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Abstract

This paper deals with the modeling and multi-objective optimization of an industrial phosphoric
acid process. The objective is to determine the operating conditions which minimize the chem-
ical losses of phosphate and maximize the productivity of the digestion tank. To achieve these
objectives, a process model, based on mass, charge, and energy balances along with thermody-
namic equilibrium equations is developed. Experimental measurements concerning sulfur and
phosphorus based systems are carried out and other measurements concerning fluorine, silica
and calcium sulfates based systems are collected from the literature. The results show that the
predictions are in very good agreement with the measurements. The developed model is then
used in a multi-objective optimization problem of an industrial manufacturing process to deter-
mine the set of optimal operating conditions. The optimization problem is solved by means of
epsilon-constraint method and the optimal solutions are ranked using the multi-attribute utility
theory. The best solutions are compared to industrial measurements based on surrogate modeling
and are found to be very consistent with the current operating conditions. Their implementation
would significantly improve the current process performances.

Keywords: Phosphoric acid process, Digestion tank, Modeling, Multi-objective optimization,
Surrogate model, Decision making.

1. Introduction

Phosphoric acid is one of the most produced and marketed chemicals in the world. It is
mainly used in the manufacture of fertilizers (Leikam and Achorn, 2005; Li et al., 2016; Rickard,
2000), in the food industry (Amin et al., 2010; Lampila, 2013) and even in the pharmaceuti-
cal industry (Geeson and Cummins, 2018). In several producing countries, it is produced by
the wet process which consists of reacting the phosphate ore with sulfuric acid (Becker, 1989;
Dorozhkin, 1996; Slack, 1968; Slack and James, 1973).
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Figure 1: Schematic representation of an industrial wet phosphoric acid process

On industrial scale, phosphoric acid is mainly produced by the digestion of the phosphate ore us-
ing a concentrated sulfuric acid solution. The digestion is carried out in a cylindrical tank which
consists of a series of nine continuous reactors of the same volume and uniformly distributed
inside the tank. The latter is further divided into three sections of three continuous reactors each.
The sulfuric acid feed flow rate is therefore split into three streams, each feeding one of the three
sections. The phosphate ore is fed into the first reactor of the first section and the final product
leaves the tank at the last reactor of the third section (Fig. 1).

During the digestion process, as shown by the overall reaction below, sulfuric acid is dissociated
into H+ and S O2−

4 ions. The H+ ions are involved in the extraction of the phosphate elements and
their diffusion from the solid phase (phosphate ore) towards the liquid phase (phosphoric acid)
whereas the S O2−

4 ions crystallize with the calcium ions Ca2+ to form a solid calcium sulfate which
can be either anhydrite CaS O4, gypsum CaS O4:2H2O or bassanite CaS O4:0.5H2O depending on
the operating conditions, in particular, the temperature and the sulfates concentration (Becker,
1989; Dorozhkin, 1996; Slack, 1968; Slack and James, 1973). The liquid phosphoric acid and
solid calcium sulfates are separated in a vacuum filtration unit downstream. Phosphoric acid
is recovered for valorization and marketing, while solid calcium sulfates are eliminated as an
undesirable product.

Ca3(PO4)2 + 3 H2SO4 + y H2O −−−→ 2 H3PO4 + 3 CaSO4, x H2O; x ∈ {0, 0.5, 2}

Moreover, the production of more gypsum enhances the productivity by increasing the phos-
phoric acid production, whereas the production of the bassanite increases the viscosity of the
reactive mixture within the reactors and consequently lowers the performances of the filtration
process downstream. It is therefore very important to control the operating conditions to favor
the production of gypsum and limit the formation of the bassanite.

On the other hand, the required amount of sulfuric acid should be optimally used in order to op-
timize the production performances. Indeed, a deficit in sulfuric acid during the digestion causes
a decrease in sulfate ions S O2−

4 concentration in the digestion tank. Therefore, the free calcium
ions (coming from the raw rock) tend to capture the phosphate ions HPO2−

4 and crystallize them
as solid brushite CaHPO4:2H2O. The latter decreases the chemical yield of the process since the
solid phase is discharged as undesirable product leading to phosphate losses by syncrystalliza-
tion (Becker, 1989; Slack, 1968). On the contrary, the use of an excess of sulfuric acid causes
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not only a local increase of the temperature due to the heat of dilution, but also leads to the for-
mation of a gypsum layer around the phosphate particles (particle coating) thus protecting them
from further attack by the sulfuric acid and resulting also in phosphate losses (unattacked losses).
The appropriate amount of sulfuric acid along with its optimal distribution over the three sections
of the digestion tank are then relevant to the optimal operation of the digestion tank.

