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We consider the problem of recovering elements of a low-dimensional model from under-determined
linear measurements. To perform recovery, we consider the minimization of a convex regularizer subject
to a data fit constraint. Given a model, we ask ourselves what is the “best” convex regularizer to perform
its recovery. To answer this question, we define an optimal regularizer as a function that maximizes a
compliance measure with respect to the model. We introduce and study several notions of compliance.
We give analytical expressions for compliance measures based on the best-known recovery guarantees
with the restricted isometry property. These expressions permit to show the optimality of the ¢!-norm
for sparse recovery and of the nuclear norm for low-rank matrix recovery for these compliance measures.
We also investigate the construction of an optimal convex regularizer using the examples of sparsity in
levels and of sparse plus low-rank models.

Keywords: inverse problems, convex regularization, low dimensional modeling, sparse recovery, low rank
matrix recovery

1. Introduction

In a finite-dimensional Hilbert space # (with associated inner product (-,-), and norm || - [|%), we con-
sider the observation model:
y = Mxg (1.1)

where y is an m-dimensional vector of measurements, M is an under-determined linear operator (from
H=C", orR", to C™), and xg € H is the unknown vector we want to recover. The problem of recovering
xp from y is typically ill-posed. It is thus necessary to use prior information on x( to recover it with a
guarantee of success.

In this work, we suppose that xy belongs to a low-dimensional cone X (a positively homogeneous
set, i.e., forevery x € X and A > 0, Ax € X) that models known properties of the unknown. Examples of
such models include sparse as well as low-rank models and many of their generalizations. Note that in
these examples the models belong to the slightly less general class of models that are (finite or infinite)
unions of subspaces (homogeneous sets).

To recover xj, a classical method is to solve the constrained minimization problem

x* € arg min R(x) (1.2)
Mx=y
where R is a function — the regularizer — that aims to enforce some structure on the solution x*.

Many works [11, 12, 18, 31] give practical regularizers ensuring that x* = xy for several low-

dimensional models (in particular sparse and low-rank models, see [22] for a most complete review
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of these results). A practical regularizer is a function that permits the effective calculation of x*. With-
out computational constraint, the best possible regularizer would be R = 1x: the characteristic function
of X defined by 1x(x) =0 if x € X, 1x(x) = +oo otherwise (see Section 2 for a review of this fact).
Unfortunately, this function is generally not convex (unless X itself is a convex set) and can lead to an
intractable optimization problem in general, even though recent works show that using R = 1y and a
dedicated minimization technique is a possible route for certain particular low-dimensional models that
can be smoothly embedded in R” [16, 36, 37].

In this work, we focus on continuous convex regularizers that guarantee the existence of a minimizer
x* and the existence of practical optimization algorithms to perform minimization (1.2) such as the
primal-dual method [13] (provided their proximity operators can be calculated). Note that convexity in
itself is not sufficient to guarantee the practical feasibility of minimization (1.2) (R(x) could be NP-hard
to calculate, e.g., the nuclear norm for tensors [23], and/or the proximal operator of R could be NP-hard
to compute).

Under conditions on the measurement operator M that typically involve the number of measurements
and its structure (e.g., random for compressed sensing), the fact that xo € X permits to give recovery
guarantees when the convex regularizer R is well-chosen. For example, when X = X is the set of k-
sparse vectors in R” and R(-) = || -||; (¢'-norm), or when X = X, is the set of matrices of rank lower than
rin R?*? and R(-) = || - ||« (nuclear norm), xy can be recovered as long as the number of measurements
is of the order of the dimension of the model (up to some log factors) : m > O(klog(n/k)) for sparse
recovery or m > O(rp) for low rank recovery.

The conventional approach to provide these results is to exhibit a regularizer R for a given model
set X~ and to give the best possible recovery guarantees for the pair (R,X). Recent works aim at giving
guidelines to obtain guarantees as tight as possible for general sparse models and convex regularizers
[2, 3, 14, 27, 38, 43]. With such frameworks, it becomes possible to compare the performance of
different regularizers. This leads naturally to the following question which we address in this work:
what is the ‘“best” convex regularizer to recover a given low-dimensional model X?

To tackle this problem, it is necessary to define the notion of “best” based on recovery guarantees.
We propose different possibilities and follow one route that permits us to give optimality results in
the sparse and low-rank cases and shows the difficulties that arise when considering more complex
generalized sparsity models. This work can be viewed as a way to give meaning to the expression
“convexification” of a low-dimensional model, that is often used and rarely defined.

1.1  Related works

LOW-COMPLEXITY MODELS INDUCED BY CONVEX REGULARIZATION. Many regularizers encoun-
tered in signal processing and machine learning are known to induce a specific type of model. Without
aiming for exhaustivity, the use of the ¢! norm [15] induces a sparse pattern in the solution, while group
regularization with mixed ¢! — ¢> norms restricts this sparse pattern to satisfy a specific block struc-
ture [44]. More advanced model sets, such as low-rank matrices are linked to the use of the nuclear
norm [20]. For a wide class of regularizers, including decomposable norms [10], decomposable M-
estimator [28], atomic norms [14] and partly smooth functions [41, 42], the connection between non-
smooth convexity and model space can be made explicit. Note that all these works take the following
stance: given a convex regularizer R, what is the model set X induced by minimizing R(x)? Conversely,
in this paper, we study the question of finding the best regularizer for a given low-dimensional model X.
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CONVEXIFICATION OF COMBINATORIAL FUNCTIONS. Given a real function f, it is known that its
biconjugate f** is a convex and closed function, whatever the initial properties of f. For instance, if f is
the constant function equal to 1 except in 0 — that is the counting function £ in dimension 1 — restricted
to [—1,1], i.e.,
1 ifxe[-1,1]\ {0},
Ffx)=<0 ifx=0,
+oo  otherwise,

then its biconjugate is the absolute value | - | restricted to [—1,1]. Unfortunately, this construction is
harder to generalize on an unbounded domain or in higher dimension. For instance, the biconjugate of
the 0 counting function not restricted to a bounded set is the constant 0. Of interest, we can mention
convex closures of submodular functions (functions of {0, 1}”) that can be calculated explicitly using
the Lovasz extension [5] and convex closure of almost convex functions [25].

CONVEXIFICATION OF OBJECTIVE FUNCTION Many works intent to find a convex proxy to a non-
convex objective function. In [7], adding a Lagrangian term to the regularization of a constrained
non-convex minimization permits to build an equivalent minimization problem that is convex locally.
Another possibility is to try to perform a regularization by infimal regularization [8] for lower semicon-
tinuous objective functionals. In [29], in a function space setting, Pock et al. propose a high dimensional
lifting of the Lagrangian formulation of (1.2) where the data-fit functional is non-convex. In the context
of non-convex polynomial optimization, Lasserre’s hierarchies [26] are used to recast the original prob-
lem in a hierarchy of convex semi-definite positive problems which provide global convergence results.
The drawback of this method is the computational cost that makes it impractical for high-dimensional
problems. Finally, convex closure of submodular functions also permits to cast sparsity inducing objec-
tive functions (where the regularizer is a submodular function of the support) into convex problems [5].
Note that if one aims to find a non-convex, but continuous, regularization, several works of interest may
be cited, such as the use of /7 minimization [21], SCAD [19], or CELO [33]. Nevertheless, in this paper,
we focus on convex functions.

1.2 Contributions

In this paper, we define notions of compliance measures between a low-dimensional model and a regu-
larizer in finite dimension. The compliance of a function R for a model X is a function

R~ Ax(R) (1.3)

that quantifies the recovery capabilities of X with R and minimization (1.2).

An optimal regularizer for a model X is defined as a regularizer that maximizes the compliance
measure. In this article, we focus on the maximization of compliance measures on the set C of coercive
continuous convex regularizers over H. Note that this idea was first mentioned in the preliminary work
[40] where optimal regularizers for sparse recovery were considered among weigthed ¢!-norms.

* We introduce compliance measures in Section 2 using tight recovery guarantees: a good regular-
izer is a regularizer that permits the recovery of X as often as possible. We discuss the elementary
properties of these measures and show that optimal coercive continuous convex regularizers can
be found in the smaller class of atomic norms with atoms included in the model set. While such
compliance measures can be optimized in basic toy examples, they require to be approximated in
order to deal with sparse and low-rank models.
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* We propose in Section 3 compliance measures exploiting best known uniform recovery guar-
antees based on the restricted isometry property (RIP). We give explicit formulations of such
recovery guarantees and show that, indeed, the ¢'-norm and the nuclear norm are optimal for
sparse and low-rank recovery (respectively) among coercive continuous convex regularizers.

* We study the case of two generalized sparsity models in Section 4: sparsity in levels and sparse
plus low-rank models. We show how an optimal regularizer can be explicitly constructed in a
small family of convex regularizers (¢!-norm weighted by levels and mixed weighted ¢'-nuclear
norm respectively). While giving optimal weighting schemes for mixed regularizations, these
examples also show the difficulty of calculating optimal regularizers for new low-dimensional
models and opens many questions for the study of optimal regularizers.

We give an overview of the different compliance measures and the nature of results considered in this
paper in Table 1.

1.3 Notations

In H, we denote S(1) := {z € H : ||z]l3 = 1} the unit sphere with respect to || - ||. Given a linear
operator M : H — C™, we denote M* its Hermitian adjoint.

For ¥ C # an arbitrary set, we denote iy its characteristic function defined by 15(x) =0if x € X,
1z (x) = +oo otherwise. We denote £(X) := R -conv(X), where conv(X) is the closure of the convex
hull of £. We define R := RU {+o}. Given a function f : H — R, we denote by dom(f) its domain,
i.e., the set dom(f) := {x € H : f(x) < Hoo}.

2. Optimal regularizer for a low dimensional model

In this section, starting from the characterization of exact recovery of a model X, we introduce the notion
of compliance measure and associated optimal convex regularizer.

2.1 Characterization of exact recovery using descent cones

Before defining an optimal regularizer, we must characterize when X can be recovered by solving (1.2).
The fact that a given xo € X is recovered by solving (1.2) with regularizer R (i.e., that the solution
x* of (1.2) is unique and satisfies x* = xo when y := Mx) is equivalent to the fact that R(xy +z) >
R(xp) for every z € ker(M) \ {0} (see e.g., [14]). To summarize this, we use the following definition of
symmetrized descent cones.

DEFINITION 2.1 ((Symmetrized) descent cones.) Consider a regularizer R : H — R. For any x €
dom(R), the descent cone of R at x is

Tr(x) :={yz:yeR,z€ H,R(x+2) <R(x)}. 2.1

For any set X C dom(R), we define Tr(Z) := U,ex Tr(X).

Other definitions of descent cones (e.g., non-symmetric like in [14]) could be used. The symmetriza-
tion facilitates technical derivations in the following and permits to characterize recovery as well. For
ease of reading, in the following, symmetrized descent cones will be referred to as descent cones.
Recovery guarantees with a regularizer R for a linear operator M generally come in two flavors (recall
that x* is the result of minimization (1.2)):



5 of 67

Compliance
P Definition Section Results
(type of recovery)
Based on d ¢ Optimality of atomic norms (Th 2.4);
ased on descent cone
(uniform) F(Tr(Z)) Sec. 2 Equivariance (Lem. 2.5);
uniform
Invariance (Cor. 2.1)
AY(R): Volume | VI(TR(Z)S(1) Sec.2 Monotonicity (Lem. 2.2);
(uniform) vol(S(1)) Invariance (Cor. 2.2)
Characterization (Lem. 3.5, Cor. 3.2);
Optimal sparse reg. and optimal
58° (R): Sufficient RIP ) P P £ P
(uniform) H e Sec. 3 low-rank reg. (Th. 3.8, Th. 3.9);
uniform Py
ieﬂ:(g’)\m} HP):(z)H%Z Sharp bound for near-optimal reg. for
sparsity in levels (Th. 4.3)
Characterization (Lem. 3.3, Cor. 3.1);
525 (R): N RIP Optimal sparse reg. and optimal
: Necessar
( lfniform) y inf.c 7z oy Sx (1 — IL.) Sec. 3 low-rank reg. (Th. 3.6, Th. 3.7);
Opt. weights for sparsity in levels (Th. 4.2);
Opt. weights for sparse+low-rank (Th. 4.4)
Characterization (Prop. 3.4);
53""? (R): Sharp RIP
(jniforfn)) P infyrermn Ty (£) 210y O (M) Sec. 3 Invariance (Lem. 3.2);
Bound by 6°°¢ and 8§ (R) (Eq. 3.5)
AYY(R): Volume (T ()NS(1
. 1- SUPyex = <V£<<;21))< ) Sec. 2 -
(non-uniform)
sup, .y P(kerM N Tr(x 0}),
Kinematic ~ formula Prex ( r() #{0}) Sec. 2 -
(non-uniform) M Gaussian
Statistical dimension sup,¢y statdim(7z(x)) Sec.2 -

(non-uniform)

Table 1. A summary of different compliances measures and results. Compliances for which some results are given in this article
are in bold (we focused on uniform recovery guarantees). Explicit maximization is performed on compliances based on necessary
and sufficient conditions with the restricted isometry property (RIP) yielding bounds on sharp RIP-based compliances.

¢ Non-uniform recovery: If xy € X, then x* = xj is equivalent to Tg(xo) NkerM = {0}.

* Uniform recovery: “For all xo € X, x* = x(” is equivalent to

Tr(Z)NkerM = {0}.

(2.2)

In the literature, recovery guarantees are obtained when the measurement operator M fulfills suffi-

cient conditions that imply these characterizations. Distinguishing these two types of recovery guaran-
tees especially makes sense in the context of compressed sensing when M is chosen at random. Typical
results are then of the form:

* Non-uniform recovery: Given xp € X, with high probability on the draw of M, x* = xy.

* Uniform recovery: With high probability on the draw of M, x* = x for all xg € X.
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The main techniques to obtain recovery guarantees using a condition on the number of measurements
differ largely between these two cases (see Section 3). In this work, we mostly focus on uniform
recovery guarantees to stay in a fully deterministic setting. For such uniform recovery guarantees, we see
that the only interactions that matter between the model set X, the regularizer R, and the measurement
operator M are summarized by equation (2.2).

2.2 Compliance measures and optimal regularization

To define a notion of optimal regularizer, we simply propose to say that an optimal regularizer is a
function that optimizes a (hopefully well-chosen) criterion. We call such a criterion, a compliance
measure and specifically aim at defining it such that it should be maximized. The objective is to define
a compliance measure that quantifies the recovery capabilities of a given regularizer R given a model
set X.

Starting from the characterization of exact recovery, we can make the following remark. If the
descent sets of a regularizer R are included in the descent sets of another regularizer R, then the
recovery capability of R; are greater in the following way: success of recovery with R, implies success
of recovery with R;. Any “reasonable” compliance measure quantifying recovery capabilities needs to
fulfill the following axiom:

A compliance measure must be monotonously decreasing with respect to the inclusion of descent sets.

We also see that the kernel of M heavily influences the recovery capability of R. If we had some
knowledge that M € M where M is a set of linear operators, we would want to define a compliance
measure Ay rq(R) that tells us how good is a regularizer in these situations and to maximize it. Such
maximization might yield a function R* that depends on M (e.g., in [33], when looking for tight con-
tinuous relaxation of the ¢° penalty a dependency on M appears). In the following, we propose a more
universal notion of optimal convex regularizer that does not depend on a particular class of linear oper-
ators M: we propose compliance measures Ay (R) that depend only on the set X and on the regularizer
R, and consider their maximization on some set of convex functions C (that are coercive and continuous,
see Section 2.4):

supAx(R). (2.3)
ReC

Of course, the existence of a maximizer of Ay (R) is in itself a general question of interest: we could ask
ourselves what conditions on Ay (R) and C are necessary and sufficient for the existence of a maximizer,
which is out of the scope of this article — we notably expect potential difficulties when normalized
atoms defining the model set are not a compact set. In the sparse recovery and low-rank matrix recovery
examples studied in this article, the existence of a maximizer of the considered compliance measures
will be verified.

To build a compliance measure that does not depend on M, we define the optimal regularizer as the
regularizer which guarantees recovery of X in as many situations as possible, i.e., for “as many linear
operators M as possible”. Intuitively, a regularizer R is “good” if the set Tg(X) “leaves a lot of space”
for ker M to not intersect it (trivially), see Figure 1. Among non-convex regularizers, the optimal one is
the characteristic function of the model set X.

LEMMA 2.1 (Optimality of the characteristic function.) Consider an arbitrary non-empty set X C H
and denote 1y its characteristic function. The corresponding descent cone is

T(X)={yz:yeRz€X-X}DX-X
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FIG. 1. A representation of recovery guarantees based on descent cones of a convex function. Recovery of x € X fails if ker(M)
intersects 7g(x) non trivially. The bigger is the descent cone (red) the more likely recovery will fail. The bigger the space left by
the descent cone (blue), the more likely recovery will succeed

where ¥ — X is the so-called secant set of X. For any regularizer R such that £ C dom(R) we have
Tix (£) C Tr(X). Finally, if X is positively homogeneous then 7, (X) = X — X.

Proof. See Appendix A.2 O

This Lemma shows that iy is at least as successful as any regularizer R for the exact recovery of X
(without any consideration of compliance measure). Moreover, 7;, (X) is the smallest possible descent
cone with respect to inclusion. Hence 1y can be considered as the ideal regularizer [9] and indeed the
optimal one with respect to any compliance measure defined as Ay (R) = f(Tgr(X)) where f is some
function on subsets of H that is monotonic with respect to set inclusion. This is why the search for
optimal regularizers only makes sense under some constraint on R.

2.3 A first compliance measure

As a first concrete example, we define here a theoretical compliance measure that reflects the idea
that smaller descent cones are better. However, this compliance measure does not lead to analytical
expressions for the general study of sparse recovery. Our core results in the next sections rely on
compliance measures based on best known uniform recovery guarantees using the restricted isometry
property (RIP).

For convex functions, first, observe that, as only the directions of the descent cones and the kernel
play a role in recovery guarantees, the size of descent cones can be measured by considering only their
intersection with the unit sphere S(1). Choosing the norm || - || to define the unit sphere is natural
(although also somewhat arbitrary) as this is the only metric introduced so far in the considered setting.
It will also appear to define RIP constants soon. Second, if we want to consider a measure that is
invariant by rotation, the uniform measure on the unit sphere S(1) comes somewhat naturally. It is
indeed the unique Haar measure. The uniqueness is essentially guaranteed when it is a measure in the
sense of measure theory (additive, non-negative function over a ¢-algebra). In our setting, using this
measure is a way of considering that we do not have prior information on the orientation of the kernel
of M, or on the orientation of the model set X.
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Using this measure, given a convex function R, the “amount of space left for the kernel of M can
be quantified by the “volume” of the intersection Tg(X) NS(1) of the descent cone with the unit sphere.
Hence, a compliance measure for uniform recovery can be defined as

ol (Ta(2)NS(1))
vol(S(1))
Here, the volume vol(E) of a set E is the measure of E with respect to the uniform measure on the
sphere S(1) (i.e., the n — 1-dimensional Hausdorff measure of 7g(X)NS(1), when H is n-dimensional).
This measure is well-defined as the descent cones of convex functions are symmetrized convex cones.

When looking at non-uniform recovery for random Gaussian measurements, the quantity defined by
Vol(Tr(x0)NS(1))
voI(S(1))
span of a random vector uniformly distributed on the sphere S(1), intersects (non trivially) Tg(xo). The
highest probability of intersection with respect to xy quantifies the lack of compliance of R, hence we

could define:

AY(R) =1 (2.4)

represents the probability that a randomly oriented kernel of dimension 1, defined as the

AV (R) = 1 — sup YLTRWI 0S(1) @.5)

p
ver  vol(S(1))
This can be linked with the Gaussian width and statistical dimension theory of non-uniform sparse
recovery [2, 14]. Indeed, if M is a random Gaussian matrix of size (n — 1) x n, we have
vol (Tr(x9) NS(1))
P(kerM = . 2.
(kerM N Tk (x0) # {0}) vol(S(1)) (2.6)
As shown in [2], for a random Gaussian matrix M of size m x n with any number of measurements m,
the probability P(kerM N Tg(xp) # {0}) can be guaranteed to be small if m is greater than the statistical
dimension of the descent cones. The kinematic formula (Crofton’s formula in this case) gives the exact
value

n

P(ketMNTr(x0) #{0}) = Y vi(Tr(x0)) .7
Jj=m+1, j even
where v;j(K) is the j-th intrinsic volume of a cone K. For a polyhedral cone it is the probability that
the orthogonal projection on K of a Gaussian vector lies in a j-dimensional face of K. The statistical
dimension of a descent cone 7T is defined by [2, Definition 2.2]
n
statdim(K) = Z Jvi(K). (2.8)
j=0

As it is used to bound the number of measurements in the non uniform case, its supremum over all the
descent cones K = Tr(xg),xo € X could be used as a compliance measure. Moreover, it was shown that
the statistical dimension is a measure of the “size” of the convex cones that is additive, invariant by
rotation, and monotonous.

The above compliance measures are completely dependent on the metric defining S(1) (here the
Hilbert norm || - || ), other choices could be considered especially if measurement operators M showing
a particular structure were considered.

In this article, we concentrate on compliance measures based on uniform recovery guarantees.

REMARK 2.1 These compliance measures implicitly force £ C dom(R), unless Ax(R) = 0. Indeed,
suppose there exists x € X such that R(x) = oo, then for all z € H, we have R(x +z) < 4o = R(x).
This implies T (x) = H and A% (R) = AYY(R) = 0.
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REMARK 2.2 When studying convex regularization for low dimensional recovery in infinite dimen-
sional separated Hilbert spaces, the noiseless recovery only depends on the behavior of the regularizer
R on E(Z) (defined in Section 1.3). The behavior of R outside £(X) is only studied to obtain properties
of robustness to modeling error [38]. In many examples of generalized sparsity and low-dimensional
modeling in infinite dimension, the space £(X) has a finite dimension [1]. Our framework still applies
in this case.

