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5Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), CNRS-UMR7162, 75013 Paris, France

Atomic scale simulations at finite temperature are an ideal approach to study the thermodynamic
properties of magnetic transition metals. However, the development of interatomic potentials ex-
plicitly taking into account magnetic variables is a delicate task. In this context, we present a
tight-binding model for magnetic transition metals in the Stoner approximation. This potential
is integrated into a Monte Carlo structural relaxations code where trials of atomic displacements
as well as fluctuations of local magnetic moments are performed to determine the thermodynamic
equilibrium state of the considered systems. As an example, the Curie temperature of cobalt is
investigated while showing the important role of atomic relaxations. Furthermore, our model is
generalized to other transition metals highlighting a local magnetic moment distribution that varies
with the gradual filling of the d states. Consequently, the successful validation of the potential
for different magnetic configurations indicates its great transferability makes it a good choice for
atomistic simulations sampling a large configuration space.

I. INTRODUCTION

Magnetism plays a key role in many areas of materials
science, especially when transition metals and their
alloys are concerned. In these systems, magnetism
can be the driving force impacting the phase stability
and chemical ordering. Typical examples include the
stability of the bcc α phase of iron,1,2 the phase diagram
of Fe-Co3,4 or the Fe-Cr mixing enthalpy anomaly.5

However, the direct relationship, if any, between the
atomic-scale origins of these properties and the contri-
bution of magnetism remains a challenge nowadays.6,7

In this particular context, large-scale atomic simulations
are required but they are still limited by the transfer-
ability of interatomic potentials including a magnetic
contribution which is far from trivial. A main difficulty
lies in the establishment of a quantitative theory of
finite temperature magnetism, which is still elusive and
therefore represents an issue of both fundamental and
applied importance.

In recent years, different kinds of interatomic poten-
tials have been developed mainly to deal with the case
of iron and its alloys, which represents a major issue in
many steel industry applications.8 The majority of the
existing interatomic potentials of Fe are based on the
embedded atom method (EAM) or the Finnis-Sinclair
model with a more or less precise description of the direc-
tional bonds.9–15 Meanwhile, a better treatment of mag-
netism can be obtained by coupling classical empirical
potentials and Heisenberg-type models for spin dynam-
ics.16,17 Aside from the classical potentials is the tight-
binding (TB) framework that allows an explicit dealing

with the electrons making magnetism a natural conse-
quence of the model. In addition, they have the advan-
tage of being transparent and simple, while still allowing
for a high degree of transferability to handle magnetic
systems.18–22 Despite their success, these different types
of interatomic potentials (i.e. empirical or TB) have so
far been applied mostly to study the stability of bulk
phases at 0 K and also to deal with some specific defects
(point defects,21,23,24 dislocations,7 grain boundaries,6,15

...) which are crucial for the use of magnetic materials
in various applications. However, the case of thermody-
namic properties at finite temperature, which is much
more complex, is still elusive.25 A challenge for such sim-
ulations is to have an energy model able to describe mag-
netic phase transformations where atomic relaxations are
included to study relatively large systems.

More precisely, it is difficult to develop a model for
transition metals describing a local electron-electron
interaction that is strong enough to create a localized
magnetism fluctuating on a short length scale or to
give rise to significant hybridization of the d states
with the surrounding atoms resulting in an itinerant
magnetism. In practice, these different magnetic degrees
of freedom can be accurately described either by a
localized Heisenberg model (rare earths or transition
metal insulators) or in the framework of the pure d
band Stoner theory. Consequently, the development of
a unifying model remains scarce.26–28 In this context, a
typical challenge is to develop a theory able to produce
accurate Curie temperatures (TC) for d elements.
Back in the 60’s, Friedel et al. had already proposed
a simple model of magnetism for transition metals
which is somewhat intermediate between the Heisenberg



2

atomic model and the Stoner band model.29 Further
theoretical works have been developed within an ab
initio framework based on the disordered local moment
(DLM) approximation as an accurate representation of
a paramagnetic configuration with a random alloy of
spin-up and spin-down atoms.30 As an example, the
DLM is used to get parameters of a magnetic model and
the temperature dependence properties are determined
by Monte Carlo. Within this approach, the calculated
Curie temperatures and paramagnetic susceptibilities
were found in good agreement with experimental data
for bcc Fe and fcc Ni.28 Recently, an ab-initio-based
effective interaction model (EIM) has been developed
for the study of magnetism, chemical-phase stability
and their coupling in bcc Fe-Co structures.31,32 The
EIMs can be quite efficient to treat thermodynamic
and kinetic properties, but the lattice-vibration effects
are not considered explicitly.33 Despite such intense
efforts,34 these approaches are not adapted to the
development of interatomic potentials to investigate the
structural properties of magnetic transition metals at
finite temperature where large systems and complete
relaxation of the system are required.