In this paper, the objective is to determine the operating conditions of the digestion tank that min-
imize the phosphate ore losses (syncrystallized and unattacked) while meeting the constraints on
the excess of sulfuric acid above the stoechiometric amount and on the reaction temperature.
Beforehand, Pitzer’s thermodynamic model, needed in optimization, is calibrated using experi-
mental measurements.

2. Optimization problem formulation

A multi-objective optimization problem is formulated and solved in this work in order to de-
termine the trade-offs between the following objectives: (i) limit the syncrystallized losses by
minimizing the precipitation of the solid brushite, (ii) enhance the productivity of the process by
maximizing the production of gypsum, (iii) limit the unattacked losses by setting the excess of
sulfuric acid over the stoichiometric amount between two limit values that ensure the optimal
operation of the process, (iv) control the temperature of the reaction in order to limit the produc-
tion of the bassanite and thus improve the filtration downstream of the process.

The first two objectives are taken into account by means of two criteria, whereas, the remaining
two objectives are considered as constraints. The ingredients of the multi-objective optimization
problem considered are presented in the next section.

2.1. Objective functions

The two (conflicting) optimization criteria are defined by the saturation index (Chidambaram et
al., 2011) of the brushite to be minimized all over the sections of the process to limit its produc-
tion, and the saturation index of gypsum to be maximized to enhance the process productivity.
These two criteria are expressed as:

f1 =
1
3

∑
j

log
(
aCa2+ .aHPO2−

4
.a2

H2O.k
−1
s1

) j
(1)

f2 =
1
3

∑
j

log
(
aCa2+ .aS O2−

4
.a2

H2O.k
−1
s2

) j
(2)

where ai is the activity of component i in the reaction mixture, ks1 and ks2 are the solubility
products of the brushite and of the gypsum respectively and, j refers to the number of each
section.

2.2. Decision variables

The decision variables consist of the excess of sulfuric acid S c over the stoichiometric amount
required by the reactions, its distribution ratios over the sections, i.e., w1, w2 and w3, and the
cooling heat Qcool to be evacuated to control the temperature of the reaction (Fig. 1).
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2.3. Equality and inequality constraints

Two inequality constraints are introduced to account for the last two objectives. The first one
sets the lower and upper limits of sulfuric acid excess to specific values which minimize the
unattacked losses. These limits correspond to 1 % and 3 % (Becker, 1989). The second inequality
constraint addresses the operating temperature that should remain below 355 K to avoid the
production of the solid bassanite. These inequality constraints are expressed as :

1 % ≤ S c ≤ 3 % (3)

T ≤ 355 K (4)

The equality constraints consist of process model equations which are based on mass balance
(Eqs.(5)), charge balance (Eq.(6)), equilibrium constants equations (Eqs.(7-8)), and finally heat
balance (Eq.(10)).

(M)tot =

NC∑
i=1

δM,imi, M ∈ {S , P, F, S i,Ca} (5)

NC∑
i=1

zi.mi = 0 (6)

K j =

NC∏
i=1

aαi j

i =

NC∏
i=1

(mi.γi)αi j , j = 1, ..,NR (7)

log(K j) = log(K j0) +
∆H j

R

(
1
T
−

1
T0

)
(8)

where NC is the number of components, NR corresponds to the number of reactions, (M)tot is
the total concentration of M. mi is the molality of each component i involved in the equilibria in
Table 1, δM,i is the number of element M in component i. For example, for phosphorus element
δP,H5P2O−8

= 2.

As an exemple, the mass balance on (P) develops as:

(P)tot = mH3PO4 + mH2PO−4 + mHPO2−
4

+ 2.mH5P2O−8 (9)

zi are the electrical charges, γi and ai are the activity coefficient and the activity of component i
respectively. αi j is the stoichiometric coefficient of component i involved in reaction j. K j0 and
∆H j refer to the equilibrium constant and the enthalpy of the reaction j at T0 = 298 K respec-
tively, their values are reported in Table 1.
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Table 1: Reactions involved in the digestion tank and their corresponding equilibrium constant and enthalpy at 298K.

Equilibria K j0 ∆H j(J/moles) Database
1 H2SO4 −−−→ HSO4

– + H+ - - -

2 HSO4
– K1
−−−⇀↽−−− SO4

2 – + H+ 0.0103 -1.2.104 Gustafsson (2011) ; Pitzer (2018)

3 H3PO4
K2
−−−⇀↽−−− H2PO4

– + H+ 0.0071 -4.2.103 Gustafsson (2011)

4 H2PO4
– K3
−−−⇀↽−−− HPO4

2 – + H+ 4.2.10−12 -1.5.104 Gustafsson (2011)

5 H2PO4
– + H3PO4

K4
−−−⇀↽−−− H5P2O8

– 0.2550 -9.2.103 Gustafsson (2011)

