
HAL Id: hal-03466765
https://hal.science/hal-03466765v1

Submitted on 6 Dec 2021 (v1), last revised 3 Mar 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Latency and network aware placement for cloud-native
5G/6G services

Kiranpreet Kaur, Fabrice Guillemin, Veronica Quintuna Rodriguez, Francoise
Sailhan

To cite this version:
Kiranpreet Kaur, Fabrice Guillemin, Veronica Quintuna Rodriguez, Francoise Sailhan. Latency
and network aware placement for cloud-native 5G/6G services. IEEE Consumer Communica-
tions & Networking Conference (CCNC), Jan 2022, Las Vegas, United States. pp.114-119,
�10.1109/CCNC49033.2022.9700582�. �hal-03466765v1�

https://hal.science/hal-03466765v1
https://hal.archives-ouvertes.fr


Latency and network aware placement for
cloud-native 5G/6G services

Kiranpreet Kaur1,2, Fabrice Guillemin1, Veronica Quintuna Rodriguez1, Francoise Sailhan2

1 Orange Labs, 2 Avenue Pierre Marzin, Lannion, France.
1{kiranpreet.kaur, fabrice.guillemin,veronica.quintunarodriguez}@orange.com

2 Cedric Laboratory, CNAM Paris, 292 rue St Martin, Paris, France.
2{firstName.lastName}@cnam.fr

Abstract—To meet ever more stringent requirements in terms
of latency, 5G/6G networks are evolving from centralized to
distributed architectures, for which the cloud-native paradigm
with services decomposed into microservices is utmost relevant.
This in turn raises the issue related to the distribution of network
functions. In this paper, we introduce a novel microservice
placement strategy considering the internal service composition,
notably the communication between microservices. We formulate
the placement as an optimization problem with the aim of
minimizing end-to-end service latency. We solve the optimization
problem with a combination of greedy and genetic algorithms.

Keywords-Microservice placement; Virtualized network func-
tion

I. INTRODUCTION

The advent of Network Function Virtualization (NFV) [1]
and the recent adoption of cloud-native principles have deeply
modified network operations by dissociating the hosting hard-
ware from network functions and by decomposing network
functions into a large number of smaller and ready-to-run
microservices. Services are then implemented as bundles of
microservices interconnected to each other and distributed on
container-based infrastructures (e.g., Kubernetes).

In parallel, the ever growing performance requirements in
terms of latency and throughput of new services (involved e.g.
in virtual reality) pave the way towards architectures, where
the network edge plays a primary role. As a matter of fact,
latency sensitive network functions need to be deployed as
close as possible to end users to meet real time requirements.
Closeness of microservices is however not always feasible due
to capacity constraints of the hosting data centers, especially
when considering the relative resource scarcity of those data
centers located at network edge. It is therefore necessary to
design an efficient placement strategy of microservices while
considering both resources availability and service demand.

The placement of Virtualized Network Functions (VNFs)
has been widely studied in the literature. Most research
works focused on load balancing, examine the resource (CPU,
RAM, disk) needs of network functions with respect to the
resource availability in data centers [2], [3]. Only a few works
on microservice placement address latency requirements by
considering either the processing delay or the link capacity. To
address the deployment of network functions across distributed

data-centers, microservice placement should be reexamined
from different viewpoints, notably by considering the mi-
croservice inter-dependency and the amount of traffic among
microservices, which increase the service latency due to the
delay associated with messages transiting through the transport
network connecting data-centers.

In order to minimize the latency of new 5G/6G services,
we propose two approaches that consider the communication
affinity, i.e., the number of internal communication messages
within a distributed service. The first one minimizes the delay
associated with messages transiting between data centers. This
first approach is network aware as it explicitly depends on
latency along transmission links. The second approach is
network agnostic and introduces a metric that accounts for
(i) communication affinity among microservices and (ii) the
location of the user. This metric relying on a weighting strat-
egy, privileges a placement near to the user and the collocation
of microservices that involve heavy message exchanges.

To the best of our knowledge, the present work is one
of first works considering these aspects. We formalise the
problem of placing microservices via Integer Linear Pro-
gramming (ILP), and we propose an approximate problem-
solving solution combining two heuristics (a greedy and a
genetic algorithm), which considerably reduces run time of the
placement algorithm. In particular, the fast greedy algorithm
provides an initial allocation of services, which is subsequently
improved by an advanced genetic algorithm; this latter one
rearranges through mutation and crossover the microservices
to reduce the global latency, while preserving the placement
of microservices achieving a high latency gain.