It is an open question to generalize our framework for low-dimensional recovery in more general
settings such as Banach spaces (e.g., for off-the-grid super-resolution).

REMARK 2.3 In the uniform recovery case, the compliance measure Ag defined in (2.4) is monotonous
with respect to the partial ordering of descent cones defined by the inclusion property. However, it
does not (at least explicitly) take into account potential effects of the dimension of the kernel of M,
which may be higher than one. For a given dimension ¢ of the kernel of M, the uniform measure on
the corresponding Grassmanian manifold (of all subspaces of dimension ¢) would be more natural as it
would directly quantify the probability of intersection with a random kernel of fixed dimension. This
measure for kernels of dimension ¢ and a descent cone K is the following:

Vi(K) == bom ({Q € O(n) : (QE)NK # {0}}) 2.9)

where Loy, is the uniform measure on the orthogonal group and E is an arbitrary fixed {-dimensional
subspace. The measure V; is invariant by rotation and for £ = 1 it matches the Haar measure used
in (2.4)-(2.5).

Given a set X, and assuming the existence of a maximizer R* of Ag (within a prescribed family of
possible regularizers), there are only two possibilities: either all maximizers of Ag (R) also minimize
Vi(Tr (X)), or not. In this last case, it would mean that there is R* maximizing A% and not minimizing
Ve. It is an interesting challenge, left to future work, to understand whether this case can indeed happen.

We remind the reader that compliances considered in this article are summarized in Section 1.2.

2.4 Coercive continuous convex functions

As mentioned before we look for practical regularizers. We define C the set of all functions R : H — R
(i.e., with dom(R) = H) that are convex, continuous, and coercive.

The coercivity condition is typical in the context of convex regularization in order to avoid constant
functions.

With any proper lower semi-continuous regularizer (hence, with any regularizer in C) the conver-
gence of the primal dual algorithm is guaranteed [13]. This guarantees the existence of practical algo-
rithms (for the problem min, 5||Mx — y||*+ AR(x) ) when the proximity operator

y = prox;g(y) = argmin%Hu—yH%{—l-?LR(u) (2.10)

can be approximated efficiently.

2.5 Elementary properties and reduction to atomic “norms”

As compliance measures based on uniform recovery guarantees can be written as functions of descent
cones Tg(X), we have the following immediate Lemma.

LEMMA 2.2 (The compliance measure Ag is monotonic.) Let R;,R, be two functions such that
Tk, (Z) C T, (Z) then AY (R1) > AF (R2).
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In other words, the compliance measure is decreasing with respect to the inclusion of descent cones.
We also verify that multiplying a regularizer by a scalar does not change the compliance measure which
is consistent with recovery guarantees.

LEMMA 2.3 (The compliance measures Ag and AgU are 0-homogeneous.) Let A > 0. Then,

AZ(AR) =AY (R),

(2.11)
ANV (AR) = ANV (R).
Proof. Letx € X. We remark that, the tangent cone is invariant by scalar multiplication:
Tir(x) ={yz: Y€ R,AR(x+z) < AR(x)}
={yz:yeER;R(x+2z) <R(x)} (2.12)

= Tr(x).

This shows directly that AYY (AR) = AYV(R). This also implies that T;z(X) = Tg(X) and AY(AR) =
AY(R).
0
More generally, any operation on R that leaves Tg(X) invariant does not change the compliance
measure. This is typically the case of the post-composition of R with an increasing function.
We now recall the notion of atomic “norm” and show that optimal regularizers can be found in a set
of atomic norms.

DEFINITION 2.2 (Atomic norm.) The atomic “norm” induced by a set A is defined as:
|x|| 4 :==inf{t € R} : x € ¢-Tonv(A)} (2.13)
where conv(A) is the closure of the convex hull conv(.A) in H. This “norm” is finite only on
E(A) =R, -conv(A) = {x=t-yt € Ry ,ycconv(A)} C H. (2.14)
It is extended to H by setting ||x|| 4 = +oo if x & E(A).
Classical convex regularizer for sparse and low rank models are atomic norms:
s The ¢'-norm || - ||1 is the atomic norm induced by signed canonical basis vectors.
* The nuclear norm || - || is the atomic norm induced by unitary rank-one matrices.

Atomic norms are convex gauges induced by the convex hull of atoms. Their properties can be linked
with the properties of the set .4 with classical results on convex gauge functions (see Appendix A.1).
It is possible to define an atomic norm, denoted || - ||z, specifically induced by the model X.

DEFINITION 2.3 (Atomic norm induced by the model.) Given a cone X, we define the atomic norm
induced by X as

-1z == 11 llznsq)- (2.15)

This norm is known as the k-support norm for sparse model, it is not adapted to perform uniform
recovery. In particular, it cannot recover 1-sparse vectors.

In [38, Lemma 2.1], it was shown that there is always an atomic norm with smaller descent cones
than the descent sets of a proper coercive continuous function with convex level sets. We give a version
of this result for our definition of cones and specify the properties of the obtained atomic norm.
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LEMMA 2.4 (Optimality of atomic norms for a given model.) Let X be a cone such that £(X) = H and
R be a coercive continuous convex function. Then there exists A C X such that:

Tiyu(E) S Tr(E). (2.16)

Ila
and || - || 4 is a coercive, continuous, positively homogeneous convex function.

Proof. See Appendix A.2.2. (]

With Lemma 2.4, for all coercive continuous convex functions R (i.e. elements of C), it is possible
to find an atomic norm R’ with atoms included in X such that Tz/(X) C Tg(X). We define Cyx as the set
of coercive continuous positively homogeneous atomic “norms” whose atoms .4 are included in X:

Co:={[|-]|la :ACE,|-]|la €CVxeH, A >0,||Ax]| 4 =Alx].4}. (2.17)

Note that positive homogeneity is guaranteed if O is in the interior of conv(.A) (see Appendix A.1). As
a consequence of this Lemma, we have the following immediate result.

THEOREM 2.4 (Optimization of compliance measures over Cy.) Let X be a cone such that £(X) = H.
Suppose Ay is a compliance measure that is a decreasing function of 7g(X) with respect to set inclusion.
Then

supAx(R) = sup Ag(R). (2.18)
ReC ReCs

In particular
supAY(R) = sup AY(R). (2.19)
ReC ReCs

Proof. Let R € C, with Lemma 2.4, there exists || - || 4 € Cx such that 7|, (£) C Tr(X). This implies
T (Z)NS(1) C Tr(Z)NS(1) and Ax(R) < Ax (|- [|.4)-
(]
Theorem 2.4 shows that we can limit ourselves to atomic norms if our only objective is to maximize the
compliance measure.
With such measures, we can calculate optimal regularizers for elementary linear transformations of
models.

LEMMA 2.5 (Compliance measures as functions of descent cones are equivariant to linear transforma-
tions.) Consider a compliance measure defined as: Ax(R) := f(Tr(X)) with f some scalar valued
function defined on non-empty subsets of H. For any invertible linear map F' on #H, any model set X
and any regularizer R, we have

TR(FX) = F(Tror (X)) (2.20)
Arz(R) = fIF (Tror (£))]. (2:21)

Proof. First yz € Tr(FZX) if, and only if, there exists x € X such that R(Fx+ z) < R(Fx), i.e., such that
(RoF)(x+F~'z) < (RoF)(x). This is in turn equivalent to YF 'z € Tror(X), i.e., Yz € F(Tror (X)).
Second, it follows that Aps (R) = f(Tr(FZX)) = f[F (Tror (X))]. O

Thanks to Lemma 2.5, we can build optimal regularizers from other optimal regularizers when the
model set is obtained from another one by applying a linear isometry.

COROLLARY 2.1 (Compliance measures as functions of descent cones are invariant under invariant
maps.) Consider a compliance measure defined as: Ay (R) := f(Tg(X)) with f some scalar valued
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function on subsets of . Assume that f is invariant to a family J of invertible linear maps on H,
i.e., for any F € F and any non-empty set 7 C H, f(FT) = f(T). Then, for any F € F, any regularizer
R and any model set X, we have
Apz(RoF~ 1) =Ax(R). (2.22)
Proof: By Lemma 2.5, Aps(Ro F ") = fIF (T(gop-1)or (£))] = f(FTR(E)) = f(Tr (X)) = Ax(R).
O

COROLLARY 2.2 (Compliance measures Ag are invariant by isometries.) Consider F' an isometry on
‘H, R aregularizer and X a model set. We have

AYs(RoF~ 1) =AY (R). (2.23)

Proof. The volume is invariant to isometries, hence AY(R) = fU(7z(X)) where fY(-) is invariant to

isometries.
[l

2.6 An exact result in 3D: the most we can do?

Compliance measures AY (R) and AXY (R) were effectively optimized [40] in the case of 1-sparse recov-
ery in dimension 3, i.e., for £ = X the set of 1-sparse vectors in R3. In this case, Cs = {||-||4 : A C X1 }.
It was shown that for the set C, = {|| - ||.a : A C X1, A = —A} (which is the set of weighted ¢!-norms)
that

arg maz;Ag(R) =arg mayliAgU(R) ={A]1: 4 >0}. (2.24)
ReCy, ReCy.

To show this, the solid angles of all descent cones of arbitrary weighted ¢'-norms were calculated
exactly, and their size minimized with respect to the weights.

€1

FIG. 2. Solid angle of a half descent cone of a weighted ¢'-norm

Unfortunately, calculating exactly these solid angles in dimension d seems out of reach for any spar-
sity and atomic norm in Cx even if some progress in bounds of these quantities [27] in some particular
cases (non-uniform recovery with £!-norm in probability with random matrices). To the best of our
knowledge, no general bound is available for the volume of descent cones of arbitrary atomic norms in
Cs for sparse recovery. To build a compliance measure that we could optimize, we would need to first
to establish such general bounds with some tightness.
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In the next section, we propose to build compliance measures based on best-known uniform recovery
guarantees that have some “tightness” properties. This will enable us to manipulate analytical expres-
sions and give results for sparse recovery and low-rank recovery.

3. Compliance measures based on the restricted isometry property

The most used tool for the study of uniform recovery is the restricted isometry property (RIP). This
property is adequate for multiple models [38], to be tight in some sense [17] for sparse and low-rank
recovery, to be necessary in some sense [9], and to be well adapted to the study of random operators [30].
In [38], given a regularizer R, an explicit constant x (R) is given, such that dx (M) < x(R) guarantees
the exactrecovery of elements of X by minimization (1.2). Hence, using x (R) as a compliance measure,
the higher the value of 8y (R), the less stringent the RIP condition on M to ensure recovery of all elements
of X using R as a regularizer.

To formalize further this idea, we start by recalling definitions and results about RIP recovery guar-
antees then apply our methodology. We also give results that emphasize the relevant quantity (depending
on the geometry of the regularizer and the model) to optimize.

DEFINITION 3.1 (RIP constant.) Consider an arbitrary non-empty set X C ‘H and M a linear map from
‘H to C™. The RIP constant of M is defined as

52 (M) - cr-X

M. 2
|| X|2_1" (31)

2
%1%

where X — X (differences of elements of X) is called the secant set. For brevity, we will simply denote
6(M) when the model set X is clear from context.

This coincides with the usual notion of RIP for sparse recovery when X = X is the set of vectors with
at most k nonzero entries (and X — X = X5;); and with the RIP for low-rank recovery when X = %, is
the set of matrices of rank at most r (then, X — X = X,,).

A natural and sharp RIP-based compliance measure is AIEMD’Sharp (R) = 85"*™P(R) defined as:

SR (R) = inf 5s(M). 3.2
z ( ) M:keer%%g(Z);é{O} Z( ) (3.2)

This is the smallest RIP constant of measurement operators where uniform recovery fails [17], hence
the following immediate theorem.

THEOREM 3.2 (The compliance measure 85 “"P(R) is sharp.) Consider an arbitrary non-empty set
X C M. Suppose M has RIP with constant §x (M) < 85"**P(R), then for all xo € £ and x* the result of
minimization (1.2) satisfies

X" =xp. (3.3)

Conversely, there exists M with 85 (M) > 85°*"P(R) and xo € X such that x* # xo.

Despite this sharp property with respect to recovery, 8 "F(R) is not endowed with any known
analytic expression more explicit than its definition, and it is an open question to derive closed-form
formulations of this constant for a general R, even for the particular case of sparse or low-rank mod-
els. This limits the possibility to conduct an exact optimization with respect to R, and motivates the
investigation of more explicit RIP-based compliance measures, with two flavors:
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* Compliance measures 63°°(R) based on necessary RIP conditions [17] which yield sharp recovery
constants for particular set of operators M, e.g.,
67°°(R):= inf Ox(I-1IL). 3.4
PR) = inf  Be(l L) (34)
where I, is the orthogonal projection onto the one-dimensional subspace span(z) (other interme-

diate necessary RIP constants can be defined). Such measures upper bound 85 *P(R) (88°°(R)
characterizes RIP recovery guarantees of measurement operators having the shape I — IT,).

+ Compliance measures 05" *(R) based on sufficient RIP constants for recovery (e.g., the explicit
sufficient RIP constant dx(R) from [38], which is explained in Section 3.3), which are lower
bounds to 55" *P(R).

Note that we have the relation
SEEE(R) < 85°*P(R) < 82°°(R). (3.5)

The next sections aim at showing that the £!-norm (resp. the nuclear norm) maximizes the (best
known) upper and lower bounds of 85"**?(R) for k-sparse model (resp. low rank models).

First, in Section 3.1, we recall that when X is a non-trivial cone, the compliance measures associated
to RIP constants can be cast to equivalent compliance measures associated to a restricted conditioning
(RC), which can be written more explicitly.

Second, in Section 3.2, we use the expression of the RC-based compliance measure associated to
03°°(-) (from Equation (3.4)) to show that the ¢! norm (resp. the trace-norm) optimizes opec(-) for
k-sparse vectors (resp. for matrices of rank at most r), with 63°°(R*) ~ 1/ V2 when n is large enough.

Finally, in Section 3.3, we give a characterization of 65** (R) and show the optimality of the ¢'-norm

(resp. the nuclear norm) with 88 (R*) = 1/v/2.

3.1 Restricted conditioning as a compliance measure

When working with a model set X that is a cone, instead of working with actual RIP constants, it is
easier to use (equivalently) the restricted conditioning.

DEFINITION 3.3 (Restricted conditioning.) Consider a cone X C H and a linear operator M from R" to
C™. We define the restricted conditioning of M as

1o (M) 1= SPeE=E)S(1) M3
infee(z_ryns(r) [1Mx[13

e 1,e0] (3.6)

where by convention here a/0 = +oo for any a > 0. For brevity we will simply denote y(M) when X is
clear from context.

As shown below, the RIP constant 8y (M) is a monotonically increasing function of ys(M). The
advantage of the latter is that it is invariant by rescaling M (rescaling leaves unchanged the recovery
properties when measuring xo with M).

LEMMA 3.1 (The RIP constant 8y (M) is monotone in s (M).) Consider a cone £ C H. For any M
such that ys (M) < oo, there is a unique A > 0 such that

_ 1+ 0x(AM)

7E(M)_T(7LM)

(3.7)



15 of 67

or equivalently

Ye(M)—1
Ox(AM) = =———. 3.8
Proof. See Appendix A.3. O
Thus, for cones, RIP-based compliance measures have equivalent RC-based compliance measures
such that 1+ 85(R) (R)—1
+ 05 YeliX) —
R)=——F== and Ox(R) = ———. 39

The sharp RIP constant (3.2), the necessary RIP constant (3.4) and the sufficient RIP constant 5;““ (R)
of [38] are associated to

1+63harp(R)
harp R) := inf M) = B SN s 310
,)é ( ) M:kerMﬂl’%g(E)#{O}’}/Z( ) 1—6;harp(R)’ ( )

. 1+ 82°¢(R)
(R) := f [-IL)=—=X 2 3.11
EER= o VT = T pee(r) G
suff

7,;uff(R) — 1+52 (R) (3.12)

1—05™(R)
We deduce from (3.5) the inequalities

B R) <1 (R) S B(R). (3.13)
The following result shows that ¥5"*"P(R) can be simplified.

PROPOSITION 3.4 (Explicit expression of y;"*"P(R).) Consider a cone £ C . Let P be the set of
symmetric positive semi-definite (PSD) linear operators on H: N € P if and only if N¥ = N and N > 0.
For z € H\ {0} define
RC :
= nf N 3.14
x (Z) NeP:ke%N:span(z) }’Z( ) ( )

and for any non-empty set 7 C H such that 7 # {0} define

R(TY:= inf fRC(2). 3.15
y (T) zelTn\{o}fE (2) (3.15)
We have
. __ ¢RC
M:kerﬁilgg'#{o}yz(M) - (T) (3.16)

Proof. This is an immediate consequence of Lemma A.1 in Appendix A.3.
(]
Using 7 = Tx(R), the sharp RC (or RIP) constant is the smallest RC constant of positive symmetric
definite PSD operators with kernels of dimension 1 for which recovery of X fails:

VP (R) = fRC(TR(E)). (3.17)

Since I — I, € P for any nonzero z, we have fRC(z) < ys (I — I1;) hence we recover the inequality

harpR< inf I —IL) = v*°(R
AR < inf (- TL) = (),
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however it is an open question to determine whether this is an equality in particular cases or in general.
The constant y3°° is already sharp in the following sense: for sparse recovery with the ¢ _norms, as well
as for low-rank recovery with the nuclear norm, it is the biggest possible RIP constant (§***(R) = %)

that guarantees uniform recovery with || - ||; (respectively with the nuclear norm) for all sparsities k (for
all rank levels r respectively) [17].

Similarly, to the compliance measures from Section 2, we can deduce an optimal regularizer after
an isometric linear transformation of the model.

LEMMA 3.2 (Invariance of y;harp (R) under linear isometries.) Consider a cone £ C H, an arbitrary
regularizer R such that £ C dom(R), and a (linear) isometry F. We have

PR (Ro P 1) = 3PP (R). (3.18)
Hence, for any class C’ of regularizers,
R* € argmax Y2 P(R) < R* o F ! € arg max y°22"P(R'). 3.19
gmax 1z (R) ° gmax 7" (R') (3.19)
Proof. See Appendix A.3. O

3.2 Compliance measures based on necessary RC conditions

In this section, we characterize the compliance measure

<(R)= inf I—1IT.). 3.20
75 ¢(R) zeﬁl&)\{o}n( 2) (3.20)

To show optimality of the £!-norm for sparse recovery and of the nuclear norm for low-rank recovery,
we will use the following characterization of y3*°(R) when X is a cone.

LEMMA 3.3 (Characterization of y3°°(R) for a cone.) Consider a cone X C # such that X # {0} and R
an arbitrary regularizer such that £ C dom(R).

1. If there is x € H such that ¥ C span(x), then

c +oo ifTR(Z) C X,
% (R) = ( .) (3:21)
1 otherwise.
2. If X C span(x) for every x € H, then
1
,ygec (R) = - 2 (3.22)
1 —inf o7z (2)\ {0} SUPxe(z—x)ns(1) TeIE,
Proof. See Appendix A 4. 0
To go further, we exploit two assumptions related to orthogonal projections on certain sets.
DEFINITION 3.5 (Orthogonal projection.) For any set E we define, for all z € H
Pg(z) = argmin ||z — y||%. (3.23)
yeE

This is a set-valued operator is called the orthogonal projection, and Pz (z) may be empty if the mini-
mum is not achieved.
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Some assumptions on E ensure that Pg(z) is not empty for any z.

LEMMA 3.4 (Existence of the projection.) Consider a union of subspaces £ C H, and assume that
ENS(1) is compact. Then for every z € H, Pe(z) # 0. Moreover, for every x,x' € Pg(z) we have
|z—x|13, = ||z—x'||%, and (z,x) = ||x||2, = |||, = (z,X'), hence the notations ||z — Pg(z)|%,, (z, Pe(2))
and || Pg(z)||3, are unambiguous. We also have ||z||3, = ||z — P (2)|13, + ||P(2) |3, and

(z.Pe(2)) = IPE@) 17 = sup [(x,2)]%

Proof. See Appendix A 4. (]
Even if E is a union of subspaces and ENS(1) is compact, Pg(z) may not always be a singleton. For
example, consider E the set of k-sparse vectors and z the vector with all entries equal to one.
Thanks to Lemma 3.4, we have the following characterization of the maximizers of 63°°.

COROLLARY 3.1 (Characterization of 63°¢.) Consider a cone £ C H and assume that X — X is a union
of subspaces, (£ —X)NS(1) is compact, and X # span(x) for each x € . For any class C’ of regularizers
such that £ C dom(R) for every R € C’, the set of maximizers of 02°°(-) satisfies (whether this set of
maximizers is empty)

z—Pr_x(2)|I3%

argmax 63°°(R) = argmin Bx (R) with Bx(R):=  sup (3.24)
ReC! Rec! cerngor 1Pe—x(@)I3
For any regularizer R we have
83°°(R) = (1+2Bx(R)) . (3.25)
Proof. See Appendix A 4. O

We now have the tools to study optimality for sparse and low rank models.