In this work, we present a tight-binding interatomic po-
tential including all relevant physics related to collinear
magnetism in transition metals while remaining simple
enough to allow the simulation of hundreds or even thou-
sands of atoms at finite temperature. A fourth-moment
approximation to the local density of states developed for
transition-metal carbides35–37 is extended to take into
account explicit magnetic contribution via the Stoner
theory of itinerant magnetism.38 This semi-empirical ap-
proach relies on local (atomic) energy calculations using
the recursion method and is coupled with Monte Carlo
(MC) simulations in order to relax the structures and
calculate thermodynamic properties. The paper is orga-
nized as follows. In Sec. II, we present the tight-binding
approximation coupled to the Stoner model developed to
calculate band energies including a magnetic contribu-
tion. Empirical repulsive terms are then added to obtain
total energies. The Monte Carlo procedure used to relax
the structures is also described. Different validations and
applications of the model to determine the Curie tem-
perature of Co are developed and discussed in Sec. III.
Lastly, Sec. IV is devoted to the generalization of our
tight-binding model to other magnetic transition metals.

II. TIGHT-BINDING HAMILTONIAN
INCLUDING THE STONER MODEL

A. Tight-binding Hamiltonian with various
approximations

There are several magnetic TB models to characterize
transition metals and their alloys that contrast with the
Hamiltonian approximation level. This mainly concerns

the choice of the basis which may be orthogonal39 or
not5 and includes different orbitals (spd18 or only d40,41

for pure transition metals). As it is a parameterized
quantum description, the evaluation of complex integrals
is avoided and replaced by functionals whose form and
parameterization differ according to the TB model. In
case of interatomic potentials, the total energy (with
respect to the energy of the free atoms) can be written
as the sum of an attractive contribution, which describes
the formation of an energy band when atoms are put
together to form a density of states, and of a phenomeno-
logical repulsive term, which empirically accounts for the
ionic and electronic repulsions.42,43 The magnetic term
is introduced via the Stoner Hamiltonian to remove the
degeneracy between the two spin directions through a
potential that generates a band splitting between ”up”
and ”down” spins.38 At this stage, there are different
approaches to develop interatomic potentials from the
TB Hamiltonian. The most specific and standard one
is basically to perform a complete diagonalization of
the Hamiltonian to get an accurate contribution of the
band term. However, the price to pay is usually quite
high in terms of computational time, especially if the
model is implemented in Monte Carlo or Molecular
Dynamic code to relax structures where many steps are
required to converge. To overcome this difficulty, it is
possible to obtain a simplified model of the band term
using the moment method44 or recursion method.45,46

A decomposition of band energy into binding energies
can be derived which, combined with the theory of
perturbations with respect to the underlying electronic
structure, results in analytical bond-order potentials
(BOPs).41,43,47 Being limited to numerical calculations
of the first moments of the local density of states, the
calculation becomes fast and can be integrated into
structural relaxation codes.35 Within this framework,
Ackland et al.48 have established a magnetic interatomic
potential where the band term was calculated within
the second-moment approximation of the TB model.
Unfortunately, the limited description of the density
of states does not allow to account for the subtle
relationship that can exist between magnetism and the
structural stability of pure transition metals and their
alloys.49

In the following, a magnetic interatomic potential
based on the tight-binding framework is detailed which
provides an efficient way to calculate the structural prop-
erties of magnetic transition metals at finite temperature.
The model based on the fourth-moment approximation
for the band term is the simplest in terms of moments
that still correctly describes some of the magnetic fea-
tures.
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B. Fourth-moment approximation

There is no need to detail the tight-binding approx-
imation here. The technical and theoretical aspects
concerning our model in the fourth-moment approx-
imation (FMA) to handle transition-metal carbides
as well as its transferability are given in the Ref. 35.
In the following section are summarized the essential
points that are relevant to understand the extension
of our model to take into account explicit magnetic
contribution via the Stoner theory.

In case of a non-magnetic (NM) system containing N
atoms, the total energy of an atom i (Eitot/NM) is divided

into two contributions, a band structure term (Eiband)
that describes the formation of an energy band when
atoms are put together and a repulsive term (Eirep) that
empirically accounts for ionic and electronic repulsions:

Eitot/NM = Eiband + Eirep (1)

The total energy of the system, Etot/NM, then writes:

Etot/NM =
∑

i atoms

Eitot/NM (2)

The band term is given by the following equation:

Eiband =

∫ εF

−∞
(E − ε0i )ni(E)dE (3)

where εF is the Fermi level and ε0i the atomic energy
level. We use the recursion method to calculate ni(E),
the local electronic density of states (LDOS) on each
site i.45 Only the first four continued fraction coeffi-
cients are calculated exactly, which provides already a
good description of the angular contributions to the en-
ergy and leads to a relatively fast scheme of order N .
Since we want to have a consistent and simple scheme
to describe correctly the transition elements, the fourth
moment approximation is a good compromise. Taking
into account the fifth or sixth moment would be even
better but rather expensive in terms of computational
effort.50,51 To keep the model as simple and fast as pos-
sible, we neglect the sp electrons that form a broader
nearly-free-electron band. Only the d electrons are taken
into account as long as we are interested in cohesive prop-
erties more than in a detailed description of the electronic
structure. Indeed, the bell-shape behavior of the cohesive
energy and of the elastic moduli is correctly predicted by
the TB approximation where sp − d hybridizations are
neglected and is the consequence of a gradual filling of
the d states.40 When interested in more detailed elec-
tronic structure properties, sp − d hybridization should
however be taken into account as done in Ref. 52. Thus,
we will work with the |iµ〉 basis where µ is the orbital
index (µ = dxy, dyz, dzx, dx2−y2 , d3z2−r2). In our d band
model, the Slater-Koster parameters for the hopping in-
tegrals ddσ, ddπ, and ddδ are considered to be in the ratio