The paper is organized as follows. Based on a realistic
model of a ISP infrastructure (§ II), we formalize the problem
of allocating microservices (§ III) and we introduce an ap-
proximate problem-solving solution (§IV). We then evaluate
the algorithms (§ V) and conclude with a related work (§ VI)
and a summary of our contributions.

II. MODEL DESCRIPTION

The model under consideration (Fig. 1) is made of two
key elements: the Substrate Network (III-A) and the Services
(II-B). The substrate network reasonably represents the net-
work of an European Operator [4], which is represented as a



tree composed of a central cloud datacenter, fog nodes located
at regional Points of Presence and edge nodes near to users.

Fig. 1: Mapping a set of services onto a substrate network

A. Substrate network
The network of data centers is represented by means of

a graph G = (V,E,W ), where the set V of vertices is
composed of data centers, the set of edges E corresponds
to the bidirectional links interconnecting the data centers, and
the set of weights W reflects the links characteristics. While
an edge weight may represent diverse factors (e.g. bandwidth,
the length, the transmission delay along the link), we herein
focus on the latency in the execution of a service and hence we
assume that the weight w(e(vi, vj)) equals to the transmission
delay δ(vi, vj) between the two data centers vi and vj .

A vertex v offers the IT resources to execute the hosted
services and is characterized by a capacity C(v) that may
reflect various types of resources (e.g., CPU, RAM, disk). As
the most limited resource is either CPU or RAM, the allocation
will be based on a single resource type, even if the algorithms
presented in § III could handle various types of resources.

B. Services
The substrate network hosts services that are decomposed

into microservices, each of them having specific requirements
in terms of IT resources. A service Σj corresponds to a graph
composed of Kj vertices, denoted σj

1, . . . , σ
j
Kj

, representing
the microservices, and edges representing the communication
between microservices. A microservice σi requires an amount
of IT resources equal to c(σi) and may send messages to
another microservice σj . The number of messages exchanged
between the two microservices, on both way, is denoted by
ν(σi, σj), with ν(σi, σj) = ν(σj , σi).

Each service is associated with a user lying at the edge of
the operator network (see the leaves in Fig. 1) and exchanging
traffic with the microservices. It is important to consider the
latency associated with the user traffic as the access network
usually contributes a significant amount to the global latency
budget. For that purpose, we introduce a dummy service σ0
located, where the user stands and which has no resource
requirements, i.e., c(σj

0) = 0. The service Σj is thus composed
of microservices σj

0, . . . , σ
j
Kj

.

III. PROBLEM FORMULATION

We consider a substrate network G composed of N nodes
(data centers), in which each node vn (with n = 1, . . . , N ) has
a capacity C(vn). The network G accommodates J services
and each service Σj is decomposed into Kj +1 microservices
(including the end user). The J services can be allocated to
the substrate network if and only if the total resource demand
is not greater than total resource capacity of the substrate
network, that is,

J∑
j=1

Kj∑
i=1

c(σj
i ) ≤

N∑
n=1

C(vn).

If this condition is violated, then some services are rejected.
In the present paper, we do not address this issue and focus
on how perform placement so as to globally reduce latency.
We precisely consider a static configuration to better under-
stand issues related to latency when placing microservices. In
practice, we should consider the case when services randomly
arrive and leave the system. We would then obtain a stochastic
knapsack, which will be addressed in a further study. In order
to optimize the microservices placement, we propose to either:
• minimize the overall latency accounting for the transmis-

sion delays, thereby considering the structure-of – and
delay induced by - the network substrate (§ III-A),

• maximize the amount of microservices that are collocated
and placed near to the user, ignoring the substrate network
(network-agnostic approach § III-B)

A. Network-aware approach

The latency Lj of a service Σj is

Lj =

Kj∑
i=0

Kj∑
i′=i

ν(σj
i , σ

j
i′)L(σj

i , σ
j
i′), (1)

where the latency between microservices σj
i and σj

i′ deployed
across distinct data centers verifies:

L(σj
i , σ

j
i′) =

N∑
n=1

N∑
m=n

δ(vn, vm)1(vn, σ
j
i )1(vm, σ

j
i′). (2)

