Kai Hu
email: hukai@buaa.edu.cn

Teng Zhang

Zhibin Yang

Multi-threaded code generation from Signal program to OpenMP

Keywords: multi-thread, synchronous language, Signal, code generation, OpenMP

The use of multi-core processors will become a trend in safety c1itical systems. For safe execution of multithreaded code, automatic code generation from formal specification is a desirable method. Signal, a synchronous lan guage dedicated for the functional description of safety crit ical systems, provides soundness semantics for determinis tic concurrency. Although sequential code generation of Sig nal has been implemented in Polychrony compiler, deter ministic multi-threaded code generation strategy is still far from mature. Moreover, existing code generation methods use certain multi-thread library, which limits the cross plat form executions. OpenMP is an application program inter face (API) standard for parallel programming, supported by several mainstream compilers from different platforms. This paper presents a methodology translating Signal program to OpenMP-based multi-threaded C code. First, the intermedi ate representation of the core syntax of Signal using syn chronous guarded actions is defined. Then, according to the compositional semantics of Signal equations, the Signal pro gram is synthesized to dependency graph (DG). After par allel tasks are extracted from dependency graph, the Signal pro gram can be finally translated into OpenMP-based C code which can be executed on multiple platforms.

Multi-core processors have been widely used in high performance computing and universal computing. With the increase of functional and non-functional demands, multi core architecture will become indispensable in safety critical systems such as avionics, aerospace and automobile control.

Multi-threaded software is necessary to make full use of computing resources of multi-core processors. At present, two types of strategies have been developed to aid program ming multi-threaded software. One is application pro gram in terfaces (APls) and libra1ies provided by Unix-like OS [l] and Windows [START_REF]Microsoft windows threads[END_REF]; the other includes several parallel program ming technologies such as MPI [START_REF]MPI: A message-passing interface standard version 3.0[END_REF] for the multi-processor distributed system, and OpenMP [START_REF]The OpenMP API specification for parallel programrning[END_REF] and Intel TBB [START_REF]Intel thread building blocks[END_REF] for the shared memory architecture which provides mechanism to describe high level parallel algorithm.

However, these two strategies fail to satisfy the strict quan titative indicators of functional and non-functional properties demanded in safety critical systems. If the executions of the embedded software are non-deterministic, they may cause undesirable consequences such as delay of reactions and race conditions. ln addition, parallel programming is error-prone because programmers have to specify the synchronization and resources sharing among threads. This will bring the multi-threaded coding for safety-critical applications a high risk programming activity [START_REF] Lee | The problem with threads[END_REF].

To solve this problem, using model-based development and automatic code generation technology based on formal methods has become a trend in academics and industries. One of the available formal methods used in safety critical systems is the synchronous language [START_REF] Benveniste | The synchronous approach to reactive and real time systems[END_REF][START_REF] Benveniste | The synchronous languages 12 years later[END_REF], built on a math ematical model combining synchronous hypothesis and de terministic concurrency. In synchronous hypothesis, time is abstracted as partial discrete logical time series and actions executed by the system are abstracted as discrete steps of computing. The input, computation and the output take no time at each instant (the unit of discrete logical time). Due to the abstract time model, the inherent functional proper ties are preserved, which makes synchronous languages suit able for the functional design of systems. The mainstream synchronous languages include Esterel [START_REF] Berry | The esterel synchronous programrning language: design, semantics, implementation[END_REF], Lustre [10], and Signal [START_REF] Guernic | Programrning real time applications with signal[END_REF] among which Signal is a multi-clocked language that no global clock is pre-defined and every signal has its own clock. Compared to the mono-clocked synchronous lan guages, multi-clocked model is more sui table for the descrip tion of distributed systems and multi-core systems.

