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The goal of these lecture notes is to provide an informal introduction to the use of varia-
tional techniques for solving constrained optimization problems with equality constraints
and full state information. The use of the Lagrangian augmented cost function and varia-
tional techniques by which the adjoint equation and the optimality condition are found
are introduced by the use of examples starting from steady finite-dimensional problems to
end with unsteady initial-boundary value problems. Gradient methods based on sensitivity
and adjoint equation solutions are also mentioned.

1 Introduction

In many applications, one wants to drive a given system to a
desired state or to a better performance by acting on design parame-
ters or control variables. For instance, aeronautical engineers are
interested in finding the wing shape for which a prescribed pressure
distribution is obtained. They may also want to reduce the viscous
drag of a wing or of a fin by delaying transition to turbulence. To
this end, they can tailor an appropriate pressure distribution by
changing the wing shape or, for a given shape, they can use blowing
and suction at the wall to modify the boundary layer stability proper-
ties. The question here would be what is the best wing shape attain-
ing the minimum drag? And to attain the most stable boundary layer
that remains laminar up to the largest Reynolds number? Opera-
tional meteorologists run global numerical simulations of the atmos-
phere to produce weather forecasts. With time increasing, numerical
solutions deviate from the observed weather because of their sensi-
tive dependence on initial conditions. Weather prediction simula-
tions therefore need to be regularly reinitialized, taking into account
observations of the weather evolution coming from multiple data
sources such as satellites and buoys. In this case, the question is
what is the initial condition providing the numerical weather predic-
tion that best matches the observations over a selected period of
time? Similar problems exist in virtually all fields of theoretical and
applied science, ranging from, e.g., economics to epidemiology.

All these very different problems often have a common mathe-
matical structure. The system is identified by its state. In an
incompressible viscous flow for instance the system state is given
by the velocity and pressure fields in a prescribed spatial domain
and temporal interval. In numerical simulations of the flow, these
variables would be known only in a large, but finite, number of
grid points, so that the state would be given by a finite dimen-
sional vector. Similar considerations apply to weather forecasts.
The control is the set of parameters or variables trough which we
can act on the state. In the case of the drag minimization, these
could be, e.g., the distribution of wall-normal velocity that is
applied on the wing skin, or the function defining the wing shape
or may be only a single scalar denoting an amplitude of wall suc-
tion or shape change with prescribed shape. In the case of data
assimilation in numerical weather forecast, the control variable is
the initial condition given to the numerical simulation. The state
and the control variables are ruled by the state equation that can
be used to compute the state for a given control. In the cited exam-
ples, the state equation is essentially given by the Navier–Stokes
equations supplemented by appropriate initial and boundary con-
ditions. The goal of acting on the control can be often stated as a
minimization problem for the cost or performance or objective

function(al), that depends on the state and on the control of the
system. In the wing example, the objective could, e.g., be the vis-
cous total drag or the inverse of the critical Reynolds number
where the boundary layer becomes linearly unstable penalized by
a measure of the cost of the control, etc. (see, e.g., Ref. [1]). In the
meteorological data assimilation example, the objective to be
minimized is the mean deviation of the numerical predictions
from the observational data (see, e.g., Ref. [2]).

The scope of these lecture notes is to provide an informal intro-
duction to some techniques aimed at finding the optimal control that
minimizes a cost function under the constraint given by the state
equation. As the main scope here is to be pedagogical and concise,
these techniques are mainly introduced through examples. Many
good monographs already exist, as the ones in Refs. [3–7] among
others, that are more complete and rigorous than the present notes.
In the following, no proofs of existence or uniqueness of the optimal
control solution are provided and it will be implicitly assumed that
the necessary hypotheses are satisfied, ensuring that the solution
exists and can be computed. These techniques are then extended to
unsteady finite-dimensional problems in Sec. 4. In Sec. 5, after intro-
ducing the definitions of inner product and linear adjoint operator,
the Lagrangian definition and the optimality system are reformulated
in these more abstract terms. This allows to easily extend the intro-
duced optimization techniques to space-dependent problems in
Sec. 6. A brief introduction to feedback control in the case of linear
evolution problems with quadratic cost functions is provided in
Sec. 7. Some final comments are made in the last section, Sec. 8.

2 Preliminaries and Some Notation

In an (unconstrained) optimization problem the goal is to find
the system state q (which is a vector or a function or a vector field
etc.) that minimizes the real scalar cost or performance or objec-
tive J ðqÞ. The minimum of J can be attained on the boundary of
the domain of definition of the state or in internal points where,
assuming J continuous with continuous derivatives, the gradient
@J =@q necessarily vanishes1.

Many methods are available for the numerical solution of
unconstrained optimization problems and are usually classified
into gradient-based methods that require the knowledge of
@J =@q to improve the solution and gradient-free methods that
only require evaluations of J . Probably the most intuitive and
“natural” of gradient methods is the steepest descent where, given
an initial guess qð0Þ, the guess is improved by following the
direction of steepest descent in successive small steps of length k:
qðpþ1Þ ¼ qðpÞ ÿ kðpÞ @J =@qð ÞðpÞ. In many situations, however, the

1In the following, the notation @J =@q is used to denote the gradient of the

function q 7!J . Similarly, @q=@g is used to denote the Jacobian of the function

g 7! q.



convergence of this method can be quite slow if, e.g., the descent
path enters long narrow “valleys” of slow slope (see, e.g.,
Ref. [8]). Other techniques, using, e.g., conjugate gradient meth-
ods, or Newton and quasi-Newton methods, are then available to
improve the speed of convergence in those cases (again, see, e.g.,
Ref. [8]).

In unconstrained optimization, it is assumed that the state q can
be directly changed in order to reach the optimal solution. In most
situations, however, this is not possible and one can only act on a
set of control variables g. The state and the control satisfy the
state equation Fðq; gÞ ¼ 0 (state equation, evolution equation,
etc.) that can be used to determine the state for given enforced
control. The goal of constrained optimization is to minimize the
cost J ðq; gÞ by acting on g under the constraint Fðq; gÞ ¼ 0. In
the following, it is assumed that F and J and their derivatives are
continuous. The solution of the constrained problem is usually
very different from the solution of the unconstrained problem as
seen from the example below.

Example: Consider the cost function J ðq; gÞ ¼ q2 þ g2, where
the state and the control variables are scalars defined on the whole
real line. The unconstrained minimum of J is zero and is obtained
in the origin of the qÿ g plane. If the constraint Fðq; gÞ ¼ q
þ gÿ 2 ¼ 0 is enforced, then the unconstrained minimum cannot
be reached. In the qÿ g plane, the level sets of J are concentric
circles with outward increasing values, while the solution curve of
the constraint is a straight line. From Fig. 1, it is seen that the low-
est level-set (circle) intersecting the straight line is the one tangent
to the straight line. The optimal points can be found by, e.g.,
replacing the constraint in the cost function in order to have
J ½qðgÞ; g� ¼ 2g2 ÿ 4gþ 4. The minimum is found enforcing
DJ =Dg ¼ 4ðgÿ 1Þ ¼ 0 and verifying the sign of the second
order derivative, which gives the minimum constrained value
J ¼ 2 attained in g ¼ 1, q ¼ 1. Remark that in order to solve this
problem we have explicitly solved Fðq; gÞ ¼ 0 in terms of the
state variable to get qðgÞ that has then been replaced into J to
compute the total derivative DJ =Dg. In general this explicit
solution is not available (think about, e.g., F ¼ 13q7 ÿ 4g11

þ 11qg3 ÿ 17 ¼ 0). In this case one must keep as variables both q
and g in the minimization procedure. A possible solution tech-
nique (see Sec. 3.1 below) is then to compute the total derivative
of J using the chain rule DJ =Dg ¼ ð@J =@qÞðdq=dgÞ
þ ð@J =@gÞ. The sensitivity dq=dg ¼ ÿ @F=@qð Þÿ1@F=@g is found

by differentiating F ¼ 0 which gives dF ¼ ð@F=@qÞdq
þð@F=@gÞdg ¼ 0. The two equations DJ =Dg ¼ 0 and F ¼ 0 are
then solved in the two unknowns g and q to look for local
extremal points. For the present case @F=@g ¼ 1, @F=@q ¼ 1,
@J =@g ¼ 2g, @J =@q ¼ 2q, the sensitivity is dq=dg ¼ ÿ1 and
DJ =Dg ¼ 2ðgÿ qÞ, which solved with F ¼ gþ qÿ 2 ¼ 0 gives
the already found optimal J ¼ 2, g ¼ 1, q ¼ 1. We’ll see in the
following that still other solution methods exist. j

The choice made in these lecture notes is to introduce concepts
on specific cases, starting with the simplest and then extending the
ideas to more complex situations. The basic ideas and methods of
constrained optimization will therefore be introduced in Sec. 3,
dedicated to the optimization of a finite-dimensional system in the
time-independent case. The introduced concepts will then be
extended to time- and space-dependent cases.