The objective of placement is then to minimize the global
latency, which leads to the following optimization problem:

min
1(vn, σ

j
i )

n ∈ [[1, N ]], j ∈ [[1, J ]], i ∈ [[1,Kj ]]

L (3)

i ∈ [[1,Kj ]], j ∈ [[1, J ]],

N∑
n=1

1(vn, σ
j
i ) ≤ 1, (4)

n ∈ [[1, N ]],

J∑
j=1

Kj∑
i=0

c(σj
i )1(vn, σ

j
i ) ≤ C(vn), (5)

where

L =

J∑
j=1

Lj (6)



As defined in Equation (4), a microservice should be allocated
at most once. If a microservice σj

i cannot be placed (the sum in
equation (4) equals to 0), then the entire service σj is removed.

B. Network agnostic approach

If several microservices that exchange some messages are
collocated (resp. hosted on distant datacenters), then the
latency of the service tends to decrease (resp. increase).
We intuitively introduce a metric quantifying the amount of
messages exchanged by the microservices collocated on the
same data center since those ones do not increase the global
latency of the service. For service Σj , the metric is defined by

L̃j =

N∑
n=1

Kj∑
i=0

Kj∑
i′=i

ν̃(σj
i , σ

j
i′)1(vn, σ

j
i )1(vn, σ

j
i′).

where ν̃(σj
i , σ

j
i′) = ν(σj

i , σ
j
i′) for 1 ≤ i ≤ i′ (i.e., the actual

number of messages exchanged between microservices). The
product 1(vn, σ

j
i )1(vn, σ

j
i′) is equal to 1 only if microservices

σj
i and σj

i′ are on the same data center. Moreover, to force
the placement of microservices close to users, we give more
weight to the communications between users and microser-
vices. Thus, ν̃(σj

0, σ
j
i ) = κi(σ

j
0, σ

j
i ), where κi is a parameter

giving more weight to the messages exchanged between the
user and any microservice i (with i > 0). Overall, the metric L̃
quantifying the “network agnostic latency” gives more weight
to collocated microservices:

L̃ =

J∑
j=1

αL̃j (7)

for some α > 1. There is thus an exponential discrimination
between services with many collocated microservices and
those with more distributed microservices. With this latency
metric, the optimization problem then reads:

max
1(vn, σ

j
i )

n ∈ [[1, N ]], j ∈ [[1, J ]], i ∈ [[1,Kj ]]

L̃ (8)

subject to the constraints (4), (5).

C. Scalability of the Latency-aware placement

The optimization problem previously introduced could be
solved by using a classical ILP solver (e.g. CPLEX1) or
by performing an exhausting search (i.e., enumerating all
the solutions and selecting the optimal one). Nonetheless,
these options are not practically viable for large problem
instances. Computing the optimal placement of microservices
that minimizes latency, is actually a variation of the bin-
packing problem, which is known as to be combinatorial NP-
Hard problem in which items (i.e., microservices) of varying
sizes (e.g., resource capacity) should be packed into a finite
number of bins (i.e., computing nodes) with finite capacities
so that the number of bins is minimized.

1https://www.ibm.com/analytics/cplex-optimizer

Our placement of microservices across several data centers
is actually a multi-dimensional bin-packing problem in which
(i) the resource usage and microservices latency are consid-
ered and (ii) evaluating the latency constraints adds to the
complexity of the solution. Overall, the resolution of our NP-
hard problem with a solver requires a prohibitive processing
before reaching the optimal solution.

IV. PLACEMENT ALGORITHMS

In order to address the scalability issue of the latency-aware
placement problem previously formulated, we introduce an
heuristic approach which combines a greedy algorithm and a
genetic algorithm. The greedy algorithm (see § IV-A) is used
to generate an initial (and possibly not optimal) distribution
of microservices on the substrate network. Then, the genetic
algorithm (see § IV-B) further refines the initial placement and
attempts to find the best solution [5] by iteratively improving
the quality of the result and helping the search process to
escape from local optima. We could have opted for either
approach, but by combining these two algorithms we get a
faster solution without sacrificing the quality.

A. Finding an initial placement using a greedy heuristic

The design rational of our greedy algorithm is to con-
sider the substrate network characteristics (occupancy and
underlying structure) to smartly place the microservices in a
fair manner, i.e., without discriminating some services over
others based on their internal characteristics (e.g., number
of microservices or their demand in terms of resources). In
particular, the greedy algorithm favours the placement of the
chain of microservices composing one service within the same
data center, ideally at the edge. This placement permits to min-
imize the service completion time and the latency perceived by
the end user while favouring short-distance communications
between microservices and hence avoiding as much as possible
long-distance communications between data centers.