6 HF
K5
−−−⇀↽−−− F– + H+ 7.2.10−4 -1.3.104 Ball and Nordstrom (1991)

7 HF + F– K6
−−−⇀↽−−− HF2

– 5.5000 -1.7.104 Ball and Nordstrom (1991)

8 H2SiF6
K7
−−−⇀↽−−− SiF2 – + 2 H+ 0.3.102 -6.7.104 Gustafsson (2011)

9 Ca2+ + SO4
2 – K8
−−−⇀↽−−− CaSO4 0.6394 -7.2.103 Gustafsson (2011) ; Pitzer (2018)

Finally, the heat balance for each section of the process is expressed as (Fig. 2) :

QH + QAG + QR+D = Qcool + Qout + Qloss (10)

where QH , QAG, QR+D, Qout, Qloss and Qcool refer respectively to the enthalpy of the inlet reactants,
the agitation heat, the sulfuric acid dilution heat, the enthalpy of the slurry leaving the reactor,
the heat losses of the digestion tank and the heat to be removed to control the temperature. The
enthalpy of the inlet and outlet streams are expressed as follows:

QH = Qsa + Qps + Qrph (11)

Qout = VoutρoutCpout (Tout − T0) (12)

where :

Qsa = msaCpsa (Tsa − T0) (13)

Qps = VpsρpsCpps (Tps − T0) (14)

Qrph = VrphρrphCprph (Trph − T0) (15)

aa
msa, Cpsa , Tsa are the mass flow rate, the heat capacity and the temperature of sulfuric acid
respectively.Vps, Cpps , ρps, Tp are the volume flow rate, the heat capacity, the density and the
temperature of the phosphate slurry respectively. Vrph, Cprph , ρph, Trph are the volume flow rate,
the heat capacity, the density and the temperature of the recycled phosphoric acid respectively.
Vout, Cpout , ρout, Tout are the volume flow rate, the heat capacity, the density and the temperature
of the outlet flow respectively. T0 is the reference temperature. It is worth mentioning that the
correlations developed by Becker (1989) are used to estimate the agitation heat and the heat
released by the dilution of sulfuric acid. It should be noted that Qloss is greater for small units
than for large ones due to their large surface/volume ratio. Its value is often too low to be taken
into account and is therefore neglected.
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Figure 2: Heat balance in a single reactor of a section in the digestion tank

2.4. Pitzer’s thermodynamic model

Pitzer’s thermodynamic model (Pitzer, 2018) is widely used to describe the interactions between
dissolved ions and the solvent. Its use depends mainly on the chemical species present in so-
lution. The general expression of this model provides the excess Gibbs energy for a solution
containing nw kg of solvent through the following relation:

Gex

WnRT
= nw f +

∑
i, j

mim jλi, j +
∑
i, j,k

mim jψi, j,k + ... (16)

λi, j represents the short-distance binary interactions between solute species i and j. ψi, j,k rep-
resents the ternary interaction parameters. R is the perfect gas constant,Wn is the mass of the
solvant, T is the temperature, f is the Debye-Huckel function (Pitzer, 2018) which depends on
the ionic strength I as:

f = −
4AφI

b
ln

(
1 + I0.5

)
(17)

Aφ =
1
3

(2πN0dw/1000)
1
2 (e2DkT )

3
2 (18)

where Aφ is the Debye-Huckel constant, b is a characteristic constant. N0 is the Avogadro num-
ber, dw is the density of water, D is the dielectric constant of water at temperature T , k is Boltz-
mann’s constant and e is the electrical charge. The activity coefficient γi is given by the Pitzer
model as (Pitzer, 2018):

ln(γi) =
z2

i

2
f + 2

∑
j

m jλi, j(I) + z2
i

∑
j

m jmkλ
′

j,k(I) + 3
∑

j,k

mim jmkψi, j,k + ... (19)

where:

I =
1
2

∑
i

miz2
i , λ′i, j =

dλi, j

dI
, mi =

ni

nw
(20)

Pitzer gives more appropriate forms of his theory by using βi, j to express the parameters λi, j and
λ
′

i, j. Moreover, these parameters are temperature dependent (Simoes et al., 2017) and are usually
expressed as (Eqs. 21-25).
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λi, j(I) = β(0)
i, j + β(1)

i, j
2
b

[
1 − (1 + α

√
I)e−α

√
I
]

(21)

λ
′

i, j(I) =
β(1)

i, j

α2I

[
−1 + (1 + α

√
I + αI)e−α

√
I
]

(22)

where:

β(0)
i, j (T ) = a(0)

i, j + b(0)
i, j .(T − T0) +

c(0)
i, j

T − T0
(23)

β(1)
i, j (T ) = a(1)

i, j + b(1)
i, j .(T − T0) +

c(1)
i, j

T − T0
(24)

ψi, j,k(T ) = a(2)
i, j,k + b(2)

i, j,k.(T − T0) +
c(2)

i, j,k

T − T0
(25)

...
Therefore, the Pitzer model involves several binary and ternary interaction parameters that must
be identified from experimental measurements. However, an important question that always
arises is to know whether the available data allow to identify all the model unknown parameters
or only a subset of them. To answer this question, a database of experimental measurements as
well as an estimability analysis of the unknown parameters are presented in the next section.