Endochrony [START_REF] Guernic | Polychrony for system design[END_REF] and weak endochrony [START_REF] Potop-Butucaru | Concurrency in syn chronous systems[END_REF] properties have been proposed to generate deterministic code from Sig nal. In the endochronous Signal program, the clock of each signal can be computed from a "root clock". The Polychrony compiler [START_REF] Besnard | Code generation strategies in the polychrony environment[END_REF][START_REF] Besnard | Compilation of poly chronous data flow equations[END_REF] not only supports the sequential code gen eration, but also provides the fonction of multi-threaded code generation from the endochronous program, based on the clustering method. According to the data dependency rela tions, the Signal program is divided into tasks which will be "forked" as threads at the runtime. These threads will com municate with each other by the "wait-notify" system call while in each thread the sequential code will be executed. However, there are still some implicit concurrencies in the program which may not be discovered and the use of "wait notify" takes time in the synchronization among threads.

Weak endochrony property, as its name implies, is less strict than endochrony. If the relation among signais meets the full-diamond condition [START_REF] Potop-Butucaru | Concurrency in syn chronous systems[END_REF], it is possible to generate de terministic multi-threaded code. [START_REF] Talpin | Compositional design of isochronous systems[END_REF] proposes a methodol ogy checking weak endochrony property based on bounded model-checking. Since the model-checking method is ex pensive for the code generation, the paper proposes another method based on the isochrony [START_REF] Benveniste | Compositionality in dataflow synchronous languages: specification and distributed code generation[END_REF] property which is suit able for the compositional design. This method, however, cannot fully caver all the weakly endochronous programs. [START_REF] Jose | On the deterministic multi threaded software synthesis from polychronous specifications[END_REF] proposes a methodology generating deterministic multi threaded code from weakly endochronous program based on synchronous flow dependence graphs [START_REF] Maffeïs 0 | Combining dependability with architectural adaptability by means of the signal language[END_REF]. Every statement in the program corresponds to a thread and the threads syn-chronize with each other based on "wait-notify" system call. On the basis of the atom theory proposed in [START_REF] Potop-Butucaru | Concurrency in syn chronous systems[END_REF][START_REF] Potop-Butucarn | From concurrent multi-clock programs to detenninistic asynchronous implementations[END_REF] presents a general method to check weak endochrony on multi-clocked synchronous programs. The corresponding strategy of multi threaded code generation is given in [START_REF] Papailiopoulou | From design-time concurrency to effective implementation parallelism: The multi-clock reactive case[END_REF]. However, some re strictions must be met. For instance, data types of the pro gram interface should be finite and delay equations should be replaced by the clock relation equations. Therefore, some weakly endochronous programs may be rejected.

Another strain of methodology is proposed in [START_REF] Baudisch | Multithreaded code from syn chronous programs: extracting independent threads for openmp[END_REF]. It translates synchronous guarded actions, an intermediate rep resentation for mono-clocked synchronous languages, into OpenMP-based multi-threaded program. The synchronous guarded actions are first translated into dependency graph (DG) and then, from the DG, tasks are divided for the parallel execution. Finally, OpenMP-based C code can be generated according to the task partition. Since OpenMP has been im plemented by several compilers from different OS, the gener ated code can be executed on multiple platforms.

As an API standard for parallel programming, OpenMP provides abundant mechanism for the description of high level parallel algorithms. The newest version of OpenMP supports fine-grained scheduling and task balancing which can increase the performance of the program. However, few studies of multi-threaded code generation for Signal have chosen OpenMP as the target language. Drawing on the idea presented in [START_REF] Baudisch | Multithreaded code from syn chronous programs: extracting independent threads for openmp[END_REF], this paper introduces a methodology dis covering the implicit parallelism from the Signal program and translating the endochronous Signal program to OpenMP based C code. However, some vital changes are made to fit the characteristics of Signal. Firstly, while [START_REF] Baudisch | Multithreaded code from syn chronous programs: extracting independent threads for openmp[END_REF] directly trans lates the program written by synchronous guarded actions, p1imitive constructs in Signal are needed to be first translated into representation of synchronous guarded actions. With re gard to this, some new f eatures are added to synchronous guarded actions. For instance, in order to represent implicit clock relations defined in each primitive construct, Boolean variables representing the clocks are introduced. Moreover, in [START_REF] Baudisch | Multithreaded code from syn chronous programs: extracting independent threads for openmp[END_REF], action dependency grpah (ADG) is a bipartite graph in which variables and guarded actions are vertices. This pa per proposes a DAG (directed acyclic graph)-like form of DG in which nodes are guarded actions and edges represent the dependency relations between nodes.