3 Constrained Optimization in Finite-Dimensional
Time-Independent Systems

Consider the constrained optimization problem in the case
where both the state and the control variables do not depend on

time. Given the state vector q 2 R
N and the control vector

g 2 R
K , we wish to minimize the cost function J ðq; gÞ subject

to the state equation Fðq; gÞ ¼ 0 where F 2 R
N . Different

approaches to solve constrained optimization problems are intro-
duced below for this specific type of problems.

3.1 Gradient Methods Based on Sensitivity. Iterative gradi-
ent methods can be used to solve constrained optimization prob-
lem. At the p-th iteration an approximation of the optimal control
g is available. In order to compute the cost J , the state equation
must be solved and q explicitly obtained2. An improved value for
g is then obtained, at the (pþ 1)th iteration making use of the
total derivative3 DJ =Dg, i.e., the K derivatives DJ =Dgk with
k ¼ 1;…;K, where, denoting ek, the k-th vector of an orthonormal
basis g ¼ k gkek. The straightforward method to compute DJ =Dg
is to use finite difference approximations obtained incrementing
each control variable separately by a small increment Dgk (with
k ¼ 1; 2;…;K).

DJ

Dgk
�

J ½qðgþ DgkekÞ; gþ Dgkek� ÿ J ½qðgÞ; g�

Dgk
(1)

The use of Eq. (1) requires to solve the state equation for each
Dgk to get the corresponding qðgþ DgkekÞ. The computation of
DJ =Dg using this straightforward but “na€ıve” approach therefore
requires Kþ 1 solutions of the state equation. This is, however, a
problem because the most expensive part of the computations
usually is the solution of the state equation which, in general, is
nonlinear. Each solution, if solved, e.g., using a Newton method,
would require a finite number of inversions of the Jacobian matrix
@F=@q recomputed at each Newton iteration. In those cases, one
might want to numerically compute DJ =Dg using alternative
methods with a reduced number of solutions of the state equation.
In order to do that, as a first step, the chain rule is used to express
the total derivative of the cost function

DJ

Dgk
¼

@J

@q
�
dq

dgk
þ

@J

@gk
(2)

Fig. 1 Example of constrained optimization in the control-
state plane. The level-sets of the cost function J ðq;gÞ are the
concentric circles (dotted line) with outward increasing values.
Solutions satisfying the constraint F ðq;gÞ5 0 lie on the straight
(solid) line. The constrained minimum (small filled circle) is
attained in a point where the constraint curve is tangent to one
of the level sets of J .

2We consider a solution strategy where it is required that the state equation is

exactly satisfied, not only by the optimal solution, but also during any iterate needed

to reach it. However, the count is different if other strategies are used where it is not

required that F ¼ 0 during iterations.
3The derivative of the cost function J ðq; gÞ with respect to q and g considered as

independent variables will be denoted by @J =@q and @J =@g, respectively.

However, the cost function can also be considered as a composed function of g alone

J ½qðgÞ; g�, where qðgÞ is obtained from Fðq;gÞ ¼0. In this case, the derivative of the

cost function with respect to g is labeled total derivative DJ =Dg and can be

obtained with the chain rule as DJ =Dg ¼ ð@J =@qÞ � ðdq=dgÞ þ ð@J =@gÞ



where usually the derivatives @J =@q and @J =@gk are explicitly
known. If finite differences are used to compute dq=dgk, Kþ 1
solutions of the state equation would again be necessary. Instead,
one can differentiate the state equation. As F ¼ 0 for all solutions,
then DF=Dg ¼ 0 and therefore,

@F

@q

dq

dgk
þ

@F

@gk
¼ 0 (3)

The above is the sensitivity equation. The sensitivities dq=dgk can
be found solving K linear systems all needing the inversion of the
same Jacobian matrix computed for the same state.

dq

dgk
¼ ÿ

@F

@q

� �ÿ1 @F

@gk
(4)

The computation of DJ =Dg based on sensitivity therefore
requires one solution of the state equation plus K solutions of
N � N linear systems all with the same linear operator to be
inverted. In some situations, this may be more convenient than
solving K nonlinear N-dimensional systems.

3.2 Variational Formulation. Consider the simple example
already discussed in Sec. 2 where J ðq; gÞ ¼ q2 þ g2 and Fðq; gÞ
¼ gþ qÿ 2 ¼ 0. The goal of the constrained optimization is to
descend as low as possible on the J level curves while remaining
on the path given by F ¼ 0. If both J and F are continuous with
continuous derivatives, at the point where the minimum is
reached, the path is tangent4 to the level curve of the optimal J as
clearly seen in Fig. 1. This implies that in the optimal point, the
gradient of the cost function and the gradient of F are parallel,
i.e., by components in the qÿ g plane,

@J =@g
@J =@q

� �

¼ a
@F=@g
@F=@q

� �

The optimality system therefore corresponds to the above condi-
tions and the “stay-on-the-path” condition F ¼ 0, which gives a
system of three equations in the three unknowns q; g and a

@J

@g
ÿ a

@F

@g
¼ 0 (5)

@J

@q
ÿ a

@F

@q
¼ 0 (6)

F ¼ 0 (7)

For reasons that will become clear in the following, the first condi-
tion takes the name of optimality condition, while the second is
the adjoint equation.

Lagrange remarked that an “augmented” cost function
L ¼ J ÿ aF can be defined such that the optimality system of the
constrained problem coincides with the optimality system of an
unconstrained problem defined for Lðq; g; aÞ (where, q, g, and a
must be considered as independent). The function L is the
Lagrangian or augmented cost function and a is the Lagrange
multiplier or costate.

Example: For the considered simple example @J =@q ¼ 2q,
@J =@g ¼ 2g, @F=@q ¼ 1, @F=@g ¼ 1 and therefore the

conditions in Eqs. (5)–(7) read: 2gÿ a ¼ 0, 2qÿ a ¼ 0,
qþ gÿ 2 ¼ 0 that admits the solution ðg; q; aÞ ¼ ð1; 1; 2Þ for
which the minimum J ¼ 2 is attained. This is the same solution
found in Sec. 2. j

Lagrange’s approach can be generalized to the case of an N-
dimensional state vector and a K-dimensional control vector. In
that case there are N scalar components of the state equation that
have to be each one multiplied by the corresponding Lagrange
multiplier resulting in a term of the type aiFi (where Einstein con-
vention of implicit summation is used), that can be rewritten5 as
a � F where the N-dimensional costate (or Lagrange multiplier)
vector a is introduced.

Lðq; g; aÞ ¼ J ðq; gÞ ÿ a � Fðq; gÞ (8)

Extremality conditions are enforced on L by considering q, g, and
a as independent variables.

@L

@q
¼ 0;

@L

@g
¼ 0;

@L

@a
¼ 0 (9)

Using the Lagrangian definition, the above conditions can be
made explicit

@L

@qi
¼

@J

@qi
ÿ aj

@Fj

@qi
¼ 0 ði ¼ 1;…;NÞ (10)

@L

@gk
¼

@J

@gk
ÿ aj

@Fj

@gk
¼ 0 ðk ¼ 1;…;KÞ (11)

@L

@ai
¼ ÿFi ¼ 0 ði ¼ 1;…;NÞ (12)

which in vector form, denoting by T the transpose, gives

@L

@q
¼ 0 )

@F

@q

� �T

a ¼
@J

@q
ðadjoint equationÞ (13)

@L

@g
¼ 0 )

@F

@g

� �T

a ¼
@J

@g
ðoptimality conditionÞ (14)

@L

@a
¼ 0 ) F ¼ 0 ðstate equationÞ (15)

The first two vector equations are, respectively, the adjoint equa-
tion and the optimality condition, while the last is the usual state
equation.

The optimality system in Eqs. (13)–(15) can also be derived
using a variational approach that has the advantage to be directly
generalized to the case where the state and/or the control are
functions. In particular, it is required that first order variations dL
induced by small variations dq, dg, or da are zero, i.e.,
dL=dq ¼ 0, dL=dg ¼ 0 dL=da ¼ 0. Now, the variation dL
induced by, e.g., a small variation da ¼ e~a of the adjoint is, at first
order, given by the directional derivative

@L

@a
~a :¼ lim

e!0

Lðq; g; aþ e~aÞ ÿ Lðq; g; aÞ

e

which, using the Lagrangian definition in Eq. (8), gives
ð@L=@aÞ~a ¼ ÿ~a � F. Enforcing that this variation is zero 8~a
requires that F ¼ 0, i.e., that Eq. (15) is satisfied. Setting to zero
the variation of L with respect to the state gives the adjoint
Eq. (13)

4This condition of course does not apply when the constrained and the

unconstrained optimals coincide. In that case, the path goes through the

unconstrained optimal. Formally, one can think that in this case the path is tangent to

the level curve of zero diameter.

5Using the usual dot product notation a � F ¼ aiFi for the inner product of vectors

ha;Fi.