OPTIMAL REGULARIZATION FOR SPARSE RECOVERY AND FOR LOW-RANK RECOVERY Consider
now X = X the set of k-sparse vectors in % = R” (associated with the canonical scalar product (-, -)
and the £>-norm || - ||3 = || - ||2), where 1 <k < n/2, n > 3. We have £ — X = X, (for n < 2k, in
particular for n < 2 and any k > 1, uniform recovery is not possible for non-invertible M: as ¥ — X =R",
by Lemma 2.1 we have Tz(X) = R” for any regularizer, thus 7g(X) NkerM = {0} implies kerM =
{0}). It is well-known that X and X — X are both unions of subspaces (hence X is a cone), and it is
straightforward that (£ — X)NS(1) is compact and X is not reduced to a single line. Moreover, for any
nonzero z € R", Ps_x(z) contains the restriction zz, of z to any set T» = T»(z) C {1,...,n} of size 2k
such that minjer, |z;| > max jets |zj|. Hence, we can invoke Corollary 3.1 to replace the maximization
of 83°¢(R) by the minimization of

HZT;H%

By (R) = .
ceTr(zno} 123 13

(3.26)

Similarly, We consider X = X, the set of matrices of rank at most r in the Hilbert space H of
n X n symmetric matrices (we study the symmetric case for simplicity, but conjecture that our result
can be extended to the non-symmetric case) with || - || = || - || (the Frobenius norm). We have again
X — X = X,, and all conditions are satisfied such that Corollary 3.1 can be invoked. Denoting A = eig(z)
the vector of eigenvalues of matrix z € H sorted by decreasing absolute value, so that z = U’ AU for
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some unitary matrix U, and defining zr :=z=U TArU for every index set T, we have Pr_x(z) = zr,
and z— Pr_x(z) = zzy where T = T>(z) C [1,n] is any index set containing the 2k largest eigenvalues
(in magnitude) of z, i.e., such that minjer, |Ai| > maxjezy [A;[. With these observations and notations,
we are again left to optimize (3.26).

Specializing to the class C of convex, coercive, continuous regularizers, we obtain the following
theorems.

THEOREM 3.6 (Optimality of £!-norm for k-sparse vectors for 0p°°.) With k-sparse vectors, X = X C
H=R" k<35 and R*(:) = || - |1, we have

L/k
82°¢(R*) = sup 68°°(R) = (2B}, + 1)} with B /

= —. 3.27
ReC : " Lk (L/k+1)2+1 (3.27)

Moreover, for k = 1, the unique functions R € Cy maximizing 063°¢ are of the form R(-) = A|| - ||; with
A>0.

THEOREM 3.7 (Optimality of the nuclear norm for rank-r matrices for 63°°.) With the set of rank-r
matrices, X = X,, in the space H of symmetric n x n matrices, r < 5, and with R*(-) = || - | (the nuclear
norm), we have

L
52°°(R*) = sup 82°°(R) = (2B}, +1)""  with  By,: /r

= TV 3.28
Rec 1<ILn<%t)£2r (L/r+1)2_|_ 1 ( )

The proofs of these two theorems exploits technical lemmas that we detail in Appendix A.4.1 and
Appendix A.4.2.
Proof. 'We give the proof for the case of sparse recovery. To express it for low-rank recovery simply
replace the notation k by r. For 1 < s < n and any regularizer R we define

llzzg |13

BS(R) := (3.29)

2€TR(Z)\{0} 2%, ||ZT2 ||% '

For s < 2k and any z € X; we have zzy = 0 hence By,(R) = 0, thus Bx(R) = max<r<n-2k By “(R).
First consider R € Cx. Since R is positively homogeneous and subadditive, by Lemma A.4 for X; /
Lemma A.8 for X,,

L
B%HL(R) > %, foreach | <L < n—2k.
(5+1)"+1

For R* and 1 < L < n— 2k we also have (Lemma A.6 / Lemma A.9, inspired by [17]) that

L
By (R*) = — k.
2( ) lginge}'z)izk (%+1)2+1

As a result,
L
By(R) >Bs(R*)= max —k_  —: B¢
- L 2 n
ISLn=2k (£ 4+1)"+1
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Finally, remark that By (R) is an increasing function of 7z(X). Using Lemma 2.4, for any R € C
there is R’ € Cx such that
Bx(R) > Bx(R') > B,

For k = 1, uniqueness comes from the fact that on a given orthant for R € Cy, R is a weighted ¢!

norm: R((xy,...,x,)) = ¥;wilx;| and the equality case in Lemma A .4 forces w; = max; w;.
(]

Because of the uniqueness result for k = 1, the £!-norm is the unique convex regularizer in NC 5, that
jointly maximizes 63°° for all k < 3 (the proof of Theorem 3.6 is valid for Cy,,, with k < K <%). Itis
an open question to determine if we have uniqueness model by model. As the result might change for
tighter compliance measures, we leave this question for future work.

In the next section, we will see that the optimization of the sufficient RIP constant leads to very
similar expressions.

3.3 Compliance measures based on sufficient RC conditions

When X is a union of subspaces and R is an arbitrary regularizer, an “explicit” RIP constant §§** (R) is
sufficient to guarantee reconstruction [38]. The expression of this constant [38][Eq. (5)] is recalled in
the Appendix (Equation (A.42)) and can be used as a compliance measure. It gives rise to the following
lemma, which is proved in Appendix A.5.

LEMMA 3.5 (Equality case of the sufficient conditions.) Assume that ¥ = Uy¢yV is a union of sub-
spaces and that £ N S(1) is compact. Consider R any regularizer such that £ C dom(R). We have

1

stuff(R) > = stuffz(R).

P QI (330)
sup o]
\/zemm\w} P22l

Further, assume that Ps(z) C argmin,ey ||x — || for every z € H and that, for every V € V and every
uc X, P, (u) € L. Then, there is equality in (3.30).

Proof. See Appendix A.5. Note that the assumption Py (z) C argmin,ey ||x — z||x could be replaced by
the slightly weaker Ps(z) Nargminyey ||x — z||s/||x]]2 # 0.
]
We get an immediate corollary of the first claim in the above lemma.

COROLLARY 3.2 (Expression of a sufficient condition.) Assume that ¥ = UycyV is a union of sub-
spaces and that X NS(1) is compact. For any class C' of regularizers such that £ C dom(R) for every
R € C', the set of maximizers of §5*%2(-) satisfies (whether this set of maximizers is empty)

. , 2= Pe(2)lI3
argmax 85°**2(R) = argminDy(R)  with  Dy(R):= =t (3.31)
ReC’ ReC! ey 1Pl
For any optimal regularizer R* we have
S2(R*) = (1+ Dy (R)) /2. (3.32)

Note the subtle difference in the norm at the numerator in By (R) and Dy (R).
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OPTIMAL REGULARIZATION FOR SPARSE RECOVERY AND LOW-RANK RECOVERY When consid-
ering sparse recovery or low-rank recovery, there is indeed equality 6§ (R) = 6§*f2(R) thanks to the
following Lemma.

LEMMA 3.6 The assumptions for the equality case of Lemma 3.5 hold for X = X the set of k-sparse
vectors in H = R", as well as for the set X = X, of symmetric matrices of rank at most r in 7 the set of
symmetric n X n matrices.

Proof. See Appendix A.5. g
Consider X := X, and regularizers in Cy. Similarly to the necessary case, from Lemma 3.5, we have
(when X is a union of subspace and X NS(1) is closed)

2713

Dy (R) =
oy 2713

(3.33)

where T denotes the support of the k largest coordinates of z.
We obtain similar results as in the necessary RIP constant case.

THEOREM 3.8 (Optimality of ¢!-norm for k-sparse vectors for O5™1.) With k-sparse vectors, £ = X C
H=R" k<5 and R*(-) = |- |1, we have

1
S (R*) = sup ST FE(R) = ——. (3.34)
5 (R) REI; 5 (R) /2
Moreover, for k = 1, the unique functions R € Cy maximizing 85" are of the form R(-) = A|| - ||; with
A >0.

THEOREM 3.9 (Optimality of the nuclear norm for rank-r matrices for 6§**f.) With the set of rank-r
matrices, X = X, in the space H of symmetric 7 x n matrices, r < 5, and with R*(-) = || - || (the nuclear
norm), we have

1
S (RY) = sup 821 (R) = —. 3.35
> (RY) REI; s (R) NG (3.35)

Proof. 'We give the proof for the case of sparse recovery. To express it for low-rank recovery simply
replace the notation k by r. For 1 < s < n and any regularizer R we define

2713

D% (R) := .
: @00} zex, 273

For s < k and any z € X, we have z7e = 0 hence D} (R) = 0, thus Dy (R) = maxj<z<,— D “(R).

First consider R € Cyx. Since R is positively homogeneous and subadditive, by Lemma A.13 for X /
Lemma A.15 for X,,

L
D’?L(R)>min(1,z), foreach 1 <L <n—k.

For R* and 1 < L < n— k we also have (with Lemma A.12 / Lemma A.14) that

L
DEE(RY) = min(1, 7).
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As aresult,
L
Ds(R) = Dy (R*) = in(1,=) = 1.
£(R) > Dr(R) = max min(1,)
Finally, remark that Dy (R) is an increasing function of 7g(X). Using Lemma 2.4, for any R € C
there is R’ € Cx such that
Dz(R) > Dz(R/) > 1.

3.4 Discussion

Even without an analytic expression of the sharp RIP constant, it would have been possible to show that
R* optimizes 85> if it were simultaneously optimizing its lower and upper bound, i.e., if we had
sup 65 (R) = S5™1(R*) = 83°°(R*) = sup 63°°(R). (3.36)
ReC ReC

Unfortunately, this is not the case in the sparse and low rank examples. We observe that for fixed

k,n we have in both cases

1 x nec x
N S8 (R*) < 83°°(R"). (3.37)

Because of this fact, we cannot conclude on the optimality of R* for 85"*"". However, indexing all
objects of the problem by n the dimension of H (respectively the dimension of the diagonals): the set of
regularizers C), the models Zé") and the corresponding R*(") (independent of k for k < n /2 as we saw
previously). We have (see Remark A.1)

1

inf  inf sup 8°%%(R) = — = &ML (RV(), (3.38)
nZ3 k{1 nln/21} pecln) E,E)( ) V2 Zﬁ)( )

We deduce 1
inf inf sup 8*P(R) = —. (3.39)

n23ke{Lews|n/2)) pepm St (R) V2

and

inf inf 52T (pr(n)y _ 5P(R)| | = 0. 3.40
g3ke{1,.1.r.l,[n/zj} i) ( ) Rselélfn) b (R) (3.40)

(n)

This shows that the functions R*(") are optimal as a family with respect to a family of models X,
and the worst case of their associated compliance measures Sz?srp (R).
k

These results can be interpreted in terms of number of measurements needed to recover uniformly
sparse or low rank objects with convex regularization. Under the best known (RIP-based) uniform
recovery conditions, it is guaranteed that using the optimal regularization with respect to RIP-based
compliance measures will enable the use of fewer measurements. In particular in the case of an oper-
ator M built from m random Gaussian measurements, it has been proven (see e.g. [22]) that there is a
universal constant C such that if m > Cklo‘%w then M satisfies a prescribed RIP constant § with high
probability. Hence, the larger the required RIP constant is, the lower the number of measurement needs
to be. Such results on the required number of measurement to verify the RIP have been extended to
more general low dimensional models (see e.g. [30]), making RIP-based optimal regularizers tools of
choice to optimize the number of random measurements of elements of a given low dimensional model.
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4. Towards the construction of optimal convex regularizers? The examples of sparsity in levels
and beyond.

In the previous Section, optimality was shown by exhibiting the optimal regularizer (¢!-norm and
nuclear norm). The only constructive part in these results is given by Theorem 2.4 that shows that
we can look for optimal regularizers in the set of atomic norms Cx constructed using the model set X.
Ideally, given a compliance measure, we would like to be able to construct for any model X, an optimal
regularizer R* € Cx. As such an objective seems out of reach with the tools we have developed so far,
we study on an example (the case of sparsity in levels) the simpler problem of looking for the optimal
regularizer in a smaller set of regularizers. We consider a set of weighted ¢'-norms and explore the
explicit construction of an optimal regularizer for the compliance measure 63°°. We then extend this
result to the similar setting of Cartesian product of sparse and low-rank models.

4.1 Sparsity in levels

Sparsity in levels is a possible extension of plain sparsity, which is useful for the precise modeling of
signals such as medical images [1, 6]. It is also useful for simultaneous modeling of sparse signal and
sparse noise [34, 39].

DEFINITION 4.1 (Sparsity in levels.) In H = R" x R x ... x R"., given sparsity levels ki, ..., k., we
define the sparsity in levels model with

Zkl-,---akL = {x:(xl,...,xL) :x,-eZki} “4.1)

where X, is the k;-sparse model in R".

While the ¢'-norm was shown to be is a candidate to perform regularization for models that are
sparse in levels [1], it was also shown that it is possible to obtain better sufficient RIP recovery guaran-
tees when weighting the ¢! norm by /k; in each level [38]. The following theorem permits to show that
this weighting scheme is close to optimal for the compliance measure 63°° by giving explicit expressions
for the calculation of optimal weights.

Given weights w = (wy,...,wy) € Rﬁ, we define the ¢'-norm weighted by levels.
L
||(x1,...,xL)||w: ZW,‘HX,’Hl. (4.2)
i=1

We have the following result.

THEOREM 4.2 (Optimal weighted ¢! norms for opec for sparsity in levels.) Consider two integers
ki,kz > 2 and the model set X = X, ;, in H = R" x R" where we assume that ny > 4ky, ny > 4k,. Let
d=2+/3 —3. We define

i/ ki
By := min max max Lz (4.3)
r/le[“i’l*j] {12} e { ki /TH 1/ Vi s [k /TH1/vi]} Vilxi/ki+1)2+1
2=1=V1

where | -] and [-] denote the lower and upper integer part and (v{, v;) minimizing this expression.
Then

nec

S argmax Sz (Il - 1lw) (4.4)
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if and only if w* = (w},w3) where wj,wj > 0 satisfy

WE k1
—= =4/ —(1/vi—1). 4.5
Wi kz(/"l ) 4.5)

Moreover, denoting wo = wo(k1,k2) := (1/vk1,1/v/k2) we have

Bz (|| lw) < (V3-1)/2

By(||-[lw) = By
1

<
* O\ — nec (4'6)
82l - we) = (1+2B5) ™" = 88°°(]| - [lwo) = 1/V/3.
Finally, we have

f inf 85|l - =1/V3. 4.7
i saim ity U loter i) V3 @7

Proof. See Appendix A.6.
([

This theorem comes from the fact that (see proof) the quantity defined in (3.26) satisfies

Bry iy (- lowy ) = glakaz,‘q o ((wi,w2)) 4.8)

where Bg‘(’Lkz (I [l wy,w,)) can be computed explicitly (similarly to BZHL from (3.29) for sparsity).

Thanks to the expression of By (]| - ||,,+) from Theorem 4.2, it becomes tractable to evaluate numer-
ically optimal weights. We simply perform the minimization over v; € [d,1 — d] over a regular grid
(of 10% points in our experiment) and take the minimum. The value of wi /w3 is returned according
to (4.5). Let wop = wo(ki,k2) = (1/v/k1,1/v/ky). In Figure 3, we show a representation of the two

criteria Cy (ki ky) = |1 — —2220 | and C, (ky,ky) = |08 (]] - [[w+) — 05°¢(|| - ||, )| for different pairs

[w*l2llwoll2

(k1,k2). The case Cy(ky,ky) = Co(ky,ky) = 0 occurs if and only if wy is optimal).

We observe numerically that for 2 < ky,ky < 200, Cy(k1,kz) < 1075 and G (ky,kp) < 5-1073 and
that the error tends to decrease for greater ky,k,. This comes from the fact that the result of the discrete
optimization over the integers L; in (4.8) gets closer to the result of a continuous optimization that yields
wh/wi = Vk1//ka (obtained by dropping the integer parts in Theorem 4.2).

For the “asymptotically optimal” weighting scheme wy = wo(k,kp) = (ﬁ, ﬁ) , we find

: nec (4;7) suff sharp nec .
Ty B8 () 42 BB < B ) < 85 () 49)

The inequality (*) is shown in Theorem 4.3 below (improving for L = 2 the lower bound m =

1/+/4 = 1/2 for sparsity in L levels previously given in [38, Theorem 4.2]), and the last inequalities are
generic, cf (3.5).

The double-sided bound (4.9) confirms that the weighting scheme ( NGL \/7) is close to an optimal

choice (w.r.t the maximization of 5;k aip) when the sparsities are known.
152
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FIG. 3. Then quantities log, (C' (ki k2)) i=logio (11— 12 ) left) and log,o(Ca (k1,k2) = Togio (182 | ) — 85 I

w2

[lwo)]) (right) where w* = (w},w}) is obtained from Theorem 4.2 and wo = (1/v/k1,1/+v/k2) for different ki ,ky > 2.

THEOREM 4.3 (Sufficient RIP condition for near-optimal ¢! norms for sparsity in levels.) Consider two
integers ki,k 2> 2 and the model set X = X 4, in H = R™ x R" with n; > k;, i = 1,2, and the norm
1 Gersae2)lhe = Xy [l Then

S5y (- hw) = (4.10)

Sl

Proof. See Appendix A.6. ]

4.2 Beyond sparsity in levels

Beyond sparsity in levels, we obtain exactly the same result for the Cartesian product of a sparse model
and a low-rank model. Consider X , = X; X X, C R" x H, where H, is the set of symmetric matrices
of size p x p. This model with n = p? can be used to model sums of sparse and low rank matrices. To
address associated matrix reconstruction problems it was suggested in [35] to use a weighted sum of the
¢'-norm and the nuclear norm with weights ratio %, ie||(z1,22)||w = Lk llz1 [l + 2= [1z2 |+ The following
Theorem guarantees that the previous numerical experiments hold with this model (by replacing k; by
k and k; by r). It thus confirms that this is a near optimal choice of weights.

THEOREM 4.4 (Optimal mixed norms for 63°¢ for sparse plus low-rank models.) Consider two integers
k,r > 2 and the model set X = X x X, in H = R" x H, where we assume that n > 4k, p > 4r. Consider
d=12v/3-3, By and (v, v;) from Theorem 4.2 with k; = k and k» = r. Then, with ||(z1,22)]}w :=
willz1 |1 +w2l|z2 ||+, we have:

w' € argmax 53°([| - ) (4.11)

if and only if w* = (w},w3) where wj,w; > 0 satisfy

Wi _ ke
= —(1/vi =), (4.12)
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Moreover, denoting wo = wo(k,7) := (1/v/k,1/+/7) we have

By (|- w) = B < Bz (|| Ilwy) < (V3—1)/2 @13)
82l - lwe) = (142B5) ™" = 88°°(]| - [lwo) = 1/V/3.
Finally, we have
inf inf  82°°(|l - lwykr) = 1/V3. (4.14)

k,r>1n>4k,p>4r

Proof. See Appendix A.6. (]

The resulting weighting scheme for the sparse + low-rank model has been used practically in [24].
In the context of structure-texture decomposition of images, the structure is modeled by images with
sparse gradients and the texture is modeled by images having patches with low-rank structure. In this

.. . . wy k- . .
work, a heuristic based on the weigthing scheme % = \/; is proposed and permits to automatically

set regularization parameters for local sparse + low rank models. These results for sparsity in levels
and beyond show that even with a simple model and parametrized family of functions, optimization
might lead to complicated expressions. We also remark that we could perform the optimization because
restricting to weighted atomic norms leads to an analytical description of atoms generating the regular-
izers. This in turn leads to an analytical description of descent cones. The question of optimality within
more general sets of atomic norms remains. Unfortunately the lack of analytical description of descent
cones in the general case makes the direct extension of our proof technique difficult.

5. Discussion and future work

We gave a general way of defining compliance measures between a regularizer R and a low dimensional
model set X, and described some elementary properties of such measures. This opens questions on
conditions on compliance measures that guarantee the existence of an optimal convex regularizer. Also,
the question of manipulating compliance measures for transformations and combinations of models
(intersections, unions, sums, ...) is a wide and challenging potential area of research.

We considered noiseless observations instead of the classical noisy model y = Mx( + e where e is
a measurement noise with finite energy ||¢||, because of the following remark. Suppose we define an
optimal regularizer for a given noise level ||¢||,. There are two possible cases, either the regularizer is
also optimal for |le|l = 0 or it is not. In the second case, it means that we would need to trade exact
recovery capability for improved stability to noise. This is a possible route to follow especially if there is
some latitude on the design of the measurement operator M, i.e., it is possible to increase measurements
to improve stability to noise. The analysis of such trade-offs is out of the scope of this article and left
for future work.

We have shown that the £!-norm is optimal among coercive continuous convex functions for sparse
recovery for compliance measures based on necessary and sufficient RIP conditions. This result had
to be expected due to the symmetries of the problem. The important point is that we could explicitly
quantify the notion of good regularizer. We obtained the same expected results with the nuclear norm
for low-rank matrix recovery.

It must be noted that we did not use constructive proofs (we exhibited the candidate maximum of
the compliance measure) for the sparsity and low-rank cases. A full constructive proof, i.e., an exact
calculation and optimization of the quantities By (R) and Dy (R) would be intellectually more satisfying
as it would not require the prior knowledge of the candidate optimum, which is our ultimate objective.
We saw in the case of sparsity in levels and beyond that we can construct the regularizer that achieved
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optimality among a simple parametrized family of convex functions (weighted ¢'-norms in levels). It is
an open question to obtain more general constructions.

We used compliance measures based on (uniform) RIP recovery guarantees to give results for the
sparse recovery case, it would be interesting to do such analysis using (non-uniform) recovery guaran-
tees based on the statistical dimension or on the Gaussian width of the descent cones [2, 14]. One would
need to precisely lower and upper bound these quantities, similarly to our approach with the RIP, to get
satisfying results.

Finally, while these compliance measures are designed to make sense with respect to known results
in the area of sparse recovery, one might design other compliance measures tailored for particular needs,
in this search for optimal regularizers.
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A. Appendices

This section describes the tools and proofs used to obtain our results.

A.1  Summary of properties used in proofs

From [38, Table 1] (which summarizes results from [32] ), the function x € £(A) — ||x|| 4 is always
non-negative, lower semi-continuous and subadditive (i.e., it satisfies the triangle inequality). It is fur-
thermore positively homogeneous as soon as 0 € conv(.A), continuous as soon as 0 is in the interior
of conv(A), and coercive as soon as conv(.A) is bounded. Finally, it is indeed a norm if conv(A) =
—conv(A).