The paper is structured as follows. An informa! introduc tion to the Signal is provided in Section 2. In Section 3, the paper proposes an intermediate representation of the core syntax of Signal using synchronous guarded actions. Based on the compositional semantics and data dependency rela-tions, the formal defi nition of DG is given. In Section 4, methods of finding the implicit parallelism of the Signal pro gram and the task partition from DG are proposed. Finally, in Section 5, the translation from partitioned tasks to OpenMP based C code is defined and an example is analyzed to vali date the methodology proposed in this paper.

Introduction to Signal

Syntax and conesponding semantics

Apart from primitive constructs listed in Table 1, Signal also provides other extended constructs such as the dock operator "/\" and memory operator "cell". Moreover, nested process, module and other mechanisms are defined in Signal to specify the large system with components at various rates. The details of the syntax can be refened in [START_REF] Besnard | Signal v4-Inria version: reference manual[END_REF].

Relations among signals and their docks are defined as equations in Signal. The basic unit of a Signal program, called process, consists of a set of equations. Two basic oper ators, respectively called synchronous composition and local de.finition, are applied to the process. The syntax and cone-As mentioned in Section 1, time is abstracted and the behav-sponding semantics are shown in Table 2. iors of the system are divided into a discrete series of instants. Table 2 Piimitive operations on the process At each instant, the input, computing and output are executed instantaneously and simultaneously. The unbounded series of typed values are called signais. Signals in the program can be present or absent at each instant and the dock of a signal is defined as the series of subscripts at which instant the signal is present.

In Signal, primitive constructs (core syntax) are provided to express the relations between signals, defined in Table 1. Note that the dock of signal sis denoted as '"'s".

Operators in Signal not only depict the data dependency relations but also imply dock relations among signais. Ac cording to the dock relations, operators can be divided into two types, mono-docked operators and multi-docked opera tors. In equations of mono-docked operators, induding Re lation and Delay, operand signals are synchronous, that is, at any instant, all signais will be present or absent at the same time. In contrast, operand signals of multi-clocked operators, such as Sampling and Merge, may have different docks. For instance, in the Sampling equation, shown in Table 1, the left hand side value O will be present only when the right-hand side value sl and s2 are present and s2 evaluates to true. From the introduction given above, we can give the ab stract syntax process, shown as below:

P, Q ::= x := yfzlPIQIP/x
The process (P and Q) consists of the synchronous compo sition (PIQ) of dataflow equations. P/x is the local definition of signals. Dataflow equation "x := yfz" represents that the value of xis decided by the input signal y, z and the operation f on them.

To simplify the translation, this paper sets a few restric tions on the source Signal program: all equations are w1it ten in primitive constructs; every signal can only be defined once in the program [START_REF] Gamatie | Designing embedded systems with the signal programrning language[END_REF]; all equations are in the same pro cess, which means that there is no subprocess in the Signal program. Moreover, in Signal, a program is a process and shares the same syntax [START_REF] Gamatie | Designing embedded systems with the signal programrning language[END_REF]. In the remainder of the paper, the source program is a flattened process written in primitive constructs.

