx) = R(yz) = R(vp). O

The next lemma permits to compare B3.(R) with B3.(|| - [|1) (see definition in (52)) which was calculated
in [17] to characterize the necessary RIP condition for sparse recovery.

Lemma 15 Let X = X}, be the set of k-sparse vectors in R™ with k <n/2 and 1 < L <n — 2k. Assume that R
is positively homogeneous, subadditive, and nonzero.
Consider

(Ho,vo) € arg max R(v) (86)
HC{1,...,n}: |H|=k
vEQH

(H1,v1) € arg min R(v). (87)
HC{1,0 i\ Ho, | HI=k+1
veEQH

1. We have R(vg) > 0, and for any H of size k' > k and any v € Qp, we have

R < ¥ Rwo). (8)

If R=R* = || - ||1 then we have indeed equality R* (v) = %R*(vo)‘
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2. We have
2|2 L L
BRYH(R) = sup it ”5 > B > o (89)
2€Tr(2)\{0}:|supp(=)|=2k+L 27213 — ((R(m)) 1) i1 (A n 1) 11
R(vg) ) > k
Proof As a preliminary observe that if R* = || - |1 then R*(v) = |H]| for any H,v € Qg, hence Ho, H1 can be

any pair of disjoint sets of respective sizes k,k + L, and v; € Qp, can be arbitrary, for example v; = 1g,. This
yields R*(vo) = k, R*(v1) = k + L, hence R*(v1) = (1 4+ L/k)R*(vo).

To prove the first claim, consider {Gi}1<i<(k,) the collection of all subsets G; C H of size exactly k. Since
=k

v € Qm, we have vg, € Qg, for each i. Also, since |G;| = k for every i, by definition of Ho,vo we obtain
max; R(vg;) < R(vo). Notice that given a coordinate j € H, there are (I::ll) sets G; such that j € G;. With

A= ﬁ we get v = XY, vg, hence by positive homogeneity and subadditivity of R (which imply convexity)
c—1

@ W (1) )
R(v) = RA > vg,) < > ROwg,) = A Z R(vg,) < 725

=1 i= % kfl)

R(wo) = ¥ Ruo). (90)

—

This establishes (88). With R = R*, we have R*(v) = |[v||1 = k' for v € Qp, hence R*(v) = (k'/k)R*(vo) as
claimed.

For the sake of contradiction, assume that R(vo) < 0. As we have just proved, this implies R(v) < (n/k)R(vo) <
0 for every v € {—1,+1}" = Qg with H = {1,...,n}. By convexity of R it follows that R(v) < 0 for each
v € [-1,1]" = conv(Qp), and by positive homogeneity,

R(v) <0, Vv € H. (91)

Positive homogeneity and subadditivity also imply

0=0-R(vo) = R(0-v9) = R(0) = R(—v +v) < R(—v) + R(v) (9§1) R(—v)

for every v € H, hence R(v) = 0 on H, which yields the desired contradiction since we assume that R is nonzero.

Regarding the second claim, since 2k + L < n there is indeed some H of size k + L such that H N Hy = 0,
hence H; is well defined. By construction, Hy N Hyp = (. Since R(vg) > 0, R is positively homogeneous and
XY is homogeneous, by Lemma 14, z = —awvg + v1 € Tr(X) with a := max(R(v1)/R(vg),1). Observe that
|supp(z)| = |Ho| + |H1| = 2k + L. Since o > 1 and all nonzero entries of vp,v1 have magnitude one, a set of 2k
largest components of z is T = Ho U T] with T] any subset of H; with k& components, and we obtain (89). once
we observe that

||ZT§||% L L/k
lzr, |12 ka2 +k o241
[m]
Lemma 16 Consider coo,c1 > 0, an integer n > 2, and the optimization problem
3. (92)

up
z€R" :[|z]l oo Seooillzll1<e1

If ¢c1 > coo then there exists 1 < L <n—1 and 0 <60 < 1 such that

¥ i=ceo(l,...,1,60, 0,...,0 )
SN—— SN——
L>1 n—(L+1)>0
is a mazimizer. Otherwise a mazimizer is z* = (¢1,0,...,0).

Proof Standard compactness arguments show the existence of a maximizer x*. We distinguish two cases:

o If |2*]lcc < coo then z* is indeed a maximizer of the Euclidean norm under an ¢! constraint, hence z* is a
Dirac: without loss of generality, * = (c1,0,...,0) so that ¢; = [|[2*||cc < Coo-
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e Otherwise ||[2*||coc = Coo, in which case we show that all entries of *, except at most one, are either zero
or equal to ce. For the sake of contradiction, assume that z* contains two distinct entries with values
0 < a < b < coo, then for small enough ¢t > 0, replacing these entries with 0 < a —t < b+t < c and keeping
all other entries unchanged would lead to a vector z satisfying ||||coc = [|2*||co = €0, [|Z]|1 = ||z*||1. However,
since [|z||2 — ||z*]|2 = (a — )2 + (b +t)% — (a? + b?) = 2t2 + 2(b — a)t > 0. Since z* has optimal objective
value, this yields the desired contradiction. Since the objective value and the constraints are invariant to index
permutations, there is thus a maximizer with the claimed shape, and we have c¢1 > ||z*||1 > [|[*||cc = Coo-

The two cases respectively correspond to ¢1 < ¢oo OF €1 > Coo, Which are mutually exclusive, hence the conclusion.

0
Lemma 17 ([17]) Consider ¥ = X, CR™. We have
L
Be(|l-lh) = _max ——Fro—. (93)
1<L<n-2k (% n 1) 1
Proof With B$,(R) defined in (52), and recalling the expression (49) of Bx(R), we have
. _ 2k+L ) .
Bl ) = _ax | BEFL(- )
By Lemma 15, 20 — (L/k) +1 > 1 and B2 HE(|| - |l1) > k . This implies
’ R*(vo) ¥ = (g:g:};f.,.l (Lt1)’+17
L
Be(|-lh) 2 _max ——Fo—. (94)
1<L<n—2k (% n 1) 1

and there only remains to show there is indeed equality. We isolate this result from [17] for completeness. This
will also help understand the case of sparsity in levels in Appendix A.6.

First, we show we can restrict the maximization used to express Bx (]| - ||1) (cf (49)) over vectors z having
constant amplitude a > 0 on T'(2).

Indeed, consider z # 0 such that z € Tx, (|| - ||1). By Lemma 13, we have ||zrc|1 < |lz7|l1 with T = T'(2)
a set of k indices of components of largest magnitude of z. Assume that there are ¢ # j in T such that |z;| #
|z;|. Let y such that y; = 2z for I ¢ {i,5} and y; = y; = (|z:] + |2;])/2. The set T remains a support of k
largest amplitudes in y, and T = T»(z) remains a support of 2k largest amplitudes in y. Moreover, we have
lyrls = lzrlls > llzzels = lyrells = [l — yr + ]2 hence we have y € Tss, (|| - l1)- Since llyr, I3 — ll27, I3 =
lyrl — l=zl3 = 200 + 120/20% — 12407 — 15512 = (] — 125)2/2 < 0 and [lyrgll3 = [lzrgli3 we have
lyzgI13/llyrs 13 > lzzg 13/l 13-

Second, the same reasoning on 77 = T \ T, shows that we can further restrict the maximization used to
define Bx (|| - |]1) to vectors having constant amplitude 0 < 8 < « over T”. This leads to

(B [E: llzll3
B (-l = sup o2 = 5P sup Wazig 9
220\ zrelli <Nzl 212113 a,B:a>B>0geRn—2k: ||z|| 0o <B,| 2|1 <k(a—8) (a2 +B?)

Using Lemma 16, the supremum with respect to z is reached with vectors with the shape

(ﬁ?"'7/8767 07"'70 )
N—— ——
L n—2k—(L+1)>0

with 0 <0 < B and 0 < L <n—2k— 1. We deduce

LﬁQ + 02
sup sup

a,B:a>B>0L,0:0<L<n—2k—1,0<0<p k(a? + B2)
0<ka—(k+L)8

Bxe(ll- 1)

96
LB? + 62 (56)

= max su su ——

0<L<n—-2k-1 a,B:a2pB>0 Q:USSIJSB k(a2 + B2)

0<ka—(k+L)B
When 0 < 8 < ka — (k+ L)S we have
LpB? + 62 L+ 1)32

sup 52 + (L+1)8 (97)

0:0<0<8,0<ka—(k+L)3 k(@2 +B2) k(a2 + B2)
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while when 8 > ka — (k+ L)B > 0 we have

Lp? + 62 LB? + (ka — (k4 L)B)?
sup 5 o = 5 5 . (98)
0:0<6<B,0<ka—(k+L)3 k(a? + 32) k(a2 + p2)

On the one hand, when 0 < 8 < « satisfies 8 < ka — (k + L) we have a > (1 + (L + 1)/k) hence

“u Lp®+0° _ (L+1)B>  (L+1)/k < (L+1)/k 99)
9:0§9§B,9§I£)a—(k+L)B k(a2 +82)  k(a®2+8%) (a/B)2+1 " [14+(L+1)/k2+1"

On the other hand, when 0 < 8 < « satisfies 8 > ka — (k+ L)B > 0 we have (14+ (L +1)/k))8 > a > (1+ L/k)B
L/k+kt?

:mfortzo,weget

and, denoting g(t) :

up Lp®+0% _ LB*+ (ka— (k+L)B)> _ L/k+k[e/B — (1+L/k)J?
0:0<6<8,0<ka—(k+L)3 k(a? + B2) k(a2 4 B2?) (a/B)? +1

= g(o/B—(1+L/k)).