-2:1:0 and to decay exponentially with respect to the dis-
tance r as:

ddλ(r) = ddλ0 exp

[
−q
(
r

r0
− 1

)]
, (4)

where λ = σ, π, δ. In case of metallic systems, it is
common to impose a condition of local charge neutrality
which can be achieved by locally varying atomic energy
levels. Instead of following this procedure, a more ap-
proximate but much easier scheme used here is to calcu-
late the total energies based on a local charge neutrality
hypothesis by introducing fictious local Fermi levels. The
second term in Eq. 1, Eirep, is a repulsive contribution
chosen to have a pairwise Born-Mayer form here:

Eirep = A
∑
j 6=i

exp

[
−p
(
rij
r0
− 1

)]
(5)

In our TB model based on a fourth-moment approxima-
tion, magnetism is introduced via the Stoner model38 by
including the presence of local exchange fields within the
band energy of Eq. 3. We place ourselves in the case
of collinear magnetism that imposes the differentiation
of two spin populations: spin up (↑) and spin down (↓).
The spin moment mi in µB units is given by:

mi = Ni ↑ −Ni ↓ (6)

where Ni ↑ and Ni ↓ are respectively the number of elec-
trons in majority and minority spin bands of an atom i.
The exchange potential is modeled by an effective mag-
netic field of the form: Imi/2 where I is the Stoner ex-
change integral. This allows us to define local magnetic
on-site levels:

εσi = ε0i ±
I

2
mi (7)

The minus (plus) sign is chosen if the spin σ is parallel
(antiparallel) to the direction of the local magnetic field.
From Eq. 7, it is obvious that these levels must be deter-
mined self-consistently, since the TB Hamiltonian now
depends on the local magnetic moments. A straightfor-
ward procedure is to start from an initial guess for mi,
and once the corresponding Hamiltonian is diagonalized,
two density of states (for up and down states) are ob-
tained leading to an improved estimation. This latter
is used as new input and the process is iterated until
convergence. In practice, self-consistent magnetic mo-
ments were found using the Broyden mixing scheme.53

After summing over the whole electron population with
the consideration of the double counting of states, the
result is a contribution of this exchange potential to the
total energy of an atom i:

Eitot = Eiband + Eirep + Eiexc (8)

Eiexc = −I
4
m2
i (9)

where Eiexc is the exchange energy.21,23,43
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C. Monte Carlo simulations

This atomic interaction model is then implemented in
a Monte Carlo (MC) code, based on the Metropolis algo-
rithm,54 using the canonical ensemble.55 This procedure
makes it possible to relax the structures at finite temper-
atures according to a Boltzmann type probability distri-
bution. In the canonical ensemble, standard MC trials
correspond to random displacements. A MC macrostep
corresponds to N propositions of random atomic dis-
placements, N being the total number of atoms of the
system. In principle, the determination of all local mag-
netic moments for each trial configuration is based on
a brute force method which consists in performing two
self-consistent calculations to extract at the end a very
small energy difference. However, at finite temperature
we allow for fluctuations of the magnetic moment. This
renders the self-consistent determination of magnetic mo-
ments not suitable. To tackle this difficulty, a MC trial
corresponds to randomly choosing an atom and its dis-
placement as well as its local magnetic moment with an
amplitude of 0.05

√
T (ξ − 0.5) and 0.4 lnT (ξ − 0.5) re-

spectively. T is the temperature in eV units and ξ is a
random number between 0 and 1. Both magnitudes have
been adjusted in order to have 50% of the MC moves
accepted. For each run, we check the convergence of the
total energy and the average magnetic moment, defined

as m̄ = 1/N
∑N
i mi (see Fig. 1). Starting from a fully

random magnetic state, the system converges rapidly to
a ferromagnetic state corresponding to m̄ = 1.87 µB .
We may notice that depending on the MC moves, the
symmetrical value (-1.87 µB) is also possible since these
two magnetic states are degenerate. We performed 103

MC macrosteps for equilibration then the average quan-
tities are calculated over 103 macrosteps. Since the total
energy is taken as a sum of local terms, this avoids recal-
culating the total energy and the magnetic contribution
of the whole system at each step of the Monte Carlo
process making efficient the implementation of our TB
model. Consequently, the local energy is only recalcu-
lated at each MC trial for atoms impacted by the dis-
placement of an atom i. This approach is then perfectly
adapted to deal with large systems and to reproduce the
main energy properties of magnetic transition metals.

D. Fitting procedure

The problem of finding a good parameter set for a TB
interatomic model corresponds to an optimization prob-
lem, where one tries to reproduce a database by adjusting
the model parameters: ddσ, q, r0, A, p, I, the number
of electrons Nd and an inner ric and outer cut-off radius
roc . The latter are involved in the cut-off function that is
applied to the hopping integrals and the repulsive energy:

0 500 1000 1500 2000
MC step

-4,28

-4,26

-4,24

-4,22

-4,2

E
to

t (
eV

/a
t.