3. Experimental database and parameter identification

The identification of the unknown parameters of the thermodynamic model requires experimental
measurements of the most important variables. In this work, experimental measurements con-
cerning sulfuric and phosphoric acid systems have been carried out in the laboratory, whereas
data concerning other thermodynamic systems were collected from the literature (Table 2).

3.1. Laboratory measurements

Different series of experimental measurements of sulfuric and phosphoric acid solutions have
been carried out. They consist of pH, density, electrical conductivity and molalities of the ionic
and molecular species considered. These measurements were carried out as follows: (i) the pH
is measured by means of a glass electrode pH meter, calibrated using a KCl solution at different
temperatures, (ii) a pycnometer of known volume and mass is used to measure the density of
the samples, (iii) the total concentrations of the ions and molecules present in the acid solutions
are calculated using a conductivity based method developed by McCleskey et al. (2012) for the
case of sulfuric acid, and a pH based method developed by Elmore et al. (1965) for the case of
phosphoric acid.

For all the experiments, 98w% sulfuric acid and 65w% phosphoric acid were used to prepare
several samples. The temperature and the concentration of the samples varied respectively from
298K and 353K and from infinite dilution to 4moles/kgw for sulfuric acid and from infinite
dilution to 16moles/kgw for phosphoric acid.
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Table 2: Recent experimental measurements from the literature for the identification of the unknown model parameters
and the validation of the models results. Molality is expressed in (moles/kgw) and temperature in (K).

System Type of data Molality Temperature Reference

H3PO4 − H2O Osmotic coefficient 0–10.0 298-373 Messnaoui and Bounahmidi (2005)
& 0–9.00 298 Cherif et al. (2000)
Speciation 0-18.0 298 Yang et al. (2016)

0-7.00 298-540 Holmes and Mesmer (1999)
0-4.37 283-353 Preston and Adams (1979)

H2S O4 − H2O Osmotic coefficient 0-6.00 298-328 Sippola and Taskinen (2014)
& 0-4.00 298 Messnaoui and Bounahmidi (2006)
Speciation 0-6.00 298 Christov and Moller (2004)

0-23.5 298 Irish and Chen (1971)
0-6.00 298-373 Wang et al. (2013)
0-6.00 298-473 Sippola (2012)

CaS O4 : 2H2O − H2S O4 Gypsum solubility 0-4.0 298-363 Wang et al. (2013)
0-0.49 298-363 Azimi and Papangelakis (2010)
0-0.79 303-353 Dutrizac (2002)
0-4.70 298-333 Shen et al. (2020)
0-6.84 283-368 Zdanovskii and Vlasov (1968)

CaS O4 − H2S O4 Anidrhyte solubility 0-4.65 298-363 Wang et al. (2013)
0-0.79 363-378 Dutrizac (2002)
0-1.20 398-368 Shen et al. (2020)
0-4.37 283-323 Zdanovskii and Vlasov (1968)

HF − H2O Water activity 0-6.00 298-353 El Guendouzi et al. (2019)
0-6.00 298 Braddy et al. (1994)

H2S iF6 − H2O Water activity 0-3.00 298-353 El Guendouzi et al. (2015)

3.2. Estimability and identification of the model parameters

The estimability of the unknown parameters of Pitzer’s model is carried out using our recently
developed method (Bouchkira et al., 2021) based on the matrix of global sensitivities. The most
estimable parameters are then identified from the available measurements using an optimization
method based on the branch-and-reduce algorithm developed by (Belotti et al., 2009; Sahinidis,
2002), to minimize the following mean-square-error objective function to global optimality:

Jmse =
∑

k

∑
T

∑
m

kexp
m,T − kmod

m,T

ωk

2

(26)

k corresponds to the measured variables, i.e., water activity, component molalities and solubility,
ωi are weighting factors, T and m refer to the temperature and total concentrations. The accuracy
of identification is assessed by means of confidence intervals (Langman, 1986). Assuming that
the objective function can be expressed in the following form:

F(P) = θ(P)T .W.θ(P) (27)
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θ(P) is the residual vector, i.e., the difference between the model predictions and the measured
values of the outputs, W is a weighting matrix (equal to the identity, since we assume that all
measurements have the same weight in the objective function), and P is the vector of the unknown
parameters. Assuming that the measurement errors are independent and normally distributed, the
covariance matrix C of the least square problem is approximated as follows (Langman, 1986):

C ≈
F(P∗)
d − n

(JT J)−1JT J(JT J)−1 (28)

P∗ is the vector of parameters that minimizes the objective function F(P), J is the Jacobian ma-
trix of the vector θ(P). This approximation is more accurate when the non-linearities are not
strong.