(100)
A simple function study shows that ¢’ (¢) is positively proportional to a second degree polynomial P(t) with positive
leading coefficient and such that P(0) < 0. It follows that there is o > 0 such that ¢’(t) < 0 for 0 <t < tp and
g'(¢t) > 0 for t > to. Hence, g is decreasing on [0, ¢o] and increasing on [tg, +00), so that

( L/k (L+1)/k )
A+ L/k)2+1 1+ (L+1)/k)2+1)"

g(a/B—(1+L/k)) < sup g(t) = max(g(0),g(1/k)) = max
0<t<1/k

As all of the above bounds also hold if 8 = 0, we obtain the claimed result.

O
Remark 3 The maximum value of W (with respect to L) is reached for L/k maximizing f(u) =
u/((u41)2 4 1) (which is maximized at v/2 over R). We verify that it matches the necessary RIP condition %
from [17], f(\/i) = 2\/5/(2 + \/5) which gives v=(|| - |[1) = (4 + 3\/5)/\/5 = gti
A.4.2 Lemmas for the proof of Theorem 4
Given a matrix U, we denote Uy, the restriction of U to its rows k,...,l. We denote O(n) the orthogonal group.

Given a symmetric matrix z, we write eig(z) the vector of eigenvalues ordered decreasingly with respect to their
absolute value. Given a vector = of size n, we write diag(z) the diagonal matrix with diagonal equal to x. To
match the notations for the case of sparsity, given a matrix z = U7 diag(w)U, we write zg = UTdiag(wgy)U and
Qu as in the previous section. We denote T'= {1, ..,7} and T> = {1, ..,2r}. We denote || - || the Frobenius norm.
Using the same demonstration as Lemma 13 we characterize the descent cones of of the nuclear norm.

Lemma 18 Let X' = X,. Let || - |w be a weighted nuclear-norm. Let z € T|.)|,,(¥). There is a support H of size
< r such that
lzrellw = Nz llhw = i0f {llz + 2llw — 2]} <O, (101)

i.e., the infimum is achieved at x* = —zg. Moreover, if || - ||w = || - ||+, H = T(2).

Lemma 19 Let X = X, be the set of n X n symmetric matrices with rank at most r with r <n/2, and 1 < L <
n — 2r. Assume R is positively homogeneous, subadditive and nonzero. Consider the supports Ho = {1,2,..,r}
and Hi ={r+1,...,2r+ L}.

(Uo,vo) € arg |UT diag(v)U] 4, (102)

max
UEO(n),vEQHO
(U1,v1) € arg min UT diag(v)U||a- (103)
UeO(n),veQmu;: UU,LTU;FJFI:ZT+L:O
1. We have R(UgvoUo) >0, and for any H of sizer’ >r, V € O(n) and w € Qu, we have

/
R(VTdiag(w)V) < = RUT voUs). (104)
T

If R=R* = |- ||« then we have indeed equality R(V T diag(w)V) = %/R(UOTUOUO)‘
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2. We have
llerg 1% L
B§+2r(R) = up > T 5
2€T]. HA(Z)\{O} lsupp (eig()) | =2r+ L |27 |1 rfasery
R(U{ diag(vo)U)’ (105)
L
>_ v
(L
e
Proof As a preliminary observe that if R* = || - ||« then R*(VTwV) = |H| for any H,w € Qg,V € O(n), hence

w; € Qp, can be arbitrary, for example w; = 1p,. This yields R* (Uf diag(vo)Uo) = r, R*(U{ diag(v1)U1) = r+L,
hence R*(U{'diag(v1)U1) = (1 + L/r)R* ((UT diag(vo)Uo).

To prove the first claim, consider {G¢}1<_< T/) the collection of all subsets G; C H of size exactly r.
Ss

Since w € Qp, we have wg, € Qg, for each i. Also, since |G;| = r for every i, by definition of Ho,vo and
remarking that the maximization over O(n) permits to consider any permutation of the support, we obtain
max; R(VTdiag(vg,)V) < R(UJ diag(vo)Uo).
’
Notice that given a coordinate j € H, there are (::11) sets G; such that j € G;. With X\ := ﬁ, we
r—1

get VTdiag(w)V = VTAY, diag(wg, )V hence by positive homogeneity and subadditivity of R (which imply
convexity)

(7) (7) (7)
R(VTwV) = ROAVT Y diag(wg,)V) < > R(VT Mdiag(wg,)V) =X > R(V diag(wg,)V)
i=1 i=1 i (106)

- (j;’)
Iy

This establishes (104). With R = R*, we have R* (VT diag(w)V) = |lw||1 = r’ for w € Qg, hence R* (VT diag(w)V)
(' /r)R*(UT diag(vo)Uo) as clalmed

For the sake of contradiction, assume that R(UJdiag(vo)Up) < 0. As we have just proved, this implies
R(VTdiag(w)V) < (n/k)R(UOTdiag(vo)Uo) < 0 for every w € {—1,4+1}" = Qy with H = {1,...,n} and
V € O(n). By convexity of R it follows that R(VTdiag(w)V) < 0 for each w € [~1,1]" = conv(Qg), and by
positive homogeneity,

,r./
R(UZ diag(vo)Up) = 7R(U0Tdiag(vo)Uo).

R(VTdiag(w)V) <0, Yw €R™ (107)

Positive homogeneity and subadditivity also imply

0=0-R(UTdiag(vo)Up) = R(0 - UT diag(vo)Up) = R(0) = R(—V T diag(w)V + VT diag(w)V)
< R(—VTaiag(w)V) 4+ R(VTdiag(w)V)

(107)
< R(-VTdiag(w)V)

for every VTdiag(w)V € H, hence R(VTdiag(w)V) = 0 on H, which yields the desired contradiction since we
assume that R is nonzero.

Regarding the second claim, since 2r + L < n, by construction, Hy N Hg = 0. Since R(U{ diag(vo)Up) > 0, R
is positively homogeneous and X is homogeneous, by Lemma 14, z = —aUJ diag(vo)Up + U{ diag(v1)Us € Tr(X)
with o := max(R(UT diag(v1)U1)/R(UJ diag(vo)Up), 1). Observe that |supp(eig(z))| = |Ho| + |H1| = 2r + L.
Since o > 1 and all nonzero entries of vg,v1 have magnitude one, a set of 2r largest components of eig(z) is
To = HyU Tl’ with Tl’ any subset of H; with k components, and we obtain (105). once we observe that

2

21 I I
||||sz ||||§ Traltr o {:1' (108)
]
Lemma 20 Let ¥ = X,.. Then i
B(- ) = - (109)

D
0<L<n 2r (% + 1) +1
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Proof We have z € 7)., () is equivalent to ||zrg ||« +[|27 [« < ||z ||« where T = supp(2)\(T5UT) (Lemma 18).
Hence

llzrg I
BEP(|| - 1<) = sup = (110)

zillzgg otz I llerll 1273 17
Using the fact that ||z||« = ||eig(z)||1 and ||z||F = ||eig(z)||2, we fall on the expression of Bé"'w(” |l1) and get
the result using Lemma 17. O

A.5 Proofs for Section 3.3
Proof (Proof of Lemma 10) The constant 653 (R) [36][Eq. (5)] has the following expression:

53 (R) = in —Relz, z)

f sup . (111)
TRV e g 2 + 2[5, — [lo]E, — 2Rele, 2)

Considering any nonzero z € H, since X' is a union of subspaces and ¥ N S(1) is compact, by Lemma 9 the set
Ps(z) is not empty and (Px(z),2) = ||[Pg(2)||?, is unambiguous. Choosing an arbitrary y € Ps(z) and setting
T = —y, we obtain

—Relz,
sup ez, 2) >

TEX |23 \/Ilw +2)1% = ll2llf, — 2Re(z, 2)

1P ()3,

1P (2)l1# \/Ilz = Pe(2)|% — 1P (2)[3, + 2I1Ps(2)3,
1

l==Ps@1% | |
sup —x 41
\/ZETR(E)\{O} ”PZ'(Z)H?H

Considering the infimum over z € Tr(X) \ {0} yields the first claim. Let us now proceed to the second claim.

Given z € Tr(X) \ {0}, consider an arbitrary € X, and V € V such that « € V. With Fact A2, for every
v € H, ||v||% is the infimum of >, Ail|lus|2, over convex decompositions v = Y, Adju; over X, hence there exists
u; € X, \; > 0 such that 37, A\; =1, >, \ju; =+ z and

2 2
Iz +21% = D> Ailluilld,.
i

Since V' C X, u; v := Pyu; € X. By the additional assumption, since u; € X we also have and Uyl =
Py, 1 u; € X for each i. Observe also that Py, 1z = 0. Hence, with the notations zy = Pyz, 2,1 = P12, we
have the convex decompositions

ZyL :PVL(:I:-FZ) :ZAiui,VL
z+zy =Py(z+2) = Z)\iuiy.

