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Estimation of carbon-dioxide production during cycling
by using a set-membership observer

Nadia Rosero1,2, John J. Martinez2, Maxime Chorin2,3 and Samuel Vergès3

Abstract— This paper presents a set-membership observer
for the estimation of carbon dioxide production during cycling.
The observer uses measurements of oxygen consumption and
power at pedal level together with a discrete-time linear model
of gas exchange dynamics. The real process is assumed to be
disturbed by unknown but bounded disturbances. The proposed
observer provides a deterministic interval which contains the
real state. Since the excess of carbon dioxide production is
linked to the overtake of the anaerobic threshold, the observer
can be applied to predict the physiological state of the cyclist
by using a reduced number of gas exchange sensors. The
methodology is illustrated and validated using experimental
data.

I. INTRODUCTION

Riding a bike is a worldwide usual activity not only
as a sport, but also as a mean of transportation. During
cycling, the human and the bicycle can be considered as
a whole system composed by two main subsystems, which
is susceptible to be improved in many ways. The first step
for enhancing this system is to be able to measure and to
understand the dynamical relationship between the variables
of each part, in this case the link between physiological and
mechanical variables.

Nowadays, connected objects and commercial sensors
make it possible to monitor the cyclist-bike system. However,
what happens within the body of the cyclist, in particular the
dynamics of fatigue is difficult to assess, because of the need
of either invasive or complex measurement systems (using
blood sampling, or spirometric masks). Therefore, the fatigue
dynamics is a subject of study of many physiologists, trainers
and recently engineers, who analyze the relationship between
measured variables and physiological markers of fatigue to
develop medical and commercial products.

Since the works of [1] and [2] the gas exchange measures
have been widely accepted for the determination of metabolic
pathways (aerobic or anaerobic) used during physical ac-
tivity. Also the identification of the anaerobic threshold,
which is the point from which the production of mechanical
power becomes less efficient, can be identified from gas
exchange. Having a dynamical model of gas exchange during
cycling constitutes an advantage in the study of physiological
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behavior and to develop futures tools for improving the
cyclist-bike system, for example for its use in control design.

Control techniques to regulate physiological variables
while cycling have been recently implemented, among them
the most popular is the control of Heart Rate (HR), thanks to
its ease of measurements. For example [3], [4], [5] present
techniques for controlling HR and the results show the
difficulties to achieve an accurate control solution. On the
other hand, the gas exchange variables are more strongly
related to physical activity, although they are slightly harder
to measure. In this regard, the work [6] presents a gas
exchange model during cycling identified and validated using
experimental data.

The implementation of control laws often requires the
availability of the system states to make decisions, and a
proper estimation of those reduces the need for sensors. In
this aspect, observers are a useful tool, but the associated
uncertainties of the estimation is often not quantified. In [7],
[8] it is presented a set-membership observer (SMO) which
provides both state estimations and their corresponding es-
timation error bounds. To study gas exchange, this kind of
observer is interesting because of the biological nature of
the considered system, whose parameters cannot be known
with absolute precision and potentially vary over time. In
addition, automated gas exchange analyzers are known to
provide an estimation of gas exchange with limited accuracy
[9], [10], [11], [12]. The SMO proposed in [7], [8] takes these
phenomena into account under the form of bounded state and
output disturbances, whose bounds are used in the design
process to produce deterministic estimation error bounds.
Estimation error bounds are useful in critical setups, such
as supervised training, where the physiological limitations
are strictly respected in order to guarantee the safety and the
quality of training of the individual.

The main objective of this paper is to implement the SMO
for the estimation of carbon dioxide (CO2) production during
cycling by using measures of oxygen (O2) consumption and
power at pedal level.

Firstly, the architecture of the observer is described in Sec-
tion II. Secondly, the model of gas exchange dynamics while
cycling is explained in Section III. Section IV explains the
design of the SMO and its implementation in the cyclist-bike
system. Finally, simulation results together with measured
data from tests in cyclo-ergometer are presented to illustrate
the contribution of the approach.
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Fig. 1. Gas exchange dynamics and a set-membership observer architecture
for CO2 production estimation.