The Jacobian matrix is computed using a local "One-At-Time" (OAT) method. It consists in
perturbing the value of each parameter P∗j by 10% forward and backward, then, the centered
finite difference method is used to approximate the elements of J.

J =



∂θ1
∂P1

· · ·
∂θ1
∂Pnp

...
. . .

...

∂θny

∂P1
· · ·

∂θny

∂Pnp


...

ny and np correspond respectively to the number of outputs and the number of unknown param-
eters. The uncertainty on a parameter j is calculated as follows:

εP j = ±

√c j jt1−α/2,ν
P∗j

.100% (29)

c j j is the jth diagonal element of the C matrix. t1−α/2,ν is deduced from the Student table with
ν degrees of freedom, it corresponds to the probability of 1 − α/2 that the true value of the
parameter is within the confidence interval given by:

P j ∈
[
P∗j −

√
c j jt1−α/2,ν; P∗j +

√
c j jt1−α/2,ν

]
(30)

On the other hand, the quality of the model predictions with respect to the experimental mea-
surements is quantified using the Pearson correlation coefficient (Keith, 2014), given as :

r =

∑
i, j

(
S m

i j − S m
i j

) (
S e

i j − S e
i j

)
√(∑

i, j(S m
i j − S m

i j)
)2 (∑

i, j(S e
i j − S e

i j)
)2

(31)

where S m
i j is the model prediction, S e

i j is the corresponding experimental value and S i j is their
average over the total number of available measurements performed at different molalities and
temperatures. The indices i and j refer to molalities and temperatures respectively.
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Table 3: Interaction parameters along with their confidence intervals. (A): sulfur, (B): phosphorus acid, (C): fluorine,
(D): silica, (E): calcium.

a C.I b C.I c C.I

(A)
β

(0)
HS O−4 ,S O2−

4
-2.471 AAAAA [-3.00;-1.934] 0.007AAAAA [0.004;0.010] 0.01 -

β
(0)
HS O−4 ,H

+ 1.046 [0.518;1.573] -0.002 [-0.003;-0.001] 0.01 AAAAA -

β
(0)
S O2−

4 ,H+
-8.001 [-9.665;-6.336] 0.01 - 1684.0 [1221.1;2147.04]

β
(1)
HS O−4 ,S O2−

4
-254.8 [-312.8;-196.8] 0.405 [0.341;0.468] 3.9.104 [3.1.104;4.8.104]

β
(1)
HS O−4 ,H

+ -296.9 [-489.1;-104.8] 0.453 [0.341;0.564] 4.8.104 [2.7.104;7.0.104]

β
(1)
S O2−

4 ,H+
8.039 [4.879;11.19] -0.023 [-0.032;-0.013] 0.01 -

ψ
H+ ,HS O−4 ,S O2−

4
1.696 [1.142;2.249] -0.003 [-0.004;-0.001] -277.209 [-335.9;-218.4]

(B)
β

(0)
H+ ,H3PO4

4.211 [3.75;4.67] 0.134 [0.12;0.15] 2.49.103 [2.21.103;2.76.103]

β
(0)
H+ ,H2 PO−4

-2.965 [-3.32;-2.61] -1.005 [-1.13;-0.88] 203.473 [179.06;227.89]

β
(0)
H+ ,H5 P2O−8

-186.465 [-242.4;-130.5] 2.203 [1.54;2.86] 0.198 [0.14;0.26]

β
(0)
H3PO4 ,H2PO−4

0.183 [0.17;0.20] -0.088 [-0.10;-0.08] -1.25.104 [-1.37.104;-1.14.104]

β
(0)
H3PO4 ,H5P2O−8

4.739 [4.17;5.31] -0.161 [-0.18;-0.14] 0.925 [0.81;1.04]

β
(0)
H2PO−4 ,H5P2O−8

168.178 [126.1;210.2] 1.941 [1.46;2.43] 4.49.105 [3.36.105;5.61.105]

β
(1)
H+ ,H3 PO4

-2.495 [-3.24;-1.75] -0.311 [-0.40;-0.22] -4.96.104 [-6.45.104;-3.47.104]

β
(1)
H+ ,H2 PO−4

16.109 [12.4;19.8] 1.404 [1.08;1.73] - -

β
(1)
H+ ,H5 P2O−8

56.786 [45.4;68.1] - - 9.14.104 [7.31.104;1.09.104]

β
(1)
H3PO4 ,H2 PO−4

-8.458 [-9.30;-7.61] 0.064 [0.06;0.07] -1871.020 [-2058.12;-1683.92]