Using Jensen’s inequality for the convex functions || - || and || - ||Z, and the identity ||v]|3 = ||v||Z, for v € X
(Fact A1), we have

lzy 2%+ llz +2v 13 < D Nillug ya I3+ D Nillui vl = D Nillwg v I+ D Nlluav 13,

= Ailluill3, = llz + 213
i
Since Py is the (linear and self-adjoint) orthogonal projection onto V, we have Re(z,zy) = Re(x, Pyz) =
Re(Pyxz,z) = Re(z, z), and we obtain

2 2 2 2
lzy 1% + v i3 < lle+20% = lle +2vI3 + lzvi
lzy 13 + v i3, < lle + 21% — Nl — 2Re(z, zv) (112)

2 2 2 2
llzv iz + vz < llz+ 2l — Izl — 2Re(=, 2).
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Using Cauchy-Schwarz inequality, we have (Re((z,z))? = (Re((x, zv/))? < lzl|2,lzv|13,. Denoting Vp such that
Py, (z) € Ps(z), we get

(Re(z,2))” (lley L 1% + ll2v I3) < leliFlzvii3, (lz + 2013 — l2l3 — 2Re(x, 2))

(Re(z, =)’ B A SR
o, (o + 2% — ol — 2Re(@,2) = (eyr %+ leviZ) — Tpils ) = TPl )
llzv 115, 1P ()17,

where the last inequality (we could use here the weaker alternative assumption Ps;(z)Narg minge s, [|[z—z|| 5 /||z||% #
0) uses that zy,1. = z—Pyz and || Py, 2|5 = ||Ps(2)ll% > |Pv(2)|ls = ||zv |- To conclude, we use the additional
hypothesis Ps:(z) C argminge s || — 2|/, which implies ||z — Px(2)||x < ||z — Pvz| x since Pyz € X

—Re(z, z) < 1

sup = .
€2 |zlggy/llz + 213, — 22, — 2Re(z, 2) \/ wp  PROIE

im0y TP=OE

O
To replicate the proof used in the necessary case, we show a monotony property of || - || s.
Lemma 21 Consider a model set X C H, || - || the atomic “norm” induced by X, and D : H — H a linear
operator. If DX C X' and || Dllop 1= supjy,, <1 1DVl <1 then
|1Dvlls <|lvlls, VYveH. (113)

Proof Let A\j,u; such that u; € X, 37, A; = 1, 37, Adju; = v. Denoting u, = Du; we have u € X and Dv = }_ A\jul.
By Jensen’s inequality and the fact that ||ul|s = ||ul|y for any u € X (Fact Al), it follows that

IDoll%; < D Nilluil% = D Nilluil3, = D MillDuill3, < Y Nillual,- (114)
With Fact A2, ||v]|% is the infimum of the right hand side over all such decompositions v = Y~ \;u;. ]

Corollary 5 With X := X, the set of k-sparse vectors in H = R™, we have:

1. the norm || - ||x is invariant by permutation and coordinate sign changes;

2. for any vectors v,v" € H such that |v;| < |v}] for all j we have ||v||s < [|v']5;

3. consider any vector z, and Ty a subset indexing k components of largest magnitude, i.e., min;er |zi| >
max;gr ||, with |T| = k. Then

1aX ||z = ||& 115
‘ \<k” rlls = llzn, |l (115)
min z— 2z = ||z — 2 . 116
| \<k” rlls = || T |2 (116)

Proof We show the three properties separately.

— Property 1: Let m be a permutation of (1,...,n) and €1,...,en € {£1}. Define D by (Du); = €jur(j)-
Observe that DX}, C X and ||D||op = 1. Conclude using Lemma 21 that ||Du||s; < |ju||s for any u € H. The
same holds with D’ = D™ hence ||u||x = ||D~'Du||s < ||Dul|s for any u. This shows |D-|ls = || - || =-

— Property 2: Given the assumptions on v,v’, the linear operator defined by (Du); = vju;/v} if v} # 0 (and
(Du); = 0 otherwise) satisfies DX C X and ||D|lop < 1 hence, using Lemma 21 again, ||v]|xs = [|[DV'||s <
/|15

— Property 3: By the invariance by permutation and coordinate sign changes of || - || 5, it is sufficient to prove
the result when z1 > ... > 2z, > 0 and Ty = {1,...,k}. Given T of size k, there is a permutation ¢ of
(1,...,n) such that T = {¢(1),...,¢(k)} where $(1) < ... < ¢(k). It follows that z4;) < z; for 1 < i < k.
Hence by Property 2, we have |27 ||s = [(2¢(1)s- - 2¢(k)5 0, - - -, O)llz < (21, -+, 25,0,...,0) |2 = ll27, || 5
A similar argument using T° yields ||z — 27|z > ||z — 27, || =-

O

Corollary 6 With X := X, the set of matrices of rank lower than r in H the set of symmetric matrices in
R™®X™  we have:
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1. for any matrices VTdiag(w)V,VTdiag(w’)V with V. € O(n) such that |w;| < \w;| for all 5 we have
[VTdiag(w)V||s < VT diag(w)V | s;
2. For any symmetric matriz z, and T a subset indexing r components of largest magnitude of eig(z), i.e.,

min leig(2)i] > max leig(2);l,

with |T| = r. Then

max ||z = ||z 117
\T\<r” T”E ” Tr”E ( )
min ||z — z =z — =% . 118
\T\<r” T”E ” Tr”E ( )

Proof We show the two properties separately.

— Property 1: Given the assumptions on w,w’, the linear operator defined by Dz = VI WV 2z where W is
the diagonal matrix such that Wi = w;/w} if w, # 0 (and Wy; = 0 otherwise) satisfies DX C X and
IDlop < 1. We have D(VTdiag(w/)V) = VIWw'V = VTwV. With Lemma 21, we get ||V diag(w)V| s =
| D(VT diag(w)V)||s < [[VT diag(w)V| 5.

— Property 2: This property is direct using the eigenvalue decomposition

z = UTdiag(eig(2))UT = UTdiag(eig(z)r + eig(z)re)UT

and Property 1.

‘We now prove Lemma 11.

Proof (Proof of Lemma 11) Consider first X' = Y. First, the properties of || - ||x established in Corollary 5
directly show that the minimum of ||z — z||s with respect to € X' is reached at any = € Px(z). Then, we
can write X = Uy¢cpV where V € V if, and only if there is an index set T C {1,...,n} such that |T| < k and
V = span(e;)icr. Given V € V and u € Xy, let us show that P, 1u € Xj. Writing V' = span(e;);cr where
|T'| <k, we have Py (u) = ur and Py, 1 (u) = upec. As supp(ure) C supp(u) it follows that ||[urec|lo < E, hence
PVL (u) S Ek-

In the case of low rank matrices ¥ = X,.. We take V = {span(U;)icr,|I| < 7 ||Uillr = 1,rank(U;) =
1,(U;,Uj) = 0,% # j} . With Corollary 6, the minimum of ||z — z||sx with respect to @ € X is reached at
any ¢ € Px(z). Let 2 € £ and V € V. We have Py (z) = VT'S1V; has rank 7/ lower than r. We can write
z=VIS Vi + V;ESoVa with ViVl = 0. Hence Py, 1 (2) has rank at most 7 — r’ < r and Pj,1 (2) € X otherwise
z would be of rank greater than r.

O
We need the following Lemma to control || - || 5.
Lemma 22 Let ¥ = X, C R™. Then for any v
2
ol > 10 (119)
Let X = X).. Then for any v
2
v *
o, > 1 (120)

Proof Case ¥ = X} : Let A; > 0,u; € X such that ||v]|% = Y Ail|luil|3 and v = 3 Aju; from Fact A2. We have,
by convexity

ol =

Z Ailtg

<D Ailluills (121)
1 i
Using the fact that |lz||1 < vk||z||2 if |supp(z)| < k and the concavity of the square root,

ol < VEDY  Nilluillz < Ve, [ Ailluill3 = Vo] s. (122)
@ @
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Case X' = X : Let A\; > 0,u; € X such that [|[v||% =3 Ailjuil|% and v = 3" Aju; from Fact A2. We have, by

convexity

ol =

Z i
i

<3 sfuall- (123)
X i
Using the fact that ||z||« < v/7||z||F if rank(z) < r and the concavity of the square root,

lolle < VEY Nlluillr < VE [ Nilluilld = VElolls. (124)
@ @

[}
A.5.1 Sparsity
We prove several intermediates lemmas to obtain Dx (]| - ||1)-
Lemma 23 Consider X = X the set of k-sparse vectors in H =R"™, and 0 < L > n — k. We have
2
ZTe L
DEFE(| - |1) i= sup lezells _ i (15): (125)
2€T) 1 (O\{0}:lswpp (=) |=k+L 272 k
Proof 1t was already proven in [36, Theorem 4.1] that 65 (|| - [|1) > % hence by Lemma 10
llzzeI3
lerells _ pogp- gy < 1. (126)

€Ty, (O} 2z l3

Hence, DSHE(|| - 1) < 1

Consider Hy of cardinality k, Hi of cardinality L such that Ho N H; = (0 (this is possible as k + L < n), and
define z = alp, + 1y, where a = max(1,L/k). As a > 1, a set of k largest components of z is T' = Hg. Moreover,
llza |l1 = ak = max(k, L) > L = ||za, 1 = [lzagll1

We distinguish two cases:

— Case 1: L > k, from Lemma 22, ||27ec||% > %HZH1 |2 = L2?/k. Moreover |zr||3 = ka? = L2/k, thus
l2re (|2, /|lz7 13 > 1. Combining with (126) yields D™ (]| - |]1) = 1 = min(1, L/k).

— Case 3: L < k, we have ope = 2, € Sy honce [lore % = loze |3 = lsm I = L and lozell%/llorl3 = L/k.
This shows that D§+L(|| -|l1) > L/k = min(1, L/k). To conclude, we show that D§+L(|| -|l1) < L/k. Consider
any 2" € T).|, (¥) such that |supp(z’)| = k+ L, with Lemma 13, there is a support H of size lower than k such
that, [|27;][1 > [|2}cll1, let T' a set of k largest components of z’. We have ||z [|1 — ||z [l1 > 127111 = | 2% l1-
As ||Z'llo £ k+ L and L < k, zf.. € X1, C X}, hence ||2c||s = ||2/c]l2. Moreover, |z]| > ||zc||oo for any
i € T, hence ||z ||2 > k||2/c||%- As a result

lzpells; _ llzpelld _ Lllzpell3
lzpll3 llezll3 ~ KllegeliZ

= L/k.

O

Lemma 24 Let X = X, be the set of k-sparse vectors in R™ with k <n/2 and 1 < L <n — k. Assume that R
is positively homogeneous, subadditive and nonzero.