)

0,5

1

1,5

2

m
 (

µ
B
)

FIG. 1. Total energy (in red) and magnetic moment (in black)
as a function of the number of MC steps at 800 K starting
from a fcc random spin configuration.

fcut (r) =


1 if r ≤ ric
1
2

[
1 + cos

(
π
r−ric
roc−ric

)]
if ric < r < roc

0 if r ≥ roc

With a TB model, the parameters have a physi-
cal meaning limiting the ranges over which they can
be optimized, reducing significantly the search space.
The reference data are obtained by performing ab ini-
tio calculations (Vienna Ab-initio Simulation Package
(VASP)56) using density functional theory (DFT) (de-
tails in Ref. 57), and contain the cohesive energies, mag-
netic moments, lattice constants, and elastic constants
of non-magnetic and magnetic calculations for fcc and
bcc crystals. Instead of evaluating explicitly these ob-
servables, we follow the data points on the strain-energy
and strain-magnetization curves as computed by DFT.
This approach allows for fewer evaluations of the poten-
tial energy leading to an exact comparison with the DFT
results. The objective function that we optimize is the
root mean square difference between the DFT results and
the data obtained with a particular trial parameter set
for the TB model. With 9 parameters the parameter
space is still too large for a systematic exploration. For
instance, sampling all combinations, while trying 10 val-
ues per parameter, 109 evaluations of the reference data
would be required. We therefore resort to parallel tem-
pering Monte Carlo simulations58 for this global optimi-
sation problem. Making efficient use of parallel comput-
ers, the idea of this approach is that the high-temperature
thermostats explore large regions of the parameter space,
while those at lower temperature explore in detail local
optima. The exchanges allow to escape bad local op-
tima when better ones are discovered at a higher tem-
perature. We use optimization runs with 105 MC cycles
with 12 thermostats each with a 50% temperature dif-
ference with the neighboring thermostat. Exchanges are
attempted every 50 steps. The values of the maximally
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attempted change of the parameters is adjusted in each
thermostat during the optimization such that about half
of the MC moves are accepted. The best parameter set
obtained by these runs was further locally optimized by
the Nelder-Mead algorithm59 and scrutinized manually.

III. STRUCTURAL PROPERTIES OF CO

A. Ground state at 0 K

Experimentally, the hexagonal compact (hcp) struc-
ture is the most stable configuration for Co at low tem-
perature with a hcp-fcc transition occuring at 680 K.60

Since we want to investigate the Curie temperature (∼
1400 K), we focus our investigation on the fcc phase as
well as the bcc one for comparison. Following our fit-
ting procedure, the final parameter set corresponding to
both structures for non-magnetic (NM) and ferromag-
netic (FM) states can be found in Tab. I. The relative

ddσ q r0 A p I Nd ric roc

1.39 2.50 2.21 0.246 12.4 1.38 8.13 2.6 3.4

TABLE I. Co parameters for the magnetic TB-FMA model,
obtained by fitting to DFT reference data. ddσ, A and I are
in eV, r0, ric and roc are in Å.

stability of these various phases, as well as the influence
of magnetism on the system can be determined from the
energy versus atomic volume curves plotted in Fig. 2. For
calculations at 0 K, m is computed self-consistently while
the MC procedure defined previously will be privileged
for the simulations at finite temperature. As illustrated
in Table II, our model predicts a fcc ground state for both
non-magnetic and ferromagnetic states in agreement with
DFT calculations. More precisely, our TB model tends
to stabilize the magnetic structure as in DFT with lat-
tice parameters and cohesive energies always larger than
in the non-magnetic phase.49 It is worth mentioning that
our model reproduces well experimental elastic constants
of the fcc structure. Regarding the magnetic moment, as
expected, it increases when the lattice is expanded and
vanishes when it is reduced.57,61 Meanwhile, the bcc mag-
netic moment appears for smaller atomic volume. More-
over, the value of the magnetic moment equal to 1.87 µB
is completely determined in our TB formalism by Nd the
total number of electrons in our model (m = 10−Nd).7

Besides the cohesive properties, the exchange inter-
action J is a good descriptor to have an idea of the
Curie temperature trend in the different structures.
Indeed, J is defined as the energy difference between
a configuration with all spins up (or down) and a
configuration where one spin is flipped. The value of J
is larger for the bcc structure (286 meV) than for the fcc
one (178 meV) suggesting that the bcc system should
have a TC larger than the fcc one.

8 9 10 11 12
-4,4

-4,35

-4,3

-4,25

-4,2

-4,15

-4,1

E
to
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eV

/a
t.

)

FM
NM

8 9 10 11 12

Atomic Volume (Ang.
3
)

0

0,5

1

1,5
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 (

µ
B
)

fcc

bcc

FIG. 2. Total energy (top) and total magnetic moment (bot-
tom) as a function of atomic volume for fcc (in black) and bcc
(in red) at 0 K calculated by TB-FMA. On the top, dashed
lines represent a non-magnetic system and full lines a ferro-
magnetic system.

Once all parameters have been fitted and validated at
0 K, the difficulty in the derivation of a complete inter-
atomic potential is to confirm its robustness at finite tem-
perature to check its transferability. In the following, we
go further by studying the Curie temperature of fcc and
bcc systems performing off-lattice MC simulations where
all degrees of freedom are considered. More precisely,
each physical ingredient will be integrated step-by-step
to determine its impact on the TC calculation, i.e. lon-
gitudinal spin fluctuations, lattice vibrations and lattice
expansion.