β
(1)
H3PO4 ,H5 P2O−8

-3.712 [-4.19;-3.23] - - -3.05.104 [-3.44.104;-2.65.104]

β
(0)
H2PO−4 ,H5P2O−8

-4.093 [-4.91;-3.27] 0.236 [0.19;0.28] - -

ψH3PO4 ,H3 PO4 ,H3PO4
6.826 [5.46;8.19] - - - -

β
(0)
H3PO4 ,H3 PO4

- - - - -134.046 [-135.39;-132.71]

(C)
β

(0)
H+ ,HF

- - -0.007 [-0.0078;-0.0062] - -

β
(0)
HF−2 ,HF

0.208 [0.19;0.23] - - - -

β
(0)
F− ,HF

- - 0.013 [0.0118;0.0142] - -

β
(0)
HF−2 ,HF

-0.392 [-0.44;-0.35] . - - -

ψHF,HF,HF -3.081 [-4.01;-2.16] - - - -

β
(0)
HF,HF - - - - -84.628 [-93.94;-75.32]

(D)
β

(0)
H+ ,H2S iF6

- - 0.072 [0.064;0.079] - -

β
(0)
H+ ,S iF2−

6
- - -1.338 [-1.45;-1.21] -9.071.104 —A [-1.00.105;-8.07.104]—AAAAA

β
(0)
H2S iF6 ,S iF2−

6
12.112 [10.7;13.4] 0.077 [0.067;0.086] -3.746 [-4.08;-3.40]

β
(1)
H+ ,H2S iF6

-4.602 [-5.01;-4.18] -7.095 [-8.15;-6.030] -7.728.105 [-8.65.105;-6.80.105]

β
(1)
H+ ,S iF2−

6
-63.290 [-72.7;-53.7] - - -8.341.104 [-9.42.104;-7.25.104]

β
(1)
H2S iF6 ,S iF2−

6
-0.149 [-0.16;-0.12] - - - -

β
(0)
H2S iF6 ,H2S iF6

- - 0.005 [0.004;0.0055] - -

β
(1)
H2S iF6 ,H2S iF6

- - 0.040 [0.036;0.0436] - -

(E)
β

(0)
HS O−4 ,CaS O4

0.920 [0.81;1.02] -0.030 [-0.033;-0.026] -3272.216 [-3632.1;-2912.2]

β
(0)
HS O−4 ,Ca2+

1.010 [0.91;1.10] 0.026 [0.023;0.028] - -

β
(0)
S O2−

4 ,CaS O4
-1.801 [-2.01;-1.58] 0.010 [0.0088;0.0112] - -

β
(0)
S O2−

4 ,Ca2+
-1.037 [-1.19;-0.88] 0.066 [0.0561;0.0759] -1075.927 [-1194.2;-957.5]

β
(0)
H+ ,CaS O4

0.697 [0.60;0.78] 0.033 [0.028;0.037] - -

β
(1)
S O2−

4 ,Ca2+
- - - - 23487.762 [20904.1;26071.4]

β
(1)
H+ ,CaS O4

-7.917 [-8.78;-7.04] - - - -

β
(1)
H+ ,Ca2+

- - - - -912.578 [-1022.0;-803.0]

β
(1)
CaS O4 ,Ca2+

-26.026 [-28.8;-23.1] - - - -

ψCaS O4 ,CaS O4 ,CaS O4
0.689 [0.61;0.76] - - - -
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Figure 3: Model vs measurements. (A-D): speciation of sulfuric acid. (E-H): speciation of phosphoric acid.
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Figure 4: Model vs measurements. (A-D):gypsum solubility in sulfuric acid. (E-H): anhydrite solubility in sulfuric acid.
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Figure 5: Model vs measurements. (A-H): water in different systems. (1: H2S O4 −H2O, 2: H3PO4 −H2O, 3: H2S iF6 −

H2O, 4: HF − H2O).
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4. Results and discussion

The results of the estimability analysis provided the most estimable parameters to be identified
through the minimization of the mean-square error (Eq.26) between the available experiments
and the predictions of the model. The values of the identified parameters are listed in Table 3
along with their confidence intervals. It is worth mentioning that parameters without interval
confidence are not estimable, and their values are taken from previous works or from the litera-
ture. These parameters are then used to compare the predictions of the developed model to the
available measurements. The results are presented in Figs. 3A-H, 4A-H and 5A-H. To assess the
accuracy of the model predictions, the Pearson product-moment coefficient r is also computed
in each case. Its high values highlight the accuracy and the reliability of the model. The latter is
then exploited in the multi-objective optimization problem to predict the values of the objective
functions. The ε-constraint method (Deb, 2014) is used to transform the multi-objective opti-
mization problem to a single-objective optimization problem which is then solved several times
accurately by means of a global optimization solver to determine the Pareto front of optimal
solutions.