Consider
(Ho,wvo) € arg max R(v) (127)
HC{1,...,n}: |H|=k
vEQH
(Hi,v1) € arg min R(v). (128)
HC{1,....n}\Hq, H|=L
vVEQH
We have )
c L
DEFL(R) = sup % > min (1, —) _ (129)
2€TR(D\{0}slsupp(2) | =k+L [l27[l3 k



A theory of optimal convex regularization 37

Proof From Lemma 15, R*(v1) = %R* (vo). Since k + L < n there is indeed some H of cardinality L such that
H N Hp = 0, hence H; is well defined. By construction, H1 N Hyp = (. From Lemma 15, we also have R(vg) > 0
and R(v1)/R(vo) < L/k.

Since R(vo) > 0, R is positively homogeneous and X' is homogeneous, by Lemma 14, z = —avg +v1 € Tr(X)
with o := max(R(v1)/R(vo), 1). Observe that |supp(z)| = |Ho|+|H1| = k+ L. Since « > 1 and all nonzero entries
of vp,v1 have magnitude one, a set of k£ largest components of z is T' = Hp. We have

ZTe 2 v 2
lorels _ ol (130)
[EZaE ka
2
With Lemma 22, |lv1]|% > Hvilll > L—: if L >k and |jv1||% = ||v1]|3 otherwise (Fact Al). If L >k
2 2 2
c L L
el 12 - s
llzr I3 k202 ~ k2 max(L/k, 1)2
If L <k,
ZTec 2 L L
lrells _ Lok 1)
lzrll;  ka® " k
which leads to the conclusion.
O

A.5.2 Low rank

Lemma 25 Consider X = X, the set of symmetric matrices of rank lower than r. For any L > 0 such that
r+ L <n we have,
lleze I3

L
DR |l = sup Loz ly — min (1, —) (133)
2€T|. ||, (2\{0}:rank(z)=r+L ”ZT”F T

where zp is z restricted to its r biggest eigenvalues, and zpe = z — zp

Proof It was already proven in [36, Theorem 4.1] that 653 (]| - [|+) > % hence by Lemma 10
llzrell%

- =Dx(|]-]+) <L (134)
=T (20} 27l

Consider Hy = {1,..r} , Hy = {r +1,..,r + L}, let U € O(n) and define z = UTdiag(aly, + 1z, )U where
a = max(1,L/r). As o > 1, a set of r largest components of eig(z) is T = Hp. Moreover, |zr||x+ = ar =
max(r, L) > L = ||z — 27 llx = llo7e ls.

1L > r, from Lemma 22, oze|[% > L(loe [l1)2 = L?/r. Moreover ||oz |3 = ra® = L? /r, thus o< % /llor %
1. Combining with (134) yields DL (]| - ||+) = 1 = min(1, L/r).

If L < r, we have zpe € Xy hence ||z7¢||% = L and ||lzr¢||%/||27]|3 = L/r. This shows that Dy (||-||«) > L/r =
min(1, L/r). To conclude, we show that Dr(|[-||«) < L/r. Consider any 2’ € Ty, (¥) such that [supp(z')| = r+L,
with Lemma 18, there is a support v/ and H = 1,..,7’ such that ||z}|l« > [[z}cll«, let T a set of r largest
components of 2. We have ||z ||« — [|25pe ||« > |21+ — |c |- As |leig(z')|lo <7+ Land L <7, 2/n. € ¥ C 2>

hence ||z |5 = ||#%c || p. Moreover, |eig(z);| > |leig(z/c)|loo for any i € T', hence ||24||% > r|leig(z/e )% As
a result ) Lo )

l=rells _ I=gelly _ Llleig(zpe)llse L)

lzplE llzpllE ~ rlleig(zpe)llZ

[m}

Lemma 26 Let X = X, be the set of n X n symmetric matrices with rank at most r with r <n/2, and 1 < L <
n—r. Assume R is positively homogeneous, subadditive and nonzero. Consider the supports Ho = {1,2,..,7} and
Hi={r+1,...,r+ L}.

Up,vp) € ar max UTdiag(v)U 135
Wo,v0) € ong,_max [V atag(0)U (135)
(U1,v1) € arg min lUT diag(v)U||a- (136)
UeEO(n),vEQH: UU,I:TUZ+1:T+L:O
We have
2
c L
DFE(R) = sup % > min (1, —) . (137)
2€TR(D\{0}:[swpp(2)|=r+L 27 lE r

Y
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Proof From Lemma 19, R*(Ul diag(v1)Us = LR* (UT diag(vo)Uo), R(UT diag(vo)Up) > 0 and

R(UT diag(v1)U1)/R(UT diag(vo)Uo) < L/

Since R(vo) > 0, R is positively homogeneous and X' is homogeneous, by Lemma 14, z = —ocUgdiag(vo)Uo +
Ul'diag(v1)U1 € Tr(X) with a := max(R(U{ diag(v1)U1)/R(UT diag(vo)Up), 1). Observe that |supp(eig(z))| =
|Ho|+|H1| = r+ L. Since a > 1 and all nonzero entries of vg, v1 have magnitude one, a set of r largest components
of z is T = Hp. We have

lorell3, _ 0T atag(on)Us 3 (139)
lerll% ra? '
With Lemma 22, we have
2
UL diag(v1)UL||% > %||U1Tdiag(v1)U1||z = LT ifL>r (139)
UL diag(v1)U1]|% = UL diag(v1)U1]|% otherwise (Fact Al).
IfL>r
||ZT°||2Z‘ L? L? -1 140
2 = 2.2 = 2 2 (140)
Iz |I% 2o r2max(L/r, 1)
fL<r,
2
e L L
llzr 1% ra? r
which leads to the conclusion.
O

A .6 Proofs for Section 4

We extend notations for classical sparsity to sparsity in levels (X' = X, i, ). For z = (21,22) € H, we we define
the following projections Pi(z) := z1 and Pz(z) := 22 and denote T' = (S1,S2) = T'(z) where for ¢ € {1,2},
Si C {1,...,n;} is a support containing k; largest coordinates (in absolute value) of z;, i.e. |S;| = k; and
minjeg, |2i,;] > maxjese |2 ;] For every U = (U1,U2) where U; C {1,...,n;} and |Us| = k;, we also have
Iza)s, I > Iz6)u, s hence fizrllw > [zl and similary [|zzellw < Jovello-

We define similarly To = T2(z) = (57, S5) with S/ containing 2k; largest coordinates of z;. We begin by
simplifying the condition z € T, (£) \ {0}.

Lemma 27 Let w = (w1, w2) € R%. Let || - |lw = wi||PL(-)|l1 + wal|Pa()ll1 Let z € Ty, (Zky kz) \ {0} then
llzrellw < llzr llw- (142)

Reciprocally,
llzrellw < llz|lw (143)

implies z € T)|. ||, (Zky k2 )-
Proof By definition, if z € 7)., (X, ky) \ {0} then there exists © € Xy, , and v € R\ {0} such that z = vy
and ||z 4 yllw < [|2]w. With U := supp(z) we have [lyve|w + (2 +y)vllw = |2 + yllw < [[2]lw = [[zr[lw- By the
triangle inequality this implies

lyoellw < llzvllw = (@ +Y)vllw < lyullw- (144)
As v # 0, we obtain ||zye|lw < ||zv||lw. We have

llzrllw = lzvllw 2 lzvellw 2 llzre |lw. (145)

To calculate Bx: (|| - |lw) (see definition in Corollary 3), we need a few lemmas.
Lemma 28 Consider wi,w2,k1,k2 > 0 and 81,82, > 0 and

V := min kla% + k:goz% s.t. a1 > B1, az > B2, kiwial + kowaaz > A (146)

aq,022>0
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— If A < kyw1B1 + kawafB2 then V = klﬁ% =+ kgﬁg
— If X > kiw1B1 + kawafB2 then the minimum is achieved at o, ab such that kywiaj + kawaaj = X. Moreover
— if A> (klw% + kzwg) max(f1 /w1, B2/w2) then

_ . ko2 4 koo = 22 /(k1w? + kow?2):
v 01704220,1011,211{1%@102&2:)\ 10+ k2ag /(1w + kaws);
— otherwise
A—k 2 A—k 2
V = min (]ﬁﬁ% + %Jwﬁg + %) > )\2/(k1w% + k‘gw%).
kaws kiw]

Proof Consider the change of variables * = vkia1, y = Vkaagz and denote zg := Vk181, yo := Vka2B2, a :=
Vkiwi, b := v/kawaz. This leads to the equivalent problem

min z2+y2 s.t. > xo,y > yo,ax +by > A
z,y>0

which involves a convex objective to be minimized over a polyhedral constraint set. If axzo + byo > A, i.e., if
ki1wi1B1 + kawaB2 > A, then this problem is equivalent to

min z2 + 92 st. x> z0,y > yo
z,y>0

which is minimized at (zo,yo), with value z% + y% = klﬁf + kgﬁg. Otherwise, the candidate optima must satisfy
the constraint ax + by = A, hence y = (A — az)/b and the problem is equivalent to

. 2 2 /32
min z“ 4+ (ax — X)7/b”. 147
sz By ¢ '/ (147)
The unconstrained minimum of (147) is at x* satisfying 2o* + 2a(az* — \)/b% = 0, i.e., , z* = %, leading to
y* =\ —az*)/b= % and to an optimal unconstrained problem value

(@)% + (y)? = A2/(a® + %) = A/ (k1w + kaw3).