B. Finite temperature

First, the Curie temperature is investigated on a
rigid lattice where the MC trial consists in flipping the
magnetic moment (m = ±1.87 µB). In these Ising-
type simulations, we considered a fcc/bcc system of
256/250 atoms which is sufficiently large for the con-
vergence of the energy and the magnetization. We per-
formed heating/cooling (increasing/decreasing tempera-
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NM NM FM FM FM

DFT TB-FMA exp. DFT TB-FMA

BCC a (Å) 2.76 2.68 - 2.81 2.71

Ecoh (eV/at.) -3.97 -4.24 - -4.30 -4.36

FCC a (Å) 3.45 3.38 3.5462 3.52 3.45

Ecoh (eV/at.) -4.20 -4.30 -4.3962 (hcp) -4.40 -4.40

C11, C12, C44 (GPa) 407, 180, 208 389, 235, 142 225, 160, 9263 290, 170, 145 273, 175, 109

TABLE II. DFT and TB-FMA calculations of the lattice parameters, cohesive energies and elastic constants for non-magnetic
and ferromagnetic bcc and fcc systems at 0 K. Experimental data are only available for fcc FM phases. DFT calculations of
bcc and fcc systems are extracted from Ref. 57.

tures) MC simulations which means the simulation at the
next temperature starts from the last converged config-
uration of the previous temperature. No difference be-
tween the increasing and decreasing temperatures was
observed, so that only the increasing temperature is
shown in Fig. 3. As expected, the Curie temperature
for the bcc phase is larger than for the fcc one. How-
ever, the calculated TC are really large compared to the
experimental values (TC = 1388 K for fcc31) This is not
surprising because magnetic moment fluctuations, lattice
vibrations and lattice expansion are not considered. We

4600 4800 5000 5200 5400 5600

T (K)

0

0,5

1

1,5

2

<
m

>
 (

µ
B
)

FIG. 3. Curie temperature of fcc (in black) and bcc systems
(in red): total magnetic moment average as a function of
temperature on Ising-type lattice.

now investigate the impact of magnetic moment fluctua-
tions on the Curie temperature. As before, a fcc/bcc sys-
tem containing 256/250 atoms on a rigid lattice is consid-
ered. In contrast to the previous case, the local magnetic
moment is no longer constrained to two values but is free
to fluctuate randomly in a continuous manner. The equi-
librium is consequently longer to reach since both total
energy and magnetic moment require more MC steps to
converge. The results for the fcc and bcc phases are pre-
sented in Fig. 4. Compared to the Ising-type simulation,
we can clearly notice a spectacular effect of the magnetic
fluctuations since TC is drastically reduced by about 3500

K. Indeed, the magnetic moment decreases slowly before
the Curie temperature equal to 1150 K and 1350 K for
fcc and bcc systems respectively, followed by an abrupt
drop to zero typical of a first order transition. It can be
noted that a second order transition is observed within
an Ising model where large boxes of simulations are con-
sidered (several thousand atoms). This is not the case
in the present work which is focused to boxes containing
several hundred atoms and therefore cannot reproduce
a second order phase transition.64. Nevertheless, these
deviations do not prevent us from investigations physical
properties of magnetic transition metals at finite temper-
atures. Improving the accuracy would imply increasing
the size of the systems which would make the calcula-
tions very time consuming and would be not adapted for
highlighting the generalities of our model.

Interestingly, the impact of magnetic moment fluctua-
tions is therefore crucial but insufficient to reproduce the
experimental TC value (∼1400 K for the fcc phase). To
go beyond, lattice vibrations (atomic relaxations) as well
as magnetic fluctuations are taken into account to high-
light the role of phonons and magnon-phonon coupling
on the TC. As seen in Fig. 4, the Curie temperature is
slightly reduced (∼ 100 K) to reach 1050 K and 1250 K
for fcc and bcc systems, respectively. It may seem sur-
prising or even disappointing that improving the model
by adding the magnon-phonon coupling further deteri-
orates the prediction of the Curie temperature. How-
ever, this tendency is in good agreement with a recent
first-principles thermodynamic approach developed for
investigating the effect of phonons on magnetism for bcc
Fe.65 In this elegant work, the authors point out that
the phonon softening due to magnetic disordering leads
to the stabilisation of paramagnetic states resulting in a
decrease of TC by nearly 560 K. Although this so-called
feedback effect is not as strong in our case (here cobalt),
it tends to prove the robustness of our model which in a
natural and simple way is able to reproduce the rather
complex physics discussed in Ref. 65. Lastly, off-lattice
MC simulations are performed including lattice expan-
sion as well as magnetic moment fluctuations and atomic
relaxations. As seen in Fig. 4, no results are reported for
the bcc phase. During the simulation, the lack of con-
straints on the simulation box makes possible the phase
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FIG. 4. Curie temperature of fcc (top) and bcc system (bot-
tom): total magnetic moment average as a function of temper-
ature with different approximations: longitudinal spin fluctu-
ations (dashed line with cross), lattice vibrations (dotted line
with square) and lattice expansion (full line with circle).