Two IDEs, RT-builder [START_REF]RT-builder[END_REF] and Polychrony [START_REF]Polychrony[END_REF] are based on Signal. The former one is commercial version and Poly chrony is open source for academic use. The code generated by Polychrony compiler takes the form of the infinite loop of elementary iterations. In each iteration, the program will read from the input, compute and write to the output. More details of this code generation principle can be found in [START_REF] Besnard | Code generation strategies in the polychrony environment[END_REF]. In this paper, we will use the iteration as the execution model of the generated code.

An example of Signal 3 Intermediate representation for primitive

A Signal program presented in [START_REF] Gamatie | Designing embedded systems with the signal programrning language[END_REF] called ABRO is used to constructs and the program synthesis method illustrate the code generation in the paper. Figure 1 is a finite state machine specification of the ABRO process.

Due to the declarative feature of Signal, one of the indispens- able steps when generating imperative code is to translate the source program into an intermediate form with the informa tion of clock hierarchy and data dependency relations. Sec tion 3.1 presents a method translating primitive constructs of Signal into the code block of synchronous guarded actions which is used to represent the clock and data dependencies among the operands of equations. To represent the data de pendency relations for the whole program, another interme diate form called DG is defined in Section 3.2. Implicit con currency of the program can be then detected by analyzing the DG, which will be proposed in Section 4. Note that the source program to be translated should be endochronous. Based on the definition given in [START_REF] Jose | On the deterministic multi threaded software synthesis from polychronous specifications[END_REF], the informal description of en dochrony is: a Signal program is endochronous if and only if the clock of all signals can be computed according to the intemal clock relations and no extemal environment runtime information is needed, which equivalently means that there will be a root dock in the program.

Synchronous guarded actions for primitive constructs

Based on the semantics of core syntax given in Section 2, the synchronous guarded actions is defined as below, which is different from [START_REF] Baudisch | Multithreaded code from syn chronous programs: extracting independent threads for openmp[END_REF]:

A synchronous guarded action is a four-tuple (R, L, B, 0). Ris the set of signals which represent the right-hand side val ues of the primitive constructs. L is the set of the left-hand side values. Bis the code block defined as (G, A), taking the form "if G thenA". Gis a Boolean expression and Ais the set of actions to be executed when G holds. 0 is the output set of the signals which can be used in other blocks' right-hand side values.

There are three kinds of signals: input, output and intenne diate signals. Although input signals cannot be the left-hand side value of the equation, the dock relations can be specified to decide at which instants the value can be read. Intermediate signals and output signals can be the left-hand and right-hand side value of the equation.

The synchronous guarded actions representations of the core syntax are defined below. We use syntax of C as the style of pseudo code in the block and the dock of signal "s" is denoted as "C_s". Note that before constructing blocks for each equation in the program, dock analysis needs to be com pleted to divide all signals into dock equivalence classes so that synchronous signais will have the same clock represen tation in each block. a) 0 := f(sl, s2, ... , sn)

Right-hand side signais: sl, s2, ... , sn, Co Left-hand side signal: 0 if(Co==true) 0 = j(sl, s2, ... , sn); Output of the block: 0 In the block above, "f" is an n-ary instant operator. The right-hand side operands of the block are the operands of op erator "f" and the left-hand side operand of the block is O.

The implicit clock relation is '"'

O = A s1 = • • • = A sn" while
C_O is defined as the common dock of these signals. Signals on the right-hand side are needed to compute the value of O. The Boolean expression in the block, "C_O= =true", means that the O can be computed only when O is present at this in stant. The Output of the block depicts that after the execution of the code block, 0 can be used as a right-hand side value and if Ois an output signal, the write action can be executed. b) 0 := s1 default s2 From the semantics of operator Merge, two corresponding code blocks are constructed. Signal s1 is prior to s2. If s1 is present, 0 is assigned to the value of sl. If sl is absent and s2 is present, 0 is assigned to the value of s2. Note that apart from the assignment to 0, the dock of 0, denoted by C_O should be assigned to trne if s1 or s2 is present. c) 0 := s1 when s2 For operator Delay, since Delay is a mono-docked opera tor, s1 and 0 have the same dock, which means that when sl is present at the instant, 0 is also present and can be used as right-hand side value. The dock of 0 and s1, denoted as C_O, is the single right-hand side signal. However, the corre sponding code block has no action since no data dependency is defined in the equation. How to assign value to the memory signal will be introduced in Section 3.2.