This is also the value of the constrained minimum of (147), provided that zo < z* < (A — byo)/a, i.e., that
A > (a? + b?)max(zo/a, yo/b) = (k1w? + kow?) max(B1/w1, B2/w2). Otherwise, the constrained minimum is
either at x = x¢ and y = (A — axo)/b, so that z2 + y2 = a:g + (A —axp)?/b%; or at y = yo and = = (A — byo)/a, so
that 22 +y2 = y2 + (A — byo)?/a?. The value at the optimum is then min(z2 + (A — az0)? /6%, y2 + (A — byo)?/a?),
which is necessarily larger than that of the unconstrained minimum. Once translated in terms of the original
variables, this yields the result. [}

Lemma 29 Let p >0, k1,k2, L1, L2, wi,w2,A >0

L1B? + Lyf2

1>m’ax> kl 12 % 5 S wl( 1 1) 1 'LU2( 2 2) 2 ( )
8 equal to

L;)\2
max .
i€{1,2} pw%(ki + Li)2 + ki A2

(149)

Denoting i* the index maximizing this expression, the mazximum is reached for B;+ = m (and B; =0
forj #1).
Proof Let ¢ > 0. Observe that
L1B2 + L2 (150)
p+ki1B? + ka3 ~
is equivalent to
(L1 — ck1)B? + (L2 — ck2)B2 > cp. (151)
With the change of variable b; = w;(k; + L;)B; we have b1 + ba = X and (151) reads
L —ck Lo — ck
(L —cky) o, (L2=cka) (0 yp25 ., (152)

wi (k1 + L1)? w3 (k2 + L2)?
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The left side is mazimized (with respect to 0 < by < X) for either by = 0 or by = A. The initial inequality (150) is
thus feasible if, and only if, the maximum of the left hand side of (152) over these two values verifies the inequality

(Li —cki) o

max ————\° > ¢ 153
ie{1,2y w?(k; + Li)2" ~ P (153)

i.e., if there is i € {1,2} such that (L; — ck;)A2 > cpw?(k; + L;)2. This is equivalent to L; A2 > c(pw?2(k; + L;)? +
k;A\2) and

LiA?
e<— i\ _ (154)
pw? (ki + Li)? 4 kA2
O
Lemma 30 Consider wi,ws, B1,B2,¢ >0 and
V= sup 67 + 63. (155)

0<6; <B;,w101+w202<c

Denoting (¢,7) € {(1,2),(2,1)} such that weBe < wrBr, we have

1. if ¢ <wePBe then V = max;e 1,2} (c/w;)?;

2. if weBe < ¢ < wrBr then V = max((c/wr)?, BZ + [(c — weBe) /wr]?;

8. if weBr < ¢ < wif1 +w2fz then V = max(; jye(1,2),(2,1)} B + [(c — wiBs) /wy]?;
4. if ¢ > w1 B1 + w2f2 then V = Bf + Bg;

Proof The optimum V' is the maximization of a quadratic form within the intersection of a rectangle and a half-
space delimited by an affine function. Using standard compactness arguments there exists at least a maximizer
(0%, 03) of the considered expression. If 87 < ; for some i € {1, 2} then the constraint ¢ = w1607 +w203 is satisfied
(otherwise, we would have 0 < 0;‘ < B; and w161 + w262 < ¢, and we could exhibit other 6; > ;% still satisfying
the constraints and such that 9% + 9% is increased), hence w151 + wa2f2 > w107 + w205 = c.

Vice-versa if w11 +w282 > c then since (07, 03) satisfies all constraints we have w107 + w265 < ¢ < w1 B1 +w2P2,
hence there is at least one index ¢ € {1,2} such that 8] < 8;. We can thus consider the following cases (depending
on the shape of the domain):

o if w1B1 + w22 < ¢ then for each i € {1,2}, 6 = B; hence V = 5% + 5% as claimed;
e otherwise, i.e., if w181 + w2fB2 > ¢, we have w107 + w203 = ¢ and we distinguish three cases:
(a) 07 < B1, 05 < Ba: then, since 05 = (c —w107) /w2 where 0} is a maximizer of 67 + [(c — w1601)/w2]? under
the constraint 0 < 01 and ¢ — w161 > 0, there is (4, ) € {(1,2),(2,1)} such that 07 = 0 and 0} = c/w;.
This is feasible provided that c¢/w; < S;.
(b) 67 = p1, 05 < B2, hence 65 = (¢ — w1B1)/w2. This satisfies 0 < 65 < B2 if, and only if, ¢ > w161.
(c) 07 < B1, 03 = B2, hence 6] = (¢ — w2f2)/wi. This is feasible provided that ¢ > w2fB2.
‘We now discuss the possible cases depending on the value of c:

— ¢ < wgfy: (a) with any (i, 5) € {(1,2), (2, 1)} is feasible; (b)-(c) are unfeasible, hence V' = max;c (1 2} (c/w;)?.

— ¢ > wyBr: (a) is unfeasible; (b)-(c) are both feasible, hence the claimed value of V for this case.

— wyBe < ¢ < wrBr: (a) is feasible with (4, 7) such that ¢ < w; s, i.e., , with (¢,5) = (r,£), leading to a value
(9;)2 +(07)? = (c/w;)? = (c/wr)?; (b) is feasible provided that ¢ > w11, i.e., that (r,£) = (2, 1), leading
to a value (07)24(05)2 = B2+ [(c—w1B1)/w2]? = B2+ [(c—weBe)/wr]?; similarly, (c) is feasible provided
that (r,€) = (2,1), leading to a value (63)° + (07)% = B3 + [(c — wsB2)/wr)? = BF + [(c — weBe) /wr]2.
Overall, this leads to V = max((c/wr)?, B2 + [(c — wefBe) /wr]?.

As in the case of the £! norm for sparsity and the nuclear norm for low-rank matrices, we compute B (|| - ||w)
(see definition in Corollary 3) via intermediate quantities BL1:L2 (w) that we now introduce and control. We find
an expression consistent with the ¢! case.

Lemma 31 Consider weights w = (w1, w2) with w; > 0 and integers k; > 0. Denote for any integers L1, Lo >0

2 2
2 1.3
BRE2 (w) = sup o
a;>B;>0,81+B2>0 27;:1 ki(ai + BZ )
Y2 (kjwia;—w;i(ki+L;)B;)=0

(156)

For m € {1,2}, consider

L183 + LaB3 + [(Ch (kswia; — (ki + Li)w;Bs) /wm)]?
m L 7L ’ El ’ ’ = .
gm (L1, L2, a1, az, B1,B2) Zlgzl k(a2 + 2)
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We have

sup gm (L1, La, a1, 02, B1, B2) < BE1L2(w). (157)
a;,B;:0<B8;<a;;B1+B2>0
Y2 (ki+Li)wiBi <37 kiwiay

(158)
Proof First we show that there exist af € Ry, € Ry such that

gm(L17L27O!I7Oé§,ﬁT,BS): sup gm(L17L270417(1’2751752) (159)
a;,B:0<B;<a;;B1+B2>0
Y2 (ki+Li)w; B <37 kjw;oy

with 0 < 8 < af; 87 + 85 > 0, and Z?zl(ki + L)w;B; < E?zl kjw;o. Indeed, given any oy, 3; satis-
fying these constraints, setting ﬁ; = B;/(B1 + B2), a; = o /(B; + Bj), we have gm (L1, Lo, o), af,B81,85) =
gm (L1, L2, a1, a2, 1, B2) hence the supremum is unchanged if we impose 8] + 85 = 1 instead of 81 + B2 > 0.
Given any such pair 31, 85, Lemma 28 yields the optimum over «; satisfying the constraints, and as the resulting
expression is continuous with respect to B;, the existence of a maximizer follows using a compactness argument.

We will soon prove that >, (k; + Li)w; 8 = >, ksw;a. If this equality is verified, since 0 < 8F < of, we
obtain the desired result

Z?:1(Li5?)2

gm(L17L27aT7a§76{75>2k): * *
Ty ki((a)? +(87)?)
2 2
21,57
< sup 5 iz Lib; = BLluL2(y). (160)
a;,B;:0<B;<a;;B1+B2>0 Zi:l ki((ai)2 + (51)2)

32 (ki+Li)wBi=>2_1 kjw;oy

For the sake of contradiction, assume that >, (k; + L;)w; 8 < >, ksw;a, then with the shorthand C :=
gm (L1, L2, a7, a3, BT, B3), we have

(3

(O kiwia; = (ki + Li)wi ) /wm]® + > (Li — Cki)(8)> = C > ki(aj)*. (161)
Since gm (L1, L2, a1, a2, B1,B2) < C within the constraints of (157), (87, 85) maximize

h(B1, B2) =[O kiwiag — > (ki + Li)wiBi) /wu]* + > (Li — Chky)(B;:)?
1 1 1

among all 31, 82 such that 0 < 3; < af, f1 + B2 > 0 and Z?:l(ki + Li)w;B; < Z?:l kiw;a .

Consider j € {1, 2}.

If C > Lj/kj, then h is decreasing with respect to 8; on the considered range, hence BJ* = 0. Otherwise
C < Lj/kj, and since h is a second degree polynomial in 8; with positive leading coefficient, its maximum is at
one of the extremities of the optimization interval, i.e., since we assumed ), (k; + L;)w; 87 < >, kjw;of, at least
one of the constraints B]* =0, B]* = oz; is reached.

Since the optimum satisfies all constraints of (157), we have 8} + 85 > 0, hence in light of the above
observations there is at least one index j € {1,2} such that C' < L;/k;, and for which we have 5;‘ = a;‘. > 0.