@L

@q
~q : ¼ lim

e!0

Lðqþ e~q; g; aÞ ÿ Lðq; g; aÞ

e

¼
@J

@q
� ~qÿ a �

@F

@q

� �

~q ¼
@J

@q
ÿ

@F

@q

� �T

a

" #

� ~q ¼ 0

8~q )
@J

@q
ÿ

@F

@q

� �T

a ¼ 0

while setting to zero the variation of L with respect to the control
enforces the optimality condition Eq. (14)

@L

@g
~g : ¼ lim

e!0

Lðq; gþ e~g; aÞ ÿ Lðq; g; aÞ

e

¼
@J

@g
� ~gÿ a �

@F

@g

� �

~g ¼
@J

@g
ÿ

@F

@g

� �T

a

" #

� ~g ¼ 0

8~g )
@J

@g
ÿ

@F

@g

� �T

a ¼ 0

The optimality system in Eqs. (13)–(15) is of dimension 2N þ K
and is usually nonlinear. The direct solution of the full system, the
so called one-shot method, is quite expensive in the case of large
N and/or K. Alternative methods to find a solution are therefore
discussed below.

3.3 Gradient Methods Based on the Adjoint. Let us now
briefly reconsider the gradient-based iterative methods discussed
in Sec. 2 to show that the use of the adjoint equation greatly
reduces the number of operations needed to compute DJ =Dg.
This reduction is at the core of so-called adjoint methods for con-
strained optimization.

The adjoint equation, Eq. (13), gives an expression for the
derivative of the state equations with respect to the state vector
@J =@qi ¼ ð@Fj=@qiÞaj that can be replaced in the expression of
the total derivative of the cost (see Eq. (2)) DJ =Dgk ¼ ð@J =@qiÞ
ðdqi=dgkÞ þ @J =@gk to get

DJ

Dgk
¼ aj

@Fj

@qi

dqi

dgk
þ

@J

@gk

Replacing Eq. (3) ð@Fj=@qiÞðdqi=dgkÞ ¼ ÿð@Fj=@gkÞ in the
above equation gives: DJ =Dgk ¼ ÿajð@Fj=@gkÞ þ @J =@gk that,
rewritten in vector form with the adjoint equation, gives the
equations of the adjoint method

@F

@q

� �T

a ¼
@J

@q
(16)

DJ

Dg
¼ ÿ

@F

@g

� �T

aþ
@J

@g
(17)

where usually the explicit expressions of @J =@q, @J =@g are
available. The computation of the gradient using the above
expressions requires to compute ð@F=@qÞT and ð@F=@gÞ either
analytically or, e.g., by finite differences, one solution of the state
equation and the solution of the adjoint equation, which is a
N � N linear system. This operation count makes the method of
the adjoint superior to sensitivity-based methods where K linear
systems solutions were needed. We will see in the following that
this superiority becomes a matter of debate for time-dependent
problems.

3.4 An Example: Optimal Amplification of Forcing
Supported by a Linear System. Consider the problem of a
(steady) N-dimensional linear system subject to a (steady) forcing

Luþ f ¼ 0 where we look for the f that maximizes the energy
amplification R ¼ u � u=f � f.

In this problem, the control variable is the forcing while the
state of the system is the response, i.e., g ¼ f and q ¼ u. The
dimension of the control K is therefore equal to the dimension of
the state N. One can transform the maximization problem into a
minimization problem by minimizing the inverse of R, i.e., the
ratio of the norm of the forcing to the norm of the response.6 The
problem is formalized in the following way:

Fðq; gÞ ¼ Lqþ g ¼ 0 (18)

J ðq; gÞ ¼ g � g=q � q (19)

The goal is to reach a local minimum of J acting on g. For the
present problem @F=@q ¼ L, @F=@g ¼ I (the identity matrix),
@J =@q ¼ ÿ2qðg � gÞ=ðq � qÞ2 and @J =@g ¼ 2g=ðq � qÞ, so that
the explicit optimality system in Eqs. (13)–(15) reads

@F=@q½ �Ta ¼ @J =@q ) LTa ¼ ÿ2qðg � gÞ=ðq � qÞ2 (20)

@F=@g½ �Ta ¼ @J =@g ) g ¼ aðq � qÞ=2 (21)

F ¼ 0 ) Lqþ g ¼ 0 (22)

The full optimality system is of dimension 2N þ K (in this spe-
cific case 3N as K ¼ N). Even if the state equation is linear, the
full system is not because of the cost-function. A “one-shot”
method, i.e., the direct solution of the full optimality system taken
as a whole will probably be based on modified Newton iterations,
that would require the solution of 3N � 3N linear systems at each
iteration. This is clearly not convenient and other methods must
be used, such as, e.g., gradient-based methods where the mini-
mum of J is sought using information on the total gradient
DJ =Dg or iterative methods where the equations of the optimal-
ity system are solved sequentially and not simultaneously.

Exercise: Consider solving the above problem using a gradient-
based algorithm. Detail the procedure to follow if the gradient
method is based on sensitivities and the procedure for the adjoint-
based gradient method. j

Example: The considered problem can also be solved using an
iterative method where the three equations (Eqs. (20)–(22)) are
solved sequentially. The method is initialized by giving an initial
guess on g, then the loop is:

(1) Given the p-th guess for the optimal forcing gðpÞ, compute
the corresponding response qðpÞ solving the state equation
LqðpÞ ¼ ÿgðpÞ.

(2) Compute J and its relative increment wrt the previous iter-
ation. If convergence is reached stop, if not continue.

(3) Compute the adjoint state aðpÞ solving the adjoint equation.
(4) Finally update the control vector and get gðpþ1Þ using the

optimality condition and go to No. 1.

As an application, we use this iterative method to compute the
optimal forcing energy amplification, R, supported by the system
defined by the linear operator

L ¼
ÿ1=Re 0

1 ÿ3=Re

� �

for a Reynolds number Re ¼ 40 using the sample programs
reported below. From Table 1, it is seen how the iterations con-
verge very fast to the optimal solution. The optimal forcing is

6The optimization procedure considered here should be considered as purely

pedagogical. Using the standard definition of the norm of linear operators

R ¼k ÿLÿ1 k2 and the considered problem is therefore one of computation of

vector-induced L2 matrix norm. For matrix norm computations, other highly efficient

algorithms already exists, that are, e.g., coded into the norm() functions in MATLAB,

OCTAVE, and SCILAB and are used as comparison in the exercises below.



found to be almost parallel to the vector of components
1

0

� �

,

while the optimal response is almost parallel to the vector of com-

ponents
1

0

� �

. An OCTAVE–MATLAB program for this problem is

given below.
% Define system

Rey¼40.0

L¼[ÿ1.0/Rey 0; 1–3.0/Rey]

% Exact solution using the norm function

R_exact¼(norm(inv(ÿL)))̂ 2

% Define tolerance and initialize iterations

tol¼10̂ (ÿ8);

g¼[rand; rand];% (random initial guess)

g¼g/norm(g);% (normalize)

J¼10̂ 23; dJrel¼10̂ 23; it¼0;

% Iteration loop

while (dJrel>tol)

it¼itþ1; Jold¼J;

q¼–inv(L)*g;% (solve state equation)

g2¼g0*g; q2¼q0*q;

J¼g2/q2;% (objective function)

dJrel¼abs((J – Jold)/J);

a¼ÿ2*(inv(L0)*q)*(g2)/q2̂ 2;%(solve adjoint equation)

g¼a*q2/2.0; % (enforce optimality eq.)

g¼g/norm(g);% (normalize)

end% (end of iteration loop)

% optimal amplification

R¼1.0/J;

% print results

it, R% (final iteration and amplification)

g% (optimal forcing (defined up to a constant)

q % (optimal response)

The same program translated in SCILAB is:
// Define system

Rey¼40.0

L¼[ÿ1.0/Rey 0; 1–3.0/Rey]

// Exact solution using the norm function

R_exact¼(norm(inv(ÿL)))̂ 2

// Define tolerance and initialize iterations

tol¼10̂ (ÿ8);

g¼[rand(); rand()];

g¼g/norm(g); // (normalize)

J¼10̂ 23; dJrel¼10̂ 23; it¼0;

// Iteration loop

while (dJrel>tol)

it¼itþ1; Jold¼J;

q¼–inv(L)*g; // (solve state equation)

g2¼g0*g; q2¼q0*q;

J¼g2/q2; // (objective function)

dJrel¼abs((J–Jold)/J);

a¼ÿ2*(inv(L0)*q)*(g2)/q2̂ 2;//(solveadjointequation)

g¼a*q2/2.0; // (enforce optimality eq.)

g¼g/norm(g); // (normalize)

end // (end of iteration loop)

// optimal amplification

R¼1.0/J;

// print results

it, R // (final iteration and amplification)

g // (optimal forcing (defined up to a constant)

q // (optimal response) j

Exercise: Repeat the analysis of the above example for values
of Re ranging from Re ¼ 1 to Re ¼ 1000. Can you find an asymp-
totic scaling for RðReÞ? j

Exercise: Implement a steepest descent method for the example
above where the gradient is computed using the adjoint method.
Compare the results to the ones obtained above. j

4 Variational Formulation of Constrained
Optimization for Finite-Dimensional Time-Dependent
Problems (ODEs)

The variational formulation based on the Lagrangian, discussed
in the previous section for steady problems, can be extended with-
out major difficulties to time-dependent problems. Consider an
initial value problem (IVP) for a system of ordinary differential
equations (ODEs) dq=dt ¼ Nðq; g; tÞ defined for t 2 ½0;T� with
initial condition qð0Þ ¼ q0. In this case, there are two types of
constraints: the one that enforces the evolution equation
Fðq; g; tÞ ¼ dq=dtÿ Nðq; g; tÞ ¼ 0 and the one that enforces the
initial condition F0ðq;q0Þ ¼ qð0Þ ÿ q0 ¼ 0. The Lagrangian
appropriate to the present case is

L ¼ J ÿ

ðT

0

ða � FÞdtÿ b � F0 (23)

where the costate aðtÞ, which is a function of time and uses an inner
product that includes the time variable, ensures that the evolution
equation is respected 8t 2 ½0; T�. The second Lagrange multiplier
b, which is not a function of time and uses the inner product with-
out the time variable, ensures that the initial condition is enforced
at t ¼ 0. The optimality system is, as usual, obtained by setting to
zero the variation of the Lagrangian with respect to all variables
considered as independent. dL=da ¼ 0 and dL=db ¼ 0 will
enforce the evolution equation and the initial condition respec-
tively, while the adjoint equation will be derived from dL=dq ¼ 0
and the optimality condition from dL=dg ¼ 0. The meaning of
these conditions will be illustrated in the following examples.