4.1. Pareto front

The multi-objective optimization problem is formulated as the following single-objective op-
timization problem:

Maxx − f1(x)

subject to f2(x) ≥ ε

g j(x) = 0 j ∈ [1; J]

hk(x) ≥ 0 k ∈ [1; K]

x(L)
i ≤ xi ≤ x(U)

i i ∈ [1; N]

where f1 and f2 are the two conflicting objectives predicted using the developed thermodynamic
model, x is the vector of decision variables, i.e., [w1,w2,w3, S c,Qcool], x(L) and x(U) their lower
and upper bounds. g = (g1, g2, ..., gJ)T and J are the equality constraints and their number re-
spectively, h = (h1, h2, ..., hK)T and K refer to the inequality constraints and their number.

The epsilon-constraint optimization problem is then implemented and solved within GAMS en-
vironment. Moreover, a branch-and-reduce algorithm (Belotti et al., 2009; Sahinidis, 2002) is
used to solve the problem to global optimality. It should be noted that the method has the advan-
tage of finding any Pareto optimal solution, even for non-convex problems. However, it is not
always easy to set the lower limit ε so that the problem has feasible solutions.

The Pareto front computed is presented in Fig.6 and shows that (i) the saturation index of brushite
(syncristallized losses) is negative for all the optimal solutions meaning that the thermodynamic
conditions are not favorable for its production, (ii) the saturation index of gypsum is positive with
higher values for all the optimal solutions meaning that the thermodynamic conditions are very
favorable for its production and consequently for increasing the productivity of the industrial unit.
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On the other hand, solutions are taken from the Pareto front and detailed in Table 4. They show
that the optimal distribution of sulfuric acid in the three sections varies between 63% and 73%
(w1) for the first section, between 27% and 37% (w2) for the second and 0% (w3) for the last
section. These values are very consistent with the current distributions used on industrial scale,
in particular within a phosphoric acid plant located in Jorf Lasfar in Morocco (Bouchkira and
El Fariq, 2017; El Bouzidi, 2016).

Furthermore, the excess of sulfuric acid (with respect to the stoichiometric amount) lies between
2% and 3%, which is in good agreement on the one hand with the current operating conditions
of the industrial units, and on the other hand with the conditions favorable to the crystallization
of gypsum described by Becker (1989) . It is noteworthy that the optimal solutions for sulfuric
acid distributions are not uniform. In fact, as the conversion rate of the digestion increases from
the first to the last section, the demand for sulfuric acid varies in the opposite direction and
decreases from the first to the third section. Optimal temperatures are also reported in Table 4,
their values allow to determine the overall heat quantity to be removed via the flash cooler to
ensure good conditions for gypsum crystallization and also to limit the formation of bassanite
which undermines the quality of the filtration unit downstream of the digestion tank.

Figure 6: Pareto front of the optimization problem with four points enumerated 1-4 and reported in Table 4.

Table 4: Four solutions from the Pareto front

w1 w2 w3 T opt(◦C) S c(%) Qcool(kJ/hr)
1 0.73 0.27 0 76.3 2.12% -1.333. 105

2 0.70 0.30 0 77.1 2.18% -1.351. 105

3 0.67 0.33 0 77.6 2.23% -1.355. 105

4 0.63 0.37 0 78.2 2.54% -1.358. 105

4.2. Decision-making aid method

Once the Pareto front is determined, the issue is to rate and rank all the optimal solutions in
order to select the best one to be implemented. A multi-objective decision-making aid method is
therefore needed. The decision aid method used in this work is the multi attribute-utility theory
(Mateo, 2012). It is mainly based on the calculation of individual utility functions (denoted by
u1 and u2) of each objective function and then to use them to rank the optimal solutions through
the calculation of a multi-attribute utility function noted U.
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u1(x) =

 f max
1 − f1(x)

f max
1 − f min

1

α1

(32)

u2(x) =

 f2(x) − f min
2

f max
2 − f min

2

α2

(33)

f max
1 and f max

2 are the maximum values of the objectives of the Pareto front and f min
1 and f min

2
are their minimum values. α1 and α2 are related to the relative tolerance on the individual utility
functions. The multi-attribute utility function is defined as:

U(x) = w1.u1(x) + w2.u2(x) (34)

where w1 and w2 are usually set by a decision-maker according to his/her preferences. They
express the weight of each objective in the decision. The values of the multi-attribute utility
function allow then to rank the optimal solutions and consequently to select the best one to be
implemented.

Figs 7A-B show the effect of the relative tolerances α1 and α2 on the individual utility functions.
They represent the sensitivity of u1 and u2 with respect to f1 and f2. Their values are set in our
case to α1 = 0.5 and α2 = 0.5. Meanwhile, the values of the weighting parameters w1 and w2 are
taken equal to 0.5 to consider that the two objective functions have the same importance in the
optimization problem.