As for the input signals in the root dock set, at the begin ning of each iteration, read actions should be executed. The corresponding dock should also be set to true.

Right-hand side signais: Null Left-hand side signais: i { read(i); C _i=true;} Output of the block: i, C_i For the input signal not belonging to the root dock set, the dock can be extracted from the dock calculation, denoted as C_s. If C_s evaluates to true, the read actions can be executed so that the read will be nested in the same block assigning C_s to true.

Left-hand side signais: i, other signais if(...){ other assignments C_s=tme; read(i);

Output of the block: i, other signais

Two other primitive constructs indude the local definition (P/x) and synchronous composition (PIQ). They have no cor responding code blocks of synchronous guarded actions. The local definition operator enables one to restrict the scope of a signal to a process [START_REF] Gamatie | Designing embedded systems with the signal programrning language[END_REF]. Intermediate signais are defined in this part and they are invisible from the outside of the process. Synchronous composition is the union of equations defined in the program. Equations communicate with each other by common signal variables. The behavior of the program can be seen as the conjunction of mutual behaviors of all equa tions [START_REF] Gamatie | Designing embedded systems with the signal programrning language[END_REF]. Based on the semantics of synchronous composi-tion, code blocks of synchronous guarded actions generated for Delay equation has no left-hand side value. In this case, from the program will be composed into the DG according tests on whether docks of memory signais evaluate to true are to the data dependencies among code blocks of synchronous included in the guard condition of b 1 and no precedence re guarded actions, used to describe the behavior of the whole lation needs to be specified between nodes respectively conprogram and explore the implicit concurrencies. taining b 1 and b2.

Synthesis method based on DG

After generating the code block of synchronous guarded ac tions for each equation in the program, DG can be con structed. All signals belonging to the same class are syn chronous. The definition of DG is given below: DG is defined as (NS, �). NS is the set of nodes which represents the code block of synchronous guarded actions. � is the precedence relation between nodes defined over NS as follow: s1 � s2 if and only if some signais exist both in right-hand side of s2 and left-hand side of sl, which indicates that to execute the code in s2, we first need to get the execution result of sl. Note that two code blocks for the operator Merge defined in Section 3.1 will be treated as one node in DG. A DG is correct if every cycle "sO � • • • � sn � sO" is a pseudo cy cle: the conjunction of all guard expression of synchronous guarded action sO, ... , sn involved in the cycle is false. From this, it is also easy to know that DG is not strictly a DAG because there may be pseudo cycle in the graph. Note that if dependencies from docks to their corresponding signais (in put signais) are added, dock constraints are set. In this case, values read from the environment must meet the constraints to guarantee the correct execution.

To generate a complete DG, some situations need to be considered. Sorne blocks are for the read of input signal with no right-hand side signal. These nodes will be composed into a single node called the initial node. Since there is no prece dence among these nodes, they can be arranged at any order when getting composed. Furthermore, the dock of the root clock class, denoted as C_l, has to be set to true in the front of the initial node. At the end of iteration, a terminal node is also needed in which every signal on the left-hand side of the Delay equation(denoted as memory signais) will be set to new value under the condition that it has been present at the last iteration. These blocks are then synthesized into the ter minal node in which all the docks of the clock equivalence classes are also needed to be set to false. Note that the initial assignments to memory signais needs to be executed before the iteration begins. Furthermore, according to the definition given in Section 3. 1, some blocks (denoted as bl) may have the right-hand side signals which are memory signals but the code block of synchronous guarded actions (denoted as b2)

Redundancies in the generated DG can be found as follows:

1) The Boolean sub expressions may be duplicated in the condition expression of the code blocks. For instance, ac cording to the algorithm given in Section 3.1, the corre sponding condition of the equation "c := b when not b" is "C_b==true&& C_b==true &&b==false".