We refer the reader to [38][Section 2.2] and [4] for properties of the atomic norm || - ||x (cf Theo-
rem 2.3). We will use the following two properties of || - ||z (defined in Section 2.5).

Fact A.1 (From e.g. [38]) Forallx € X, ||x||z = [|x[| 3.
Fact A.2 (From [38][Fact 2.1] applied to || - ||z) Forall z € H

lzlls = inf{\/Zli|u,~|%{ A ERLY hi=lueXz= Zliu,}. (A.1)

A2 Proofs for Section 2

A2.1 Proof of Lemma 2.1. Consider x € X, and z € H. We have 15 (x+z) < 1x(x) = 0 if and only
if x+z € Z, i.e, if there is x' € X such that z =x" —x. Hence, T;;(x) = {y(x¥' —x) : y e R,x¥ € Z}.
It follows that 7, (X) = {yz: ye R,z€ £ —X} D X —X. When X is positively homogeneous, for
any z=x'—x€ X —X and y € R we have: if y> 0 then yz=7v —yx€ X —X; if y <0 then yz =
(=Y)x—(—y)¥X €eZ—Z;if y=0thenyz=0=x—x€ X — X, hence indeed 7;,,(X) CX — X.

Now consider y € 7, (X) and write it as y = y(x; —x) where x;,x; € £ and y € R. Since X C
dom(R) we have max(R(x1),R(x2)) < e. We will prove that y € Tg(X). We distinguish two cases: if
R(x1) < R(xp) then R(xy + (x; —x2)) = R(x1) < R(xp) hence y = y(x; — x2) € Tr(x2), and as xp € X
it follows that y € Tr(Z); otherwise R(x2) < R(x;) hence R(x; + (x2 —x;)) = R(x2) < R(x;) hence
y=(=7)(x2 —x1) € Tr(x1) and therefore y € Tp(X). O

A2.2 Proof of Lemma 2.4. Givent > R(0), the level set L(R,t) = {y € H : R(y) < t} is nonempty,
convex and closed (by convexity and lower semi-continuity of R), and bounded (by coercivity of R). We
define A:= L(R,1)NE ={x€ X :R(x) <t}
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Consider z € 7. , (X). If z=0 then clearly z € Tg(X). Let us prove that the same holds when z # 0.
By definition, there exists Y € R\ {0} and x € X such that

lx+2/7la < [Ix]a.

On the one hand we have R(0-x) = R(0) < ¢. On the other hand, since R is coercive, we have

R(Ax) it +oo. Since R is continuous, by the mean value theorem, there is Ay > 0 such that
—foo

R(Agx) =1.

Since X is a cone, the vector x' = Agx belongs to X and, since R(x’) = ¢, by definition of A we
have indeed x' € A, hence ||x'|| 4 < 1. Furthermore, since | - ||.4 is positively homogeneous (because
0 e conv(.A)), we have

1+ A0z/Vll.4 = Aollx+2/7lla < Aollxl|a = [I¥']| a-

We now observe that, on the one hand, the level set L(|| - || 4,1) = conv(.A) is the smallest closed convex
set containing .4; on the other hand A C £(R,¢) and L(R,?) is convex and closed. Thus L(]| - || 4,1) C
L(R,t) and the fact that ||x" + Aoz/7]|.4 < |||l 4 < 1 therefore implies

R(x' +Xoz/y) <t =R(X). (A.2)

This shows that z € Tg(Z) and establishes that 7). , (X) C Tr(Z).

Let us now prove that || - || 4 is continuous, convex, coercive and positively homogeneous. First,
from the property of gauges (see Appendix A.1), || - || 4 is always convex and lower semi-continuous.
Second, since R is coercive, its level sets are bounded, hence conv(.A) is bounded and || - || 4 is coercive.
Finally, as R(0) < ¢ and R is continuous, 0 is in the interior of £(R,?). There exists € > 0 such that
an open ball O of radius € centered on 0 is included in £(R,¢). This implies ONX C L(R,1))NX = A
which in turns imply conv(ON X) C conv(A) C conv(.A). Remark that E(ONX) = E(X) = H. Now
we need to find O" an open ball of radius €’ such that O’ C conv(ONZX). In each orthant ©,, we can
find a normalized basis E = (e;) € X such that 2, C £(E). We define the norm || Y; tie;|| g = Y t;. This
norm is equivalent to || - ||. This implies there is a constant ¢, depending on the orthant €2,, such that
for x =Y ; ie; € O' N Q,, max; W; < ¢ €. This implies

x=1Y Foge (A3)
T LM
with ¢ = % < nc,%'. Taking &’ < €/(nc,) implies t < 1 and x € conv(ON X). As there is a finite
number of orthants we can chose € such that we always have x € O' implies x € conv(ONX). O

A.3  Proofs for Section 3.1

Proof of Lemma 3.1.
Denote & = infyc(x_5)ns(1) |Mx|)5 and B = SUPye(z—x)ns(1) |Mx||3, so that y(M) = B/a. Since X
is a cone, we have foreveryx € X — X,

allxlf3, < Mz < B3, = v(M)al|xll3,, (A4)
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Multiplying x in (A.4) by any A > 0, we have
Aarl|x|[7, < [[AMx||3 < APy(M)al|x|3,.
We look for A > 0, & # 1 such that AM satisfies a symmetric RIP with constant J, i.e.,

Aoau=1-8 and A*y(M)a=1+3.
I

Adding these two equalities yields A2c(1 4 y(M)) = 1, hence A> = @iy - Pividing them yields
1-6 y(M) -1
_— = M 5 - .
s M) = 0= anT

We have shown that for any M, there exists A > 0 such that

yM)—1
S(AM) < DTT

Remark that the value of A that makes the RIP bounds symmetrical is unique, and that no better symmet-
rical RIP bound can be obtained, otherwise we could construct a better restricted conditioning (which is
impossible by definition of y(M)). We deduce

S(AM) = %

O

LEMMA A.1 Consider a cone X C H and 7 C H a non-empty set, and denote P the set of symmetric
positive semi-definite linear operators on H, i.e., N € P if and only if N¥ = N and N = 0. Then

inf Ys (M) Ys(N). (AS)

= inf
M:kerMNT #{0} NeP:dimkerN=1kerNNT #{0}

Proof. The infimum on the r.h.s. of (A.5) is over a more constrained set than on the l.h.s., hence

inf Y= (M) < Y= (N)

M:kerMNT #{0} = NGP:dimkeerB;f,kerNﬁT#{O}
If the Lh.s. is infinite, then the right-hand side must also be infinite, and we are done.

Assume that the 1.h.s. is finite. We now prove the reverse inequality. For this, consider M a linear
operator with kerM NT # {0} and ys(M) < oo. There exists a nonzero vector ¢ € kerM N'T. We build
an operator N € P such that ker N = span(¢) and with ys (N) arbitrarily close to ys(M).

Since ys (M) < oo, M is nonzero hence a singular value decomposition allows writing M = Y/, cju;v!
where (u;)/_, and (v;)_, are orthonormal families and min;<;<,0; > 0. First we deal with the case
where dimkerM = 1. We set N = Y, o;vv so that N € P and dimkerN = 1 too. Since ||Nx|5 =

I 62(vi,x)? = ||Mx]||} for any vector x we have y(N) = y(M), and we are done. Assume now that
k := dimkerM > 2. Observe that span(¢) C kerM and let (ej,...,e;_1) be an orthonormal basis of the
orthogonal complement of span(?) in ker M, so that (vy,...,v,,e1,...,e;_1) is an orthonormal family.
For each € > 0, define N; = Y/, oyvivil + SZIJ‘.;% eje7. Again, N; € P and span(t) = kerNe so that
dimker N = 1, and for each x € H we have

r k=1 k=1
INex|l3 = Y 07 (vi,x)* + €2 Y (ej,0)* = [|Mx]3 + € Y (e, )%,
i=1 j=1 j=1
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hence [Mx[3 < [[Nex|3 < M]3 + 2[Jx]3- Since y (M) < o, we get

0< inf [Mx3< inf [INex|3< sup  [Nex|3< sup  [Mx|3+€°
Xe(Z-Z)NS(1) xe(Z-X)Ns(1) xe(E—X)NS(1) xe(Z-Z)ns(1)

which implies

SUPye(s_ryns(1) [IMx]3 + €2 (M g’
=¥
infoe(x—rynse1y | Mx||3 infoe(x_rynsy |Mx||3

YZ(NS) S

This implies that infe~o Y5 (Ne) < ¥5 (M) as claimed.

O
Proof of Lemma 3.2.  We define
sup,,(y_ Myl|?
G(E,E,M) = - Pye(x z)mE” )’HZz' (A.6)
mfye(lfz)ﬁE ||M)’H2
For any nonzero M, we have
v SUPxe(FEX—FE)NS(1) ||MXH% SuPye(zfz)mF*ls(l)HMF)’H% A7
Trs (M) = — = TR (A7)
infic(rx—rr)ns) | x||2 mn yG(Zfl)ﬂF*lS(l)H vl
Hence,
A (ROF ) inf ’)/FZ(M)

MkerMN Ty .1 (FX)#{0}

inf G(Z,F~'S(1),MF).
MkerMﬂToF 1 (FE)#{0}
By Lemma 2.5 with R = Ro F !, Tpop—1 (FX) = Tp/(FX) = F(Tgiop (X)) = F(Tr(Z)). Also, kerM N
Trop—1 (FX) # {0} is equivalent to the existence of z € kerM such that 7 := F~'z € Tr(X), i.e., of
7 € Tr(X) such that z := F7' € kerM. As aresult,

inf M) = inf G(Z,F~'S(1),MF).
M:kerMﬂGoF,l(FZ)yé{O}YFZ( )= M:F~kerMNTg(Z)#{0} ( M) ) (A.8)

Rewriting M’ = MF, we have kerM’ = F~'kerM and

inf M inf G(Z,F's(1),M
Mker M Ty rey o0y E M = it 5 G S M) (A.9)

which gives the desired result using the fact that F~'S(1) = §(1) since F is a linear isometry.

A.4  Proofs for Section 3.2
Proof of Lemma 3.3.
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Consider z € H\ {0} and M = I — II. For every x € S(1), we have

(x,2)?

B 2
llzll%

| Mx||3 = 1 (A.10)

hence

i (2
_ SUDye(x-x)ns(1) || Mx|[3 _ 1= infe(zp)nso) llzl13

Ye(M) =

(x2)?

- 2 il H8
infyc(xx)ns(1) [|Mx]|3 1- SUPye(z-x)nS(1) Izl
H

Case 1: By assumption there is xo such that ||xo||% = 1 and £ C span(xp). Since X # {0} is a cone, it
follows that (£ — X) N S(1) = span(xp) NS(1) = {—xo,+x0} and

<x,z>2 _ <X,Z>2 _ <X(),Z>2

i = = )
veE-)ns() 123, re-pns 213 lzll3

(A.11)

Hence, if z € X = span(xp) we have yz(M) = +oo, otherwise k09”1 and Ys(M) = 1. Thus, if

ll2l3
Tr(Z) C £ we have AY"°(R) = +oo, otherwise there is z € Tr(Z) \ X, and AX () = 1.
Case 2: Let us show that for any z # 0 there is some x € (£ — X) \ {0} such that (x,z) = 0. This implies

(x:2)

infe(z—x)ns(n) M—zz = 0 and yields the result. Indeed, by assumption, given any x; € X\ {0} there is
H

xy € X such that x, ¢ span(x;) (hence x, # 0). If (x1,z) =0 we take x = x; = x; — Ax, with A = 0.
Otherwise, with A = % we set x = Ax; — x. In both cases we have x # 0 and, since X is a cone,
x€X—Xand (Ax; —x,2) =0.

O
Proof of Lemma 3.4.  Since ENS(1) is compact, for any z there exists ¥ € ENS(1) such that

£ = 7. 2) 2. A.12
|(%,2)] ferggg(l)lw,@l (A.12)

Since E is a union of subspaces, it is homogeneous. Thus, as ¥ € E, we have x := (¥,z)f € E. If
y € E\ {0}, we have §:=y/||y|lx € ENS(1), (z,9)¥ is the orthogonal projection of z on § and

~[|2 N\ ~
2= Y13 = le= Iyl 315 = llz = (@335 = llll3 = 1.9

(A.13)
(A.12)
> |zl3 — e ®)
Since ||z —x||%, = ||zl|3, — 2Re(z,x) + ||x||3, = ||z]|3, — |{z,%)|*, we conclude
llz=¥ll3 = llz— I3 (A.14)

and x € Pg(z) by definition of Pg.

If X' € Pg(z), we have ||z—x||2, = ||z — x||3, = minyeg ||z — y||3, hence the notation ||z — Pe(z) |3, is
unambiguous. Since X’ € Pg(z), there is equality in the above equation with y = x’, hence ||y||y = (z,5)
and |(z,5) > = |(z, %), therefore (z,y) = (z,[[yll2F) = yllo(z.9) = Y7, = (2,3)* = (.%)* = ||x[3,.
This shows that the notations || Pg(z)||3, and (z, Pz (z)) are unambiguous and that ||Pz(z) |3, = (z, Pe(2))-
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We also have ||z||2, = ||x]|3, + |lz—x||%, = |¥'||*, and (z,y) = ||y % hence the notations ||z — Pg(z)||3,
and || Pg(z)]|3, are unambiguous. O

Proof of Corollary 3.1. Since ¥ — X is a union of subspaces and (£ — X)NS(1) is compact, by

Lemma 3.4, supc(s_x)ns(1) a2 _ P I , hence we have

23, — ||ZH2
~1
_ |z—Ps_x(2)|13 . 1Ps—5(2) I3
(Be(R)+1)"" = sup @ —————55 41 = inf
2€TR(Z\{0} ||P272(Z)||%_[ Z€77? I)\{o} ||Z_P272(Z)||%-[ + ”PZfE(Z)H’ZH
_ ||PE—Z(Z)||%_
@M} 2l

Since X is a cone and X # span(x) for each x € X, by Lemma 3.3, using (3.9) we have 3°°(R) =

nec R —
A = | 1/Bs(R) hence 8°°(R) = By = (2Bs(R) +1)!
We conclude using that b — 1/(1 + 2b) is decreasing.

O

A.4.1 Lemmas for the proof of Theorem 3.6 (sparse recovery). We begin by some technical lemmas.
We recall that 7> = T>(z) C {1,...,n} denotes a set indexing any 2k largest components (in magnitude)
of vector z, while T =T (z) C {1,...,n} will denote a set indexing k largest components (in magnitude).
Given an index set @ = H C {1,...,n}, Qp is the “cube” of all vectors v € R" such that supp(v) = H
and |v;| = 1 for every i € H. The restriction of v to H, vy € R", is such that (vy); = v;, i € H and
supp(vy) CH.

LEMMA A.2 Let £ =X%;. Let || - ||, be a weighted ¢!-norm ( for w = (w;)"_; with w; > 0, |||, =
Y willx[[1). Let z € 7)., (X). There is a support H of size < k such that

ezl = ezl = inf {lx-+2lh = Il } <O, (A.15)
i.e., the infimum is achieved at x* = —zy.
Moreover, if || - |l = || - |[1, H = T (2).

Proof. Theresultis trivial for z= 0, so we prove it for z € 7)., (£)\ {0}. Consider H € argming <k {[|zre|lw — [|z7[lw}.
By definition of 7|, (X), since z € 7|, (£) \ {0}, there are x’ € X, 4 € R\ {0} such that ||x'+ Az|[,, <
[|x/{|- By homogeneity of £, x:=x"/A € X and ||x+2z]|, < |||, This shows that infyex {|lx+ z[lw — [|x|lw} <
0 as claimed. For any such x € X, consider 7' = supp(x).
By the reverse triangle inequality |x; + z;| — |x;| > —|zi|, we have

llx+z7llw — llx[lw = Zwi(|xi+zt xi|) > ZW1|Z1|_ llz7 [|w (A.16)
i€T i€T
Hence [x+zf|w — [lxllw = llx + zr[lw + [lzzellw =[xl = llzrellw = [|2llw = [z [lw = {2zl [w-
IE |- flw =1l I, let T = T(z) and remark that ||zg< [ — ||zl = l|zre[l — [lzr 1
O
The following Lemma permits to construct and to characterize elements of descent cones.

LEMMA A.3 Assume that R and X are positively homogeneous. For every vy € X such that R(vg) > 0
and any v| € H, we have that z := v — ovg € Tr(X) where @ = max(R(v1)/R(vp),1). If, in addition,
X is homogeneous and R is even, we have conversely that any z € Tg(X) can be written as z = vj — vy
where vg € Z, vi € 1, and R(vi) < R(vo).
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Proof.  Since X is positively homogeneous, x := avg € X, and R(x+z) = R(avg +z) = R(v1). If
R(vi) > R(vp) then o > 1 and R(x+z) = R(v1) = aR(vp) = R(ovg) = R(x). Otherwise, o = 1 and
R(x+2z) =R(vi) < R(vp) = R(x). In both cases we obtain that z € Tg(x) C Tr(X).

Regarding the second claim, when z € Tg(X), by definition there exists x € X, u € H and y € R such
that z = yu where R(x+u) < R(x). Denote vo := yx and v| := vo +z. Since X is homogeneous, we have
vp € Z. Since R is even and positively homogeneous, R(vi) = R(yx+ yu) = |Y|[R(x+u) < |y|R(x) =
R(yx) = R(vp).

O

The next lemma permits to compare BY.(R) with B3.(|| - |[1) (see definition in (3.29)) which was
calculated in [17] to characterize the necessary RIP condition for sparse recovery.

LEMMA A4 Let X = X be the set of k-sparse vectors in R” with k < n/2 and 1 < L < n— 2k. Assume
that R is positively homogeneous, subadditive, and nonzero.
Consider

(Ho,v9) € arg max R(v) (A.17)
HC{l,...,n}: |H|=k
vEQH
(Hy,v1) € arg min R(v). (A.18)
HC{L..nW\Hp.[H|=k+L

veQy

1. We have R(vg) > 0, and for any H of size k' > k and any v € Qy, we have

k/
R(v) < ER(VQ). (A.19)
If R=R* = || ||| then we have indeed equality R*(v) = '%R*(vo).
2. We have
2 L L
ZT°¢ = =
Bewe Ll S
TR\ O)fsupp(o) =2k 2m [~ ((gglg) 1> by (B4
Vo ’

(A.20)
Proof. As a preliminary observe that if R* = || - ||; then R*(v) = |H| for any H,v € Qp, hence Hy,H,

can be any pair of disjoint sets of respective sizes k,k+ L, and v; € Qg can be arbitrary, for example
vi = 1p,. This yields R*(vo) = k, R*(vi) = k+L, hence R*(v) = (1+L/k)R*(vo).
To prove the first claim, consider {Gi}1<,< k/) the collection of all subsets G; C H of size exactly
SIS\

k. Since v € Qy, we have vg, € Qg, for each i. Also, since |G;| = k for every i, by definition of Hy,vo
we obtain max; R(vg,) < R(vp). Notice that given a coordinate j € H, there are (1;(,:11) sets G; such that
Jj € Gi. With 4 := (k+1) we get v =AY v, hence by positive homogeneity and subadditivity of R
k—1
(which imply convexity)
(i) (i) )
R(v) =R(A Z vG,) < ZR(/'Lle.) =A ZR(VGi) < (k,fl)
i=1 i=1 i k—1
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This establishes (A.19). With R = R*, we have R*(v) = ||v||; =k’ forv € Qn, hence R*(v) = (K’ /k)R*(vo)
as claimed.

For the sake of contradiction, assume that R(vo) < 0. As we have just proved, this implies R(v) <
(n/k)R(vo) <0 forevery v € {—1,+1}" = Qn with H = {1,...,n}. By convexity of R it follows that
R(v) < 0foreachv € [—1,1]" = conv(Qp), and by positive homogeneity,

R(v) <0, VWeH. (A.22)

Positive homogeneity and subadditivity also imply

(A22)
0=0-R(vo) =R(0-vp) =R(0) =R(—v+v) <R(—v)+R(v) < R(—v)

for every v € H, hence R(v) = 0 on H, which yields the desired contradiction since we assume that R is
nonzero.

Regarding the second claim, since 2k+ L < n there is indeed some H of size k+ L such that HNHy =
0, hence H; is well defined. By construction, H; N Hy = @. Since R(vy) > 0, R is positively homoge-
neous and X is homogeneous, by Lemma A.3, z = —owy +vi € Tr(Z) with o := max(R(v1)/R(vop), 1).
Observe that |supp(z)| = |Ho| + |H1| = 2k+ L. Since a > 1 and all nonzero entries of vy, v; have magni-
tude one, a set of 2k largest components of z is 7 = Hy UT{ with T| any subset of H; with k components,
and we obtain (A.20). once we observe that

lzrgl3 L Ljk
lzn |3 ko?4+k  o?+1°

LEMMA A.5 Consider c.,c; > 0, an integer n > 2, and the optimization problem

sup B2 (A.23)

XERY x| o0 oot ][ 1 <
If ¢; > c¢o then there exists 1 <L <n—1and 0 < 6 < 1 such that
X i=cw(l,...,1,0, 0,...,0 )
—— ——
L>1 n—(L+1)>0
is a maximizer. Otherwise, a maximizer is x* = (c1,0,...,0).