Since Ele kiw; 87 < Zle(ki + Ly)w;BF < Zle kiw;olf, both constraints 8] = of, 85 = oj cannot be
reached at the same time hence there is (i,5) € {(1,2), (2,1)} such that 8} =0, B]* = oz;f and

Li(B5)? + [(kiwiaf + kjwjay — (kj + Lj)w;B5)/wm]?
C =gm(L1,L2,a7,03,67,85) = 2 " L " = (162)
" prm e ki(a)2 + kj(ah)? + k;(87)2

Lj(oz;)2 + [(kiwsaf — ijja;)/me

= Fe(@)? + 2Ky (o )2 | (163)

This can be rewritten (L; — QC’kj)(oz;f)Q +[(kswial — Lijw; oz;f)/wm]2 = Ck;(a})?. Observe that any a1, az, 81, B2
such that 8; = 0, 8; = o5 > 0, oy = o, and Ljwjo; < k;wsof satisfy the constraints of (157), hence
gm(L1, L2, 1, a2, 81, 82) < C, or equivalently

(Lj = 2Ckj) () + [(kiwia} — Lijwja;)/wm]® < Cki(af)? (164)
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Thus, a;f maximizes the left hand side of (164) under the constraint 0 < Ljw;a; < kjwso . If L—2Ck; <0, then
the left hand side of (164) is decreasing with respect to a; in the considered range, hence a; = 0, which is not
possible since 0 < 81462 = B* = a}. Therefore we must have L; —2Ck; > 0, hence the left hand side of (164) is a
second degree polynomial in «; Wltfl positive leading CoefﬁClent Its maximum is achieved at one extremity of the
interval constraint : the case a] = 0 was already ruled out as impossible, hence L;w; a] = kjw;a;. This implies
(kl‘ —+ Ll)wiﬁ;k —+ (kj —+ Lj)wj'ﬁj’f = (kj + Lj)wj =k ’LUJCV + k; wla
the assumption that Y, (k; + L;)w; 8 <>, klwlal

7, which yields the desired contradiction to

O

Lemma 32 Consider weights w = (w1, w2) and integers k;,n; such that 1 < 2k; < ng and X = Xy, p, C
R™ x RY, i € {1,2}. We have

Byl ) = _ max  BE2(w) (165)

where BE1:L2 (w) is defined in (156).

Proof We use the same proof method as in Lemma 17. With the notations T' = T'(z),T2 = T2(z) from the
beginning of Appendix A.6, denote 7" = T2 \ T' so that ||zr¢|lw + [[27[lw = [[27¢[|w. By Lemma 27, we have

llzrg 13
Bs(|l - [lw) =

up . (166)
#1270, |21 ||w+||szHw<||zT||w [ENIF

We now show that this expression can be simplified by maximizing over vectors z with a particular shape.
Consider z a vector satisfying the constraint in (166). Replacing each entry z; of z with its magnitude |z;| leaves
the constraint (as well as the maximized quantity) unchanged, hence without loss of generality we can assume
that z has nonnegative entries z; > 0. Similarly we can assume without loss of generality that for each i € {1, 2},
the index set S; = [1, k;] indexes k; largest entries of P;(z) and S} = [1, 2k;] indexes 2k; largest entries.

Given some j € {1,2}, consider two (equal or distinct) indices in S; and the vector Z obtained by keeping
unchanged all entries of z, except those indexed by these indices which are replaced by their average. This has
the following effect:

1. Each S; (resp. S}), i € {1,2}, is a set of k; (resp. 2k;) largest coordinates of P;(Z), hence T'(2) = T' = (51, S2),
Ta2(2) =Tz = (51,83), T'(2) =T' = To\T, 275 = 215, Zp/ = 27/, and the support of P;(2), ¢ € {1,2} is the
same as that of P;(z).

2. Denoting a,b > 0 the values of the two considered entries, since (a + b)/2 + (a + b)/2 = a + b, we have

1175 (2)]s, ||1 = [I[Pj(2)]s;]l1, and we obtain that ||Zr|lw = |lz7]lw, hence Z still satisfies the optimization
Constramt
3. As||Zrgll2 = llzzgll2 and |25, |5 — |21, I3 = 2[(a+b)/2]> —a® —b* = —(a—b)*/2 < 0, hence ||Zrg |3/l 21, [13 >

l|Zrg 12/||27, |12 where the inequality is strict as soon as a # b.

All the above imply that, without loss of generality, we can restrict the optimization to vectors z such that, for
i € {1,2}, all entries of zg, are equal. We denote c; > 0 their common value. A similar reasoning with S}\Sj
instead of S; shows that we can also assume without loss of generality that all entries of Z50\8; i € {1,2}, are
equal. We denote (8; > 0 their common value.

The value of the smallest component of [P;(z)]s; is a;, while the smallest component of [Pi(z)}sé is min(ay, ;).

—2k;

Denoting z; = P;(z)(g1)c, we have z; € R’} and the largest component of [P;(2)](g/)c is ||z;lcc. Hence, S;

and S] are respectively a set of k; and 2k; largest components of P;(z) if, and only if, ||z;|lcc < 8i < oy.
Finally, we observe that [[27|lw — [l27/[lw — lzrg[lw = wikicar +wakaaz — wikif1 — waka B2 — wil|z1]l1 —
wal|lz2|ly, lzrg 12 = |lz1]|2 + ||z2||2 and ||z7, ||3 = k102 + k22 + k182 + ko32. This establishes

2
Zi:l ||331||§

Bs(|-lw)= sup  sup sup ==t 2 (167)
Bi:By20 ajia;>B; i oo <85 S ki(a? +52)
P1+62>0 Y2 willzi 1 <2y kiwi(a;—B5)

where the restriction 81 + B2 > 0 simply follows from the fact that when 81 4+ 82 = 0 we have z1 = x2 = 0 which
leads to a sub-optimal objective value. To show that the supremum in (167) is achieved, observe that both the
constraints on y := (a1, a2, f1, B2, £1,x2) and the quantity f(y) that is maximized are invariant by multiplication
by a positive constant factor. Hence, the supremum is unchanged if we add a scaling constraint. e.g. by fixing
[lylloo- This leads to the supremum of a continuous function over a compact set (the unit £ ball), hence there
exists a, 87,z reaching the supremum in (167).
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Thanks to Lemma 16, given the constraints (depending on «; and §;), the maximisation w.r.t x; is reached
with vectors with the shape

(6’i7"'75i7€i7 0,...,0 )
— ——
Li ni—2k; —(L;+1)20

with 0 < 0; < B;, 0 < L; < n; — 2k; — 1, including potentially L; = 0 (case of vector x; with a single nonzero
coordinate 6;). We deduce

2 Lif? + 062

Bo(ll-llw) = sup sup sup : (168)
B;:8;20 agia;>B; L;,0;:0<L;<n—2k;—1,0<60;<8; Z?:l ki(a? + B2)
B1+H2>0 2 L wi0; <32 (kjwia;—w;(ki+L;i)B;)
Hence, denoting
?:1 Liﬁ? + 91'2
f(L1, L2, a1, a2, 81, B2) = sup —2 . 2 a2 (169)
0;:0<6,<8; i=1 ki(ai + BZ )
32 wi0;<3 2 (kjwioy—w; (ki+L;)B;)
for parameters «;, 3;, L; such that ¢ := Z?:l(kiwiai —w;(k; + Li)B:) > 0, we have
B . = ma; su su Li,La,01, .
2 llw) o< I g1 , 5P . f(L1, L2, 01, a2, B1, B2)
B1+P2>032 | kjwia; >32 (ki+Li)wB;
f(L1,L2)
(170)

To continue, we bound f(L1, L2) via characterizations of f(L1, L2, a1, a2, 1,02) in different parameter ranges.
The supremum in (1692 is covered by Lemma 30 hence we need to primarily distinguish cases depending on
relative order of ¢ = 377, (ksw;a; — wi(ks + Li)Bs) > 0, w11 + w2B2, w1P1, and wafz2. This suggests to write
f(L1,L2) = max,eqo,1} fu(L1, L2) where

fo(L1,L2) := sup f(L1, L2, 01, a2, b1, B2) (171)
Bi o;:0<B;<a;,B1+B2>0
Y2 kijwiai >332 (ki+Li+1)w; By
f1(L1, Lo) := sup f(L1, L2, a1, a2, B1, B2). (172)
Bi,a;:0<8;<a;,B1+B2>0
2 (ki+L)w; B <32 kjwio; <32 (ki+Li+1)w, B

To express fo(L1,L2) and bound fi1(L1, L2), we use the functions gm, m € {1,2}, from Lemma 31.

Expressing and bounding fo: if Z?:1 kiw;o; > Z?:I(ki—i—Li—i—l)wiBi then ¢ > w181 +w2B2 hence Lemma 30,
case 4 yields

i (Li +1)87

f(L1, L2, a1, a2, B1, B2) = (173)
Z?:1 k‘z(af + 522)
2 2
°_(L; +1)63
Jo(L1, L2) = sup 22“1(—12); (174)
0<B;j<a;,B1+B2>0 Zizl ki(ai +Bz)
Y2 kijwia; >3 2 (ki+Li+1)w; By
2 2
‘ L; 1)5*
Lemma 28 sup —221:1( Z;L )ﬁ; = BLatLLz2+1 () (175)
0<B;<a;,81+B2>0 Zizl ki(ai +Bz)

YI kiwiay=27_ (ki+Li+1)w;B;
As a result

BlitbLLatliyy < max BLII’Lé(w) (176)

fo(L1,L2) < max <
0<L;<n;—2k;—1 0<L/<n;—2k;

Bounding fi: we denote (¢,7) € {(1,2),(2,1)} a pair such that wy8y = min; w;8; < max; w;B3; = wrBr.
When Z?:l(ki + Li)w; B; < Z?:l kiw;a; < Z?:l(ki + L; + 1)w;3; we can distinguish three cases.
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1. if (kZ + LZ)wZﬁZ + (kr + Lr + 1)wr5r < 212:1 kiwio; < Z?:l(ki + L; + 1)’LU7;67; then max(wlﬁl,wgﬁg) =
wrBr < ¢ < wiB1 4+ waB2 hence Lemma 30, case 3 yields

max (Lu + 1)53 + Lvﬁg +[(c— wuﬁu)/wv]Q
(u,0)€{(1,2),(2,1)} 2 ki(a2 + B2)

f(L1, L2, a1, a2, B1, B2) = (177)

=gv(LY,LY,a1,a2,81,82), Li,=Ly+1,Li=Ly

2. if (kg+Le+1D)weBe+(kr+ Ly )wrBr < Z?:l kiw;o; < (ke+Lg)weBe+(kr+Lyr+1)wy By then min(wi B1, w2f2) =
weBy < ¢ < wrfr = max(wi 1, w2P2) hence Lemma 30, case 2 yields