2) If there are blocks with signais in the same clock equiva lence class as the left-hand side value, there will be duplicated assignments to the dock.

To eliminate these redundancies, the duplicated Boolean expressions are to be deleted first. Then traverse from the ini tial node, if there is a clock assignment in a node, the same assignment in its subsequent nodes will be deleted.

Task partition strategy

As defined in Section 3, DG is a kind of DAG on which prece dence relation is defined among nodes. Informally, the prece dence relation indicates the dependency between nodes. If no precedence relation exists between two nodes, they can run in parallel. In this section, we partition a set of nodes of DG into tasks. The precedence relation on tasks is compatible with the precedence relation on nodes.

Task is defined as a set of nodes belonging to NS of DG. TS is a two-tuple (T, �),in which Tisa partition of NS and � is the precedence relation among tasks on T. A task t of T is an anti-chain in the reflexive transitive closure -v0 of � (i.e., nodes in a task cannot be compared:

(Vt E T)(Vnl E t)(Vn2 E NS)(nl � n2) ⇒ ((nl = n2) V (n2 (J. t)).
Among tasks belonging to T, tl � t2 if and only if there exists at least one node in t2 which is preceded by nodes in tl. Note that although cycle checking has been done after the con struction of DG, there may be pseudo cycles of tasks since pseudo cycles are allowed in DG. To deal with this problem, the guard of a task t is defined as the disjunction of the guards of nodes belonging to t. If the conjunction of ail these guards of tasks involved in the cycle is false, the cycle is a pseudo cycle. Because of pseudo cycles, the result of some nodes in t2 may be required by some nodes in t1 (when some condi tion C is true) and conversely (when the condition C is false). In this paper we only consider DAG of nodes: the processing of programs with cycles and pseudo cycles is not described here. One can then use a topological sorting to partition nodes into tasks so that the result of the partition is a total order of tasks: for all tasks t1, t2, ... , tn belonging to T, a series of them, t 1 -» • • • -» tm n -i -» lm11 exists. As a result, no task pair will be allowed to execute in parallel. Here we illustrate the task partition with the example in Section 2.

Part of the code is shown in Fig. The result of the task partition is shown in Fig. 5. Nodes of DG are divided into four tasks. Arrows in the figure illustrate the total order among four tasks: taskl will be executed first and task4 will be the last one to be executed. Nodes in the same task can be executed in parallel. For instance, in task2 there are three nodes preceded by the node in taskl. How ever, there is no precedence relations among these nodes so that they can be executed in parallel.

After the task partition, the generated tasks will be used for the OpenMP code generation which will be presented in Section 5.

OpenMP based C code generation and case study

OpenMP, an API for shared-memory parallel programming in C/C++ and FORTRAN, provides users with several mecha nisms such as compiler directive, programming interface and environment variables for the high level description of paral lel algorithms. This section will introduce the method map ping tasks partitioned in Section 4 to the OpenMP-based C code.