Different problem types can be defined depending on the nature
of the control (continuous forcing, initial condition, etc.) and the
choice of the cost function. Below, two simple examples are con-
sidered: (a) The computation of the maximum temporal energy
amplification of a linear system, where the control variable is the
initial condition. (b) The computation of the optimal continuous
forcing, applied in ½0; T�, needed to drive the final state qðTÞ near
to the desired target p.

4.1 Optimal Temporal Energy Growth. Consider an
unforced evolution equation dq=dt ¼ NðqÞ and the optimal tem-
poral energy amplification GðTÞ which is the ratio of the “output”
energy [the energy of the response at the final time qðTÞ� to the
input energy (the energy of the initial condition q0). The control
variable is the initial condition g ¼ q0. One can transform the
maximization problem into a minimization problem by minimiz-
ing the inverse of G. The optimization problem can therefore be
formalized in the following way:

F ¼
dq

dt
ÿ NðqÞ ¼ 0 (24)

F0 ¼ qð0Þ ÿ g ¼ 0 (25)

J ðq; gÞ ¼ ðg � gÞ=ðqðTÞ � qðTÞÞ (26)

where the goal is to reach a local minimum of J acting on the
initial condition g. Specializing the Lagrangian definition to this
specific case (see, e.g., Ref. [9])

Table 1 Convergence history of the optimal forcing example

It. R g1 g2

1 12,106 0.63127 0.77556
2 28,622 0.99969 0.024857
3 28,622 0.99969 0.024853



Lðq; g; a;bÞ ¼ J ðq; gÞ ÿ

ðT

0

a �
dq

dt
ÿ NðqÞ

� �

dtÿ b � qð0Þ ÿ g½ �

(27)

Optimality conditions are obtained by setting to zero the variation
of the Lagrangian with respect to q, g, a, and b. Setting to zero the
variation wrt the costate (the “field” Lagrange multiplier) requires
that

@L

@a
~a ¼ lim

e!0

Lðq; g; aþ e~a;bÞ ÿ Lðq; g; a;bÞ

e
¼ 0; 8~a

which, using Eq. (23), enforces that

ðT

0

~a �
dq

dt
ÿ NðqÞ

� �

dt ¼ 0

which is satisfied 8~aðtÞ only if the evolution equation
dq=dtÿ NðqÞ ¼ 0 is satisfied 8t 2 ½0;T�. The condition
dL=db ¼ 0 similarly leads to ~b � qð0Þ ÿ g½ � ¼ 0, which is satisfied
8~b only if qð0Þ ¼ g. The condition dL=dq ¼ 0 requires that

lim
e!0

Lðqþ e~q; g; a;bÞ ÿ Lðq; g; a;bÞ

e
¼ 0; 8~q

that it is easily found to correspond to

@J

@qðTÞ
� ~qðTÞ ÿ

ðT

0

a �
d~q

dt
ÿ
@N

@q
~q

� �

dtÿ b � ~qð0Þ ¼ 0

that must be satisfied 8~q. Integrating by parts the first term of the
integrand and rearranging the linear operator product under
integration

@J

@qðTÞ

� �

� ~qðTÞ ÿ aðTÞ � ~qðTÞ ÿ að0Þ � ~qð0Þ½ �

ÿ

ðT

0

ÿ
da

dt
ÿ

@N

@q

� �T

a

" #

� ~qdtÿ b � ~qð0Þ ¼ 0

As @J =@qðTÞ ¼ ÿ2qðTÞðg � gÞ=ðqðTÞ � qðTÞÞ2, it is therefore
finally found that

ÿaðTÞ ÿ 2qðTÞ
g � g

ðqðTÞ � qðTÞÞ2

" #

� ~qðTÞ

þ að0Þ ÿ b½ � � ~qð0Þ ÿ

ðT

0

ÿ
da

dt
ÿ

@N

@q

� �T

a

" #

� ~qdt

which is satisfied 8~q only if (a) the adjoint evolution equation
is satisfied ÿda=dt ¼ @N=@qð ÞTa for t 2 ½0;T�, (b) the initial
condition (for backward in time integration) on the adjoint equa-
tion is given as aðTÞ ¼ ÿ2qðTÞðg � gÞ=ðqðTÞ � qðTÞÞ2, and (c) b is
retrieved as the final state of the backward-in-time adjoint integra-
tion b ¼ að0Þ. The condition dL=dg ¼ 0 requires that

lim
e!0

Lðq; gþ e~g; a;bÞ ÿ Lðq; g; a;bÞ

e
¼ 0; 8~g (28)

Making explicit the condition, it is easily found that

@J

@g

� �

� ~gþ b � ~g ¼ 0; 8~g (29)

which is satisfied 8~g only if @J =@g½ � ÿ b ¼ 0 As @J =@g
¼ 2g=qðTÞ � qðTÞ; the optimality condition reads

g ¼ b
qðTÞ � qðTÞ

2
(30)

The Lagrange multiplier b can be eliminated and the full optimal-
ity system reads

dq

dt
¼ NðqÞ; qð0Þ ¼ g (31)

ÿ
da

dt
¼

@N

@q

� �T

a; aðTÞ ¼ ÿ2qðTÞ
g � g

ðqðTÞ � qðTÞÞ2
(32)

g ¼ að0Þ
qðTÞ � qðTÞ

2
(33)

The first line is the state equation (evolution equation) and the
associated initial condition. The second line is the adjoint problem
and the third is the optimality condition. The problem stated in the
first line is an initial value problem for qðtÞ with initial condition
given in t ¼ 0, while the adjoint problem is an initial value prob-
lem that must be integrated backward in time starting from the ini-
tial (from this perspective) condition aðTÞ. The main source of
difficulty for this type of problems is that the Jacobian @N=@q
being in general a function of q, to solve the adjoint equation
backward in time, the whole function qðtÞ must be known. In nu-
merical computations, this difficulty is translated into the require-
ment of large storage capabilities for the whole time history of
qðtÞ. To reduce this storage problem one may, e.g., interpolate q
between somehow large temporal intervals Dt or, e.g., integrate
again the direct equations in each one of these intervals, which
will reduce the storage requirements at the price of roughly dou-
bling the required CPU time7. For this type of problem, adjoint-
based methods are therefore not necessarily superior to sensitivity
based approaches (but this is, actually, a matter of debate).

Exercise: For the specific problem of optimal transient growth
an iterative method, similar to the one used in the second exercise
of the previous section, can be used where the three equations of
the optimality system are solved sequentially. The method is ini-
tialized by giving an initial guess on g, then the loop is as follows:

(1) Given the p-th guess gðpÞ, compute the solution of the state
equation integrating it forward in time from t ¼ 0 to t ¼ T
with initial condition qð0Þ ¼ gðpÞ.

(2) Compute J and its relative increment. If convergence is
reached, stop, else continue.

(3) Use qðTÞ to compute aðTÞ and integrate the adjoint system
backward in time from t ¼ T to t ¼ 0.

(4) Use að0Þ to update the control using the optimality condi-
tion and get gðpþ1Þ. Then go to No. 1.