L1B} + LaB3 + (c/wr)? (L + 1)BZ + Lr B2 + [(c — weBe) /wr)?
Z?:l ki(a? + 522) 7 Z?:l ki(%2 + 522)

gr(L1,L2,a1,a2,81,82) gr (LY, LY, a1,02,81,82), Ly=Le+1,L}.=Ly

f(L1, L2, a1, a2, B1, B2) = max . (178)

3. otherwise Z?:I(ki-‘,-Li)wiﬁi < Z?:1 kiwia; < (ke+Le+1)weBe+ (kr+ Ly )wrBr, hence ¢ < min(wi B1,w2B2)
and by Lemma 30, case 1

L1B? + L2f2 + (c/w1)? L1B? 4 L2B2 + (c/w2)?
Siaki(e?+87) T Tiikilad +58Y)

91(L1,L2,a1,02,61,62) 92(L1,L2,a1,02,61,B2)

f(L1, L2, a1, a2, B1, B2) = max (179)

Thus, in the range of ay,3; involved in the definition of f1(L1, L2) as a supremum, there are integers 0 <
L} < nj —2k; and v € {1,2} such that f(L1, L2, a1, a2, 81, B2) = go(L}, L), a1, az, B1, B2). We will shortly prove
that given the relations between L) and the considered range of a;,8; we have

2 2
Z(kl —+ L;)wlﬁl < Z kiw; . (180)
=1 i=1

hence using Lemma 31 we obtain g, (L], Ly, a1, a2, 81, B2) < BL1LL ().
This implies
fi(L1,Lo) < max  BLULa(yw)
0< L/ <n;—2k;
and, combined with (170)-(176), yields the upper bound

ax  max(fo(L1,La), fi(L1, L)) < max  BFiTa(w). (181)

B . = m
s w) 0<L,<n,;—2k; T 0<L[<n;—2k;

Proof of (180). We treat separately the three cases respectively associated to (177), (178), (179).

1. When Z?:l(ki + Li)w;B; < Z?:l kiwia; < (kg + Lg + 1)weBe + (kr + Lr)wrBr, by (179) there is v € {1, 2}
such that f(L1, L2, a1,a2,81,B82) = go(L}, L}, 01, 02,B1,B2) with (L}, L}) = (L1, L2). We observe that
S (ki 4+ L)wiBi = Yoy (ki + Li)wiBs < 307 kiwicv;.

2. When (kg + Lo)weBe + (kr + Lr + DweBr < 37 kiwics < 37—y (ki + Li + DwiBs, by (177), we have
f(L1, L2, a1,a2,B1,B82) = go(L}, Ly, a1, a2, B1,B2) where (L}, L4, v) € {(L1 + 1, L2,2), (L1,L2 + 1,1)}. If
(L%,L’T) = (Lg¢, Ly + 1) then Z?:l(ki + L;)wiﬁi = (k¢ + Lo)weBe + (kr + Ly + 1)wyBr. Otherwise we have
(L}, LL) = (Lg+1,Ly), hence 37 (ki + L)w; B; = (ke + Lo+ 1)weBe+ (ke + Lr)wrBr < (ke +Le)weBe+ (kr+
Ly + 1)wyBr since wy By < wyBr by definition of r, £. In both cases we get 2?21 (ki + L)w; B; < 2?21 kiw;ay.

3. When (kg + Lo+ l)ll)gﬁg + (kr + Lr)wrﬁr < Z?:l kiw;a; < (k[ + Lg)wgﬁg + (kr + Ly + 1)wrﬁr, (178) yields
f(Ll,Lg,Ozl7 ag, 61752) = gT(Lll, L’2,0417 ag, 61752) with (LZ7 L;) e {(Le7 LT), (Lg + 1, Lq«)}, hence we have
2 (ki + L)wiBi < (ke + Lo + DweBe + (ke + Le)weBr < 37 kjwioy.



A theory of optimal convex regularization 45

As these three cases cover all possibilities, we deduce bound (180) as claimed.
To conclude, we obtain a lower bound on Bx (|| - ||w). Consider any 1ntegers 0 < L; < nj —2k; and any scalars
a;, Bi such that 0 < 3; < ay, B1+ B2 > 0 and > ;_; (ki + Li)wiB; = Zl 1 kiw;a;, and let z = (21, 22) where

zi = (Qiy ooy 04, Biy o Biy, 0,...,0 ).
—_—— — ' ——
ks ki+L; n;—(2k;+L;)
We have ||zr||w = k1wiar + kowaas = (k1 + L1)w1B1 + (k2 + L2)w2B2 = ||zr<||lw hence, by Lemma 27 and the
definition of Bx (]| - ||lw),
l2rg 13 2 L;B?
By (- llu) > S DS Rk - (182)
” 2”2 E:ﬁzlki(ai +’ﬁi)

Taking the supremum over a;, 3; under the considered constraints yields B (|| - ||w) > BY1F2 (w). We deduce

. > L1,L2 .
Be(ll - [lw) = ocp 22X, B (w)
[m]
We give a characterization/lower bound (depending on w) of the intermediate BL1:L2 (w).
Lemma 33 Consider w = (w1, w2), 0 < Ly < n; — 2k, and BL1:L2(w) defined as in Lemma 31. We have
L;/k; L;/k;
max % < BL1:Lz () < max # (183)
(1,5)€{(1,2),(2,1)} 1= (L [ki)2 +2 (6,5)€{(1,2),2,1)} vi(Li/ki +1)2 + 1
with v; = W and p; = %]L for (i,7) € {(1,2),(2,1)}. The rhs is an equality if v; > +——— T +L , Vi e {1,2}.
Proof For L1, Lo such that L1 + La > 0, we rewrite BL1:L2 defined in (156) as
L1582 + Lof33
BL1:L2 (w) =sup sup sup 5 1[3; + 2622 5-
A>0 B;:61,82>0 ooy >B1 kia3 + kaos + k157 + k253 (184)

2 wi(ki+Li)Bi=X z kiwia; =X\

For fixed A > 0 and 1, B2 such that 212:1 w; (ki + Li)Bi = A\, we have A > 212:1 w;k;B; hence, by Lemma 28,

L15% + Laf32
BLl’LZ(w)ﬁsup sup 181 + Loy

A2 2 2" (185)
A>0 B1>0,82>0 ——— + k187 + k2
wy (k1+L1)51+w2(’€2+L2)52— kiwi+kows g &

with equality if the maximizers X, 3; of the right side satisfy the constraints A > (k1w?+kiw?) max(Bl/wl , Ba Jwa2).
kjw?

Consider (4,7) € {(1,2),(2,1)}. Since v; := oy 21/(k 5= 2"“;' 5, we obtain by Lemma 29
Wy /AR Wy Wi TR Wy
L;\2 L.k
Bl L2 (w) <sup max 5 iA = max % (186)
A>006{1,2} — 2 2(k; + L;)2 + kA2 (6)E((1,2),20} vi(Li/ki +1)? +1

k1 w% +hkows

This establishes the upper bound in (183). Denoting (i*,7*) maximizing the right-hand-side expression above,

and using the optimal values from Lemma 29, BZ* = (with Bj* = 0 and an arbitrary A > 0), we

D S
wix (kjx+L;x)
have max(@l Jwi, Bg/wg) = By» Jwix = m hence equality holds in (186) if the following inequality is
satisfied ! 1

kiw? +kwd)———————— < 1,
( 1w+ le)w.Q (k:z* +L.*) -

or equivalently if < 1. This is guaranteed as soon as vy > —%— for every £ € {1, 2}. This establishes

T <
the equality case in the rhs of (183).

We now treat the lower bound in (183). For fixed 8; > 0 and A > 0 such that (k1 +L1)w1 81+ (k2 + L2)w2 82 =
A, we still have A > kw181 + kawaB2. By Lemma 28, letting

k+L

V = min kla% + kza%,
g2 B; (187)
12:1 kjwia; =X\

we either have
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_ p’zlnnl(klgf4,k2(é:ﬁgg%£h)27k25§4,kl(é:ﬂgggég)2);

kow kqwy
— or

V = A2/(kiw? + kow3) = min kia? + kaad
ajia;>0
ZZ 1 kiog=X

A — klwlﬁl

)2, k283 + ka( (188)

< min (klﬁl + ko Mf)

k1w

where the last inequality was obtained by evaluating kla% + kga% at a1 = B1 (resp. at ags = B2) with a2
(resp. a1) tuned so that kiwioq + kawaag = A.