II. ARCHITECTURE FOR THE ESTIMATION OF
CARBON DIOXIDE PRODUCTION

An architecture for the estimation of carbon dioxide
production during cycling is proposed in this paper. This
approach can be applied to quantify the current physiological
state of the cyclist which is directly linked to the excess in
carbon dioxide production.

The scheme for the implementation of the observer is
depicted in Fig. 1. The complete cyclist-bike dynamics acts
like a system of energy transformation where the power at
pedal level can be seen as an image of internal chemical
reactions involving oxygen consumption and carbon dioxide
production.

The real system represented by the the block “Gas ex-
change dynamics”, has a power input and two outputs, which
can be all measured in practice, but here we assume available
measurements of the input and the oxygen consumption. A
validated model of gas exchange dynamics (see [6]), is used
for the implementation of the observer.

The state estimation is performed by using a SMO, which
takes as inputs the power and oxygen consumption measure-
ments and gives an estimation of the gas exchange variables.
A non-linear output matrix, which depends on the estimated
states is used to provide the estimation of the carbon dioxide
production.

The components of the proposed architecture are discussed
in more detail in the next sections.

III. MODEL OF GAS EXCHANGE DURING
CYCLING

The gas exchange measurements during a physical activity
are widely used by physiologists and trainers to assess the
physiological state of an individual. Sensors used for oxygen
consumption and carbon dioxide production measurements
do not require invasive methods such as blood or muscle
measurements and provide relevant information about chem-
ical reactions in the body.

To perform an exercise, the synthesis of Adenosine
Triphosphate (ATP), which is the energy source at cellular
level, is required. It can be distinguished several pathways
to obtain ATP, here, we will focus in the main two, they
are: i) the aerobic pathway, when the chemical reactions
include oxygen and ii) the lactic anaerobic pathway, which is
mostly used in exhaustive exercise and is characterized by the
over production of carbon dioxide and the increase in blood

lactate. In the articles [1] and [2] the concept of anaerobic
threshold is introduced. Basically, when the anaerobic thresh-
old is overcome, the anaerobic lactic pathway is activated,
which produces ATP through anaerobic glycolysis, to supply
the energy requirements of exercise with insufficient oxygen.

In the case of cycling, the power at pedal level gives us
a measurement of the mechanical work performed by the
cyclist. It is equal to the product of pedaling frequency and
torque exerted on the pedal. On the other hand, oxygen con-
sumption and carbon dioxide production provide information
about chemical reactions within the body ensuring power
production.

In the previous work [6] a gas exchange dynamical model
was presented. A version of this model with added state and
output disturbances can be written as follows:

xk+1 =Axk + Buk + Bw0 + Fdk (1)
yk =Cxk +Gvk (2)

where xk ∈ R3 is the state vector given by xk =
[x1, x2, x3]T with x1 the consumed oxygen mass per unit
time (in g/min), x2 the mass of carbon dioxide produced
aerobically per unit time (in g/min) and x3 the mass of
carbon dioxide produced anaerobically per unit time (in
g/min) or excess of CO2. The input uk ∈ R stands for
the mechanical power at pedal level (in Watts). The symbol
w0 models an additional power consumption required by
other physiological tasks that require oxygen consumption
and carbon dioxide production. Remark that, at rest uk = 0
and the input w0 is the only responsible of O2 consumption
and CO2 production. In this sense the input w0 corresponds
to a constant value, equivalent to the power (in Watts) that
produces the basal values of O2 and CO2 during rest.

The output vector is defined as yk = [y1, y2]T with y1 the
oxygen consumption O2 and y2 for the total carbon dioxide
production, which is the sum of aerobically produced CO2

and a fraction of the excess of CO2.
The signals dk and vk are unknown but bounded distur-

bances. The products Fdk and Gvk, with F ∈ R3 and G ∈
R2, model respectively the state and output disturbances.

The system matrices are defined as follows:

A =

θ1 θ2 0
0 θ3 0
0 θ5 θ6

 B =

θ4θ4
θ7

 (3)

The output matrix is defined as follows:

C(ρk) =

[
1 0 0
0 1 ρk

]
(4)

Remark that C depends on a time-varying parameter ρk.
This varying parameter changes according to the intensity of
the exercise.

