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Abstract—The recent adoption of cloud native technologies
by telecommunication industry is accompanied by the incoming
development of Network Functions that are containerized and
packaged as light-weighted microservices. In order to efficiently
orchestrate Cloud-Native Network Functions (CNFs), thorough
migration strategies should be supported to place and migrate
the CNFs. In this paper, we present a testbed illustrating the
migration of pods between remote K8S cluster. As a use case,
we consider the migration of a network function belonging to an
opensource 5G core network (namely, Magma).

Index Terms—Multi-cluster migration; Live migration; Con-
tainers

I. INTRODUCTION

The microservices paradigm has recently gained popularity
in the telecommunications industry with the emergence of
Network Function Virtualization (NFV). Complex monolithic
network functions, which were so far hosted on dedicated
hardware, are now preferably decomposed into ready-to-use
and easy-to-manage microservices. This evolution also benefits
from the emergence of container-based technologies, which
have been popularised with the wide spread of cloud infras-
tructures, notably those based on Kubernetes (K8S) clusters.
The main advantage of CNF lies in the greater flexibility
offered, for example, to create, update, migrate or delete CNF.

However, the need for an appropriate mechanism to migrate
a chain of CNFs (i.e., decomposed into microservices) across
distributed cloud infrastructures (and thus across multiple Ku-
bernetes clusters) requires a critical attention that is the main
focus of this work. We introduce a prototype that supports
migration of some CNFs of a private 5G core network instan-
tiated into a three-level cloud infrastructure (Figure 1). Our
prototype is based on Kubernetes (K8S) [1], which is a popular
open source container orchestration and management engine
for automating the deployment, scaling and managing of
containerized applications. In practice, core network functions
are instantiated on a data center. If the data center hosting all
the CNFs gets overloaded, some CNFs are migrated. For this
purpose, the prototype relies on existing K8S technologies and
does not modify the K8S orchestration platform: a new pod1

1Several pods may be created to support the migration of large/distributed
CNFs.

is created at the destination node to host the migrated compo-
nents. Then, the requests received at the old pod are transferred
to the new one when this latter gets fully active. To handle
such a container migration, further development is needed,
especially with distributed K8S clusters. From a practical point
of view, this is quite challenging as many community groups
are running in the race of achieving an efficient multi-cluster
migration mechanism. Thus, the proposed solution contributes
as a migration technique that can be followed to support
the migration at any layer of the virtualization infrastructure
along with unlocking the tangible opportunities for industry
and managing the life cycle of cloud-native functions using
Kubernetes.

The organization of this paper is as follows: in Section II,
we describe the cloud infrastructure along with the use case
considered for illustrating the migration method. Section III
gives the details and the motivation for implementing pod
migration from one K8S cluster to another. Related works
(Section IV) and concluding remarks (Section V) are further
presented.

II. ARCHITECTURE OF THE TESTBED

In the following, we describe the cloud infrastructure
(§ II-A) that sustains the mobile core network (§ II-B).

A. Network and cloud

We consider a three-tiered cloud infrastructure (Figure 1),
which today reasonably represents traditional Internet Service
Provider (ISP) networks involving 2 Tier/3 Tier networks.
These networks, which have a national and regional foot-
prints, interconnect end users to Tier 1 backbone networks
used to exchange international traffic. The associated cloud
infrastructure reflects the architecture of ISP networks with
their delivered services. The cloud infrastructure includes a
(national) central cloud, a regional cloud (attached to a Point
of Presence) referred to as fog cloud, and clouds closer to
end user (edge cloud). Edge data centers host operator ser-
vices (e.g., cloudRAN, firewall), Business to Business (B2B)
services (e.g., enterprise network functions) or applications re-
quiring intensive computing (e.g., cloud gaming, AR/VR, etc.).
We further assume that each data centre hosts a K8S cluster;



Fig. 1. Extending Kubernetes paradigm to other domains

the cloud infrastructure is therefore composed of a collection
of distributed K8S clusters. Each cluster is characterised by
specific resources capacity and bandwidth: by mean, the one
farther to the end user is the cloud cluster, which has the
largest centralised storage and compute resource, which offer
high scalability and can be convincingly used on demand;
followed by a fog cluster, which accumulates co-located nodes
to reduce the distance between end-user devices and cloud data
centres, and allows various functions to be easily moved to the
end-user device for low-latency interactivity; finally, the edge
cluster spreads accross edge nodes that are near the end-users
and that provides comparatively lower latency at the cost of
limited resource capacity compared to cloud and fog cloud.