Apply this algorithm to compute the optimal transient growth
for the linear problem dq=dt ¼ Lq with

L ¼
ÿ1=Re 0

1 ÿ3=Re

� �

Find Gmax ¼ maxTGðTÞ for Re ranging from Re ¼ 1 to
Re ¼ 1000. Can you find an asymptotic scaling for GmaxðReÞ? A
sample OCTAVE–MATLAB program is given below:

% Define system

Rey¼400.0

T¼200.0

L¼[ÿ1.0/Rey 0; 1–3.0/Rey]

% Exact solution using the norm function

G_exact¼(norm(expm(L*T)))̂ 2

% Define tolerance and initialize iterations

7This latter technique is called “check-pointing” and is widely used (see, e.g.,

Ref. [10]).



tol¼10̂ (ÿ8);

g¼[rand; rand];% (random initial guess)

J¼10̂ 23; dJrel¼10̂ 23; it¼0;

% Iteration loop

while (dJrel>tol)

it¼itþ1; Jold¼J;

Pdir¼expm(T*L);% (propagator from 0 to T)

qT¼Pdir*g;% (solve state equation forward in time)

g2¼g0*g; qT2¼qT0*qT;

J¼g2/qT2;% (cost function)

dJrel¼abs((J–Jold)/J);

aT¼ÿ2*qT*(g2)/qT2̂ 2;% (IC for adjoint equation)

Padj¼inv(expm(T*L0));%(adjointpropagatorfromTto0)

a0¼Padj*aT;

g¼a0*(qT2/2.0);% (optimality equation)

g¼g/sqrt(g0*g);% (normalize)

end

% end of iteration loop

% print results

G¼1.0/J;

it, G

g % optimal initial condition

qT% optimal response

The propagator from t ¼ 0 to t ¼ T and the adjoint backward
propagator from t ¼ T to t ¼ 0 have been explicitly computed
here but that this is not necessary as a simple integration using a
time-stepper of, respectively, the state equation forward in time
and the adjoint equation backward in time could have been used.
This second approach, that, under certain conditions, can be used
also in the case where L depends on t, is implemented in this
SCILAB program.

//**********************************;

//* F U N C T I O N S *

//**********************************;

// State equation rhs

function [f]¼StateForw(t,q,L);

f¼L*q

endfunction;

//**********************************;

// Adjoint equation rhs

function [f]¼AdjntBack(t,a,L);

f¼L0*a

endfunction;

//**********************************;

//* M A I N P R O G R A M *

//**********************************;

// Define system

Rey¼400.0

T¼200.0

L¼[ÿ1.0/Rey 0; 1–3.0/Rey]

// Exact solution using the norm function

G_exact¼(norm(expm(L*T)))̂ 2

// Define tolerance and initialize iterations

tol¼10̂ (ÿ8);

g¼[rand(); rand()]; // (random initial guess)

J¼10̂ 23; dJrel¼10̂ 23; it¼0;

// Iteration loop

while (dJrel>tol)

it¼itþ1; Jold¼J;

// forward integration of evolution eq

q0¼g; [qT]¼ode(q0,0,T, list(StateForw, L));

g2¼g0*g; qT2¼qT0*qT;

J¼g2/qT2;

dJrel¼abs((J–Jold)/J);

// backward integration of adjoint eq

aT¼ÿ2*qT*(g2)/qT2̂ 2;

[a0]¼ode(aT,T,0,list(AdjntBack,L));

g¼a0*(qT2/2.0);// enforce the optimality equation

g¼g/sqrt(g0*g); // normalize

end

// end of iteration loop

// print results

G¼1.0/J;

it, G

g // optimal initial condition

qT // optimal response

// end of program j

4.2 Drive to a Final Target State by Time-Dependent
Forcing. Consider now the problem of driving the final state qðTÞ
as close as possible to the desired target p using a control continu-
ously applied to the rhs of the evolution ODE system
dq=dt ¼ fðq; g; tÞ, where the initial condition qð0Þ ¼ q0 is given.
A cost function including the cost of the control is

J ¼
1

2
½qðTÞ ÿ p� � ½qðTÞ ÿ p� þ

c2

2

ðT

0

ðg � gÞdt (34)

where the weight c2 is chosen so as to put the desired respective
emphasis on the final target objective (small values of cÞ or on the
cost of the control (large values of c)8.The Lagrangian is defined
in the usual way

L ¼ J ÿ

ðT

0

a �
dq

dt
ÿ fðq; g; tÞ

� �

dtÿ b � qð0Þ ÿ q0½ � (35)

The optimality system is found, as usual, by enforcing zero varia-
tion of L:

dq

dt
¼ fðq; g; tÞ ðstate eq:Þ (36)

qð0Þ ¼ q0 (37)

ÿ
da

dt
¼

@f

@q

� �T

a; ðadjoint eq:Þ (38)

aðTÞ ¼ qðTÞ ÿ p (39)

g ¼ ÿ
1

c2
@f

@g

� �T

a ðoptimality cond:Þ (40)

Exercise: Derive the optimality system in Eqs. (36)–(40) j

Example: Imagine that you have just arrived, for the holidays,
in a wonderful wooden red-painted Swedish holiday house which
is of course very cold after your too long absence. Your goal is to
drive the house to the target temperature H at time T. The cost of
energy has largely increased and you are also very conscious
about the necessity to limit CO2 emissions. The question is there-
fore: is there a way to minimize the energy consumption by using
an optimal temporal distribution of the heating? Assume that, in
the absence of (control) heating, the heat exchange with the envi-
ronment is proportional to the temperature difference with the
external temperature he and that the applied heating is propor-
tional to the input power gðtÞ via a constant B. Assuming a con-
stant heat capacity and defining the state of the system as
qðtÞ ¼ hðtÞ ÿ he, the state equation is

8It is possible to also tune the weight to each of the components of the deviation

from the target and of the cost of the control defining cost functions of the type

ðqðTÞ ÿ pÞ �QqðqðTÞ ÿ pÞ, g �Qgg with symmetric definite positive Qs.



dq

dt
¼ ÿAqþ Bg; qð0Þ ¼ q0 (41)

The cost function, defined as

J ¼
1

2
½qðTÞ ÿ p�2 þ

c2

2

ðT

0

g2dt (42)

is a combination of the desired target performance and the cost of
the heating. It is your task to find the right balance between your
desire to precisely reach the desired target temperature and the
energetic cost you are ready to put in it. Of course, one expects
that low values of c2 will result in better targets but also in larger
mean g consumption. The optimality system in Eqs. (36)–(40) in
the present case is

dq

dt
¼ ÿAqþ Bg; qð0Þ ¼ q0 (43)

da

dt
¼ Aa; aðTÞ ¼ qðTÞ ÿ p (44)

g ¼ ÿ
B

c2
a (45)

For this scalar linear problem, it is easy to find the exact solution
of this system9. If, for instance, one assumes that at t ¼ 0 the
house has the outside temperature, i.e., q0 ¼ 0, then the solution is

gopt

p
¼

AB

c2

� �

eAt

AeAT þ
B2

c2
sinhðATÞ

qopt

p
¼

B2

c2

� �

sinhðAtÞ

AeAT þ
B2

c2
sinhðATÞ

Consider, for instance, the case A ¼ B ¼ 1, p ¼ 1, and T ¼ 6, for
which the optimal control law, state evolution, and final state are
reported in Fig. 2 for the selected value of c2. Two properties of
the solution can be easily remarked. First, as T ¼ 6 is larger than
the characteristic cooling time of the house, the optimal control
action is mostly concentrated near the end of the temporal interval
to avoid a useless energy waste if applied too early. Second, if a
small weight is put on the control cost, then the target temperature
if almost reached at T (e.g., � 95% of the target is reached when
c2 ¼ 10ÿ2). However, for larger weights of the control cost, the
final state can be far from the desired target (e.g., less than � 40%
of the target is reached when c2 ¼ 1).

As it is relatively rare that an exact solution is accessible to cal-
culus, let us consider, for illustrative purposes, the numerical solu-
tion of the optimality system. An iterative method can be used
where, for a given approximated control law, first the state equa-
tion is solved forward in time, to get the state, then the adjoint (or
costate) equation is solved backward in time. The new costate is
finally used to update the control law and go to the next iteration.
As the state equation is linear in the state variable, the Jacobian
does not depend on the state and therefore, in this special case,
there is no need to store the whole state qðtÞ to solve the adjoint
equation. However, the knowledge of the whole control function

gðtÞ and therefore costate aðtÞ in ½0;T� is necessary to solve the
state equation during iterations. Also, as the simple iterative
solution does not converge for small values of c2, the control
update is under relaxed using the factor a, as exemplified in the
SCILAB code reported below. Using this program, it is found that
the iterative solution converges, with the relative variation of J
dropping below � 10ÿ6, in less than � 16 iterations and the con-
verged solution compares well to the exact solution.

//**********************************;

//* F U N C T I O N S *

//**********************************;

// Returns the rhs state equation;

function [rhs]¼StaEqnRHS(tloc, q, g, A, B);

rhs¼ÿA*qþB*g;

endfunction;

//**********************************;

// Returns the rhs of the adjoint;

function [rhs]¼AdjEqnRHS(tloc, a, A);

rhs¼A*a

endfunction;

Fig. 2 Example of optimal control to reach target state p ¼ 1 at
T ¼ 6 for different values of the control cost parameter c

2. Top
panel: optimal control laws gðtÞ, middle panel optimal state
evolution qðtÞ. Bottom panel dependence of the final state qðT Þ
on the control cost parameter c2.

9Replacing the optimality condition in the state equation a linear system is found

in the / variable with components / ¼
g

a

� �

, whose solution is easily found in

terms of the initial conditions q0 and a0. The initial condition on the costate a0 can

then be expressed in terms of q0 and p, by using aðTÞ ¼ qðTÞ ÿ p. This finally gives

the complete solution for the state and the costate. The control can then be easily

found using the optimality condition.