B. Enhancing the initial placement using genetic algorithm

The Genetic Algorithm (GA) mimics evolutionary pro-
cesses, i.e., at each iteration of the GA, the population of
individuals evolves using three genetic operators: selection,
crossover, and mutation.

1) Population Encoding: The population (Figure 2) consists
of a set of datacenters C1 · · ·CN . Within the population, each
individual (i.e. datacenter) is represented by a chromosome
that consists of series of genes. A gene is a binary variable
representing the presence or absence of a microservice on a
data center. We thus define the nth chromosome Cn (with n =
1, . . . , N ) as a binary series 1(vn, σ

j
i ) for i = 1, . . . ,Kj . Each

chromosome (data center) is characterised by its own resource
capacity – in this model we only consider CPU capacity – and
each gene by its required resource capacity.

Once the initial population is generated using the greedy
approach (IV-A), the population evolves iteratively: at each
iteration of the genetic algorithm, the population evolves by
applying the selection, crossover, and mutation operators.



Fig. 2: Population encoding

2) Selection process: Among the population, the selection
operator selects the best individuals to let them reproduce and
have an offspring (through crossover and mutation as detailed
below), i.e., a set of new individuals, which composes the
subsequent generation. The chromosomes with the best fitness
value envisaged through two ways of fitness value calculation
defined in equations (7) and (6) - network agnostic and
network-aware metrics, respectively. The total fitness of the
population is expected to rise (for network agnostic metric) or
to decrease (for the network aware metric) with the algorithm.

3) Crossover: After selecting certain individuals for re-
production, the crossover operator swaps genes (bit strings)
between two selected parent chromosomes (P1, P2) to create
two new off springs (Figure 3). Based on our analysis and
literature study, the crossover probability value ranges between
0.1 and 0.8 resulted in a better solution.

Fig. 3: One-point Crossover

4) Mutation: The mutation operator performs a mutation
of certain individuals from the new offspring to diversify
the generations. The mutation consists of changing a random
number of genes in the chromosome of an individual. The
value of mutation probability is suggested to be lesser than
crossover probability, i.e., within a range of 0.01 to 0.2 (as
per our sensitivity analysis carried out by multiple runs of
algorithms with different probability).

V. EXPERIMENTAL RESULTS

A. Experimental setting

In order to evaluate our approach to the placement of
microservices, we consider the substrate network displayed
in Figure 1, which reasonably represents a telco infrastructure
including, cloud, fog and edge nodes. Considering the close-
ness of edge and fog nodes, we assume a smaller latency (one
unit) between the edge and fog nodes than that between the
fog nodes and the centralized cloud, which is equal to 3 units.
In general, the central cloud is the largest and consists of nodes
with a large capacity (1000 units) comparing to the fog nodes

(capacity of 100 units) and edge nodes (capacity of 20 units).
Following, we consider two types of services that differ in the
number of microservices:
• The first service type (say, a lightweight application

running at the edge such a firewall) involves a relatively
small number of microservices: 3 microservices exchange
messages with ν(σ1

1 , σ
1
2) = 2 and ν(σ1

2 , σ
1
3) = 4.

• The second service type (a heavyweight application) is
composed of 10 microservices exchanging messages with
ν(σ2

1 , σ
2
2) = ν(σ2

4 , σ
2
5) = ν(σ2

6 , σ
2
7) =ν(σ2

7 , σ
2
8) = 3,

ν(σ2
2 , σ

2
3) = ν(σ2

3 , σ
2
4) = ν(σ2

5 , σ
2
6) = 2, ν(σ2

8 , σ
2
9) = 4

and ν(σ2
9 , σ

2
10) = 1.