transformation to the most stable structure, the fcc one.
Consequently, this result shows the efficiency of our in-
teratomic potential to characterize the thermodynamic
properties of magnetic systems. Regarding the fcc phase,
the lattice contribution to TC is significant with an in-
crease of about 300 K. As a result, our TB model predicts
a Curie temperature around 1350 K which is in good
agreement with the experimental value.
Therefore considering all degrees of freedom (magnetic,

atomic and box relaxations), our TB model reproduces
successfully the experimental Curie temperature empha-
sizing its remarkable ability to describe magnetic tran-
sition metals at finite temperature. As discussed above,
the impact of the lattice relaxation is far from being negli-
gible. To get an insight into this contribution, the linear
thermal expansion of the fcc lattice 〈4a(T )〉 /a in FM
and NM states is analysed and calculated as follows:

〈4a(T )〉
a

=
〈a(T )〉 − a(Tref)

a(Tref)
, (10)

where Tref = 0 K. In case of NM calculations, Fig. 5
illustrates the temperature dependence of the linear

0 500 1000 1500 2000

T (K)

0

0,005

0,01

0,015

0,02

<
∆

a
>

/a
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NM

FIG. 5. Average linear thermal expansion coefficient for fcc
Co as a function of temperature (FM and NM states). The
red vertical line indicates the TC.

thermal expansion coefficient over a wide temperature
range. A similar linear variation is observed for the
FM states up to TC where a contraction of the lattice
parameter (∼ 1%) is found. This particular behavior is
therefore a direct fingerprint of magnetism. According
to our DFT and TB calculations at 0 K, the lattice
parameters of the FM phases are always larger than
in the non-magnetic ones (see Table II). It is therefore
tempting to think that the contraction observed at the
Curie point is directly correlated to this difference in
lattice parameters between both states. However, it is
important to specify that after TC, the system tends
towards a paramagnetic regime which is regarded as a
collection of disordered local moments. In this particular
case, the random orientation of the spins results in the
cancellation of the total magnetic moment. Meanwhile,
the NM state is characterized by the vanishing of
all local moments. This explains the different values
obtained in the two calculations above TC in Fig. 5. To
go deeper in this analysis, we consider the distribution
of the local magnetic moments in the paramagnetic and
ferromagnetic regimes. They are shown in Fig. 6 for
temperatures close to the phase transition: 50 K above
and below the calculated Curie temperature. At 1300
K, a gaussian distribution centered around the value of
the ground state magnetic moment (m = 1.87 µB), is
observed with a dispersion due to thermal fluctuations,
the typical signature of a ferromagnetic state. Above
the Curie temperature, at 1400 K, the magnetic moment
distribution is wider and its amplitude is lower, as
expected in PM state. To understand this behavior,
it is useful to calculate the total energy (as defined in
Eq. 8) as a function of mi

28 at 0 K. The results are
presented in Fig. 7. The deep minimum at the positions
of the on-site energies for the fcc phase results in a
distribution of moments around this value below the
Curie temperature. This explains the magnetic moment
distribution of gaussian type centered on the minimum
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FIG. 6. Local magnetic moment distribution of 100 configu-
rations of the fcc system below TC at 1300 K (top) and above
TC at 1400 K (bottom) calculated by TB-FMA. One mag-
netic configuration of each temperature is represented with a
color code scale from -3 µB to 3 µB .
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FIG. 7. Total energy as a function of the total magnetic
moment for the fcc phase calculated by TB-FMA. The lattice
parameter is kept constant and equal to its value at 0 K.

in the FM phase. We notice that the symmetrical dis-
tribution (centered around m = −1.87 µB) may appear,
depending on the MC moves. At higher temperature,
the thermal excitations are large enough to avoid being
trapped in the minimum. As a result, the magnetic
moment is randomly distributed along the whole range
of values leading to a more broadened shape centered on
0 µB as observed in Fig. 6. Interestingly, our TB-FMA
interatomic potential coupled with specific MC trials
on the magnetic moment turns out to be particularly
successful in achieving randomly distributed collinear
(up and down) magnetic moments. This is a direct result
of our simulations and not an assumption established
a priori, as in the disordered local moment (DLM)
approximation.66,67

Our study shows that atomic relaxations play an
important role in the calculation of the Tc of cobalt.
Moreover, an abrupt variation of the lattice parameter
is observed when the paramagnetic state is reached.
In spite of such a great achievement, there is still an
issue that seems to be problematic. In case of Co, it
is well-known that the local on-site electron-electron
interaction is strong enough to create local atomic
moments fluctuating on a short-length scale.68 Our
TB-Stoner formalism behaves as an Ising state with
a continuous distribution of moments contrary to the
classical localized Heisenberg model. The latter is noto-
riously insufficient and is the source of much debate on
localised versus itinerant magnetism, which can however
be improved with effective interaction models (EIM) of
a generalized-Heisenberg model. We will demonstrate
that the two descriptions are not incompatible. Ac-
tually, such discrepancy might be due to the collinear
approximation adopted in our formalism. Indeed, the
high-temperature magnetic properties of cobalt are, at
least in part, driven by fluctuating magnetic moments
whose arrangement is intrinsically non-collinear. In our
TB collinear approximation, only the amplitude of the
magnetic moment fluctuates along one axis meaning that
its three components are reduced to the longitudinal one.
To justify such a choice, we will consider an effective
interaction model on lattice based on a Heisenberg
formalism with a non-collinear treatment. It will then
be possible to decouple each contribution (longitudinal
and transverse) of the magnetic moment and compare
their distribution to the one from our purely collinear
model.