Proof. Standard compactness arguments show the existence of a maximizer x*. We distinguish two
cases:

e If |[x*|| < cw then x* is indeed a maximizer of the Euclidean norm under an ¢! constraint, hence
x* is a Dirac: without loss of generality, x* = (c1,0,...,0) so that ¢; = ||x*||e < Ceo

e Otherwise ||x* || = e, in Which case we show that all entries of x*, except at most one, are either
zero or equal to c... For the sake of contradiction, assume that x* contains two distinct entries with
values 0 < a < b < ¢, then for small enough ¢ > 0, replacing these entries with 0 <a—t <b+t <
¢ and keeping all other entries unchanged would lead to a vector x satisfying ||x]|c = ||X*||cc = Cco»
llx[|1 = ||*||1. However, since ||x||3 — [|x*||3 = (a —1)?+ (b+1)* — (a® +b*) = 21> +2(b—a)t > 0.
Since x* has optimal objective value, this yields the desired contradiction. Since the objective
value and the constraints are invariant to index permutations, there is thus a maximizer with the
claimed shape, and we have ¢ 2 ||x*||1 2 [|x*||ec = Coo-
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The two cases respectively correspond to ¢; < Ce OI €] 2> Ce, Which are mutually exclusive, hence the
conclusion.
O

LEMMA A.6 ([17]) Consider X = X, C R". We have

L
Br(||-[[1)= max —* . (A.24)
1<L<n—2k (%4‘1) +1

Proof. With B$.(R) defined in (3.29), and recalling the expression (3.26) of By (R), we have

Be(l-lh) = _max BEE(- 1)
By Lemma A4, &) (R to_ & is impli
y Lemma A.4, 70 (L/k)+1>T1and By (|| - |l1) = (R*(w))zﬂ (%H)ZH.Thlslmphes
L R*(vp)
Be(|-[l) > max —H*-— (A.25)

I<L<n—2k (L 4 1)2+ 1

and there only remains to show there is indeed equality. We isolate this result from [17] for complete-
ness. This will also help understand the case of sparsity in levels in Appendix A.6.

First, we show we can restrict the maximization used to express By (|| - ||1) (cf (3.26)) over vectors z
having constant amplitude o > 0 on T'(z).

Indeed, consider z # 0 such that z € Tz, (|| - |[1). By Lemma A.2, we have ||zr<||; < [|zr|; with
T =T(z) a set of k indices of components of largest magnitude of z. Assume that there are i # j in T
such that |z;| # |z;|. Let y such that y; = z; for [ ¢ {i, j} and y; = y; = (|zi| +|zj|)/2. The set T remains a
support of the k largest amplitudes in y, and 7, = T»(z) remains a support of the 2k largest amplitudes in
y. Moreover, we have ||yr|[1 = ||zr[l1 = l|lzz< |1 = llyze[|s = || = yr + || hence we have y € Ty, (|| - 1)
Since [[yz[13 — ||zz 13 = Ily7ll3 — ller 13 = 2[(zil + 12;1)/2]* = |zif* = 2> = —(|ail = |z;])*/2 < 0 and
Iyzel13 = llzzg 15 we have [[yzel|3/ 1y 113 > llzzg [13/ |z 13-

Second, the same reasoning on 7/ = T \ T, shows that we can further restrict the maximization used
to define Bx (|| - |1) to vectors having constant amplitude 0 < 8 < o over 7. This leads to

lzzgll3 Ix[13

sup sup ——— (A.206)

Bs(||-[[1) = = :
A0lereli<lerls 12313 op0>p>0xerr2%: x| <, vl <k(a—p) K(OZ + B)

Using Lemma A.5, the supremum with respect to x is reached with vectors with the shape

(B,....5,0, 0,....0 )
N—— ——

L n—2k—(L+1)=0

with0 <0 < B and 0 < L<n—2k— 1. We deduce

LB*+6”
Be([-h) = sup sup PSR
o,B:o>B>0L,0:0<L<n—2k—1,0<0<p k(OC2 + ﬁz)
0<ka—(k+L)B (A27)
LB* + 67 '
= max sup sup ——
OSLsn=2k—lg B:a>B>0  0:0<0<p k(OC2 + ﬁZ)
0<ka—(k+L)B
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When 0 < 8 < ka— (k+ L) we have

LB*+6>  (L+1)B?
oop = (A.28)
0:0<0<B,0<ka—(kr0)p K(@*+PB?)  k(a?+B?)

while when 8 > ka — (k+ L) > 0 we have
LB*+6%  LB*+ (ka—(k+L)B)*

oup = : (A.29)
0:0<0<p 0<ka—(k+1)p k(0% + B?) k(a? + B2)
On the one hand, when 0 < 8 < o satisfies § < ka — (k+ L) we have @ > (1 + (L+1)/k)p hence
LB*+6>  (L+1)B*  (L+1)/k (L+1)/k

su = = < . (A30)
e:ogegﬁ,egllza—(HL)ﬁk(a2+B2) k(a?+B2)  (a/B)?+1 ~ [14+(L+1)/k>+1

On the other hand, when 0 < 8 < « satisfies > kot — (k+L)B > 0we have (1+ (L+1)/k))B > a >

(1+L/k)B and, denoting g(¢) := Ljktk®

—mfort>0,weget

" LB?+62  LB%+ (ka—(k+L)B)* L/k+kla/B—(1+L/k)> B
pococpor s HOETEY KETY (a/prri /P UELK),
(A.31)

A simple function study shows that g’(r) is positively proportional to a second degree polynomial P(t)
with positive leading coefficient and such that P(0) < 0. It follows that there is zo > 0 such that g'() <0
for 0 <r<1tandg'(r) > 0fors >t. Hence, g is decreasing on [0, ] and increasing on [fy, +0), so that

L/k (L+1)/k
((1+L/k)2+1’ (1+(L+ 1)/k)2+1) '

gla/B—(1+L/k))< sup g(r)=max(g(0),g(1/k)) = max

0<r<1/k

As all the above bounds also hold if § = 0, we obtain the claimed result.
O

REMARK A.l1 The maximum value of (with respect to L) is reached for L/k maximizing

L/k
((k+L) /k)?+1
f(u) = u/((u+1)>+1) (which is maximized at /2 over R). We verify that it matches the necessary
RIP condition J from [171, £(v/2) = 2v/2/(2+v/2) which gives s (|- |1) = (4+3v2)/V2 = %

A.4.2  Lemmas for the proof of Theorem 3.7 . Given a matrix U, we denote Uy the restriction of U
to its rows k, ... ,I. We denote O(n) the orthogonal group. Given a symmetric matrix z, we write eig(z)
the vector of eigenvalues ordered decreasingly with respect to their absolute value. Given a vector x
of size n, we write diag(x) the diagonal matrix with diagonal equal to x. To match the notations for
the case of sparsity, given a matrix z = U’ diag(w)U, we write zz = U” diag(wy)U and Qy as in the
previous section. We denote 7 = {1,..,r} and T, = {1, ..,2r}. We denote || - || the Frobenius norm.
Using the same demonstration as Lemma A.2 we characterize the descent cones of the nuclear norm.

LEMMA A.7 Let £ =X,. Let || ||, be a weighted nuclear-norm. Let z € 7}, (X). There is a support
H of size < r such that

[zre w = llzr [l = i {[}x+ 2]l — [lxllw} <O, (A.32)

i.e., the infimum is achieved at x* = —zy. Moreover, if || - ||w = || - ||+, H = T (2).
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LEMMA A.8 Let X = X, be the set of n x n symmetric matrices with rank at most r with r < n/2, and
1 <L < n—2r. Assume R is positively homogeneous, subadditive and nonzero. Consider the supports
Hy={1,2,.,r}and Hy ={r+1,...,.2r+L}.

Up,v € ar max UTdiag(v)U|| 4, A.33

o) € arg max U7 diag(n)U].a (A33)

(Up,v1) € arg min |UTdiag(v)U|| 4. (A.34)
Ue0(n),veQn, : Uo1: UL, | 0=

1. We have R(U[voUp) > 0, and for any H of size ¥’ > r, V € O(n) and w € Qn, we have

~

r

R(VTdiag(w)V) < —=R(UIvoUp). (A.35)
r
If R=R* = || - || then we have indeed equality R(V' diag(w)V) = ZR(UI voUp).
2. We have
2 L
Z =
BT (R) = sup el a 5
<€ Tj. 4 (£)\ [0} supp(eig(z))=2r L lznll3 = ( aX( R(U] diag(v1)U1) 1))
R(Uf aiag(vo)Up)’ (A.36)
L
. r
L
(7 +1)2 41
Proof.  As a preliminary observe that if R* = || - ||, then R*(VIwV) = |H| for any H,w € Qp,V €

O(n), hence w; € Qp, can be arbitrary, for example w; = 1y, This yields R*(Ul diag(vo)Up) = r,
R*(UTdiag(vi)U;) = r+L, hence R* (Ul diag(vi)U;) = (1+L/r)R*(UI diag(vo)Up).

To prove the first claim, consider {G; }1 < <( 3 the collection of all subsets G; C H of size exactly

r. Since w € Qp, we have wg, € Qg, for each i. Also, since |G;| = r for every i, by definition of Hy,vo
and remarking that the maximization over O(n) permits to consider any permutation of the support, we
obtain max; R(VIdiag(vg,)V) < R(UOTdiag(vo)Uo)

Notice that given a coordinate j € H, there are ( ) sets G; such that j € G;. With A := we

i
get VIdiag(w)V = VIA Y, diag(wg,)V hence by positive homogeneity and subadditivity of R (which
imply convexity)

(1) (1) ()
R(VTwV) =R(AVT Y diag(wg,)V) < Y R(V' Adiag(wg,)V) =1 Y R(V'diag(wg,)V)
() s
< R(UL diag(vo)Up) = R(Uo diag(vo)Up).

-1
)
This establishes (A.35). With R = R*, we have R*(V!diag(w)V) = ||w||; = # for w € Qp, hence
R*(VIdiag(w)V) = (¥ /r)R*(U{ diag(vo)Up) as claimed.

For the sake of contradiction, assume that R(Ul diag(vo)Up) < 0. As we have just proved, this
implies R(VTdiag(w)V) < (n/k)R(U[ diag(vo)Up) < O for every w € {—1,+1}" = Qy with H =

~—
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{1,...,n} and V € O(n). By convexity of R it follows that R(VTdiag(w)V) < 0 foreachw € [-1,1]" =
conv(Qp ), and by positive homogeneity,

R(VTdiag(w)V) <0, YweR" (A.38)
Positive homogeneity and subadditivity also imply

0=0-R(Ul diag(vo)Up) = R(0- Ul diag(vo)Up) = R(0) = R(—VTdiag(w)V + VT diag(w)V)
< R(—VTdiag(w)V)+R(VIdiag(w)V)

(A38) .
< R(-V'diag(w)V)

for every V' diag(w)V € H, hence R(V'diag(w)V) = 0 on H, which yields the desired contradiction
since we assume that R is nonzero.

Regarding the second claim, since 2r+ L < n, by construction, H; NHy = 0. Since R(UOT diag(vo)Up) >
0, R is positively homogeneous and the set X is homogeneous, and we have by Lemma A.3, z =
—aU[ldiag(vo)Up+Ul diag(vi)U; € Tg(X) with o := max(R(U{ diag(vi)U;)/R(Ul diag(vo)Up), 1).
Observe that |supp(eig(z))| = |Ho| + |Hi| = 2r+ L. Since & > 1 and all nonzero entries of vy, v; have
magnitude one, a set of the 2r largest components of eig(z) is 7o = Hyo UT| with 7| any subset of H;
with k components, and we obtain (A.36). once we observe that

2

ZTc L L

[ Tzng L _ 2/r ' (A39)
lznlls  res+r o +1
]
LEMMA A9 LetX =X,. Then

L

Bx(||-|]+) = max 5 (A.40)

i1

—_ N
~—

0<L<n—2r (L 4
¥

Proof.
We have z € T}, (Z,) is equivalent to |[zzg[|« + ||z77 ||+ < [lzz[[« where T’ = supp(z) \ (75 UT)
(Lemma A.7). Hence,

L+2r ||ZT2‘||I%'
By (- 11+) =

(A41)

llerglhlepse<lerl- 1222 l17

Using the fact that ||z« = ||eig(z)||1 and ||z||r = |leig(z)]|2, e fall on the expression of Bx™"(| - [|1)
and get the result using Lemma A.6.

[l
A.5 Proofs for Section 3.3
Proof of Lemma 3.5.  The constant 65**(R) [38][Eq. (5)] has the following expression:
—R
5Zs:uff (R) e<x’ Z> . (A42)

= inf  sup
2E€TR(E)\{O}xex ||XHH\/||x+Z||% — ||Ix[|3, — 2Re(x,z)
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Considering any nonzero z € H, since X is a union of subspaces and XN S(1) is compact, by Lemma 3.4
the set Px(z) is not empty and (Px(z),z) = ||Px(z)||3, is unambiguous. Choosing an arbitrary y € Py (z)
and setting x = —y, we obtain

sup —Re(x,z) S 1Ps(2) 13
2 syl 21— [+l 2Retd) Pl o= PeCe) I — 1P @I +21P5(a)
1

=P @2 | |
sup ———5E+1
\/zemm\w} BRI

Considering the infimum over z € Tg(X) \ {0} yields the first claim. Let us now proceed to the second
claim.

Given z € Tg(Z) \ {0}, consider an arbitrary x € X, and V € V such that x € V. With Fact A.2, for
every v € H, ||v||% is the infimum of ¥; A;[|u;]|3, over convex decompositions v = ¥; L;u; over X, hence
there exists u; € X, A; > Osuch that Y ; 4, = 1, }; Aiy; = x+ z and

2 2
I+ 2llE = Y Ailluill3,.
i

Since V C X, u;y := Pyu; € X. By the additional assumption, since u; € X we also have and u; ;1 :=
Pyiu; € X for each i. Observe also that P, x = 0. Hence, with the notations zy = Pyz, z,1 = P12z, we
have the convex decompositions

Iyl = PvL (X+Z) - Zkiui,VL
X+zy = Pv(x+z) = Zliu,"v.

Using Jensen’s inequality for the convex functions | - ||% and || - ||%, and the identity [|v||% = ||v||3, for
v € X (Fact A.1), we have

ey 13+l +2v 3 < X Adllay I3+ Y Ailluiv 113, = 3 Aillg o 15+ 1 Adllui 15,
1 1 1 1

=Y Adlluill3, = [l + 213
1

Since Py is the (linear and self-adjoint) orthogonal projection onto V, we have Re({x,zy) = Re(x, Pyz) =
Re(Pyx,z) = Re(x,z), and we obtain

lzy I3 + v [l3 < lx+2lE = llx+2vllF + v I3
lzy I3 + lzv I3 < llx+2l1F — [1x]13 — 2Re(x, zv) (A.43)
<

2 2 2 2
llzvellx + llzvll3 < e+ zllz = [xll5 — 2Re(x,2).

Using Cauchy-Schwarz inequality, we have (Re((x,z))* = (Re((x,zv))* < |lx]|3,]|zv||3,- Denoting Vo
such that Py (z) € Px(z), we get
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2
(Re(x,2))* (llzy - IE + llzv 13,) < lIxl3llav 13, (Ilx+2lE = llxl/3, —2Re(x,2))

2
(Re(x.2) B S U
[+1B, (l-+2I — el —2Rete)) = (e B+ D) Tl 4y BBelE g
‘ZV“'H ”PZ(Z)Hy

where the last inequality (we could use here the weaker alternative assumption Py (z) Nargmin,cy ||x —
2|z /[1xll% # 0) uses that zy,, =z — Pyz and [Pzl = [|Ps(2) |3 = [1Pv(2) ]2 = [|zv[|3. To conclude,
we use the additional hypothesis Py (z) C argmin,ey ||x—z||x, which implies ||z— Px(2)||x < ||z— Pvzl|s
since Pyz € X

—R. 1
sup elx2) <

x€X ||xHH\/||x+Z||% — ||Ix]|3, — 2Re(x,z) sup IszPz(z)zHé 41
ZE'TR(Z)\{O} HPZ(Z)HH

O
To replicate the proof used in the necessary case, we show a monotonicity property of || - || 5.

LEMMA A.10 Consider a model set X C H, || - ||z the atomic “norm” induced by X, and D: H — H a

linear operator. If DX C ¥ and [|D||,p := supy,,, <1 [|DV|[# < 1 then

[Dv]z < |Vllg, VveH. (A.44)

Proof.  Let Aj,u; such that u; € £, ¥, 4; = 1, ¥; Lw; = v. Denoting u; = Du; we have u. € £ and
Dy =Y Au,. By Jensen’s inequality and the fact that ||u||x = ||u||» for any u € X (Fact A.1), it follows
that

IDvIE < Y Aillufllz = Y Aalluill3 = Y AallDuill 5, < Y Ailluil 3. (A45)

With Fact A.2, ||v|% is the infimum of the right-hand side over all such decompositions v = ¥ Au;.
O

COROLLARY A.1 With X := X the set of k-sparse vectors in H = R", we have:
1. the norm | - ||z is invariant by permutation and coordinate sign changes;
2. for any vectors v,v' € H such that |v;| <[] for all j we have [[v]|s < []V']s;

3. consider any vector z, and T} a subset indexing k components of the largest magnitude, i.e., miner |z;| >
max j¢r |zj|, with |T| = k. Then

max [zz|lz = |zglls (A.46)
|T|<k
min |z—zr|x = |z—z5]s. (A.47)
|T|<k

Proof. We show the three properties separately.



REFERENCES 43 of 67

* Property 1: Let 7 be a permutation of (1,...,n) and €,...,&, € {£1}. Define D by (Du); =
Eiltz(j)- Observe that DX; C Xy and ||D|[op = 1. Conclude using Lemma A.10 that || Du|| s < [|ul s

for any u € H. The same holds with D' = D!, hence ||u||x = ||D~'Dul|x < ||Dul|x for any u.
This shows |D- ||z = || - || =

* Property 2: Given the assumptions on v,V/, the linear operator defined by (Du); = vu;/v} if
Vi # 0 (and (Du); = 0 otherwise) satisfies DX C X and ||D||,, < | hence, using Lemma A.10
again, [|v]|x = [[DV'[|z < []V']|

* Property 3: By the invariance by permutation and coordinate sign changes of || - ||z, it is sufficient
to prove the result when z; > ... >z, > 0 and T = {1,...,k}. Given T of size k, there is a
permutation ¢ of (1,...,n) such that T = {¢(1),...,9(k)} where ¢(1) < ... < ¢(k). It follows
that zy(;) < z; for 1 <i < k. Hence by Property 2, we have ||zr ||z = [|(zg(1), - - 12 (4): 0, - -, 0) ||z <
I(z1,--12k,0,...,0)||s = ||z ||z. A similar argument using 7° yields ||z —zr||x > ||z —z7 ||z

O

COROLLARY A.2 With ¥ := X, the set of matrices of rank lower than r in H the set of symmetric
matrices in R"*", we have:

1. for any matrices VI diag(w)V,VTdiag(w/)V with V € O(n) such that |w;| < [w'| for all j we
have ||[VTdiag(w)V|s < ||[VIdiag(W)V||x;

2. For any symmetric matrix z, and 7, a subset indexing r components of largest magnitude of
eig(z), Le.,
min|eig(z);| > max |eig(z),],
i€eT i¢T

with |T| = r. Then

max [lzrlls = |zglls (A.48)
|T|<r
min |lz—z7llz = |lz—z5=. (A.49)
|T|<r

Proof. We show the two properties separately.

* Property 1: Given the assumptions on w,w’, the linear operator defined by Dz = VI WVz where
W is the diagonal matrix such that W;; = w;/ wf if w§ # 0 (and W;; = 0 otherwise) satisfies DX C X
and ||D||,p < 1. We have D(VTdiag(w')V) = VIWwV = VIwV. With Lemma A.10, we get
[V diag(w)V|ls = [D(V! diag(w)V)|x < ||V diag(w)V]s.

» Property 2: This property is direct using the eigenvalue decomposition
1=U"diag(eig(z)) U = U"diag(eig(z)r +eig(z)re)UT
and Property 1.

0 We now prove Lemma 3.6. Proof of Lemma 3.6.
Consider first X = . First, the properties of || - ||z established in Corollary A.1 directly show that the
minimum of ||x — z||x with respect to x € X is reached at any x € Px(z). Then, we can write £ = UycyV



44 of 67 REFERENCES

where V € V if, and only if there is an index set 7 C {1,...,n} such that |T| < k and V = span(e;)cr.
Given V € V and u € X, let us show that P, u € X;. Writing V = span(e;);cr where |T| < k, we have
Py(u) = ur and P,. (u) = uge. As supp(urc) C supp(u) it follows that ||urc||o < k, hence P,1 (u) € X.
In the case of low rank matrices X = X,. We take V = {span(U;)icr, |I| < 1, ||Ui||r = 1,rank(U;) =
1,(U;,U;) = 0,i # j} . With Corollary A.2, the minimum of ||x — z||x with respect to x € X is reached
at any x € Py(z). Let z € X, and V € V. We have Py (z) = V/[ S|V} has rank # lower than . We can
write z = VI $1V} + VI SV, with Vi V] = 0. Hence, P, (z) has rank at most 7 — 7/ < r and P, 1 (z) € X,

otherwise z would be of rank greater than r.
0 We need the following Lemma to control || - ||z.