//**********************************;

//* M A I N P R O G R A M *

//**********************************;

// Here we give a value to the parameters

// and choose the initial conditions

A¼1.0, B¼1.0 // coefficients of the equation

q0¼0.0 // initial condition

p¼1.0 // target temperature

T¼6.0 // target time

gam2¼0.01 // weight of control cost cˆ2

maxiter¼15 // iterations

Nt¼200 // retained time samples

a¼min(0.5,gam2) // relaxation factor

for j¼1:Nt;

t(j)¼(j – 1)*T/(Nt – 1); // time grid

end;

g¼0.0*t; //initialize to zero the control;

// perform iterations up to maxiter

for iter¼1:maxiter

// Integrate state eqn forward in time;

q [1]¼q0; // give IC;

for j¼2:Nt;

// local time interval and local IC

t_i¼t(j – 1); t_f¼t(j); q_i¼q(j – 1);

// local control in the time interval:

gloc¼0.5*(g(j)þg(j – 1));

// integrate forward and store solution in q_f

[q_f]¼ode(q_i,t_i,t_f,list(StaEqnRHS, gloc, A B));

q(j)¼q_f;

end

// compute cost of control and total cost

g2int¼0.5*g (1)̂ 2þsum(g(2:Nt – 1)̂ 2)þ0.5* g(Nt)̂ 2;

Jg(iter)¼0.5*gam2*(T/(Nt – 1))*g2int;

J(iter)¼0.5*(q(Nt) – p)̂ 2þJg(iter);

// Integrate the adjoint equations backward in time

//enforce IC (at T) for backward integration

a(Nt)¼(q(Nt) – p);

for j¼Nt – 1:–1:1;

// local time interval

t_i¼t(jþ1); t_f¼t(j); a_i¼a(jþ1);

// integrate backward and store solution in a_f

[a_f]¼ode(a_i,t_i,t_f,list(AdjEqnRHS, A));

a(j)¼a_f;

end

// Enforce optimality cond. using under-relaxation;

g¼(1 – a)*gþ a*(–B/gam2)*a;

// and plot the result of the current iteration;

// Plot q(t) and g(t);

xset(“window”,0);

xtitle(“State and control”, ‘t’, ‘q and g’);

plot2d(t0,q0,style¼3); plot2d(t0,g0,style ¼2);

// Plot a(t);

xset(“window”,1); xtitle(“Costate”, ‘t’, ‘a’);

plot2d(t0, a0,style¼1);

end // end of the iteration loop

// Compare to exact solutions computed for q0¼0;

DEN¼(A*exp(A*T)þ(B̂ 2/gam2)*sinh(A*T));

q_ex¼p*(B̂ 2/gam2)*sinh(A*t)/DEN;

g_ex¼p*(A*B/gam2)*exp(A*t)/DEN;

xset(“window”, 3); clf();

xtitle(“q versus q_ex”, ‘t’, ‘q’);

plot2d(t0,q_ex0, style¼ÿ3); plot2d(t0,q0, style¼3);

xset(“window”,4); clf();

xtitle(“g versus g_ex”, ‘t’, ‘g’);

plot2d(t0,g_ex0,style¼ÿ2); plot2d(t0, g0, style¼2);

// Print cost function history and convergence

for iter¼2:maxiter

dJrel(iter)¼abs(1.0 – J(iter – 1)/J(iter));

end

[[1:maxiter]0 J dJrel] j

Exercise: Find the optimality system for the problem

dq

dt
¼ ÿAqþ Bg; qðt ¼ 0Þ ¼ q0 (46)

in the case where the final desired target state is enforced as a con-
straint qðTÞ ¼ p and where the cost function is

J ¼
1

2
J g ¼

ðT

0

g2dt (47)

Design an iterative method to solve this problem and compare the
solution to the solution found in the example above. Describe and
comment the results. j

Exercise: Consider the problem of the drive of a vehicle to the
target speed p at T using the control gðtÞ on the power input in the
presence of aerodynamic-type drag

dq

dt
¼ ÿAq2 þ Bg; qðt ¼ 0Þ ¼ q0 (48)

Write the optimality system in the case where the cost function is
defined as

J ¼
1

2
½qðTÞ ÿ p�2 þ

c2

2

ðT

0

g2dt (49)

Numerically compute the solution using an iterative method. Can
you comment the results? Does the final solution depend on the
initial guess? j

5 Inner Product and Adjoint Operators

In many optimization problems, the state is not an N-dimen-
sional vector but a function of a real variable, say a spatial
coordinate. To easily extend the variational methods discussed
in previous sections to this case, we first need to partially
reformulate them in more “general” terms. The dot product of
two vectors will, e.g., be seen as their inner product, while a
transposed matrix will be seen as the adjoint of the original
matrix.

Given the vector space V, an inner product (also known as sca-
lar product) is defined as a functional associating to each couple
of vectors u; v 2 V a scalar denoted by hu; vi, called the inner or
scalar product of u and v. The inner product must have the follow-
ing properties: (a) hv; ui ¼ hu; vi�, (b) hu; avi ¼ ahu; vi, 8a 2 C,
(c) hu; vþ wi ¼ hu; vi þ hu;wi, (d) hu; ui � 0; hu; ui ¼ 0 ,
u ¼ 0 where� denotes the complex conjugate.
A vector space V endowed with an inner product is an Euclid-

ean space. Given the linear operator L mapping an Euclidean
space V in itself, the operator L†, adjoint of L is defined by the
property

8u; v 2 V: hu;Lvi ¼ hL†u; vi (50)

As an example, consider the vector space of N-dimensional real
vectors where the inner product is defined as the standard dot
product hp; qi :¼ p � q ¼ pjqj (it can be easily verified that this
definition respects all the properties of inner products). In this
space, linear operators are associated to standard N � N matrices.
To find the adjoint of the linear operator M, associated to an
N � N matrix, we apply the definition given in Eq. (50): hp;Mqi
¼ piðMijqjÞ ¼ ðMijpiÞqj ¼ ðMT

jipiÞqj ¼ hMTp; qi. The adjoint of a
linear operator associated to a real matrix is its transpose:
M† ¼ MT .



Exercise: Consider the space of N-dimensional complex vectors
for which one can define p; qh i :¼ p� � q ¼ p�j qj (where

�denotes
the complex conjugate). Given the linear operator defined by the
complex matrix M show that its adjoint M† is the complex conju-
gate transpose of M. j

The optimal design and control formulations described up to
this point can be reformulated in terms of inner products and
adjoint operators, e.g., in the static constrained optimization case
the Lagrangian can be defined as L ¼ J ÿ ha;Fi and the equation
for the adjoint reads hð@J =@qÞ; ~qi ÿ ha; ð@F=@qÞ~qi ¼ 0. Using
the definition of the adjoint: hð@J =@qÞ; ~qi ÿ hð@F=@qÞ†a; ~qi ¼ 0
and therefore ð@J =@qÞ ÿ ð@F=@qÞ†a ¼ 0, which explains why
the equation was called an “adjoint” equation.

This formalism can be easily extended to the case where the
state is not an N-dimensional real vector but a real function of a
real variable, say x. In this case, the discrete index j of the vector
components is replaced by the continuous variable x, and summa-
tions on the index j are replaced by integrals in dx. Considering
the space V of functions f ðxÞ defined for x 2 ½a; b�, the following

standard inner product is defined hp; qi ¼
Ð b

a
pðxÞqðxÞdx. In a

static optimization problem involving a state function qðxÞ satisfy-
ing a state equation in all points of the domain of definition, the
Lagrangian will therefore be defined as usual as L ¼ J ÿ a;Fh i,
where now it is understood that the costate is also a function of
space aðxÞ and that the inner product is a spatial integration.

As an example of linear operator mapping functions of space
into functions of space consider the first order x-derivative
L ¼ ð@=@xÞ with boundary condition qðaÞ ¼ 0. To compute the
adjoint of L, starting from the definition Eq. (50), we use the
explicit definition of the inner product in terms of an integral

p;
@q

@x

� �

¼

ðb

a

p
@v

@x
dx ¼ pq½ �baÿ

ðb

a

@p

@x
qdx

¼ pðaÞqðaÞ ÿ pðbÞqðbÞ þ ÿ
@p

@x
; q

� �

After integration by parts two terms arise: an inner field term and
a boundary contribution. The adjoint will therefore be defined by
the formal adjoint (the operator under the integral) plus appropri-
ate adjoint boundary conditions that must “kill” the boundary
terms. In our case, the formal adjoint is L† ¼ ÿð@=@xÞ and, as
qðaÞ ¼ 0, the adjoint field p must satisfy the adjoint boundary
condition pðbÞ ¼ 0 in order to keep to zero the contribution of the
boundary terms.

Exercise: Find the adjoint of the first order derivation operator
d=dx defined on ½0; k� on a vector space of periodic functions f ðxÞ
satisfying the periodic boundary conditions f ðkÞ ¼ f ð0Þ. j

We proceed as before considering now the operator
L ¼ ð@2=@x2Þ always using the standard inner product hp; qi
¼

Ð b

a
pðxÞqðxÞdx. A double integration by parts gives

p;
@2q

@x2

� �

¼ p
@q

@x
ÿ
@p

@x
q

� �b

a

þ
@2p

@x2
; q

� �

In the interior domain, therefore, L† ¼ @2=@x2. The adjoint
boundary conditions are found by setting to zero the boundary
terms. If the boundary conditions on L are for instance qðaÞ ¼ 0,
qðbÞ ¼ 0 then the boundary conditions on the adjoint are
pðaÞ ¼ 0, pðbÞ ¼ 0 and the operator is self-adjoint because not
only L† ¼ L, but also the boundary conditions of L† are the same
of the BC of L.