We deduce that V' < min (klﬁl + kg(M)2 k282 + kl(%) > and it follows using (184) that

L1B% + Lyf33
BL1L2 () > sup sup 181 + Laf;

A>0 B8;:B1.B2>0 k Fho(2= k1w151 2 k + k(2= kzwzﬁz 2) 4 k(B2 + ko 32
Y wi(kifLi)Bi:)\ mln( 161 2( % 2ﬁ2 1( ) ) 1ﬁ1 262

L1B8? + L2 32
= sup

52 ﬂi:Li(}c,L:?Lzow 1mm (k151 +k2(M)2 k262+k1(1 kzw252)2> + k182 + ko 32
=1 wilk; i)Bi=

L1B? + Lyf2 L1B8? + L2 32
= sup max 2 1-kjwiB1y2’ 2 2 1—kawaB2 2
Bi:B1.B2>0 2k1BF + k23 + ko (L0 )2 kBT + 2k2 83 + k1 (F22R2)
2 kawa k1w
s wi(ki+L;)Bi=1
(189)
For (i,7) € {(1,2),(2,1)}, using the values Bi = m,ﬁj = 0, we have
52
BL1,L2 (w) > Llﬁi _ ) (190)
- 3 1-kjwiB;
2k; B2 + kJ(TwJ’B)Q
Since 1 — k;w;3; = w; (ki + LZ)B, — k;jw;B; = w;L; B;, we have
Lz@f 152 _ L;
kB2 1y (i) DB+ (R 2kt (P
i Wi iWj
Since v; = W, we have (1 —v;)/v; =1/v; — 1= kjw?/kiw?. We deduce
BLuLa(y) > L; _ _ L;/k; S L;/k; _
ok B MU (k2 2 T (Le/k)? 2 (191)
kjwys
[m}
The following function study will be used to deal with the optimization of the BL1:L2 (w).
Lemma 34 Consider a such that 0 < a < 1. The function
u
tu >0 ja) = 192
gu2 0 gi(ua) = ot (192)

is mazimized at ui = /1 + 1/a, increasing for u < uf, decreasing for u > uj and
. 1
g1(uj;a) = 5(\/1—1—1/@—1). (193)
—au +a

W, the equality g7(u};a) = 0 implies a(u})? = a+ 1 and u? = \/1+ 1/a.
Given the sign of g/ (u;a), g1(-; a) is increasing for u < u} and decreasing for u > u}. As a = [(u})2 —1]7! we get

w¥((u* 2 _ w¥((u* 2 _
fila) = gu(ui,a) = o ;Sgﬁ (UI)IQ) i 23({);) T 2:,13 = Ji-D=(/IFa-1) (9

Proof Since g} (u;a) =

which is decreasing with respect to a.
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Lemma 35 Consider 0 <a <1, gi(u;a) := m and g2(u;a) := ﬁ and define
hi(u, v;a) == max(g;(u; a), gi(v; 1 — a)), i € {1,2}. (195)
_ . V3-1

1. For a =1/2 we have hi(u,v;1/2) < ¥5== for every u,v > 0.
2. Ifa¢ a1 —a), where a:= 23 — 3~ 0.46 then h2(2,2,a) > Y3=1.
Consider integers such that k; > 2, 1 < 4k; < n; fori € {1,2} and

H = h1(L1/k1, La/ka;a).

1(“) Ongi}ff%i 1( 1/ 1, 2/ 270)
3. There exists a* € [a,1 — a] such that Hi(a*) = minge[s,1-a) H1(a).
4. Consider a € [a,1 — a] then
Hi(a) = max ( max g1(L1/k1;a), max g1(La/ka;1 — a)) .
Lie{lk1/1+1/a];[k1y/14+1/al} Loe{lka/1+1/(1—a)];[k2/1+1/(1-a)1}

where |-] and [-] denote the lower and upper integer part. Moreover, the L} mazimizing the above expression
are such L] /k1 > 1/a—1 and Lj/k1 > 1/(1 —a) — 1.

Proof Item 1. By Lemma 34, with a = 1/2 and any u,v > 0 we have g1(u;a) < g1(uj;a) = %(\/1 +1/a—1)=
(v/3 —1)/2 and similarly g1(v;1 — a) = (v/3 — 1)/2 hence hi(u,v;a) = (v/3 —1)/2.

Item 2. We prove the inequality for a < a. Since h2(2,2;1 — a) = h2(2,2;a) by definition of hg, the same
inequality holds if @ > 1 — a. For a < a since a < 1/2 we have a/(1 — a) < (1 — a)/a hence using the definition of
g2 we have g2(2,a) > g2(2,1 — a). By monotonicity of a — (1 —a)/(1 + a) we get

2 1-a_1-a

a - > ~
45 +2 14+a 14+a

ha (2,2;a) = max(g2(2,a),92(2,1 — a)) = g2(2,a) =

= g2(2, @)

Finally we compute

1—(2v3-3) 4-2V3 (4—2V3)(2V3+2) :8\/3712+874\/§:4\/374_ V3—1

1+2v/3-3  2v/3-2  (2V/3)2 —22 8 8 2

Item 3. The function H; is defined as the maximum of a finite number of continuous functions of a. By
continuity of the maximum, H; is continuous and its minimum on the compact set [@, 1 — @] is reached.

Item 4. Consider a € [a,1 — a]. By Lemma 34 the function u — g1(u; a) is maximized at a u} = /14 1/a.
Similarly, v — g1(v; 1 — @) is maximized at u§ = \/1+1/(1 —a). Since 1/3 < a < 1/2, withv; =a, 2 =1—a
we have v; > 1/3 hence u} = /14 1/v; < 2. Moreover since we assume n; > 4k;, we have n; — 2k; > 2k; >
kin/141/v; = kyu?. It follows that for ¢ € {1,2} we have

ma; Li/ki;v;) = ma;
02 2oy, N TiSki i) = e ey

92(2,a) =

1(Li/ks; v5).

As a result we have hence Hi(a) = max(g1 (L7 /k1;a),91(L3/k2;1 — a)) with

Li € arg g1(L1/k15a)

max
Lie{lkiuf];[k1uil}

Lj € arg g1(La/k2;1 - a).

max
Lo€{lkous|;[kaus1}
There remains to show that L} /k; > 1/v1 — 1. For this, we first observe that since k; > 2 we have
L} [k > |kiul | /ki > (kiu; — 1) /ks =u} —1/ki >uf —1/2=+/1+1/v; —1/2.
The derivative of ¢ — 1+ —1/2—(z —1) =V1+az—z+1/2atany 2 > 0is 1/(2v1+2) -1 < —1/2
hence this function is monotonically decreasing. Since a € [a,1 — a] and v1 = a, v2 = 1 — a we have v; > a hence

1/v; < 1/a for i € {1,2}, hence

VIt —1/2— (v —1) > /1+1ja—1/2—(1/a—1) ~ 0.12 > 0.
We deduce that L} /k; > 1/v; — 1 as claimed. O
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‘We can conclude with the proof of Theorem 7.

Proof (Proof of Theorem 7) The proof starts from the fact (Corollary 3) that

5nec R) = in B R 196
arg max §5; (R) = arg Jin, =(R) (196)
with ¢’ ={R(:) = - |lw : w = (w1, w2), w1 > 0, w2 > 0}. Using Lemma 32, for each w we have
B . = BL1,L2 .
(- llw) o<, <n BN iy (w) (197)

With the notations of Lemma 33 we have p3 = wi/we and ps = ws/wi hence p1 = 1/p2, and one can
check that v1 + v2 = 1 where v1 = v1(w) := (1 + kgw%/(klw%))’l. Hence, by Lemma 33 (taking u = L1 /k1,v =
Lo /k2,a = v and using (195)) and with the notation of Lemma 35, for all integers 0 < L; < n; — 2k; we have

ha(Li1/k1, La/ka;vn) < BFUE2 (w) < ha(La ki, Lo ks 1) (198)
with equality in the right hand s if for each ¢ € {1,2} we have v; > L;/(k;+L;), i.e., L;/k; > 1/v; —1. Using (197)

we get B

ha(L1/k1, La/k2;v1) < Be(|| - [lw) <

h1(L1/k1, La/ka; , 199
_ogLiganfé,ieuz} 1(La/ky, Le/k2sv) (199)

max
0<L;<n—2k;,ic{1,2}

and if the maximizers L} of the right hand side of (199) satisfy L} /k; > 1/v; — 1 for each i € {1,2} then in fact
By (I llw) = Hi(v1) := hi(Li/k1, L3 /ko;v1) (200)

where Hi is defined as the maximum of hy over the L;/k; (Lemma 35). Next we proceed in three steps. We set
@:=2v3— 3~ 0.46.
Step 1. We show that if w’, w’’ are such that vi(w’) ¢ [a,1 — a] and v1(w”) = 1/2 € [a,1 — a] then

V3-1

B N ) >
s ) > Y2

2 B(ll - llw)-

Hence the optimization of w = (w1, w2) can be restricted to a range corresponding to v1 = v1(w) € [a,1 — a).
Indeed, on the one hand, for v1 = 1/2, by Lemma 35-Item 1 we have

V3-1
hi(Li/k1, La/ko;v1 =1/2) <
ocpax_ m(la/ki, Lafkain =1/2) < —
hence by the right-hand side in (199) we obtain Bx (|| - [lw) < (v/3 — 1)/2 as claimed.
On the other hand, if v1 ¢ [@,1 — @) then by Lemma 35-Item 2 we have h2(2,2;v1) > (V3 — 1)/2. Since
n; > 4k;, the integers L; := 2k;, ¢ € {1, 2} satisfy 0 < L; < n; — 2k; hence, by the left-hand side in (199),
V3-1
Be(ll - llw) 2 ha(L/ky, L2/kz,v1) = ha(2,2501) > ——.
Step 2. We show that if w satisfies v1 = v1(w) € [a,1 — @] then Bx(|| - [|w) = H1(v1(w)).
Since k; > 2 and n; > 4k;, by Lemma 35-Item 4, we have the equality Hi(v1) = h1(L}/k1, L} /k2,v1) where
Lt € {[kiy/T T /vl [on/T+ 1jnT}, L € (ko /T+ 1701 — 01) s [hay/T+ 1/(1 — v1)1} and L /b > 1/vi—1.
By (199)- (200) we deduce that the equality Bx (]| - |[w) = H1(v1(w)) holds.
Step 3. By Lemma 35-Item 3, there is a* € [a,1 — @] such that Hi(a*) = ming<,<1—5 H1(a). In light of
Steps 1 and 2, the infimum over w of Bx: (|| - |[w) is thus achieved, and a weight vector w* satisfies

Be(ll- lwx) = min Be(|| - [[w)) = Hi(a®) (201)

-1
if, and only if Hi(v1(w*)) = Hy(a*). Since vy (w) = (1 + Z—z(wz/wl)Q) , combining all of the above yields

1

*
k
w2 _ _1(1/1,{ —1)
wy ko
where v is an optimum of
Bx(|| - Jw*) = min m max g1(xi/ki;vi).

ax
vi€lat=alvo=1=v1 i€{1.2} oy e { |kiy/TH1/vi )i [hiy/TH1/vi 1}
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