We assume that for both service types, user exchanges only
two messages with the first microservice and none with others
(ν(σj

0, σ
j
1) = 2 and ν(σj

0, σ
j
i ) = 0 for all j and i > 1); this

reflects a single input and output message between the user and
the service. In addition, in the computation of the quantities
L̃j , we have taken ν̃(σj

0, σ
j
1) = 100 and ν̃(σj

0, σ
j
i ) = 0 for all

j and i > 1. This is to force the algorithm to collocate the
user and the first microservice.
The capacity requirement for each microservice is set equal to
1. During our experiments, services of type 1 constitute 2/3 of
the services. Thus, we have a maximal population of J0 ≈ 278
services with J1 = 185 services of type 1 and J2 = 93 of type
2, which can be hosted by the system. The maximum order of
magnitude of chromosome length is then 3J1 + 10J2 ≈ 1480
genes. In the following, we consider two representative loads:
ρ = .7 (light load) and ρ = .9 (heavy load).

B. Numerical results

Our evaluation investigates to which extent maximizing the
metric L̃ (defined in a network agnostic way) is relevant for
controlling the global latency L. For this purpose, we have
first evaluated the network agnostic method (see Fig. 4) using
the probability density function (pdf) of (L̃j) and that of
(Lj) for load ρ equal to 0.7 and 0.9. We observe that the
GA algorithm slightly improves L̃. As observed in Table I,
the mean value E(L̃) of the series (L̃j) is better with the
GA algorithm. However, the improvement is very marginal
when looking at global latency, given by the series (Lj) with
mean value E(L). This indicates that the network agnostic
optimization is not sufficient to significantly improve the
latency. Then, we focus on the network aware metric in Figure

TABLE I: End to end latency of services.

Placement Load J1 J2 E(L̃) E(L)

Greedy 0.71 118 52 49.78 31.39
GA network agnostic 0.71 118 52 56.20 31.28

Greedy 0.70 109 55 54.76 33.04
GA network aware 0.70 109 55 38.95 22.01

Greedy 0.90 125 76 52.06 40.21
GA network agnostic 0.90 125 76 56.51 40.06

Greedy 0.91 148 68 46.36 33.55
GA network aware 0.9 148 68 32.87 24.79



(a) Pdf of (L̃j) for ρ = 0.7 (b) Pdf of (Lj) for ρ = 0.7

(c) Pdf of (L̃j) for ρ = 0.9 (d) Pdf of (Lj) for ρ = 0.9

Fig. 4: Network agnostic optimization.

5 that provides the pdfs of the series (L̃j) and (Lj), for a
load of ρ = 0.7 and ρ = 0.9. We see that the GA algorithm
significantly improves the global latency; this can also be seen
for mean values. It is worth noting that improving the latency
does not increase the values of (L̃j). Thus, maximizing L̃
and minimizing L could go in opposite directions. Results
show that GA improves the placement performed by Greedy,
however the main conclusion of this work is that placement
algorithms either in the infrastructure layer (e.g., in Cloud OS
environments as Kubernetes and Openstack) or upper in the
Orchestration layer (e.g., ONAP) need to be network aware.

VI. RELATED WORK

The VNF placement problem is a long-standing research
topic [6] that is usually framed as an optimization problem
considering mostly the resource utilization (computing, storage
or network capacity) [2], [7], [3] and to a lesser extent the
latency, which is the focus of our work. In order to reduce the
latency, Alleg et al. [8] rely on Mixed-Integer Quadratically
Constrained program to find the optimal placement of a chain
of network Functions, which is the one that minimizes the
processing delay. The work presented in [9] departs from
the previous research work by considering several network-
related criteria, e.g., the infrastructure size, request size, net-
work connectivity and load of a system. In order to place
the microservices, authors introduce an eigen-decomposition
approach and follow a two steps procedure, where VNFs are
first optimally placed and then the traffic is fairly distributed

among VNFs following the shortest path. In [10], authors
propose a multi-objective optimization strategy that places Ser-
vice Function Chains (SFCs) across edge-cloud environment
with the aim of reducing the deployment cost and end-to-
end latency jointly. The proposed Mixed Integer Programming
(MIP) model is further solved using two heuristic algorithms
- GA-based algorithm and Bee Colony-based algorithm for
large sized cloud/edge environments. Substantial variety of
criteria are considered, including resource capacity (CPU and
storage), acceptable latency requirements (end-to-end latency
is calculated by combining the propagation delay, processing
and virtualization delay, and queuing delay), affinity and anti-
affinity (both consider as a binary variable). Comparatively, a
smaller set of criteria (queuing & processing delays as well as
transmission delays) is used in [11] to optimize the placement
of microservices chain over an edge-cloud infrastructure. The
problem formalised using MIP is further solved by a meta-
heuristic based Tabu Search algorithm.
The above off-line placement strategies may be complemented
by online allocation strategies. In [12], authors handle the
off-line and online allocation of microservices based on the
traffic demand and network state. Two problems are addressed
jointly: NF placement and flow routing problem (reduction
of stretch path encountered by flows) with the constraints of
number of cores per nodes, memory, link capacity, delay (sum
of link delays and total nodal delay). The work presented
in [13] arranges the microservices based on their affinities
(defined by number and size of messages) and history of