The effective interaction model (EIM) is written as:

H =
1

2

∑
i

∑
j

Vij +
1

2

∑
i

∑
j

Jijmimj, (11)

where Vij is a chemical pair interaction parameter be-
tween i-th and j-th atoms. The second term corresponds
to the Heisenberg model where Jij is the exchange cou-
pling parameter for the magnetic moment mi and its
neighbours mj. All these parameters are fitted to DFT
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calculations to investigate the phase stability in bcc Fe-
Co systems.31 Consequently, the bcc phase of Co is con-
sidered in the following since there is no doubt that the
general conclusions will be the same for fcc Co. More
precisely, the second and the fifth neighbour have to be
considered for the chemical interactions Vij and the mag-
netic interactions Jij , respectively.31 In this model, the
magnetic moment is described by a vector in the spherical
coordinate system m = (m, θ, φ) with m the amplitude, θ
and φ respectively the polar and azimuthal angles. From
DFT calculations57 and experiments,69 it has been shown
that the average moment of Co atoms stays almost con-
stant. Hence, the norm of the vector m is kept equal to
1.87 µB in coherence with our TB model. MC simula-
tions are performed using the Metropolis algorithm with
trials on the magnitude (Ising type ±m), θ and φ an-
gles. In these simulations, we perform 2.103 macrosteps
to let the system being equilibrated then we calculated
the average of properties on 2.103 macrosteps. We used
a bcc system of 2000 atoms (10x10x10 cells) which is suf-
ficiently large for the convergence of the energy and the
magnetization.

In Fig. 8, we report the magnetic distribution along
the x, y and z axes. They are derived from the effective
interaction model after projecting each component of the
vector in the spherical coordinate system along the three
orthogonal axes. Magnetic distribution at different tem-
peratures are analysed and compared to the results from
the TB-FMA model. At low temperature, i.e. at 100 K,
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FIG. 8. Local magnetic moment distribution of 100 configura-
tions of bcc system at 100 K (top), 500 K (middle) and 2000 K
(bottom) from TB-FMA model (left column) and from EIM
model (middle column) with the corresponding magnetic con-
figuration (right column). In this EIM model, the magnetic
moment is decomposed in three directions: x in green, y in
red and z in black.

the magnetic moment distribution according to our TB
model is characterized by a narrow gaussian distribution
centered around 1.87 µB . Regarding the non-collinear

model, the x and y distributions are centered respectively
on 0 µB and -0.5 µB leading to a slight shifting compared
to the equilibrium value at 0 K whereas the z distribution
is well centered on 1.87 µB . When increasing the tem-
perature at 500 K, gaussian distributions become a little
bit wider due to thermal fluctuations. On one, the mag-
netic distribution from TB-FMA is less impacted because
the magnetic moment can only have longitudinal fluctua-
tions. On the other, the distributions of the x and y coor-
dinates are wider because of longitudinal and transverse
spin fluctuations in the EIM model. Compared to the
TB-FMA, z distribution is similar except the maximal
value of the magnetic moment which is limited to ±1.87
µB . Above the Curie temperature, the magnetic distri-
bution is more dispersed than in the ferromagnetic state.
Interestingly, the distribution resulting from the Heisen-
berg model is fully isotropic in good agreement with the
collinear TB-FMA model. Only the tail of the gaussian
is slightly different since in the non-collinear calculation
it is quite sharp whereas it is much more spread out in
the TB-FMA model. This difference comes from the ap-
proximation made in the Heisenberg model where the
norm of the vector m is kept equal to 1.87 µB contrary
to our TB approach. Thus our collinear spin approxima-
tion coupled with MC trials on both the atomic positions
and the amplitude of the magnetism is in a more general
way capable of capturing an important part of the mag-
netic excitation. The very complete study presented on
the calculation of the Curie temperature thus fully val-
idates the transferability of our interatomic potential as
well as its ability to treat magnetic systems at finite tem-
perature.

IV. A GENERALIZED-MODEL FOR
MAGNETIC TRANSITION METALS

A further benefit of a TB model is that it can
be fairly easily generalized to other transition metal
systems since we know qualitatively how the different
parameters (transfer integrals, atomic energy levels)
vary with the nature of the metallic element. In the
following, we therefore take advantage of the physical
transparency of the model to identify the influence of
the Stoner parameter and of the number of electrons on
the magnetic properties of transition metals in general.

First, a too small Stoner parameter results in a system
in a non-magnetic state. Beyond a specific threshold for
I, the Curie temperature increases linearly showing that
TC can then be fitted to experimental measurements by
simply tuning the Stoner parameter. In a second step, we
seek to investigate some specific magnetic properties in
the ground state and at finite temperature as function of
the number of d valence electrons Nd. Obviously, a spe-
cific adjustment of all the parameters is mandatory to re-
produce accurately the physical properties of the different
transition-metal elements. However, since we are mainly
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FIG. 9. Discontinuity of the thermal expansion coefficient
at the Curie temperature as a function of the number of d
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before the Curie point.

interested in highlighting trends with band filling, all the
parameters of the TB model are fixed. In Fig. 9, the dis-
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FIG. 10. Local magnetic moment distribution of 100 config-
urations of the fcc system below and above TC for different
Nd.