LEMMA A.11 Let X =X, C R". Then for any v

2
V|3 > —‘VkHI. (A.50)
Let ¥ = X,. Then for any v
2
v *
Ivl|3 > H r” : (A.51)

Proof.
Case X =X : Let 4; > 0,u; € X such that ||v||3 = ¥ Ail|ui]|3 and v = ¥ A;u; from Fact A.2. We have,
by convexity

vl =

Z)v,‘u,‘

<Zli|\ui|\1- (A.52)
1 1

Using the fact that ||x||; < v/k||x|2 if |supp(x)| < k and the concavity of the square root,

vl < \/EZ&'HMin <k Y Ailluill3 = Vvl z- (A.53)

Case X=X, : Let A; > 0,u; € X such that Hv||% = Z?L,'Hu,'H%- and v =Y A;u; from Fact A.2. We have,
by convexity

vl =

Z)Liu,'

Using the fact that ||x||. < /7||x||F if rank(x) < r and the concavity of the square root,

<L Ailuil] . (A.54)
vl < ﬁz&'lluillF <k Y Aifluill7 = Vi|vs. (A.55)

A.5.1 Sparsity. We prove several intermediates lemmas to obtain Dx (|| - ||1)-

LEMMA A.12 Consider X = X the set of k-sparse vectors in H = R”, and 0 < L > n— k. We have

2

TC . L

DEE( - ) == sup I~ min (17 z) : (A.56)
€Tjy, (D0} lsupp()=k+L 127112
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Proof. Tt was already proven in [38, Theorem 4.1] that S8 (|| - ||;) > Lz hence by Lemma 3.5

lerel _

5 =Dx(||I-]h) < 1. AST)
ey, @0y llzr iz

Hence, D™(| - [) < 1

Consider Hy of cardinality k, H of cardinality L such that HyN H; = O (this is possible as k+ L < n),
and define z = a1y, + 1y, where @ = max(1,L/k). As a > 1, a set of the k largest components of z is
T = Ho. Moreover, ||z |1 = ak = max(k,L) > L = ||zu, |1 = [|zg [|1-

We distinguish two cases:

» Case 1: L >k, from Lemma A.11, |27 |3 > ¢z |7 = L2 /k. Moreover, |lzr||3 = ko = L [k,
thus ||z7¢||2/||zr||3 = 1. Combining with (A.57) yields DX™(|| - ||1) = 1 = min(1,L/k).

« Case2: L <k, wehave zre =z, € Ehence |[zre|[3 = ||zre |3 = l|zn, I3 = Land [|z7< |3/ |27 |13 =
L/k. This shows that D5."(|| - ||1) > L/k=min(1,L/k). To conclude, we show that DE™([| - ||1) <
L/k. Consider any z' € 7)., (Z) such that |supp(z’)| = k + L, with Lemma A.2, there is a support
H of size lower than k such that, ||Z|[1 = ||2j||1, let T a set of the k largest components of z'.
We have ||Z[l1 — |Z5elli = |2yl — l|2helli- As [|Z]lo < k+Land L < k, Zpc € X C X hence
|Zre|ls = |Zpe|l2- Moreover, |z}| = ||Zyc||« for any i € T, hence ||27||3 = k|| 2|2 As a result

Irellz _ el _ Lllrell2 Ik
- N — .
17113 llzzl3 ~ Kllzgell2

O

LEMMA A.13 Let X = X be the set of k-sparse vectors in R” with k < n/2 and 1 <L < n—k. Assume
that R is positively homogeneous, subadditive and nonzero.

Consider
(Ho,vo) € arg max  R(v) (A.58)
HC{l,..,n}: |H|=k
vEQH
(Hy,vi) € arg min R(v). (A.59)
HC{1,...n}\Hy.|H|=L
vEQH
We have
k+L HZTCH% : L
D™ (R) = sup > >min{ 1,— ). (A.60)
€ TR(E)\{0):[supp(z)|=k+L 12T || k

Proof. From Lemma A.4, R*(v;) = £R*(vg). Since k+ L < n there is indeed some H of cardinality L
such that H N Hy = 0, hence H; is well-defined. By construction, H; N Hy = 0. From Lemma A.4, we
also have R(vp) > 0 and R(v;)/R(vo) < L/k.
Since R(vy) > 0, R is positively homogeneous and X is homogeneous, by Lemma A.3, z = —avy +
vi € Tr(X) with & := max(R(v;)/R(vo),1). Observe that |supp(z)| = |Ho| + |Hi| = k+ L. Since a > 1
and all nonzero entries of vy, v; have magnitude one, a set of the k largest components of z is T = Hy.
We have
el _ Ivil3
lerl3 ko

(A.61)
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2
With Lemma A.11, ;|2 > 0 > 2 1> kand [|v, |2 = |[vi]3 otherwise (Fact A.1). Tf L > k

B o
lzrll3 = K*a? = k*max(L/k,1)?

1. (A.62)

If L <k,

et L L
—_— = > — A.63
B (A9

which leads to the conclusion.

A.5.2 Low rank.

LEMMA A.14 Consider X = X, the set of symmetric matrices of rank lower than r. For any L > 0 such
that r+ L < n we have,

L o llzrell3 . L
DE™(] - ||+) == sup 5~ =min | 1,— (A.64)
€T} (ENO}rank(z)=r+1 |27 (|7 r

where z7 is z restricted to its r biggest eigenvalues, and z7c =z —zr
Proof. It was already proven in [38, Theorem 4.1] that 58" (|| - ||.) > % hence by Lemma 3.5

lerel: _
€T, (E)\{0} llzr 1%

Dx(||-]ls) < 1. (A.65)

Consider Hy = {1,..r} , Hy = {r+1,..,r+L},1let U € O(n) and define z = U diag(aly, + 1, )U
where o = max(1,L/r). As a > 1, a set of the r largest components of eig(z) is T = Hy. Moreover,
a7 [« = ar =max(r,L) 2 L= |lz—zr ||« = |[zz¢|s-

If L > r, from Lemma A.11, ||z7¢||% > 1(||zze[|+)? = L?/r. Moreover, ||zr||3 = ra? = L?/r, thus
llzre||%/|lzr||% = 1. Combining with (A.65) yields D.(|| - ||<) = 1 = min(1,L/r).

If L < r, we have z7c € X, hence ||z7¢ |3 = L and ||z7¢||%/||z7||3 = L/r. This shows that Dy (| - ||+) >
L/r=min(1,L/r). To conclude, we show that D7 (]| - ||) < L/r. Consider any 7’ € 7)., (X) such that
|supp(Z)| = r+ L, with Lemma A.7, there is a support ¥’ and H = 1,..,7 such that ||z};[|+ = ||} ||+ let
T aset of r largest components of z. We have || 2|« — || Zre [« = |2 ]|« — [|2he ||+~ As |leig(Z)]lo < r+L
and L < r, Zpe € X, C X, hence ||Zrc||x = ||Zpe||F. Moreover, |eig(Z)i| = ||eig(Zfe)|| forany i€ T,
hence || ||Z > r||eig(zfc)||%. As aresult

I27ell3 _ ll2rell7 _ Llleig(zro)lla Y
TR rleis@alE "
||ZT||F ||ZT||F riieigliyre )|l

O

LEMMA A.15 Let X = X, be the set of n x n symmetric matrices with rank at most r with r < n/2, and
1 <L < n—r. Assume R is positively homogeneous, subadditive and nonzero. Consider the supports
Hy={1,2,.,r}and Hy ={r+1,...,r+L}.

(Up,vo) € arg  max  |[UTdiag(v)U| 4 (A.66)
UEO(”),VGQHO

(Up,vi) € arg min |UT diag(v)U|| . (A.67)

UEO(”):VEQHI : UO,]:rUrT+1;r+L:
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We have

L
DL(R) = sup llzrellz (1 _> (A.68)
2€TR(Z)\{0}:|supp(z)|=r+L ”ZT“F

Proof. From Lemma A.8, R*(U[ diag(vi)U; = LR*(U{ diag(vo)Uy), R(U{ diag(vo)Up) > 0 and
R(U] diag(v))Uy)/R(UL diag(vo)Uy) < L/r.

Since R(vp) > 0, R is positively homogeneous and X is homogeneous, by Lemma A.3, z= —aUJ diag(vo)Up+
Ul'diag(vi)U; € Tr(X) with a := max(R(U[ diag(vi)U;)/R(UI diag(vo)Up), 1). Observe that |supp(eig(z))| =
|Ho|+ |Hi| = r+ L. Since a > 1 and all nonzero entries of v,v; have magnitude one, a set of the r
largest components of zis T = Hy. We have

lzre|3  |[UTdiag(v)Ui|3

= A.69
Bl roc (A7
With Lemma A.11, we have
|U aiag(v)U1 [ > JI|U diag(v)Un | =5 if L= (A70)
|Ul diag(vi)Ui||% = | U] diag(vi)Ui|/% otherwise (Fact A.1). ’
IfL>r
112 2 2
||ZT( ||2 2 L > L _ (A71)
lzrl% = r?o? = r?max(L/r,1)?
IfL<r,

2
¢ L L
lzrll7 ros = r

which leads to the conclusion.

A.6 Proofs for Section 4

We extend notations for classical sparsity to sparsity in levels (X = Xy, x,). For z = (z1,22) € H, we
we define the following projections P;(z) := z; and P(z) := z and denote T = (S51,52) = T'(z) where
forie {1,2},S; C{l,...,n;} is a support containing k; largest coordinates (in absolute value) of z;, i.e.
Si| = ki and min jcg, |z,j| > max jese |2 |- Forevery U = (Uy,Uz) where U; C {1,...,n;} and |Uj = k;,
we also have |(z1)s 1 = [1(z)u, 1 hence 1zl > [lzu |l and similarly |27 < [[ze -

We define similarly 7> = T»(z) = (S},5,) with S/ containing the 2k; largest coordinates of z;. We
begin by simplifying the condition z € 7., (£) \ {0}.

LEMMA A.16 Letw = (wi,w) € R3. Let || - [l = wi[[P1(-)[|1 +wal|P2(-)||1 Letz € Ty, (Zk, 4,) \ {0}
then
llzzellw < llzr[lw- (A.73)

Reciprocally,
HZT“ng HZTHW (A74)

implies z € T, (Zk, &,)-
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Proof. By definition, if z € 7)., (Zx, x,) \ {0} then there exists x € X, x, and y € R\ {0} such thatz = yy
and [[x+yl|w < [|x[Jw. With U := supp(x) we have [[yye|lw+[[(x+Y)ullw = [x+¥llw < [[x][w = [lxuw
By the triangle inequality this implies

[yoellw < llxvlle =[G+ y)ullw < vl (A.75)
As v # 0, we obtain ||zye||w < ||zu||w. We have
||ZT||W = ||ZUHW = HZU"”W = ||ZT“||W- (A76)

0
To calculate By (]| - ||w) (see definition in Corollary 3.1), we need a few lemmas.

LEMMA A.17 Consider wy,wy,ki,ky > 0and B;,8,,A > 0 and

V.= min>0k10612—|—k20(/22 s.t. oy =By, =B, kjwiog +kowaon > A (A.77)
ap,0p =

o If A <kywi By +kywy B, thenV = klﬂlz-i-kzﬁzz.

o If A > kywy B +kowo B> then the minimum is achieved at ], & such that kyw o +kowp 05 = A.
Moreover,

—-ifA> (klw% —I—kzw%)max(ﬁl/wl,ﬁg/wz) then

V= min k103 4 koo = A2 ) (kyw? + kow3);
oy, >0,wi ) +hkywyap =24
— otherwise
) A —kiwiBi)? A —lkowa )2
V = min (klﬁlz + %,kzﬁg + %) > A2/ (kiw? + kaw3).
k2W2 klwl

Proof. Consider the change of variables x = v/k; ¢y, y = v/ko 0% and denote xq := vk B1, yo := vVk2 B2,
a := v/kjwi, b := \/kaws. This leads to the equivalent problem

mirbxz—l—y2 s.t. X = x9,y = yo,ax+by > A
X,yz

which involves a convex objective to be minimized over a polyhedral constraint set. If axo + byy > A,
i.e., if kyw By + kowy B> > A, then this problem is equivalent to

min x° —l—yz S.t. x = X0,y = Yo
x,y=0

which is minimized at (xo, o), with value x3 +y3 = ki % + k2 87. Otherwise, the candidate optima must
satisfy the constraint ax + by = A, hence y = (A — ax) /b and the problem is equivalent to

. 2 2,22
min —A)°/b°. A78
xogxg(llfbyo)/ax + (ax— 1)~/ ( )
The unconstrained minimum of (A.78) is at x* satisfying 2x* + 2a(ax* — 1) /b> =0, i.e., , x* = az“—jbz,
leading to y* = (A —ax®) /b = #lbz and to an optimal unconstrained problem value

()2 + ()2 = A2/ (@ + %) = A%/ (kywi + kow3).
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This is also the value of the constrained minimum of (A.78), provided that xy < x* < (A —byg)/a, i.e.,
that A > (a® + b?) max(xo/a,yo/b) = (kyw} + kaw3) max(B; /w1, B2/w2). Otherwise, the constrained
minimum is either at x = xp and y = (A —axo)/b, so that x*> +y* = x3 + (X — ax)?/b%; or at y = yg
and x = (A — byg)/a, so that x> +y? = y2 + (A — byy)?/a*. The value at the optimum is then min(x3 +
(A —axo)?/b*,y3+ (A — byo)? /a*), which is necessarily larger than that of the unconstrained minimum.
Once translated in terms of the original variables, this yields the result.

(Il
LEMMA A.18 Letp >0, kg, ko, Ly, Ly, wi,wa, A >0
Lif} + L5
max — ————=—s.t wilk;+L;)B1+walkr+L2)Br=A (A.79)
B120,,>0 p +k1ﬁ12+k2ﬁ22 ( P ( )P
is equal to
L,’/'L2
max 5 . (A.80)
i€{1,2} pw; (k,' + L,')2 + k,‘)vz
Denoting i* the index maximizing this expression, the maximum is reached for S = m (and
Bj =0 for j #1i).
Proof. Letc > 0. Observe that
LB +LB3
lﬁl —’2— Zﬁz s> (ASI)
p +kifi + ka3
is equivalent to
(Ly — cky)BE + (Ly — cka) B3 = cp. (A.82)
With the change of variable b; = w;(k; + L;) B; we have b; + by = A and (A.82) reads
Ly —ck L, — ck
(Li—cki) o, (Lo ”)2(191—1)2%,3. (A.83)

W%(/q-l—Ll)zl W%(kz-f—Lz)

The left side is maximized (with respect to 0 < by < A) for either by = 0 or by = A. The initial inequal-
ity (A.81) is thus feasible if, and only if, the maximum of the left-hand side of (A.83) over these two

values verifies the inequality
max LK) 25 0 (A.84)
ie{1,2} wi (ki + L;)?

i.e. if thereisi € {1,2} such that (L; — ck;)A% > cpw?(k;+L;)?. This is equivalent to L;A? > c(pw? (ki +
L,’)z + k,’)Lz) and

LiA?
< . A.85
¢ pw? (ki+L;)? + kiL? (A5
O
LEMMA A.19 Consider wy,ws, B1, B2,¢ > 0 and
V= sup 67 + 6. (A.86)

0<6;<f;,w1 01 +wr6r<c

Denoting (¢,r) € {(1,2),(2,1)} such that w;f8; < w3, we have
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1. ifc <wyfythenV = max;e (2} (C/W,')z;

2. if weBy < ¢ <w, B, then V = max((c/w,)?, B7 + [(c — wiBe) /wr)?;
3. if wefr < <wiBi+wafathen V = max; je((1.2),2.1)3 B + [(c — wisi) /wjl*:

4. if ¢ = w1 +wapy then V = B2 + B2;

Proof. The optimum V is the maximization of a quadratic form within the intersection of a rectangle
and a half-space delimited by an affine function. Using standard compactness arguments there exists
at least a maximizer (6;,05) of the considered expression. If 6 < f; for some i € {1,2} then the
constraint ¢ = w 0] + w65 is satisfied (otherwise, we would have 0 < 6;* < f; and w0; + w26, <,
and we could exhibit other 6; > 6 still satisfying the constraints and such that 82 + 67 is increased),
hence wi Bi +w2Br > w10 +w26; =c.

Vice-versa if wi B + w2 > ¢ then since (6, 85) satisfies all constraints we have w; 0 + w205 < ¢ <
w1 B1 + w2, hence there is at least one index i € {1,2} such that 6, < ;. We can thus consider the
following cases (depending on the shape of the domain):

e if wiB1 +waPs < c then foreach i € {1,2}, 67 = B; hence V = B + 7 as claimed;
e otherwise, i.e., if wi B + w2, > ¢, we have w; 0] +w»05 = c and we distinguish three cases:

(@) 67 < Bi, 65 < Pa: then, since 65 = (c —w;0;])/w> where 6; is a maximizer of 67 + [(c —
w101)/wy)? under the constraint 0 < 8; and ¢ — w18y > 0, there is (i, /) € {(1,2),(2,1)}
such that 87 = 0 and ;" = ¢/w;. This is feasible provided that ¢/w; < B:.

(b) 6 = Bi, 6; < By, hence 6 = (¢ —w;Bi)/w>. This satisfies 0 < 6, < B, if, and only if,
czwfr.

(c) 6 < B, 6; = By, hence 6] = (¢ —wf2)/wy. This is feasible provided that ¢ > w,3;.
We now discuss the possible cases depending on the value of c:

- ¢ <wyPy: (a) with any (i, j) € {(1,2),(2,1)} is feasible; (b)-(c) are unfeasible, hence V =
max;e (1 23 (c/wi)?

— ¢ > w.B,: (a) is unfeasible; (b)-(c) are both feasible, hence the claimed value of V for this
case.

- wePy < ¢ < w, B (a) is feasible with (i, j) such that ¢ < w;f;, ie., , with (i, ) = (r,{),
leading to a value (9;-‘)2 +(67)? = (c/wi)* = (c/w,)?; (b) is feasible provided that ¢ >
w11, i.e., that (r,0) = (2,1), leading to a value (6;)%+ (65)% = B2 + [(c —w1B1)/w2)?> =
B? + [(c —weBe)/wy)?; similarly, (c) is feasible provided that (r,¢) = (2,1), leading to a
value (65)% + (67)? = B3 + [(c —waBa) /w1]*> = B7 + [(c — weBr) /w,]?. Overall, this leads
to V =max((c/w,)%, B2+ [(c —weBr)/wi]>.

O

As in the case of the £! norm for sparsity and the nuclear norm for low-rank matrices, we compute

Bx(|| - ||w) (see definition in Corollary 3.1) via intermediate quantities B“"/2 (w) that we now introduce
and control. We find an expression consistent with the ¢! case.
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LEMMA A.20 Consider weights w = (w1, w;) with w; > 0 and integers k; > 0. Denote for any integers
Li,L, 20

BEL () = sup S (A.87)
a=p0p+p>0  Limi ki(o + B)
Y2, (kiwioy—wi(ki+L;) B;)=0
For m € {1,2}, consider
LiB? +LaB3 + (X2 (kiwioy — (ki + Li)wiB:) /win)?
gm(L17L27a17a27ﬁ17ﬁ2) = ﬁl ﬁz [( 12 1( ! 121 (21 I) Iﬁl)/ m] .
Yioi k(o +B7)
We have
sup gm(L1, Lo, 01,00, B1, B2) < BM2 (w). (A.88)
0;,Bi:0< i<y By +Br >0
Y2 (kL) wiBi<Er | kiwioy
(A.89)
Proof. First we show that there exist o € R, B € Ry such that
gm(L1, Lo, 0,05, B, B5) = sup gm(L1,La, 00,00, B1,B2) (A.90)

;. Bi:0< <0y +B >0
Y2 (kL) wiBi<EE | kiwioy

with 0 < B < o Bf + B >0,and Y7, (ki +L; )w,ﬂ* < Y2 | kw;a. Indeed, given any o, B; satisfying
these constraints, setting B} = B;/(Bi —l—ﬁz) o = a;/(Bi —l—ﬁj) we have g,,(Li,Ly,af,04,B{,B5) =
gm(L1,Ly, 1,00, B, B2) hence the supremum 1s unchanged if we impose B + 8 = 1 instead of f; +
B> > 0. Given any such pair f3{, B;, Lemma A.17 yields the optimum over ¢ satisfying the constraints,
and as the resulting expression is continuous with respect to 3 j’ , the existence of a maximizer follows
using a compactness argument.

We will soon prove that Y, (k; + L;)w; B = ¥, kiw;o¢*. If this equality is verified, since 0 < 8/ < a,
we obtain the desired result

Yo (LiBf)
i ki((a)? + (B7)2)

gm(Ll;L27aikaa/;aBr7ﬁ2*) =

2 2
- L[
< sup g Lii ;ﬁl . =Bll2 (). (A9])
G BO<P<0iify + >0 Yo ki((aa)* =+ (Bi)?)
Zlfl(k +L) lﬁl zflkw O

For the sake of contradiction, assume that Y, (k; + L;)w:B;" < ¥, kiw;o;", then with the shorthand
C:= gm(L17L27 al 7% ﬁl 7[32) we haVe

ka, —Zk—i—L)w,ﬁ )/ W) +ZL —Ck;) CZk (A.92)

Since gu(L1, L, 01,00, B1,B2) < C within the constraints of (A.88), (B, B;) maximize

h(B1,pB2) : Zsz —Zk—i—L)w,ﬁ,)/wv +ZL Ck)(Bi)?
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among all B1, B, such that 0 < B; < &, B + B > 0and Y7, (ki + L) wiBi < Y2 kiw;at.

Consider j € {1,2}.

If C > L;j/kj, then h is decreasing with respect to f3; on the considered range, hence f; =
Otherwise C < Lj/kj, and since h is a second degree polynomial in 8; with positive leading coeffi-
cient, its maximum is at one of the extremities of the optimization interval, i.e., since we assumed
Yi(ki+ Li)wi < Yikiwicg', at least one of the constraints §; =0, f; = a7 is reached.

Since the optimum satisfies all constraints of (A.88), we have ;" + ;5 > 0, hence in light of the
above observations there is at least one index j € {1,2} such that C < L;/kj, and for which we have
B; =o; >0.

Since 21'2:1 kiwi B} < ):l-zzl(ki +L)wiB < )21-2:1 kiw;af, both constraints B = a;, B5 = o cannot
be reached at the same time hence there is (7, j) € {(1,2),(2,1)} such that ;7 =0, B; = «; and

Li(B})? + [(kiwic +kjwjo; — (kj+Lj)w;B})/wm)?
ki(og)* +kj(a)? +k;(B;)?
Lj(0)* + [(kiwiog — Ljw;otf) /wi]?