B. 5G Mobile Core Network

We consider an open-source core network, implemented
using Magma [2], which supports diverse radio technologies,
including LTE, 5G and WiFi. Magma was originally designed
to extend the coverage of mobile networks but today Magma is
seen as an effective solution for building private 5G networks.
Thanks to the multi-operator capability offered by the Feder-
ation Gateway (FEG), Magma could also be advantageously
used in the context of TowerCos [3]. As depicted in Figure 2,
the main components of the Magma architecture include:

• Orchestrator (Orc8r): Orchestrator is a cloud service
that provides a simple and consistent way of securely
configuring and monitoring the wireless network. The
orchestrator has 3 main functions: a Network Manage-
ment System (NMS) that supports, e.g., configuration and
basic monitoring capabilities, KPIs exposed through a
REST endpoint, and a secure communication channel for
communication between the various gateways.

• Access Gateway (AGW): This functions provides mo-
bile packet core for both 4G and 5G services. It follows
a distributed architecture enabling horizontal scaling with
a radio access network (RAN) including e.g., eNodeBs
and gNodeBs. With 5G, AGW deals with the User Plane
Function (UPF), Session Management Function (SMF),

Fig. 2. Magma Architecture and its components.

and the Access and Mobility Management Function
(AMF). These three functions make up the so-called
Minimal Viable Core (MVC), which is the minimal set of
functions required to establish PDU sessions in 5G. In the
case of 4G, the MVC comprises the MME and S/PGW
functions. There is no authentication function (AUSF,
UDM, UDR): authentication is mocked by provisioning
via the NMS the IMSIs to UEs authorized to connect to
the network.

• Federation Gateway (FeG): This function integrates
the MNO core network within Magma by providing
standard 3GPP interfaces to existing MNO components
(notably the HSS in 4G and the AUSF in 5G). It acts as
a proxy between the Magma AGW and the operator’s
network and facilitates the delivery of core functions,
such as authentication, data plans, policy enforcement,
and charging to be compliant with an existing MNO
network and the expanded network using Magma core.

C. 5G Mobile Core Network Setup

In practice, some networks functions of the Magma core
network are containerized. In particular, the Magma Orchestra-



tor (Orc8r) is deployed in Kubernetes and divided into various
helm charts. The orchestrator henceforth contains various pods
and services that are deployed using Minikube [4] as defined
in [5]. Similarly, Magma access gateway is divided into sub-
functions to support LTE, WiFi and 5G core. Overall, related
sub-functions are deployed on the same K8s edge cluster and
are instantiated on Bare metal at different edge nodes (as
depicted in Figure 3).

As new CNFs require to be placed near to the user, orches-
trator’s pod(s) should be moved from edge cluster to a cloud
cluster to free space on the edge cluster hosting the Magma
core. For that purpose, Orc8r needs to be migrated to another
K8s cluster without interrupting the current communication
with AGW.

III. MIGRATION OF A 5G CORE MOBILE NETWORK
COMPONENT

A. Design Rational

In addition to migrating orc8r, a key requirement is to
ensure that (i) there is no disconnection between AGW and
the migrated orc8r, which implies that the network traffic gets
properly routed and (ii) that any chained service (including
AGW) that communicates with orc8r is not affected by the
migration. For this purpose, we rely on Traefik [6], which is
a load balancer that appropriately routes the network traffic
to the desired destination (in our case, the migrated orc8r).
In particular, Traefik provides a ingress controller for each
migrated network function that accepts the traffic from outside
the destination cluster and forwards the traffic to the migrated
network function. In addition, an external DNS server (herein
Cloud DNS) is used to provide hostname resolution and in
particular, to handle the redirection process at the DNS level
rather than by proxying.

Fig. 3. Deployment of AGW and Orc8r on K8s cluster (Edge)

B. Migration Strategy - Step by Step

The methodology adopted [7] to migrate orc8r is as follows:
1) The migration process starts by copying the orc8r ser-

vice that needs to be migrated and by setting up a new
Kubernetes cluster (in a new node located e.g. in the

cloud) in which the ocr8r copy is instantiated. For the
sake of simplicity, the new instance of orc8r is named
svc2 while the original instance is named svc1. In the
configuration file, the namespace associated with svc1
and svc2 corresponds to orc8r-ns.

2) In the Traefik load balancer, a new IngressRoute is
created to route the network traffic to the newly migrated
service (svc2 a.k.a. orc8r-ns) in the cloud cluster.

3) In Cloud DNS, a private DNS zone named
new.testnetwork.internal is created. In order to
provide response to DNS clients that request name
resolution for the newly migrated instance (svc2
a.k.a. orc8r-ns), a record is added with the name
new.testnetwork.internal pointing to the load
balancer IP address (located in a new cluster).