6 Constrained Optimization in Systems Depending on
Space and Time (PDE Systems)

Using the inner product and adjoint concepts introduced in the
previous section, some easy examples of extension of the varia-

tional optimization approach to space-dependent problems are
now considered. We will see that the almost trivial part of the
extension consists in replacing the dot-products of the finite-
dimensional case with integrations in space. However, this is not
all, and additional Lagrange multipliers need to be introduced in
order to take into account boundary conditions. Also, a new type
of control, not considered up to now, consists in applying control
via the boundary conditions.

6.1 An Example: Optimal Growth for the Nonparallel
Ginzburg–Landau Model. Consider the following linear Ginz-
burg–Landau initial value problem

@q

@t
¼ rðxÞqÿ U

@q

@x
þ l

@2q

@x2
; qðx; t ¼ 0Þ ¼ q0ðxÞ (51)

where rðxÞ ¼ r0 ÿ r2x
2=2 and r2 > 0 and U; l; r0; r2 2 R. The

state of the system qðx; tÞ is defined in x 2� ÿ1;1½ and it is
assumed that limx!61 q ¼ 0 and that hq; qi is finite (and a similar

conditions for the derivatives) with, as usual, hp; qi :¼
Ð1
ÿ1

pðxÞqðxÞdx. The state equation of the system can be rewritten as
F ¼ @q=@tÿ Gq ¼ 0 where

G ¼ rðxÞI ÿ U
@

@x
þ l

@2

@x2

We now consider the same problem considered in Sec. 4.1 of find-
ing the optimal initial condition maximizing the energy transient
growth a time T: GðTÞ ¼ hqðx;TÞ; qðx;TÞi=hq0ðxÞ; q0ðxÞi where
the control is the initial condition gðxÞ ¼ q0ðxÞ. As usual, the
maximization problem is transformed into a minimization prob-
lem using

J ðq; gÞ ¼ 1=GðTÞ ¼ hgðxÞ; gðxÞi=hqðx;TÞ; qðx;TÞi (52)

The variational formulation proceeds in the usual way, but now
explicitly using the inner product formulation in the definition of
the Lagrangian:

L ¼ J ÿ

ðT

0

a;
@q

@t
ÿ Gq

� �

dtÿ hb; qðx; 0Þ ÿ gðxÞi (53)

The optimality system is found following the same kind of
procedure already followed in Sec. 4.1. The analogous of
Eqs. (31)–(33) is retrieved

@q

@t
¼ Gq; ðstate eq:Þ (54)

qðx; 0Þ ¼ gðxÞ (55)

ÿ
@a

@t
¼ G†a; ðadjoint eq:Þ (56)

aðx;TÞ ¼ ÿ2qðx;TÞ
hgðxÞ; gðxÞi

hqðx;TÞ; qðx;TÞi2
(57)

gðxÞ ¼ aðx; 0Þ
hqðx; TÞ; qðx; TÞi

2
ðoptimality cond:Þ (58)

Using the definition of adjoint and proceeding with the usual inte-
gration by parts, it is easily found that

G† ¼ rðxÞI þ U
@

@x
þ l

@2

@x2
(59)



where the costate multiplier aðxÞ must go to 0 for x ! 61. The
numerical solution of this type of problem is usually obtained by
first discretizing in space the variables and the operators. In this
case, the continuous state variable qðx; tÞ is replaced by the vector
of, e.g., its values in some selected grid points ðqÞjðtÞ ¼ qðxj; tÞ.
The iterative method described in Sec. 4.1 can then be used to
numerically solve this system.

Exercise: Compute the optimal transient growth and the optimal
response to static forcing supported by the linear Ginzburg–Landau
problem Eq. (51) in the finite domain x 2 ½ÿX;X� using homogene-
ous boundary conditions for q in x ¼ ÿX and x ¼ X. Initially con-
sider the case with U ¼ 6, l¼1, r2¼0.1, X¼100, and a set of values
for r0. Discretize the problem by considering the discrete state vec-
tor qðtÞ whose components are the values qðxj; tÞ on the grid points
xj ¼ ÿX þ 2Xj=ðNxÞ with j ¼ 1;…;Nxÿ 1 (the points on the
boundary are not included in the state vector). Then, discretize the
spatial derivatives with the finite difference centered formulae

@q=@xjj ¼ ½qðxjþ1Þ ÿ qðxjÿ1Þ�=ð2DxÞ

@2q=@x2jj ¼ ½qðxjþ1Þ ÿ 2qðxjÞ þ qðxjÿ1Þ�=ðDxÞ
2

where Dx ¼ 2X=Nx. Implement the usual iterative solutions of the
optimality system. Discuss the results by comparing them to the
ones of Ref. [11]. j

6.2 Another Example: Boundary Control of the Linear
Ginzburg–Landau Model. In this second example, the emphasis
is on the use of the boundary conditions to control the solution of
an initial-boundary-value-problem. Consider the Ginzburg–Lan-
dau model Eq. (51) defined in a finite spatial domain x 2 ½a;b�
and supplemented with an “upstream” boundary condition given
by the control variable and an homogeneous “downstream”
boundary condition

@q

@t
¼ rðxÞqÿ U

@q

@x
þ l

@2q

@x2

qðx; t ¼ 0Þ ¼ q0ðxÞ; qða; tÞ ¼ gðtÞ; qðb; tÞ ¼ 0

The goal of the optimization is to reduce the norm of the solution
q at time T by the control applied at the upstream boundary. The
cost function here is a weighted combination of the target (mini-
mum norm of q at time T) and of the cost of the control

J ¼
1

2
hqðx; TÞ; qðx; TÞi þ

c2

2

ðT

0

g2ðtÞdt (60)

with the usual definition hp; qi ¼
Ð b

a
pðxÞqðxÞdx. The Lagrangian

is built using the two additional multipliers caðtÞ, cbðtÞ necessary
to enforce the boundary conditions in x ¼ a and x ¼ b, in addition
to the usual multipliers aðx; tÞ (the costate) and bðxÞ

L ¼ J ÿ

ðT

0

ha;
@q

@t
ÿ Gqidtÿ hb; qðx; 0Þ ÿ q0i

ÿ

ðT

0

ca½qða; tÞ ÿ gðtÞ�dtÿ

ðT

0

cbqðb; tÞdt (61)

As usual, setting to zero the variation of L with respect to the
Lagrange multipliers enforces the state equation and the associ-
ated initial and boundary conditions. The remaining adjoint equa-
tions and the optimality conditions are explicitly derived below.

The condition dL=dq ¼ 0 gives

hqðx; TÞ; ~qðx;TÞi ÿ

ðT

0

a;
@~q

@t
ÿ G~q

� �

dtÿ hb; ~qðx; 0Þi

ÿ

ðT

0

ca~qða; tÞdtÿ

ðT

0

cb~qðb; tÞdt ¼ 0; 8~q

Integrating by parts in space and time gives

hqðx; TÞ; ~qðx;TÞi þ haðx; 0Þ; ~qðx; 0Þi ÿ haðx; TÞ; ~qðx;TÞi

þ

ðT

0

ÿUa~qþ la
@~q

@x
ÿ l

@a

@x
~q

� �b

a

dtÿ

ðT

0

~q;ÿ
@a

@t
ÿ G†a

� �

dt

ÿ hb; ~qðx; 0Þi ÿ

ðT

0

ca~qða; tÞ þ cb~qðb; tÞ
� �

dt ¼ 0; 8~q

and collecting terms

hqðx; TÞ ÿ aðx;TÞ; ~qðx;TÞi þ haðx; 0Þ ÿ b; ~qðx; 0Þi

ÿ

ðT

0

ÿ
@a

@t
ÿ G†a; ~q

� �

dtþ

ðT

0

ÿUa~qþ la
@~q

@x
ÿ l

@a

@x
~q

� �b

a

dt

ÿ

ðT

0

ca~qða; tÞ þ cb~qðb; tÞ
� �

dt ¼ 0; 8~q

The first three terms require that

ÿ
@a

@t
¼ G†a; aðx;TÞ ¼ qðx;TÞ; bðxÞ ¼ aðx; 0Þ

The boundary terms under temporal integration are

lab
@~q

@x

�

�

�

�

b

þ Uaþ l
@a

@x
ÿ c

� �

a

~qða; tÞ

ÿ laa
@~q

@x

�

�

�

�

a

ÿ Uaþ l
@a

@x
ÿ c

� �

b

~qðb; tÞ

which, setting the variations to zero 8~q requires that aðb; tÞ ¼ 0,
aða; tÞ¼ 0, caðtÞ¼Uaða; tÞþl½@a=@x�ða; tÞ, and cbðtÞ¼ÿUaðb; tÞ
ÿl½@a=@x�ðb; tÞ and therefore

aðb; tÞ ¼ 0;aða; tÞ ¼ 0; caðtÞ ¼ l
@a

@x
ða; tÞ; cbðtÞ ¼ ÿl

@a

@x
ðb; tÞ

The condition dL=dg ¼ 0 gives

c2
ðT

0

gðtÞ~gðtÞdtþ

ðT

0

caðtÞ~gðtÞdt ¼ 0; 8~g

which gives the optimality condition

gðtÞ ¼ ÿcaðtÞ=c
2

The full optimality system is therefore given by

@q

@t
¼ Gq; qðx; 0Þ ¼ q0ðxÞ; qða; tÞ ¼ gðtÞ; qðb; tÞ ¼ 0 (62)

ÿ
@a

@t
¼ G†a; aðx; TÞ ¼ qðx; TÞ; aða; tÞ ¼ 0; aðb; tÞ ¼ 0

(63)

gðtÞ ¼ ÿ
l

c2
@a

@x
ða; tÞ (64)

No need to mention that this system can be solved using iterative
techniques.