For the system identification process, two kinds of exer-
cises were performed: i) a sub-maximal exercise or aerobic,
where the value of ρk is assumed as zero and therefore no
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Fig. 2. Obtained FIT of the gas exchange dynamical model with respect
to the measured data for an Incremental Cycling Test (ICT).

overproduction of carbon dioxide is considered; ii) a supra-
maximal exercise or anaerobic, performed over the anaerobic
threshold. In the second case, the value of ρk is set to 1 and
hence the third state x3, i.e. the excess of carbon dioxide is
added to the output.

The function hyperbolic tangent, allows us a smooth
transition for intermediate values of ρk between 0 and 1,
which constitutes a third case. To sum up, the values of ρk
can be written:

ρ(zk) =

 0 for case 1 : mostly aerobic
1 for case 2 : mostly anaerobic
0.5 + 0.5 tanh

(
zt−zk
h

)
for case 3 : mixed

(5)

The index zk can be written in terms of the the volume
per unit of time of oxygen V̇ O2 and the volume per unit of
time of carbon dioxide V̇ CO2, as follows :

zk = δO2
V̇O2(k)

− δCO2
V̇CO2(k)

(6)

where the constants δO2
and δCO2

correspond to the
volumetric mass density in g/l (or equivalently kg/m3)
of O2 and CO2, respectively. The values of zt and h
are parameters calibrated during the identification process
proposed in [6].

The outputs of the gas exchange model and measured
data of oxygen consumption and carbon dioxide production
during an Incremental Cycling Test (ICT) are depicted in
Fig. 2. The abrupt change in slope at t = 500s in the plot

of CO2 mass corresponds to a transition between mostly
aerobic (case 1) and mostly anaerobic (case 2) in equation
(5), i.e. a change in ρ from 0 to 1.

IV. DESIGN OF A SET-MEMBERSHIP OBSERVER

In order to estimate the quantity of carbon-dioxide produc-
tion during cycling, the discrete-time system (1) is consid-
ered. However, it is assumed the availability of the oxygen
consumption measurement only, i.e.:.

C(ρk) =
[
1 0 0

]
(7)

In this work, the design of the SMO is performed as proposed
in [7]:

x̂k+1 =(A− LC)xk + Buk + Bw0 + Lyk (8)
µk+1 =(1− λ)µk + λ (9)

xk =x̂k + e∞µ
1/2
k (10)

xk =x̂k − e∞µ
1/2
k (11)

where (8) is a punctual observer with a matrix L computed
by using a suitable observer design method based on Linear
Matrix Inequalities (LMI). These LMI can be solved by using
for instance the CVX solver [13], [14]

Here, the observer gain L is computed using an H∞
observer design approach in order to minimize the norm-
2 of the estimation error with respect to the norm-2 of the
disturbance. Equations (9)-(11) concern the bounds of the
state estimation error. These bounds depend on the a priori
known bounds of the system disturbances. In particular, as
it is proposed in [8], the term e∞, in (10)-(11), stands for a
constant column vector defined as follows:

e∞ = diag

( P
1
λγ

2wTw

)−1/2 (12)

where P is a positive definite matrix, γ and λ ≤ 1 are
positive scalars. Here, the system disturbances wk ∈ Rm are
defined as follows:

wk :=
[

dk vk
]T

(13)

The symbol w stands for a vector with positive elements
bounding the system disturbances. That is, at every time-
instant k, the disturbance satisfies :

wTk wk ≤ w̄T w̄ (14)

For a given observer gain matrix L, the matrix P and
the positive scalars γ and λ are obtained by considering the
estimation error dynamics:

ek+1 = Aoek + Ewk (15)

with Ao := (A−LC) and E := [F −LG]. Then, a suitable
gain L stabilizing the dynamics (15) is computed using the
Bounded Real Lemma [7]:



Proposition 4.1: (Bounded-real lemma) System (15) is
stable if there exist a symmetric positive definite matrix P �
0 and a positive scalar γ > 0 such that,

(
ATo PAo − P + Q ATo PE

ETPAo ETPE− γ2Im

)
� 0 (16)

where Q ∈ Rn×n is a given (arbitrary) symmetric positive
definite matrix and Im ∈ Rm×m is an identity matrix. In
addition, system (15), with output ζk := Q1/2ek and input
wk, has a Quadratic H∞ performance equal to γ.