_ J
- @ 2w : (A.94)

C:gm(leLZaaikaaﬁ*vﬁl*vﬁZ*): (A.93)

This can be rewritten (L; — 2Ck;)(0t})? + [(kiwioy" — Ljw;of) /wy]* = Cki(a;f)*. Observe that any
o1,00,B1, B such that §; =0, B; =oa; >0, oy = o, and L wio; < kiw;oy satisfy the constraints
of (A.88), hence g,,(L1,Lp, a1, 0%, B1,B2) < C, or equivalently

(Lj —2Ck;)(0))? + [(kiwicg® — Liw;atj) /wm]* < Chi(af)? (A.95)

Thus, a;f maximizes the left hand side of (A.95) under the constraint 0 < Lyw;or; < kwiof. If L—
2Ck; < 0, then the left hand side of (A.95) is decreasing with respect to ¢ in the considered range, hence
@; = 0, which is not possible since 0 < f§; + B, = B; = o]. Therefore we must have L; —2Ck; > 0,
hence the left hand side of (A.95) is a second degree polynonnal in o; with positive leadmg coefﬁc1ent
Its maximum is achieved at one extremity of the interval constraint : the case af = 0 was already
ruled out as impossible hence Ljw;o; = kw;o". This implies (k; + Li)wif;" + (k; +Lj)wjﬂj = (kj +
L,)w o = kijw ,a + kiw;oy, which yields the desired contradiction to the assumption that Y;(k; +
)Wlﬁ < Zl k iwiQ,
0

LEMMA A.21 Consider weights w = (w,w,) and integers k;,n; such that 1 <2k; <n;and X =Xy 4, C
R™ xR™, i€ {1,2}. We have

Br(|[ ) = _max B2 (w) (A.96)

where BL1-E2 (w) is defined in (A.87).

Proof. We use the same proof method as in Lemma A.6. With the notations T = T'(z), T» = T»(z) from
the beginning of Appendix A.6, denote 7" = 7> \ T so that ||zz¢|lw + [|z77[lw = [|z7¢[lw. By Lemma A.16,
we have

||ZT26||%

By (|| [lw) = (A.97)

>
220, legg -+l <ler llz7 |13
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We now show that this expression can be simplified by maximizing over vectors z with a particular
shape. Consider z a vector satisfying the constraint in (A.97). Replacing each entry z; of z with its
magnitude |z;| leaves the constraint (as well as the maximized quantity) unchanged, hence without loss
of generality we can assume that z has nonnegative entries z; > 0. Similarly, we can assume without
loss of generality that for each i € {1,2}, the index set S; = [1,k;] indexes k; largest entries of P;(z) and
St = [1,2k;] indexes the 2k; largest entries.

Given some j € {1,2}, consider two (equal or distinct) indices in S; and the vector Z obtained by
keeping unchanged all entries of z, except those indexed by these indices which are replaced by their
average. This has the following effect:

1. Each S; (resp. S)), i € {1,2}, is a set of the k; (resp. 2k;) largest coordinates of P;(Z), hence
TE) =T = (51,%), (2) = T = (51,%)). T'(2) =T" = D\T, Zr¢ = 275, Zr = 2rv, and the
support of P,(Z), i € {1,2} is the same as that of P;(z).

2. Denoting a,b > 0 the values of the two considered entries, since (a+b)/2+ (a+b)/2=a+b,
we have [|[P;(2)]s; [l = [|[Pj(2)]s; |l1, and we obtain that ||Z7 ||, = [|zr[|w, hence Z still satisfies the
optimization constraint;

3. As ||z7¢]l2 = llzzell2 and |25 |3 — 2|13 = 2[(a+ ) /2]? — a® — b* = —(a— b)?/2 < 0, hence
1222113/ 11Z8, 115 = 11222 113/ 1|23, 1|5 where the inequality is strict as soon as a # b.

All the above imply that, without loss of generality, we can restrict the optimization to vectors z such
that, fori € {1,2}, all entries of s, are equal. We denote ¢; > 0 their common value. A similar reasoning
with S}\S j instead of §; shows that we can also assume without loss of generality that all entries of 25\,
i € {1,2}, are equal. We denote 3; > 0 their common value.

The value of the smallest component of [P;(z)]s, is ¢, while the smallest component of [P;(z)] 5. 1

min(0;, ;). Denoting x; = F;(z)(s))c, we have x; € R"~ %% and the largest component of [Pi(2)) sp)c 1s
|| xi|l.. Hence, S; and S} are respectively a set of the k; and 2k; largest components of P;(z) if, and only
if, [|xill < Bi < i

Finally, we observe that ”ZT ”w - HZT/ HW - ||ZT26 ”w =wik1 0 +wokpy 0 _Wlklﬁl —Wzkzﬁz — Wi Hx1 H 1—
wa [lx2l1, [|zzg 15 = llx115+ ||x2]13 and ||z, |13 = k1@ + ko 03 + k1 B + k2 7. This establishes

Be(ll )= sup  sup sup el gy
BiB>0 a0 >Pi i lloo B i1 ki(a7 +B7)
Bi+B2>0 Y2 willxilli T2 kiwi(oi—B;)

where the restriction 1 + 8, > 0 simply follows from the fact that when B; + B, = 0 we have x; =
x> = 0 which leads to a sub-optimal objective value. To show that the supremum in (A.98) is achieved,
observe that both the constraints on y := (&, 0, b1, 32,X1,X2) and the quantity f(y) that is maximized
are invariant by multiplication by a positive constant factor. Hence, the supremum is unchanged if we
add a scaling constraint. e.g. by fixing ||y||«. This leads to the supremum of a continuous function over
a compact set (the unit £ ball), hence there exists ¢, B, x} reaching the supremum in (A.98).

Thanks to Lemma A.5, given the constraints (depending on ¢; and f3;), the maximization w.r.t x; is
reached with vectors with the shape

(ﬁia"wﬁiaeia O,-..,O )

L; n,»fzk,»f(L,»+l)>O
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with 0 < 6; < B, 0 < L; < n; — 2k; — 1, including potentially L; = 0 (case of vector x; with a single
nonzero coordinate 6;). We deduce

Yo Lip?+6?

By(||-[lw)= sup  sup sup . (A.99)
" BiBi>0 040> L;,0;:0<L;<n—2k;—1,0<6;<p; Z,’zzlki(a,z‘f'ﬁiz)
ﬁl +ﬁ2>0 212:1 Wieigzizzl (k,-wia,-—w,-(kiJrLi)Bi)
Hence, denoting
):'2:1Liﬁ‘2 +6?
f(Ly,Ly,00,00,B1,B) = sup Y (A.100)
6;:0<6,<p; Zizzlki(aiz"'ﬁiz)
Y2 wibi<Y2 | (kiwio—wi(ki+L;)B;)
for parameters a, B, L; such that ¢ := Y2 (kywio — w;(ki + L;)B;) = 0, we have
B . = ma S S Li,Ly,0q,0 .
(I 1w) L 131,1;21320 ai:zgﬁi F(Li, Lo, 00, 00,B1,B2)
Bi+B>0y2 | kiwioy=Y2 | (ki+Li)wiB;
f(L1.L2)
(A.101)

To continue, we bound f (L, L,) via characterizations of f(Ly,L,, &, 0,1, 2) in different parameter
ranges. The supremum in (A.100) is covered by Lemma A.19 hence we need to primarily distinguish
cases depending on relative order of ¢ = )21-2:1 (kiwio; —wi(ki+L;)Bi) = 0, w1 B1 +wa 2, w1 B1, and wy 3.
This suggests writing f(L1,L2) = max,co,1} fu(L1,L2) where

fo(Li,Lp) == sup f(Li,La,01,00,B1,B2) (A.102)
Bi,0:0<B;<0;,B1 +Br >0
Y7 kiwiog =Y E | (ki+Li+1)wifBi
fi(Ly,Lp) == sup f(L1,Ly,a1,00,B1,B2). (A.103)
Bi,0:0<B;<0;,B1 +Br >0
Y2 (kitL)wiBi<Y2 kiwiog <Y | (ki+Li+1)w;B;

To express fy(L1,Ly) and bound fi(L;,L,), we use the functions g,,, m € {1,2}, from Lemma A.20.
Expressing and bounding fj: if ):iz: Lkiwiog > ):iz: (ki + Li + 1)w;B; then ¢ = wy B + wyf hence
Lemma A.19, case 4 yields

YR (Li+ DB}

f(Ll,L27al,a2,Bl7ﬁ2) — 2 1 /.9 oo\
1 ki(o? + B7)

(A.104)

2 2
2 (Li+1)B
fO(LluLZ) = sup zll(l—z)ﬁlz
0<Bj<a;.By+B>0 Yi ki(ai +Bi )
Z,‘zzl kiwiai>zl’2:1 (ki+Li+1)w;B;

(A.105)

2 2
Lemma A.17 sup Yi(Li+1)B; _ glitlia+l

2 2 2
0<Bi<ay, By +Br>0 Zi:l ki(ai + ﬁ[ )
Y2 kiwiog=Y7 | (ki+Li+1)wiB;

(w).

(A.106)
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As a result

Li+1,Ly+1 L' .L,
So(L1,Ly) < oy, X 1B bhatl ) < oo hax B "2 (w) (A.107)
LA —4Ki— S ,’\”i7 i

Bounding f;: we denote (¢,r) € {(1,2),(2,1)} a pair such that wyf; = min; w;; < max; w;f; = w,,.
When )21-2:1 (ki +Li)wiB; < 21'2:1 kiw;ioy < 21'2:1 (ki + L; + 1)w;f3; we can distinguish three cases.
1. Af (ke +Lo)weBe+ (kr+ Lo+ Dw, By < Y2 kiwiy < Y2 (ki +Li+ 1)w;B; then max(w By, w2 Ba) =
wyBr < ¢ < wiB1 +wa > hence Lemma A.19, case 3 yields
L,+1 MZ‘FL VZ_|_ C— WyPu Wz
f(LlaL27alva27B17ﬁ2): max ( )B 2 Vﬁ 2[( 2 ﬁ )/ V] :
(ww)ef(12),2,1)} Yo ki(of +B?)

=gv(L},L5,00,0,B1,82), Ljy=Ly+1,Li=Ly

(A.108)

2. if (kg + Lo + V)wBy + (ky + L)weBr < Y2 kwiog < (kg + Lo)weBe + (ky + Ly + 1)w, B, then
min(w; B1,waf) = wefy < ¢ < w,f, = max(wy B, w>,) hence Lemma A.19, case 2 yields

LiB2 + Lo} + (c/w,)? (Le+ 1)BF+LeB2+[(c —wiBe) /wi)?
Liki(o?+B7) i ki(o? + B7)

gr(L1,L2,00,02,B1,82) gr(Ly,Ly,00,00,B1,2), Ly=Lo+1,L.=Ly
(A.109)

f(LlaL27a17a25B17ﬁ2) = max

3. otherwise, )21-2:1 (ki+Li)wiBi < ):,»2:1 kiwioy; < (kg+Lg+ 1)wyBe+ (k+ L )w, By, hence ¢ < min(w; B1, w2 32)

and by Lemma A.19, case |

LiBf + L3 + (c/w1)* LiBf+Lof7 + (c/wr)?
Yo k(a2 +B2) T X k(o +B?)

g1(L1,L2,01,02,B1,82) g2(L1,La,00,00,81,B2)

f(L17L25a15a27ﬁ17B2) = max

. (A.110)

Thus, in the range of ¢, ; involved in the definition of fi(L1,L;) as a supremum, there are integers
0< L; <nj—2kjand v € {1,2} such that f(Ll,Lz, (Xl,(Xz,Bl,ﬁz) = gv(Lll,le, (Xl,az,ﬁl,ﬁz). We will
shortly prove that given the relations between L; and the considered range of o, ; we have

D

2
(ki +Lj)wi; < Y kiwioy;. (A.111)
i=1 i=1

hence using Lemma A.20 we obtain g, (L}, L}, a1, &, B1, B2) < BLE2 (w).
This implies

fi(L1,Lx) < max B (w)
Onggn[*Zki
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and, combined with (A.101)-(A.107), yields the upper bound

ly) = < L2 (). :
By(|l - [lw) ogﬂg?,z/qmax(fo(l’l’Lz)’fl(Ll’Lz)) \ogLI;giizkiB (w) (A.112)

Proof of (A.111). We treat separately the three cases respectively associated to (A.108), (A.109), (A.110).

1. When )21-2:1 (ki + L)wip; < Ziz:l kiwiog < (kg + Ly + D)weBe + (kr + Ly)w, B, by (A.110) there is
VS {1,2} such that f(Ll,Lz,Ocl,OCz,ﬁl,ﬁz) = gv(Lll,L/z,OCl,OCz,ﬁl,ﬁz) with (L/17L/2) = (Ll,Lz).
We observe that Zle (ki +L)w;p; = ZIZ: 1 (ki + Li)wiffi < ZIZ: kw0

2. When (kp + Lo)wBe + (k4 Ly + D)w, By < Y7 kiwio < Y2, (ki + Li + 1)wiB:, by (A.108), we
have f(Ly,Ly,0q,0,B1,5) = gV(L,I ,le, oy, 0, B1,B,) where (Lll ,LIZ,V) e{(L1+1,L,,2),(Ly,Lr+
1,1} If (L), L)) = (Ly,Ly + 1) then Y7 (ki + LYwiBi = (k¢ + Lo)weBe + (ke + Ly + 1), By
Otherwise we have (L),L.) = (L; + 1,L,), hence Y7, (ki + L))wiBi = (k¢ + Lo + 1)we By + (ky +
Lo)weBr < (kg4 Lo)weBe+ (ke + Ly + 1)w,. B, since wy By < w, B, by definition of 7, £. In both cases
we get ):iz:l(ki +L)wBi < )21-2:1 kiw; 0.

3. When (kg +Lg+ DweBe+ (ke + L )weBr < Yo kiwic; < (ke +Le)weBe+ (ky+ L+ 1)w, By, (A.109)

yields f(Ll NINE aZaﬁluﬁZ) = gr(Lll 7L/27 ap, aZuﬁhBZ) with (LlaL;) € {(quLr)u (LZ + 17Lr)}’
hence we have Y'2_, (k; +LOYwiBi < (ke + Lo+ 1)weBe + (kr + Ly)wefr < Y2, kiwa.

As these three cases cover all possibilities, we deduce bound (A.111) as claimed.

To conclude, we obtain a lower bound on By (]| - ||,v). Consider any integers 0 < L; < n; — 2k; and any
scalars oy, B; such that 0 < B < o, B1 4 B2 > 0 and Y2, (ki + L) wiB; = Y2, kiw;i, and let z = (z1,22)
where

Zi = ((X,‘,...,(X,‘,ﬁ,‘,...,ﬁ,‘, O,...,O )
——— —— N——
ki kitLi  ni—(2ki+L;)
We have ||ZT||W =kiwioq +kowr 00 = (kl —I—Ll)wlBl + (kz —I—Lz)Wzﬂz = HZTCHW hence, by Lemma A.16
and the definition of Bx (|| - ||w),

12
llzzs 12 _ Y7, L:B?
Izl X2 ki(of? +B7)

By([|-[lw) = (A.113)

Taking the supremum over ¢, f8; under the considered constraints yields By (| - ||l,,) = B2 (w). We
deduce

Br(|| - [|w) = B2 ().
£(ll-lhw) > | _max (w)

O
We give a characterization/lower bound (depending on w) of the intermediate BX1L2 (w).

LEMMA A.22 Consider w = (wy,ws), 0 < L; < n; — 2k, and BX1'22(w) defined as in Lemma A.20. We
have

Ll'/ki

Li/ki max
(i, )e{(1,2),20} Vi(Li/ki +1)2+ 1

max TR < glilay) g (A.114)
(1)e{(12).2.0} 15 (Li/ki)? +2 )

with v; =

1,2}

m and y; = :VL; for (i,j) € {(1,2),(2,1)}. The rhs is an equality if v; > %, Vie
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Proof. For Ly,L, such that L; + L, > 0, we rewrite B/112 defined in (A.87) as

LB +LB3
BEE2 (w) =sup sup sup 1 2 .
1>0 Bi:B1.2>0 00,2 ; ki 0512 +k20¢22 +k1ﬁ12 +k2ﬁ22 (A.115)
Y2 wilki+Li)Bi=A Y2, kwio=2

For fixed A > 0 and 31, B, such that Z (wilki+L;)Bi=A, wehave A > 21-2:1 wik; B; hence, by Lemma A.17,

L1ﬁ12+L2ﬁ22
, +k1B1 +k2ﬁ2 (A.116)

BEL2 () <sup sup
A>0 B120,8,>0 2

k k
wi(ki+L1)By+wa (ky+Lp) =2 “1W1H2W2

with equality if the maximizers 4, f3; of the right side satisfy the constraints 4 > (kyw? +kyw3) max(ﬁl /wi, B> /wa).

. .. . L 1 o kiW,-z .
Consider (i, j) € {(1,2),(2,1)}. Since v; := TG ) Rk we obtain by Lemma A.18
LiA? Li/k;
BLI’Lz( ) <sup max 5 A % (A.117)
A>0i€{1,2} }Liwiz(k,‘—i-l,,‘)z—i-kilz (i,j E{ 12 @0} Vi(Li/ki+1)*+1 ’

2 2
1 +k2w2

This establishes the upper bound in (A.114). Denoting (i*, j*) maximizing the right-hand-side expres-

sion above, and using the optimal values from Lemma A.18, B,-* = (w1th ﬁ i+ = 0 and an

W*(k*+L

arbitrary A > 0), we have max(f; /w1, Ba/w2) = Bis Jwi = hence equality holds in (A.117)

(. +L )
if the following inequality is satisfied

(klw%—l-le%) <1,

wa (ki + L)
or equivalently if % 1. This is guaranteed as soon as vy >
establishes the equality case in the rhs of (A.114).

We now treat the lower bound in (A.114). For fixed §; > 0 and A > 0 such that (k; +L;)w; 1 +
(ky 4+ Ly)wa B = A, we still have A > kyw; i + kowa 3. By Lemma A.17, letting

2 i +L for every ¢ € {1,2}. This

V= min koj+kao,
S R (A.118)

Y2, kpwi=A
we either have

e V = min (hﬁf%—b(m)z,kzﬂ% +kl(lfk2w2ﬁ2)2);

kowy kywy
> or
V =2A2/(kiwt +hkow3) = min  kof +ko3

o;:0; >0
Y2 ko=

—k
< min </€1l312+k2(M

kowo

A —kows B

2 2
k lf +k
) 2k 1( k1W1

)2> (A.119)

where the last inequality was obtained by evaluating klocl2 + kzocz2 at ay = By (resp. at ap = o)
with o (resp. @) tuned so that kyw; @) +kowo0p = A.
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We deduce that V < min (/q B+ ka(ABiy2 3o B2 4k ( %)2) and it follows using (A.115)
that

LB+ LB}
BLI’LZ(W) >sup sup 1B+ Lo

. : A—kiwiBi \2 2 A—kowafr \2 2 2
A>0  BiBh>0  min (kl 24 ko WIPIY2 |y B2+ Ky ) +kBE+ko
Y2 wilki+Li) B=2 i ( kaws V' ka3 ( kiwy ) bi &

L B?*+ L,B?
_ sup 1B7 +L2fs

L e min (kB k(SRR 2 0B 4k (S )) + B+ haf3
i=1 WilkiTLi)pPi=

LB+ LB} LB+ L3

sup max< 1—kywiB1 \2 2 2 1—kowr B 2) ’
. Bi:(ﬁllc~/-’sz>())ﬁ 1 2k B2 + ko B3 +h (et )? klﬁl + 2k 5 + ki (—27E2)
i—1 Wilki+L;) pi=

(A.120)
For (i, /) € {(1,2),(2,1)}, using the values f3; = k7+L ,B; =0, we have
Lip?
B (w) > — (A121)
UfBR + ke (Ll T )
Since 1 — kiWiBi = wi(k; + L,‘)B,’ — kiw,‘ﬁ,‘ = W,'L,'f)',‘, we have
LiB? LiB? L;
2ki3i2+kj(lfklj<_itv;ﬁi) T 2k k; (ke W/)2[32 2k +k; (k—L)
Since v; = W, wehave (1—v;)/vi=1/v,— 1= kjwi/k,-w?. We deduce
BLI"L2 (W) > = =
Z (Wil kw? Vi (Li/k;)? (A.122)
2ki+ kjw? ’ﬁ_::f(l'i/ki)z‘f'z v, (Li/ki) +2
g
The following function study will be used to deal with the optimization of the BL1-£2 (w).
LEMMA A.23 Consider a such that 0 < a < 1. The function
>0 g1 (usa) “ (A.123)
Uz ua) = ——— .
81 81 a(u+1)2+1

is maximized at uj = /14 1/a, increasing for u < uj, decreasing for u > uj and

gduf;a):%(ﬂl—i—l/a—l). (A.124)
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—au’+ta+l
(a(u+1)2+1)2°

1+ 1/a. Given the sign of g (u;a), g1(-;a) is increasing for u < uj and decreasing for u > uj. As
a=[(u;)?—1]"! we get

ut %2 u* ut 2 _
fifa) = ga(ui,a) = L= D)) D 1) = (/T T )

Proof.  Since g} (u;a) = the equality g} (u;a) = 0 implies a(u})?> = a+ 1 and u} =

(ui+ 124 i)> =1 2(u})*+2u;

(A.125)
which is decreasing with respect to a. ]
LEMMA A.24 Consider0 < a < 1, g1(u;a) := m and g,(usa) := % and define

hi(u,v;a) == max(g;(u;a),gi(v;1—a)),i € {1,2}. (A.126)
1. Fora=1/2 we have h;(u,v;1/2) < @ for every u,v > 0.
2. Ifa ¢ [d,1—a), where @ := 2v/3 — 3 ~ 0.46 then /5(2,2,a) > Y31,
Consider integers such that k; > 2, 1 < 4k; < n; fori € {1,2} and
H = hi(L1/k1,Ly/koza). A.127
1(a) 0 X, 1(L1/k1, Lo [ky;a) ( )
3. There exists a* € [d@, 1 —a] such that H (@) = min,¢(4 g H1(a).
4. Consider a € [d@,1 — a] then
Hl(a)_max< max g1(Ly/ki;a), max gl(Lz/kz;l—a)> .
Lie{lki\/1+1/al;[ky\/1+1/a]} L2€{\_kz\/lJrl/(lfa)j;[kz\/1+1/(17aﬂ}

where |-] and [-] denote the lower and upper integer part. Moreover, the L] maximizing the
above expression are also maximizing (A.127) and are such that L} /k; > 1/a—1 and L} /k, >
1/(1—a)—1.
Proof.
Item 1. By Lemma A.23, witha =1 /2 and any u,v > 0 we have g1 (u;a) < g1 (u};a) = %(« /14+1/a—
1) = (v/3—1)/2 and similarly g1(v;1 —a) = (v/3—1)/2 hence hy (u,v;a) = (v/3—1)/2.
Item 2. We prove the inequality for a < d. Since h(2,2;1 —a) = h»(2,2;a) by definition of A, the
same inequality holds if a > 1 —a. For a < a@ since a < 1/2 we have a/(1 —a) < (1 — a)/a hence using
the definition of g, we have g»(2,a) > g2(2,1 — a). By monotonicity of a — (1 —a)/(1 +a) we get

2 _1—a>1—d
42 42 14a  1+a

1—a

hy(2,2;a) = max(g2(2,a),82(2,1 —a)) = g2(2,a) = = g2(2,a).