4) Finally, the old orc8r instance is deleted. During the mi-
gration, AGW continues communicating with the orc8r
running in the cloud cluster, with essentially no down-
time; the whole migration process remains completely
transparent for AGW thanks to the DNS redirection and
the routing performed by the load balancer.

Fig. 4. Layout of Orc8r migration in Cloud cluster

C. Demonstration

We have used sample Kubernetes pods, namely AGW and
Orc8r of Magma components and performed the manual mi-
gration steps instead of executing it through a controller. Two
different VMs have been created on a server and Minikube
is used to create a Kubernetes cluster on top of each VM.
To illustrate the deployment of pods, we have reported some
screenshots:

• Figure 5 shows the AGW and Orc8r pod deployment on
the same cluster (namely, the edge cluster) through the
controller VM.

• Further, Figure 6 shows the after migration view of
the new running Orc8r pod on another minikube cluster
(corresponding to cloud cluster) created on another VM.

• Likewise, an old orc8r pod has been deleted from the
edge cluster after the activation of new orc8r pod (on
cloud cluster) in Figure 7.



Fig. 5. Accessing the deployment of AGW and Orc8r on Edge cluster through
Controller

Fig. 6. Deployment of Orc8r on Cloud cluster

Fig. 7. Deletion of Orc8r on Edge cluster

• A Traefik IngressRoute routed the network traffic to
service svc2 if the destination hostname matches with
orc8r1.orc8r1− ns or orc8r1.orc8r1− ns.svc.local as
shown in Figure 8.

Fig. 8. Demonstration of yaml file of Traefik IngressRoute

• Figure 9 represents the newly created ExternalName ser-
vice pointing to the DNS name (new.testnetwork.internal)
which resolves into load balancer IP.

Fig. 9. Demonstration of yaml file for Externalname service

The steps described above are currently triggered by hand. But
a controller for automating these steps is under development.

D. Development of the controller

In addition to a database storing information related to
services, network and cloud topology, the controller contains
four main components: Monitoring, Analysis, Discovery and
Execute components. Based on the metrics collected from all
the Kubernetes clusters, it performs the analysis and triggers
the migration script based on a set of rules (e.g., rule defining
that the resource limit exceeded).

For this purpose, we rely on the Prometheus [8] and
Grafana [9] that are deployed as containers on controller VM
(that hence acts as a Prometheus master). Prometheus is a
monitoring and event alerting tool and Grafana enables the
visualization & analysis of the data provided by Prometheus.
In practice, a kube-prometheus-stack [10] helm chart is in-
stalled on VM for each cluster that includes Grafana and
Prometheus operator. Notably, minikube cluster is deployed
on a separate VM which blocks the access to Prometheus
and Grafana services that are deployed in a cluster. Thus, the
services Type from ClusterIP need to be upgraded to NodePort
type that exposes the respective service via static port on
node’s/VM’s IP. Also, a Nginx reverse proxy server is set up to
publish ports using the Prometheus UI and Grafana service.
This allows the Prometheus controller to receive the metric
data from the respective cluster (see Figures 10 and 11 that
depicts the CPU usage and storage IO distribution of pods
created on edge cluster).

Controller also has a full access to remote clusters using
the kubeconfig file. In minikube cluster, this necessitates to
create a ssh proxy between the controller and cluster VMs
using the following commands:
ssh -L6443:192.168.59.103:8443 10.4.11.92 −forVM − 1

ssh -L6444:192.168.59.110:8443 10.4.11.213 −forVM − 2

Then, using the command kubectl config use-context
<context-name>, we can switch between the clusters.

Now, the controller has an access to the remote cluster
in addition to metric data and can manage and handle the
migration process based on the events or strategy introduced
in [11].

Whenever necessary, the script is executed by the controller
to trigger the migration of pods from one cluster to another.
In particular, the controller makes decisions and manages
the load among different nodes of a cluster based on their
available resources. Further, the proposed strategy follows
a heuristic approach to choose an appropriate destination
node. It also considers the ephemeral nature of containerized
services and the distance between the data centers located on
geo-distributed locations. Compared to the static placement
approach, this migration testbed ensures an optimal placement
of pods considering resource load and end-to-end latency.

IV. RELATED WORK

The work named CloudHopper [12] supports the live mi-
gration of interdependent containerized applications across
different cloud providers (namely, Amazon Web Services,



(a) CPU usage of Orc8r

(b) CPU usage of AGW

Fig. 10. Grafana visualization of CPU resources by the Orc8r and AGW pods.

(a) Storage IO distribution of Orc8r

(b) Storage IO distribution of AGW

Fig. 11. Grafana visualization of Storage IO distribution of the Orc8r and
AGW pods.