Here, the matrix Q in (16) is computed as Q = V−1,
where the matrix V denotes the steady-state estimation error
covariance matrix, that can be obtained by solving the
following Lyapunov equation, see for instance [15]:

AoVATo − V = −EWET (17)

where W ∈ Rm×m concerns the covariance matrix of
disturbances wk.

Once the matrix P is obtained for a given matrix Q, the
scalar λ (used in (9) and (12)) is obtained as the minimum
generalized eigenvalue of the pair (Q,P).

Finally, in order to initialize the SMO (8)-(11), we suppose
that the initial estimation error e0 is known and belongs, for
instance, to a known ball, that is, eT0 e0 ≤ δ2, for a given
constant positive scalar δ. Then, as stated in [7], the initial
value of the scalar µ in (9) has to verify:

µ0 ≥ λmax(P)δ2/c̄ (18)

with c̄ = 1
λγ

2wTw.
The complete observer design process is summarizing in

Algorithm 1.

Algorithm 1 Set-membership observer design.
Require: Matrices A,B,C,F and G describing system (1),

the observer gain L obtained by performing and H∞
observer synthesis and the covariance matrix of distur-
bances W.

1: Compute Ao = A− LC.
2: Compute E = [F − LG]
3: Compute the covariance matrix V using (17).
4: Do Q = V−1.
5: Find a matrix P and the minimum γ who satisfy the LMI

(16).
6: Compute λ as the minimum generalized eigenvalue of

the pair (Q,P).
7: return The observer parameters L, P, γ and λ.

V. EXPERIMENTAL VALIDATION

A. System identification

Experimental data was obtained using a Hammer Trainer
for measurements of power and cadence, a Metalyzer 3B
Cortex for measurements of the oxygen consumption and
carbon dioxide production and a bluetooth sensor Polar

Fig. 3. Experimental setup for cycling tests: system identification and state
observer validation.

H10 for measurements of the heart rate. Gas exchange
data was collected breath-by-breath and then resampled by
interpolation with a constant sampling period of 1 second.
The Fig. 3 shows the subject of study performing one the
cycling tests.

The methodology described in [6] is followed to compute
the matrices of the system :

A =

0.944 0.029 0
0 0.981 0
0 0.001 0.994

 B =

0.363
0.363
0.023

× 10−3

(19)

and the parameters w0 = 18.288, zt = −0.507 and h =
0.0452.

The parameters of the system are chosen to fit the be-
haviour of a single individual, however the model structure
does not change for different individuals.

B. Estimation of the disturbances bounds

Section IV describes that the system is affected by un-
known and bounded state and output disturbances. This
section describes a method for estimating the bounds of the
disturbances.

The output error or measurement error in (2), denoted
now as Gvk, can be estimated thanks to the availability of
measured data. This error is used for the identification and
further validation of the model.

The output error ỹ, called also the residual, is defined as
the difference between the model output yIk and the measured
data. Since the measurements correspond to O2 and CO2

flows and the model outputs are in mass units, it is necessary
to calculate the equivalent masses using the density of the
gases. With the equivalent of the measurements in mass, yDk ,
the residual equation is :

ỹk = yIk − yDk (20)
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The model identification was performed using measure-
ments of the mass of oxygen consumption (y1) and of the
mass of total carbon dioxide production (y2), i.e. the vector
y = [y1, y2]T .

The values of the obtained residuals can be depicted in an
output error space (ỹ1, ỹ2) as it is shown in Fig. 4.

From this figure, a polyhedron which contains all the
output error points can be calculated. After that, a ball which
contains the furthest vertex of the polyhedron can be also
calculated, and then, the radius of that ball is considered to
be a bound of the output disturbances. Here we have a radius
equal to 1.478.