Finally, we compute

1-(2v3-3) 4-2V3 (4-2V3)(2v3+2) 8V3-124+8-4V3 4y3-4 31
1+23-3  2v3-2  (2V3)2-22 8 T8 2

gZ(zvd) =
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Item 3. The function H; is defined as the maximum of a finite number of continuous functions of
a. By continuity of the maximum, H; is continuous and its minimum on the compact set [@,1 — 4] is
reached.

Item 4. Consider a € [@,]1 —d]. By Lemma A.23 the function u — g;(u;a) is maximized at a
uf =+/1+1/a. Similarly, v+ g; (v;1 —a) is maximized at u; = /1 +1/(1 —a). Since 1/3<a<1/2,
with vi =a, v =1 —a we have v; > 1/3 hence uf = +/1+1/v; <2. Moreover, since we assume
n; > 4k;, we have n; — 2k; > 2k; > ki\/1+1/v; = k. It follows that for i € {1,2} we have

max gl(Ll'/k,';V,') = 1(Ll-/k,»;v,»).

max 8
0<L;i<n;—2k; LiG{Lkiuﬂ;[kiuﬂ}

As aresult, the maximizers L} of both sides are identical, and we have H; (a) = max (g (L} /ki;a),81 (L3 /ko; 1 —
a)) with

L €arg g1(Li/kisa)

max
Lye{|kiuj)sThyuil}

Ly carg max g1(La/kp;1 —a).
2 el k)

There remains to show that L} /ki = 1/vi — 1. For this, we first observe that since k; > 2 we have
L} ki = ki) [k > (kiu; = 1) ki =uf — 1/ki > uj —1/2=+/1+1/vi—1/2.

The derivativeof x — /1 +x—1/2—(x—1)=+/1+x—x+1/2atanyx >0is 1/(2v/1+x)—1<—1/2
hence this function is monotonically decreasing. Since @ € [d,1 —d] and v; = a, v, = 1 —a we have
v; > dhence 1/v; < 1/aforie€ {1,2}, hence

VIF1vi—1)2—=(1/vi—1)>/1+1/a—1/2—(1/a—1)~0.12> 0.

We deduce that L} /k; > 1/v; — 1 as claimed.

O
We can conclude with the proof of Theorem 4.2.
Proof of Theorem 4.2.  The proof starts from the fact (Corollary 3.1) that
argmax 0y°°(R) = argmin By (R A.128
gmax 53°°(R) = argmin Bz (R) (A.128)
withC' = {R(:) = || ||w : w = (w1,w2),w; > 0,w, > 0}. Using Lemma A.21, for each w we have
Bs(|||lw) = BMR2 ().
([ [lw) L (w) (A.129)

With the notations of Lemma A.22 we have yt; = wy/wy and yy = wy/wyq hence 1 = 1/, and one
can check that v; + v, = 1 where v = vi(w) := (1 + kw3 /(kyw?))~!. Hence, by Lemma A.22 (taking
u=1Ly/ky,v=Ly/ky,a=v; and using (A.126)) and with the notation of Lemma A.24, for all integers
0 < L; < nj— 2k; we have

ho (L1 k1, Lo ko vi) < BEVR2 (w) < hy(Ly Jky, Lo Jkas vi) (A.130)

with equality in the right hand s if for each i € {1,2} we have v; > L;/(ki + L;), i.e., Li/ki > 1/vi — 1.
Using (A.129) we get

max ha(Ly [k, Ly /kosvi) < Bs (]| - [lw) <

max hi(Ly/ki,Lo/ky;vi), (A.131
0<Li<n—2k;,ie{1,2} 0<Li<n—2k;,ie{1,2} i /kLafkaiv), )
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and if the maximizers L} of the right-hand side of (A.131) satisfy L} /k; > 1/v; — 1 for each i € {1,2}
then in fact
Bz(” : HW) =H (V]) = hl( T/kl,Lz/kz;Vl) (A.132)

where H| is defined as the maximum of 4 over the L; /k; (Lemma A.24). In particular for v; = 1/2, this
is verified if L] > k;. Next we proceed in three steps. We set d := 2v/3-3~0.46.
Step 1. We show that if w',w" are such that v;(w') ¢ [a,1 —a] and vi(w") =1/2 € [a, 1 — ] then

V3i—1
2

By (- llw) > Z Bz (|| - [lw)-
A first consequence is to establish (4.6), using Corollary 3.1 to convert the bound on Bx(|| - ||,), for
w € {w*,wp}, to a bound on §2°¢(| - ||,;). Indeed, since vi(W") = ki(w])?/(ki(w])? + ka(w})?), the
fact that v; (w”) = 1/2 corresponds to w” o< (1/v/ki,1/vka) =: wo(k1,k2), hence By < Bz (|| - [|w,) <
(V3-1)/2.

A second consequence is that the optimization of w = (w1, w;) can be restricted to a range corre-
sponding to v; = v (w) € [@,1 —a].

Indeed, on the one hand, for v; (w”) = 1/2, by Lemma A.24-Item 4 we have ,

H;(1/2) = max max g1(Ly/ky31/2), max g1(La/ky;1/2)
Lie{[kiv3]:[kiv/31} Lye{|kav3]i[k2v31}

where g1 is defined in Lemma A.24.
Hence, L} > k; so that (A.132) holds, and we deduce that Bx (|| - ||,,») = H1(1/2).
From Lemma A.24-Item 1, we have

V3i—1
2 b

Hi(1/2) <

and we obtain By (|| - [|w) < (v/3 —1)/2 as claimed.
We can also establish the conclusion of the theorem (4.7) by considering SUDK, k1> 1,0 4Ky >4K, Bx(||-

|l,»). Using the expression of H(1/2) we have that
sup Br(||-[lw) = sup max g1(L1/ki:1/2)
K =1, 241 nly >4, Ky > 1.0, >4k, Li{ K V3 ][k V3T}

=su max L/k;1/2
k;l)LG{Lk\/?J;[k\/ﬂ}gl( /k172)

(A.133)

Using Lemma A.23, as g is continuous and [kv/3|/k — e v/3 = u} the maximizer of gi(-;1/2)
(because (kv/3 —1)/k < |kv/3] /k < /3), we have SUD MAX; |4 /3 s ky/3]} 81 (L/k;1/2) =gi(uj;1/2) =
(v/3—1)/2. Again using Corollary 3.1 to link §2°¢ and By yields (4.7).

On the other hand, if v; ¢ [d@, 1 — a] then by Lemma A.24-Ttem 2 we have h,(2,2;v;) > (v/3—1)/2.
Since n; > 4k;, the integers L; := 2k;, i € {1,2} satisfy 0 < L; < n; — 2k; hence, by the left-hand side in

(A.131),
V3-1
7
Step 2. We show that if w satisfies v| = vi(w) € [@,1 —d] then Bx (|| - ||w) = H1(vi(w)).

Bs (|| - |lw) = ha(Ly /ki, Ly [ka, vi) = h2(2,2;v1) >
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Since k; > 2 and n; > 4k;, by Lemma A.24-Item 4, we have the equality H1

whereL’f S {|_k1\/1—‘r1/V1 k“/ 1+ 1/V11} Lz 6{ ko/1+ 1/ 1 —V1
Lf/ki > 1/v;— 1. By (A.131)- (A.132) we deduce that the equality Bx(]| - H = H;(vi(w)) holds.

Step 3. By Lemma A.24-Item 3, there is a* € [d, 1 — d] such that H) (¢*) = minz<,<1-aHi(a). In
light of Steps 1 and 2, the infimum over w of Bx (|| - ||,») is thus achieved, and a weight vector w* satisfies

Bx (|- llw) = n}énB;(H “|lw)) = Hi(a") (A.134)

Vl) hl(L*/kl,Lz/kz,Vl)

kzx/l-‘rl/ 1—wv; W}and

\/\_/_\/—\

-1
if, and only if H,(v;(w*)) = H (a*). Since v|(w) = (1 + %(wz/wl)z) , combining all the above
yields
W; kl
—=4/—(1/vi—-1
=i
where V| is an optimum of
Bs(|| - ||w) = max max g1 (xi/kis vi).
1€la1- a] Vz 1=viie{1.2} e { | kin/TH1 Vi ki «/1+1/v,]}
O
The following Lemma is needed for the proof of Theorem 4.3.

LEMMA A.25 Consider integers n > k > 1, a nonzero vector z € R”, S a set of the k largest entries of z.
There exists 0 < r < k—1, B € R", y > 0 such that

[Bllo=k—r—1<L:=|supp(zsc)| <n—1 (A.135)
1Bl < mmIZ()I (A.136)
lzsellr = 1Bl + ¥ (A.137)
1
2 2
llzsells, = HﬁHer—rHYZ (A.138)

Moreoverif k—r—1 > 1 then

y<(r+1) min |B(): (A.139)

Proof. We use the fact that for any integer k the norm || - | 5, coincides with the so-called k-support norm
[4, Definition 2.1], that is invariant by permutation of the coordinates and has the following expression
for each y € R” sorted in descending order:

k—r—1 1 n 2
g = X bOP+— | X b (A.140)

=1 I=k—r
where r is the unique integer in {0, ...,k — 1} such that

1 n
Y )] = yk—r), (A.141)

le—r=1)|> -

with the convention |y(0)| = 4o, see [4, Proposition 2.1].
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We apply the above characterization with y € R” the sorting of zgc by descending order of absolute
values. Notice that k —r —1 < L := |supp(zsc)| = |supp(yi)| < n—1 (since z # 0, |S| > 1), which
establishes the rhs inequality in (A.135): otherwise we would have y(k—r— 1) = y(k —r) = 0 which
would contradict (A.141).

We define 3 € R" and y > 0 as

B():

YD, 1<I<k—r—1; B():=0,k—r<I<n (A.142)
Z ly(1) (A.143)

I=k—r

Since B(!) is non-increasing with [, with B(k—r—1) = |y(k—r—1)| > 0 and B(k —r) = 0 we have
IBllo = k—r —1 hence (A.135) holds. Moreover, by definition of S, we also have minjcg|z(l)] >
l|zs¢|leo = |[¥]|e = || B]|-- hence (A.136) holds. We also obviously have ||zsc||; = |[yll1 = [|B]l1 + 7, i.e.
the required identity (A.137).

Since y is a decreasing rearrangement of zsc and || - ||z, is invariant by permutation we have

(A.140)+(A.142)+(A.143)
lzsell3, = V113, =

1

2 [
1B+ 7
This establishes (A.138). Finally when k —r — 1> 1 we have min;cgypp(5y B(1) = B(k—r—1) = |y(k—
r—1)| hence (A.139) is a direct consequence of (A.141).

O

We now give the proof of Theorem 4.3.
Proof of Theorem 4.3.  The assumptions of Lemma 3.5 hold, so we can rely on expression (3.30):
to lower bound SS“ff (|l - |lw) by 1/4/3, we thus upper bound ||z — Ps(z)||% by 2||Ps(z)||3 for every

z€ Tl Iw)- FII‘St we characterize Pg(z) for any z. With T = T(z) = (S},S2) defined as in the
beginning of Appendix A.6 we have Px(z) = z7 because for z = (z1,22) € H we have

2
I

. 2 . 2 2 2 2
IyglgHZ—szZ min__ ([zr—nill3+ 2= 203) = llz1 = @1)s, 17+ 2 = (22)s, 12 = [z — 22 ]]5.

Y1€Zk y2EZ,

We will use that, by Lemma A.16, we have

2
ze Tx(Il-[Iw) @ZH (@)sell/Vh <Y Nl z)sill / Vi (A.144)

i=1

Now, using the fact that [|(u1,u2) |3 = llu[|3, +[luz]|F, (from [38, Lemma 4.2]) we obtain
1 2
2 2 v 2
2= Pl = lere I = ¥l s I3, (A145)
i=1
With Lemma A.25, we obtain an explicit expression of the ratio ||z — Px(z)||%/|/Ps(z)||3. Forie€
{1,2}, let L; = [supp((zi)s¢)|. There exists 0 <r; <k —1 and f; € R, % > 0 such that ||Bi]|- <
minyeg, |zi(1)|], ||Billo =ki—ri—1 < L; and
IGz)si 1%, = 1Bill2+ Hyf (A.146)

1i)sg I = [1Billy + - (A.147)
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where, if k; — r; — 1 > 1, we further have

Y < (ri+1) min_|Bi(1)]. (A.148)
I€supp(Bi)

Consider i € {1,2}. Depending on the value of k; — r; — 1, we have the following properties

e If k;—r;— 1 =0 then ||Bif|o = 0 and f3; = 0. Hence by (A.147) we have y = ||(z;)s¢[|1 and

Neoll2
7= H(Z’i‘f"”P (A.149)

1 +
1813+ —

o If k;—r;— 1 > 1 then, since k|| B:||2 < kiminjes|zi(1)[* < ||(z0)s;]15 and ||Billo = ki — i — 1, we
have

(A.148) ) 2
YZ < ||Bl||%+(rl+l) (mlnlesupp ﬁ,)'ﬁl(l)l)

< ki—ri= D)+ (ri+ D] [|Bllz = kllBill2 < [l @)s 13- (A.150)

813+

Thanks to these properties, we distinguish two easy cases to bound ||z — P (2) |3 /|| P (2) |3

I. Ifk;—r;— 1> 1foreach i€ {1,2} then

2
- Polc |E<A‘”>z(nﬁ,nz+ ) z 15l = 13

2. Ifki—ri—1=0foreachi € {1,2} then

2
2 (A. 138) (A. 149)
= Pote (18034 7)) 7 E les
i=1

\a\2+\b\2<(\a\+\b\

ZHZSC 1/ v/ki)?

< (L les /v
<X les o)

(lal+[bl*

(la b)) <2 )
< 2Y llzs, 13 = 211 Pe(2) 13-
1

In both cases we obtain ||z — Ps(z)[|3/||Ps(2)]|5 < 2
When these easy cases do not hold we have e.g. 0 =k; —r; —1 and kp —r, — 1 > 1 (the same
reasoning holds if k, —r, —1=0and k; —r; — 1 > 1), HZS‘I'H%,(] = ||zs¢[I3 /K1 and ||Zs§||%k2 = 1Bl +

Y2/ (r+1).
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This gives
2= Pe@)1% = llzs; I/k1 + [ BallZ + 72/ (r+1)

" (a1 /v + syl /v/%r = s /v /%) + BallB+ 72/ (4 1)
AED (llzs, 11/ v/ + Nzl /v = (B2l + 1)/ V&2 + B3+ 7/ (r 4 1).

We have 0 < ||zs, |1 /vki + ||zs, 11/ vk = (| B2]l1 +7) /vVE2)* < lzs, 12+ Izs, 2 — (1 Boll1 +7) /vVk2)?

and

2= Pe@IE < (lzsll2 + lzss |2 = (1Ball + 1)/ VE) + 1 B2l3 + ¥/ (r+ 1), (A.151)
As this a quadratic function of y > 0 with positive leading coefficient it is maximized, at either bound
of the range of ¥, i.e y=0o0r y — (r2 + 1) minjcgupp(p,) [B2(1)| =: (r2 + 1)fs.
For the case, Y — (r, + 1),

lz—=Ps(2)1% < (llzs, 2+ llzsl = (IB2lli + (r2+ DB2) k) * + B3+ (2 + 1)BF. (A.152)

Let us call f(fB;) the numerator. For fixed f,||B2//, consider B; the maximizer of f under the

constraint , < |B2(I)| < ||B2]|. We remark that given [ € supp(B,) , we have that f(B,) where we
fixed Bo(I') = B;(I') for I € supp(B,) \ {I} is a quadratic function of |B,(I)| with positive leading
coefficient. Under the constraint 8, < |B2(7)| < ||B2||«» it is maximized at either of the two bounds on

|B2(1)|, we deduce that B5 (1) = B, or B3 (1) = || B2]|oo-
This implies that there is (an integer — but we relax this constraint ) 0 < s < || 82]|o = k» — r» — 1 such
that

lz—Pe@)IIF < (lzs,ll2+ lzs,ll2 = (sl Balloo + (k2 = 12 = 1 = 5)Ba+ (r2+ 1)B2) / Vk2)?
+5)|BolZ 4 (ko — 12— 1 = 5)BF + (ra+ 1) B3 (A.153)

Again the right side is a quadratic function of 3, under the constraint 0 < B, < || |-, and bounded at
either B, — 0 or By = || B2|:

Iz Ps(2)I3
< max (((lzs, |2+ l1zs, 12 = sl1Balle/ V&2 + sl1B2 12, (25, 12 + 125, 12 — VA | B ll=)) + Ko | B2 )
< gmax ((lesill2 sy 12 =1 Bell/ Vo 45 1Bol12) (A.154)

For each 0 < s’ < k, the denominator in the last line is a quadratic function of of ;]| with 0 <
| B2]loe < mingeg, |2(I)| (from Lemma A.25) hence

lz—Ps(2)|1%

< (12 2+ s 2% 1z [+ s 2 = min 200/ B+ o in )1 ) (15
IS K

= max ((|zs1|z+||Z52||2—s m1n|z 1/ Vk2)? + m1n|z( i ) (A.156)

0SS’<I€2
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Similarly, for y =0

Iz =P (@)IF < (llzs, ll2 + llzs, 12 = [1B2ll1/v/k2)* + 1| BalI3 (A.157)

which implies using the same argument used to obtain (A.156)
lo—Pe(@)3 < max (llzs, |2+ |z, 2 — ' min|z()[}/ v/k2)* + ' [minz(1) ). (A.158)
0<s' <ky les les

Still using the same argument about quadratic functions the right side of the maximum is bounded
by either of the cases s’ =0 or s’ = k. Fors' =0

lz=Pe(2)13 < (llzsy ll2 + [z, 12)* < 2(l1zs, 113 + lIzs,13) = 2/ P (2) 13-
Fors' =k

le=Pe@IE _ . _ (lzsill2+1Izs5ll2 = Ve minges [2(D]])? + ko [minges (1)
I1Ps(2)13 Yo llzs I3

Denote ¢ = 1 — /Ky mesEOU ¢ 0, 1) and consider r > 0, 6 € [0,7/2] such that l|zs,||2 = rcos 6,

l[zs, 2
l|lzs,|l» = rsin®

(rcos8 +crsin®)? + (1 —c)?r*sin” O
r2c0s2 0 + r2sin’ 0
~ cos? 0 +c2sin? @ + (1 —c¢)?sin® O + 2csin O cos O
B cos?  +sin” O
=1+ (2¢* —2¢)sin* @ 4 2csinB cos 6.

This is a quadratic function of ¢ with positive leading coefficient hence it is maximized atc =0 orc =1
. Hence

V <max(1,1+2sin6cos0)

m
max(1,1+sin(20))
2.

N

O
Proof of Theorem 4.4.

We follow the same proof structure (cf Appendix A.6) as for Theorem 4.2, with analog definitions
of Pi(z) = z1 and Py(z) = zp for z = (z1,52) € H. We also denote T = (S,52) = T'(z) where S; denotes
a support of the k largest coordinates in absolute values and S, = {1,...,r} the set indexing the first r
(largest) eigenvalues collected in vector eig(u) (this index set was denoted T in Appendix A.4.2). We
modify accordingly the notation 7, for the 2k (resp. 2r) largest coordinates (resp eigenvalues).

Remark that Lemma A.16 is still valid with || - ||,, = w1 ||P1(:) |1 + w2 |[P2 () |«
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This permits in turns to obtain the expression (with 7/ = T, \ T)

ez 1%

Bz ([l llw) = (A.159)

2
220, agg I Hlzps I <ler e 11272117

from the proof of Lemma A.21. Now remark that this is exactly the same expression as in the spar-
sity in levels case using the vector of ordered eigenvalues for the part in H,: ||(u1,u2)|3, = |lu1])5 +
|eig(uz)||3 and ||(u1,u2)||w = wi|lu1||1 +w2|leig(uz) 1. This in turns show that (using the same proof
as Lemma A.21)

Bs(||-llw) = max BM2 () (A.160)

0<L1 <n—2k,0<Lr<p—2r
where BX12 (w) is defined in (A.87). This is the first step of Theorem 4.2.
The rest of the proof then exactly matches the next steps of the proof of Theorem 4.2.
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