continuity of the linear thermal expansion at the Curie
temperature for different d band fillings is presented. By
increasing the number of electrons, 〈∆a〉 /a increases un-
til Nd = 8.5 where it is almost zero. As discussed previ-
ously, this is related to the local magnetic moment distri-
bution in Fig. 10 where a transition from a monomodal
to a bimodal distribution is observed with the progressive
filling of the d band. Below the Curie temperature, the
local magnetic moment distribution is always a gaussian

centered on the magnetic moment whose value is deter-
mined by the number of electrons, explaining its shift
towards lower values. One should keep in mind that the
symmetrical distribution may appear depending on the
MC moves. Above TC, two types of profile are identi-
fied in the PM state, i.e. a bimodal evolving towards
a monomodal distribution with gradual filling of the d
states. At low Nd, the local magnetic moment distribu-
tions are localized around plus or minus its mean abso-
lute value with a dispersion due to thermal fluctuations.
The sum is therefore zero corresponding to a PM state.
When increasing Nd, the bimodal type behavior tends to
be reduced to a single and broad magnetic moment dis-
tribution centered around zero. Indeed, in Fig. 11, the
depth of minimum at the positions of the on-site energies
decreases with gradual filling of the d state. Therefore
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FIG. 11. Energy with respect to the ground state as a function
of normalized magnetic moment for different Nd at 0 K.

at high temperature, the thermal excitations are large
enough to avoid being trapped in one local minimum.
These results are in line with the widely accepted itin-
erant magnetism description of ferromagnetic transition
metals.28,70,71 In such case, a Heisenberg-type model is
perfectly adapted to describe materials in which the elec-
trons responsible for the magnetism are localized. Re-
garding transition elements of the 3d series, this is typ-
ically the case for Fe or Co roughly corresponding to a
band filling with Nd 6 7.0 electrons. Besides, it is well-
known that the theory of the Heisenberg ferromagnet
fails entirely to describe magnetic properties of Ni. Re-
garding our analysis, this is in good agreement with the
distribution of the longitudinal spin fluctuations which is
no more localized when increasing Nd. However, our re-
sults show how our TB-FMA combined with the Stoner
formalism is adequat to describe the itinerant electron
magnetism inherent to transition metals. Indeed, the lo-
cal electronic structure description coupled to magnetic
excitations driven by MC trials enables to unify a the-
ory of itinerant electron magnetism at high temperatures.
Different works have already been successful in establish-
ing models to predict the magnetic properties at finite
temperature of transition metals.26–28
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Consequently, the variation of the lattice parameter at
TC appears to be a response of the system to the reor-
ganization of local magnetic moments during the transi-
tion from FM to PM state. At small values of Nd, the
latter is very significant since it is characterized by the
emergence of a second population of magnetic moments
centered around a negative value of m. This strong trans-
formation is associated with a very significant variation
of the lattice parameter. For larger Nd, the system goes
smoothly from a rather sharp monomodal state to a wider
monomodal distribution when crossing from FM to PM
state. As a result, this transformation does not involve
a drastic variation of the lattice parameter. From an ex-
perimental point of view, a contraction of the lattice pa-
rameter at the Curie temperature has only been reported
in case of Fe.72 Anomalies at the Curie point character-
ized by an inflection of the slope have already been ob-
served in pure elements73 or alloys such as Fe-Co74 as
well as Fe65Ni35

75. The latter exhibits a very smooth
temperature dependence with two different slopes below
and above the Curie temperature, well known as the In-
var effect which is a transition from a state with a higher
magnetic moment and a large volume to a high temper-
ature state with a lower magnetic moment and volume.

V. CONCLUSION

In this work we have presented a TB model based on
the 4th moment approximation with an explicit magnetic
contribution via the Stoner theory which provides an ef-
ficient tool to perform structural relaxations of magnetic
transition metals. Remarkably, our approach coupled to
MC simulations is able to reproduce localized and itin-
erant magnetism at finite temperature. The good agree-
ment of our results for the Curie temperature in the case
of Co highlights the importance of considering all phys-
ical contributions such as longitudinal spin fluctuations,

atomic relaxations and lattice expansion. A further ad-
vantage of our model is that it can be fairly general-
ized to other magnetic transition metals since we know
semiquantitatively how the different parameters (transfer
integrals, atomic energy levels, Stoner parameter) vary
with the nature of the metallic element.

We have developed an interatomic potential which
is efficient to investigate structural properties at finite
temperature of large systems where complete relaxation
is required. This is crucial in the case of nanoparticles
where the Curie temperature decreases as the system
size increases76 because the magnetic moment is larger
at the surface than in the core. Moreover, phase
transformation at the nanoscale can also be driven
by magnetic contribution and our model is able to
capture this effect. In this context, the study of bcc-fcc
transitions of Fe nanoparticles at different sizes is
currently under investigation. An additional advantage
of our model is that it can be extended to steel (Fe-C)
and to transition metal alloys such as Co-Pt or Fe-Co
where magnetism is a driving force of phase stability
and chemical ordering. Lastly, a complete and precise
description of the magnetism at a microscopic level can
be developed by including non-collinear magnetism.77

This work constitutes therefore a major step in the
development of interatomic potential with a high degree
of transferability to characterize phase transformation of
magnetic transition metals.
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