The individual utility function U(x) was calculated for each point of the Pareto front and used to
rank the optimal solutions. The first two best solutions are shown in Table 5 (no 9 and 10), along
with experimental measurements (no 1 to 8) from (Bouchkira and El Fariq, 2017; El Bouzidi,
2016). It is important to point out that the total losses seem very small and one might be tempted
to ignore them. However, the industrial phosphoric acid plant located in Jorf Lasfar in Morocco
(studied in this work), includes 16 units treating 1,400 tons of phosphate ore per day each. There-
fore, 1% loss corresponds to 224 tons of phosphate loss per day, which are significant and cannot
be neglected.

Figure 7: Relative tolerance factors αi effect. (a) Saturation index of gypsum, (b) Saturation index of Brushite.
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Figure 8: Chemical losses, (A): unattacked losses, (B): syncrystallized losses

Moreover, to compare the results of the implementation of these two best optimal solutions to the
measurements carried out on industrial plants, a fractional design of experiments (Park, 2007) is
used to develop a surrogate model in order to predict the syncrystallized as well as the unattacked
losses of phosphate. Given the complexity of the process and lack of industrial measurements,
two factors (i.e., temperature and excess sulfuric acid) are assumed to be known. Therefore, only
three factors out of five, i.e., w1, w2, w3, are considered with two levels.

The design of experiment’s factors along with their levels are reported in Table 6. The surrogate
model adopted is expressed as :

Ymod = a0 +
∑

i

bixi +
∑

i

∑
j

ci, jxix j (35)

θ = (XT .X)−1.XT .Yexp (36)

where Ymod refers to the surrogate model predictions. Yexp is the vector of measured values. X is
the matrix of the experimental design. xi and x j are the levels of the three considered variables.
θ is the vector of the unknown coefficients of the surrogate model given as:

θ = [a0 b1 b2 b3 c1,2 c1,3 c2,3]t (37)

Figs. 8A-B show a comparison between industrial losses taken from (Bouchkira and El Fariq,
2017; El Bouzidi, 2016) and the first two best optimal solutions. The computed solutions are very
close to the industrial measurements which are obtained by performing several run-to-run on the
plant by changing the values of the decision variables from one run to the next to improve the
productivity and minimize the phosphate losses. Moreover, the values of the decision variables
used to carry out industrial experiments, are sub-optimal and must be adjusted depending on the
composition of the phosphate ore which further increases the number of runs. It is easy to under-
stand under these conditions that obtaining these measurements is very costly since it involves
significant labor cost, consumes time and huge quantities of reagents, decreases the productivity
of the plant and poses some safety issues. Modeling and multi-criteria optimization have proven
to be effective since they provide optimal solutions that minimize the number, duration, cost of
runs, and security risks.
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Table 5: Industrial measurements and optimal solutions

w1 w2 w3 S L(%) UL(%) Reference
1 0.50 0.20 0.30 0.94 0.06 El Bouzidi (2016)
2 0.40 0.20 0.40 0.73 0.12
3 0.40 0.30 0.30 0.87 0.12
4 0.70 0.30 0 0.62 0.14 Bouchkira and El Fariq (2017)
5 0.64 0.36 0 0.70 0.15
6 0.75 0.25 0 0.64 0.12
7 0.75 0.17 0.08 0.68 0.14
8 0.60 0.30 0.10 0.63 0.12
9 0.65 0.35 0 0.64 0.12 This work

10 0.63 0.37 0 0.62 0.14

Table 6: Design of experiments levels: L(+1) and L(−1). S L and UL refer to syncristallized and unattacked losses.

w1 w2 w3 S L(%) UL(%)
1 +1 +1 -1 0.62 0.14
2 +1 -1 -1 0.64 0.12
3 -1 -1 +1 0.94 0.06
4 -1 +1 +1 0.87 0.12

L(+1) [0.5;0.7] [0.2;0.3] [0.2;0.4] - -
L(−1) [0.4;0.5] [0.1;0.2] [0; 0.2] - -

5. Conclusion

Optimal operating conditions of the digestion tank of an industrial phosphoric acid production
process are determined by means of a multi-objective optimization method. The objectives used
(i.e., saturation indices) have proven to be effective in minimizing the phosphate losses and in-
creasing the acid productivity. Furthermore, the two inequality constraints on the temperature
and on the excess of sulfuric acid above the stoichiometric amount required by the reactions
were relevant to ensure an optimal operation of the digestion tank.

The optimization results are consistent with the measurements carried out on an industrial plant,
thus showing that optimization is a powerful tool for reducing the cost and duration of industrial
experiments under maximum safety conditions.

However, it is noteworthy that some side reactions can occur due to the impurities present in the
phosphate ore which are not taken into account in this work. Their consideration in future works
would undoubtedly improve the performance of the digestion tank.
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