The basic syntax of directives in OpenMP is shown in Fig. 6. There are several directives in OpenMP. For instance, directive "parallel for" is used for the parallelization of "for" loop; directive "parallel sections" is used to specify the code blocks which can be executed in parallel. ln OpenMP 3.0, directive "task" is added to support the parallelization of ir regular data, iteration and recursive call. Since actions of code blocks are simple computations, we choose the directive "parallel sections" for the parallelization, shown in Fig. 7. The code blocks executed in parallel are encircled in direc tive "#pragma omp section" respectively. Moreover, race condition will occur when multiple threads can access shared variables at the same time, which will make the result of the execution non-deterministic. Clauses, such as p1ivate, shared and reduction, are provided to specify the variable scope and sharing property to handle this problem. Clause private (list) is used to declare that each thread has its own duplicate of the variables in the list. Clause shared (list) declares the list of shared variables among threads. Clause re duction (operator:list) specifies an operation on one or a list of variables. Each thread has duplicates of variables in the list and when all threads finish their executions, initial variables will be updated according to the calculation among its dupli cates. However, every signal will be defined only once in the source program so that parallel nodes in the same task share We take the form of the infinite loop of elementary itera tions from [START_REF] Besnard | Code generation strategies in the polychrony environment[END_REF] as the structure of the generated code. Tasks will be generated into the OpenMP structure as the core of the iteration. Here we only give the method translating tasks. Firstly, every node are translated into C code block. Secondly, each translated code block is encircled in the directive "#pragma omp section". Tuen, all blocks belonging to the same task will be encircled by directive "#pragma omp paral lel sections". Finally, the sequential order of these blocks will be determined according to the total order specified among tasks. Note that the initial and tenninal node of DG are re spectivel y put in the front and the rear of the iteration and initial assignments to the memory signais should be put be fore the iteration part. According to the method given above, fragment of the pro gram in Fig. 3 can be translated to the OpenMP structure, shown in Fig. 8. We can see that sequential code is generated according to the order of the tasks. Since task2, task3, and task4 hare multiple code blocks, the corresponding OpenMP directives "#pragma omp parallel sections" are respectively generated. Code blocks which can be executed in parallel are encircled in the directive "#pragma omp section". Note that although assignments to the memory signal Adelay and Bdelay are not shown in Fig. 8, the value of these two signais can be determined when they are on the right-hand side of the assignment statement, as Section 3.2 has indicated.

Conclusion and future works

Tiùs paper presented a methodology transforming en dochronous Signal program (using core syntax) to OpenMP based C code. First, the translation of Signal core primitives to code blocks of synchronous guarded action was described. Tuen, the formai definition of DG was presented, used to ex plore the implicit concurrency. From DG, the definition of task was given. Nodes of DG can be partitioned into tasks. Tasks will be executed in sequence while in each task, nodes can be executed in parallel. Finally, the method translating tasks into OpenMP-based C code was introduced. Using the approach, the generated program can run on multi-core pro cessors, increasing the utilization of computation resources. Moreover, since the generation target OpenMP is a multi platform standard, few modifications are needed for multi platform execution.

However, several improvements can be accomplished from the current study. For instance, the method proposed in this paper does not allow the parallel execution among tasks, which may restrict the possibility of generating more effi cient code. Another problem is that the methodology does not support the transformation of weakly endochronous Sig nal program, which limits the practicality of the study. In the future work, we will study how to check weak endochrony and generate deterministic code from weakly endochronous programs. Moreover, Signal provides arrays of processes to handle data arrays which is suitable for parallel execution. To generate better OpenMP code for these features is also one of our objectives.