As it can be seen in Fig. 4, the ball is a conservative
estimation of the error, but ensures the inclusion of all
possible measurement errors. Thus for the output given by
(2) which is considered as the only output for the SMO, we
set G1 = 1.478 and |vk|≤ 1.

Concerning process disturbances and/or model errors, we
assume the existence of additive disturbances with maximum
amplitudes corresponding to 30% of the constant input Bw0.
That is, the bounds of those disturbances will be equal to
1.993 × 10−3 affecting every system state. In particular, it
is chosen process disturbances modeled by a column vector
F = 1.993×10−3[1, 1, 1]T and an input |dk|≤ 1. In this way
all the disturbances (process and measurement disturbances)
have been normalized by suitable scaling their input matrices.

C. Computation of observer gain matrix

A SMO is designed by using Algorithm 1. The obtained
observer gain is L =

[
0.157 0.064 0.012

]T × 10−3.
The disturbance covariance matrix is chosen to be W =

diag([0.33, 0.33]), which suppose that the normalized dis-
turbances vk and dk are bounded disturbances with uniform
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Fig. 5. Results of the set-membership observer Grey signals are measured,
blue signals are the estimated signals and red dotted signals are the
estimation error bounds.

probability distribution. Thus, the obtained matrix Q is :

Q =

 6.37 −5.93 1.63
−5.93 5.58 −1.73
1.63 −1.73 2.01

× 106 (21)

After solving the LMI given by (16) using (21), the matrix
P and the minimum value of γ are :

P =

 2.26 −2.00 0.22
−2.00 1.92 −0.54
0.22 −0.54 2.97

× 108 γ = 37.96 (22)

Finally, the scalar λ was 2.612 × 10−3, computed as the
minimum generalized eigenvalue of the pair (Q,P).

Using all the previous observer parameters and equation
(12), the following element-wise steady-state estimation-
error bounds was computed e∞ =

[
0.222 0.262 0.063

]T
.

The observer validation is performed with an initial value
of µ0 (used in (9)) equal to 2, which means that the initial
value of the estimation error vector is twice the amplitude
of the estimation error vector at steady-state value. This
assumption ensures the inclusion of initial conditions and
therefore verifies (18).

D. Simulation results of state estimation

The results of the estimation of carbon dioxide production
are shown in Fig. 5. In addition, the measured data is
included for comparison. This scenario contains two different
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intensities of exercise: a high intensity exercise followed by
a moderate intensity exercise.

The dotted lines correspond to the state bounds obtained
from the set-membership state observer. Remark that carbon
dioxide production (CO2 mass) concerns the sum of two
system states, then its error bounds will result from the
operation of the bounds of both states.

Some trajectories in Fig. 6 are measurements outside of
the predetermined bounds, for instance between t = 400s
and 500s, when movements of the cyclist and gas exchange
variables are not related with pedal power. A similar situation
occurs during high levels of exercise (between t=700s and
800s), where hyperventilation occurs. These phenomena are
related to state trajectories that are not depending on the
pedal power, and it is thus normal that the proposed observer
bounds do not include those trajectories. In addition, by
assumption we consider bounded disturbances who values of
the bounds are obtained from the identification process. Even
if this assumption is not realistic for unbounded stochastic
disturbances, the proposed approach could be useful for
determining a level of the estimation uncertainty for a given
possible amplitude of disturbances.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we presented a design method to compute
the gain of a robust set-membership state observer as well as
deterministic bounds for the estimation error for a disturbed
linear system.

The methodology is applied to a model of gas exchange
dynamics in order to estimate gas exchange during cycling,
based on a measure of power at the pedal and oxygen
consumption. To do so, the disturbances affecting the gas
exchange system are quantified by analyzing the distribution
of the output error of the model in the residual space.
The performances of the aforementioned state observer are

assessed in simulation using experimental data. The gas ex-
change variables are successfully estimated along the cycling
test and the bounds for the estimation error properly framed
the experimental signals.

The obtained results motivate its use for gas exchange
estimation for which the number of sensors has to be
reduced, especially for embedded applications.
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