Google Cloud Platform and Microsoft Azure). It aims at
reducing the downtime time and supports pre-copy migration,
connection holding and redirection to keep the user unaware
about the migration process.

Authors in [13] execute the docker container migration
across data centers in cloud networks. While migrating the
container, they leverage the hierarchy feature of image layers
by avoid repetitive transmission of existing layers at the target
node resulting in 57% lessened total migration time, 55%
lower image migration time, and 70% of downtime on average
in comparison to mentioned state-of-the-art. Further, a live
stateful container migration solution has been proposed in [14].

It supports just-in-time zero-copy migration that allows the
container at destination node to restart prior to transmission
of whole states.

In [15], a geo-distributed fog network based approach is pre-
sented for stateful container migration within different nodes
of Kubernetes cluster. To handle the time consuming process
of large-sized container’s disk states transmission, authors
leveraged the layered structure of OverlayFS file system [16].
It transparently snapshots the pod volumes and transfers the
snapshot content to the target server before actual container
migration. Whereas, at the source end, the snapshot content
becomes read-only and a new empty read/write layer is added
on top.

Further, an open source tool - Velero [17] allows the
migration of Kubernetes resources and persistent volumes.
It utilizes the Kubernetes API instead of Kubernetes etcd to
extract and restore the states in contrast to other tools. This
API-oriented approach is beneficial in case a user does not
have an access to etcd databases. Also, resources exposed
by API servers are simple to backup and restore even for
several etcd databases. To extend the backing up and restore
functionalities of any type of Kubernetes volume, a program
called restic [18] is required to activate. Velero release is
available on GitHub [19].

A work in [20] implemented the container migration on
edge infrastructure and designed it as a third party tool. They
leveraged the layer structure of the docker container storage
system to shorten the migration time. The strategy is to start
preparing the target edge node prior to actual commencement
of the migration process. Where the layers underlying the top
layer of Docker image are transmitted in advance (as they
remain unchanged during the container’s whole life cycle) and
only the top layer is transmitted during process execution.

The stateful live migration of containers across Mobile
Edge Computings (MECs) in [21] follows the three-layered
architecture - Base, Application and Instance layer. They
aimed to place the service near to the user and minimize
the overall migration time and service downtime. In the first
steps, the base layer (excluding the application) composed of
primary components (i.e., guest OS, kernel, etc.) is transmitted



on each MEC in order to avoid the transmission of the
base layer for each migration request. Then, the application
layer composed of idle applications and its data is passed on
while migration is triggered and keeps the service running.
Finally, the active states in the instance layer are transmitted
after suspending the service. Therefore, the service downtime
reflects the transmission of the instance layer. However, the
detailed experimental explanation is not provided in the paper
due to lack of space.

Moreover, the open-source solution - Cloudify [22] is a
multi-cloud and edge orchestration platform that claim the the
pod migration without interrupting the service from one node
to another within the Kubernetes cluster.

A service-oriented architecture KubeVirt [23] provides ad-
ditional functionality to Kubernetes. It supports the migration
of VM instances (acted as a pod) from one host to another
host within a cluster. To make it profitable for containers, the
containerized applications can be run inside the VM. A release
is available on GitHub [24].

Although the work in [25], [26] is considered to be a
prototype, it enables the pod migration of stateful containers in
Kubernetes. The release includes the additional commands to
migrate and checkpoint running pods within single/multiple
clusters through modified kubelet and customized cri. The
work around Edge Multi Cloud Orchestrator (EMCO) [27]
focuses on deploying edge microservices across multiple clus-
ters. Compared to single cluster migration, multi-cloud migra-
tion requires various network configurations which also rely
on distinct use-cases. For instance, the bursty traffic related
use-case in [28] allows to decide the triggering of migration
process. There are still limitations to solve specific to dynamic
management of resources while keeping them alive and facili-
tating an automated management of composed microservice
during their whole life cycle, including their instantiation,
migration and termination. Also, it is required to tackle the
connection alive during termination and re-establishment as a
chain of microservices not only communicate with end-users
but also with respective microservices that may be placed on
the servers in different clusters.

V. CONCLUSION

Our objective is to perform a live migration of containerized
network functions from one Kubernetes cluster to another
to support the effective migration of 5G network functions.
The key lesson learnt is that by implementing a relatively
straightforward strategy involving DNS redirection and proper
forwarding, a controller may trigger migration (on the basis of
monitoring data provided by Prometheus) of pods or contain-
ers across distributed K8S clusters. In terms of performance,
the migration time (in the testbed) is about a few tens of
milliseconds, due to the creation time of pods. In real networks
with large K8S clusters and significant propagation times, the
migration time may be increased upto a few tens of seconds

but would remain within acceptable bounds when compared
with manual configuration.
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