Fig. 1 Fig. 2

 12 Fig. 1 A finite state machine specification of the ABRO process ABRO emits signal O when input signals A and B have been received. When input signal Ris received, ABRO cornes back to the initial state and begins to wait the inputs. Once 0 has been emitted, it will not be emitted again until R has ar rived to reset the state. The original version of the Signal pro gram of ABRO can be found in [24]. Here we give a modified version, shown in Fig. 2. 1 : process ABRO= 2: (? boolean A, B, R; ! event O ;) 3: (1A _received " = B _received "=after _fi_ until_ 0 4: A received " = A "= B " = R 5: RT : = not R when R 6: A received : = RTdefaultAR 7: AT: = A whenA 8: AR : = ATdefault Adelay 9: Adelay: = A_received $ init false 10: IBT: = BwhenB 11: 1 B _received : = RT default BR 12: I BR : = BT default Bdelay 13: 1 Bdelay : = B _received $ init false 14: from R before O : = not O default RR 15: RR : ,;-Re defauît after R until 0 16: Re : = Rwhen R ---17: after R until O : = from R before O $ init true 18: 0 : = true when ABR ---19: ABR : = A received whenArr 20: Arr: = B _received when after_R_until_OI) 21: where 22: boolean A received, B received, from R before 0 23: ,Adelay, Bdelay, AR, BR, RR, ABR, Arr, after_R_until_O 24: ,AT, BT, RT, Re; end; Fig. 2 Signal program of ABRO process In the process ABRO, A, B, Rare Boolean typed input sig nals and O is event typed output signal, as shown in Line 2. Line 3 to Line 20 are dataflow equations specifying the dock and value relations among signals. Lines 3 and 4 synchro nize the input signals A, B, R with the intermediate signals A_received, B_received and after_R_until_O. By analyzing the dock relations among signals, it can be deduced that the dock of input signals is the only root dock of this program, so the pro gram is endochronous.

3 .Fig. 3 FragmentFig. 4

 334 Fig. 3 Fragment of ABRO process

Fig. 5 4 #Fig. 6

 546 Fig. 5 Task partitions of DG in Fig. 4

#Fig. 7

 7 Fig. 7 Syntax of directive parallel sections

Fig. 8

 8 Fig.8OpenMP-based C code corresponding to the Signal program frag ment in Fig.3

Kai

 Hu is an associate professor at Bei hang University, China. He received his PhD degree from Beihang University in 2001. From 2001 to 2004, he did the post-doctoral research at Nanyang Technological University, Singapore. Since 2004, he is the leader of the team of LDMC in the lnstitute of Computer Architecture(ICA), Beihang university. His research interests concem embedded real time systems and high performance computing. He has good cooperation with IRIT and INRIA Institute of France on study of AADL and synchronous lan guages. Teng Zhang received his BE in com puter science and engineering from Beihang University in 2011. He is now the master's degree student at the same university. His research interests in clude synchronous languages, model ing of embedded system and fo1mal methods. Zhibin Yang received his PhD degree from Beihang University, China, in February 2012. Since April 2012, he has been a Postdoc in IRIT research laboratory of University of Toulouse, France. His research interests include safety-critical real-time system, formal verifi cation, AADL, and synchronous languages.

Table 1

 1 P1imitive constrncts of Signal When sl, s2, ... , sn are present, 0 is .

	Name	Syntax	Informa! semantics
	Relation O := /(sl, s2, of 0
			is C
	Sampling O := sl when s2 0 will be present and evaluated to sl only
			when s l and s2 are present and s2 evaluates
			to true
	Merge		

.. , sn) present and the value is /(sl, s2, ... , sn); otherwise signal Ois absent Delay O := sl $ init r. The docks of O and sl are equal; when sl is present, the value of O is the previous present value of sl; the initial value O := sl default When sl is present, 0 is present and evalu-s2 ated to sl; other\vise when s2 is present, 0 is present and evaluated to s2; if neither sl nor s2 is present, signal O is absent Name Syntax Synchronous Pl Q composition Local defini-P where t_l sl tion ... t_n sn; end lnfo1mal semantics P and Q are processes. The behavior of PI Q is the conjunction of the mutual be haviors of P and Q [24] Pis a process and sl ... sn are signais. The scope of s 1, ... , sn is restricted to P which means they are not visible outside P[24]

Acknowledgements

This work was supported by the National Natural Sci ence Foundation of China (Grant Nos. 61073013 and 61003017) and the Aviation Science Foundation of China (2 012ZC51025). Grateful acknowl edgement is made to Mr. Mamoun FILALI-AMINE, Prof. Jean-Pau! BODE-VEIX from IRIT-CNRS and Prof. Paul Le Guernic from INRIA. They have given a lot of instructive advice to this paper.