(a) Pdf of (L̃j) for ρ = 0.7 (b) Pdf of (Lj) for ρ = 0.7

(c) Pdf of (L̃j) for ρ = 0.9 (d) Pdf of (Lj) for ρ = 0.9

Fig. 5: Network aware optimization.

resource usage on the same physical server. The prototype
also allows runtime allocation of containerized microservices.

VII. CONCLUSION

Provisioning a reliable and timely service delivery over a
ISP network is a critical issue that we addressed through
the introduction of a latency-effective microservice placement
strategy that allocates the microservices on computing nodes,
spanning from the edge to the cloud. We proposed two
mathematical formulations of the notion of latency: the former
favours the allocation of microservices in the same compute
node and near to end users by promoting the presence of col-
located services near to the end user, thereby lowering the cost
of communications. The latter minimizes the communication
delay between all the data centers and avoids as much as
possible long distance communications. We further propose an
ILP formulation of the placement problems, which are solved
by a hybrid algorithm combining greedy and genetic methods.

As part of our future work, we plan to study the online
placement and migration of containerized applications or net-
work functions while keeping the service active.

REFERENCES

[1] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[2] S. Tavakoli-Someh and M. H. Rezvani, “Utilization-aware virtual net-
work function placement using nsga-ii evolutionary computing,” in IEEE
Conference on Knowledge Based Engineering and Innovation, 2019.

[3] N. Djennane, R. Aoudjit, and S. Bouzefrane, “Energy-efficient algorithm
for load balancing and vms reassignment in data centers,” in 6th Inter-
national Conference on Future Internet of Things and Cloud Workshops
(FiCloudW). IEEE, 2018, pp. 225–230.

[4] F. Slim, F. Guillemin, A. Gravey, and Y. Hadjadj-Aoul, “Towards a
dynamic adaptive placement of virtual network functions under onap,”
in IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), 2017, pp. 210–215.

[5] R. K. Ahuja, J. B. Orlin, and A. Tiwari, “A greedy genetic algorithm for
the quadratic assignment problem,” Computers & Operations Research,
vol. 27, no. 10, pp. 917–934, 2000.

[6] A. Laghrissi and T. Taleb, “A survey on the placement of virtual
resources and virtual network functions,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 2, pp. 1409–1434, 2018.

[7] M. Hadji, N. Djenane, R. Aoudjit, and S. Bouzefrane, “A new scalable
and energy efficient algorithm for vms reassignment in cloud data
centers,” in IEEE International Conference on Future Internet of Things
and Cloud Workshops (FiCloudW), 2016, pp. 310–314.

[8] A. Alleg, T. Ahmed, M. Mosbah, R. Riggio, and al., “Delay-aware
vnf placement and chaining based on a flexible resource allocation
approach,” in IEEE conf. on network and service management, 2017.

[9] M. Mechtri, C. Ghribi, and D. Zeghlache, “A scalable algorithm for the
placement of service function chains,” IEEE Transactions on Network
and Service Management, vol. 13, no. 3, pp. 533–546, 2016.

[10] M. A. Khoshkholghi, M. G. Khan, K. A. Noghani, and al., “Service
function chain placement for joint cost and latency optimization,” Mobile
Networks and Applications, pp. 1–15, 2020.

[11] A. Leivadeas, G. Kesidis, M. Ibnkahla, and al., “Vnf placement opti-
mization at the edge and cloud,” Future Internet, vol. 11, no. 3, 2019.

[12] Y. T. Woldeyohannes, A. Mohammadkhan, K. Ramakrishnan, and al.,
“Cluspr: balancing multiple objectives at scale for NFV resource allo-
cation,” IEEE Trans. on Net. and Serv. Manag., vol. 15, no. 4, 2018.

[13] A. R. Sampaio, J. Rubin, I. Beschastnikh, and al., “Improving
microservice-based applications with runtime placement adaptation,”
Journal of Internet Services and Applications, vol. 10, no. 1, 2019.