Exercise: Find the optimality system for the boundary control
of the nonlinear real Ginzburg–Landau equation defined by
@q=@t ¼ NðqÞ with

NðqÞ ¼ Gqÿ vq3 ¼ rðxÞqÿ U
@q

@x
þ l

@2q

@x2
ÿ vq3 j



Exercise: Find the optimality system for the control by additive
forcing of the linear real Ginzburg–Landau equation defined by
@q=@t ¼ Gqþ g with homogeneous boundary condition for q in
x ¼ a and x ¼ b. j

6.3 A Quick Tour of the Derivation of Adjoint Linearized
Navier–Stokes Equations in Primitive Variables. Consider the
Navier–Stokes equations for an incompressible viscous flow
defined in the spatial domain X with boundary @X and in the time
interval ½0;T�:

r � u ¼ 0 (65)

@u=@tþ ðruÞuÿ �r2uþrp ¼ 0 (66)

supplemented by appropriate initial and boundary conditions. The
continuity (first) equation is scalar and derives from the mass
conservation, while the second is a vector equation deriving from
momentum conservation. The state of the system is given by the
velocity and pressure fields uðx; tÞ, pðx; tÞ.

In the definition of the Lagrangian, to guarantee that the mass
and momentum conservation are respected 8t, Eqs. (65) and (66)
are projected on the two Lagrange multipliers u†ðx; tÞ and p†ðx; tÞ
that take the role of the adjoint velocity and pressure fields respec-
tively. By “project” we mean that an inner product is performed,
where the inner product of real scalar fields is defined by
Ð

X
vðxÞrðxÞdX and the inner product of real vector fields is defined

by
Ð

X
v � rdX.

The usual integration by parts used to extract the adjoint opera-
tors generates field terms in X and boundary terms on @X. Con-
sider, e.g., the part of L given by the projection of Eq. (65) on

p†ðx; tÞ:
Ð

X
p†ðr � uÞdX. The first variation of this term with

respect to the state generates a term of the type
Ð

X
p†ðr � ~uÞdX.

Considering that p†ðr�~uÞ¼p†ð@~ui=@xiÞ¼ð@p†~ui=@xiÞÿ~uið@p
†=@xiÞ

¼r�ðp†~uÞÿ~u�rp†, the integral is found to be

ð

X

p†ðr � ~uÞdX ¼

ð

X

r � ðp†~uÞdXÿ

ð

X

~u � rp†dX

The use of the divergence theorem, which is the “integration by
parts” applying to this case, gives

ð

X

p†ðr � ~uÞdX ¼

ð

@X

p†~u �~ndXÿ

ð

X

~u � rp†dX

The first term will give a condition on p† on the boundary @X,
while the second term under integral gives the adjoint pressure
gradient ÿrp† that will appear in the adjoint of the momentum
conservation equation.

As an example, consider the problem of distributed control
of the Navier–Stokes equations10 with homogeneous boundary
conditions

r � u ¼ 0

@u=@tþ ðruÞuÿ �r2uþrp ¼ g

uðx 2 @X; tÞ ¼ 0; uðx; t ¼ 0Þ ¼ u0ðxÞ
ð

X

pdX ¼ 0

where the distributed control g is applied in order to force the sys-
tem to approach the desired state ðUÞ and the following penalized
functional is considered:

J ¼
1

2

ðT

0

ð

X

juÿ Uj2dXdtþ
c21
2

ð

X

juÿ Uj2t¼TdX

þ
c22
2

ðT

0

ð

X

jgj2dXdt

For this problem, it is found that the adjoint equations are

r � u† ¼ 0

ÿ @u†=@tþ ðruÞTu† ÿ ðru†Þuÿ �r2u† ÿrp† ¼ uÿ U

u†ðx 2 @X; tÞ ¼ 0;u†ðx; TÞ ¼ c21ðuÿ UÞ
ð

X

p†dX ¼ 0

and the optimality condition reads

g ¼ ÿu†=c22 (67)

The expression of the adjoint operator is not surprising: first order
derivatives (gradient terms) have changed sign, while second-
order derivatives have not; the adjoint equation and its initial con-
dition at t ¼ T contain source terms that are proportional to the
deviation from the target and would go to zero when the target of
the optimization is attained.

7 Feedback Control of Linear Systems With
Quadratic Cost-Functions

For unsteady problems, the optimal control approach to the reg-
ulation problem discussed, e.g., in Sec. 4.2, has two important
shortcomings that can limit its application to a range of practical
situations. First, the computed optimal control law gðtÞ depends
on the specific initial condition q0 assigned to the problem. This is
a problem because a virtually infinite number of control laws must
be in principle stored if one wants to take into account all possible
initial conditions, not to mention the fact that the full temporal
history of the control must be stored. Second, in the design of the
control law gðtÞ it is assumed that the full temporal history of the
full state qðtÞ is available for all t 2 ½0; T�. Accessing this com-
plete history for different “scenarios” of control in order to find
the optimal one can, however, be too demanding for a wide range
of applications. Two very legitimate questions are therefore: can
an effective (even if probably more expensive) control law be
found using only the current state information? If yes, can this law
be made independent of time, at least in time invariant systems,
and still provide effective control? In some types of system, the
answer to these questions is yes, under some condition, and the
used approach is that of feedback control.

Consider, e.g., the simple linear time invariant (LTI) scalar sys-
tem dq=dt ¼ Aq with the scalar A > 0 and the time interval
t 2 ½0;1½. The solution qðtÞ ¼ q0e

At to the initial value problem
with initial condition qð0Þ ¼ q0 diverges exponentially with
growth rate A, and this for almost all admissible initial conditions.
Consider now the goal of driving to zero, at least for t ! 1, the
state qðtÞ and to reduce as much as possible the cost function
J ¼

Ð1
0

qðtÞ2dt using an additive linear control term. In this case,
the evolution equation becomes dq=dt ¼ Aqþ Bg with, say
B > 0. An optimal control, like the one considered in Sec. 4.2,
can be designed to drive to zero the state as t ! 1. However, the
same result can be reached using a simple linear feedback control
g ¼ ÿKq where the control is in opposition to the state with gain
K. The evolution equation becomes dq=dt ¼ ðAÿ BKÞq with so-
lution qðtÞ ¼ q0e

ðAÿBKÞt. The solution is stabilized for sufficiently
large control gains K > Bÿ1A. In this easy example, therefore, a
time independent linear feedback control law is able to drive the
state to zero (which is the objective of the control) with a control
based only on information on the present state (and not of its past10This example is taken from Ref [7], p. 77.



or future history). The control law is furthermore effective for all
possible initial conditions.

The simple example can be generalized to N-dimensional linear
systems with quadratic cost functions (LQ systems), where the
state equation and the zero cost-gradient condition, being linear,
have unique solutions

dq

dt
¼ Aqþ Bg; qð0Þ ¼ q0 (68)

J ðq; gÞ ¼
1

2

ðT

0

q �Qqþ c2g � g
ÿ �

dt (69)

It is assumed that Q is symmetric definite positive and that B has
maximum rank. Proceeding in the usual way, the Lagrangian is
defined as

L ¼ J ÿ

ðT

0

a �
dq

dt
ÿ Aqÿ Bg

� �

dtÿ b � qð0Þ ÿ q0½ �

and the optimality system formed by the state and adjoint evolu-
tion equations and the optimality condition is found to be

dq

dt
¼ Aqþ Bg; qð0Þ ¼ q0 (70)

ÿ
da

dt
¼ ATaþQq; aðTÞ ¼ 0 (71)

g ¼ ÿ
1

c2
BTa (72)

Exercise: Derive Eqs. (70)–(72). j

Replacing the optimality condition (last equation) in the state
equation (first) the structure of the optimization problem is shown
to be the linear coupled direct-adjoint system

dq

dt
¼ Aqÿ

1

c2
BBTa; qð0Þ ¼ q0 (73)

da

dt
¼ ÿATaÿQq; aðTÞ ¼ 0 (74)

For optimal solutions satisfying this system, stating that the cos-
tate is linearly related to the state via a ¼ Xq is equivalent to stat-
ing that the feedback law is linear via g ¼ ÿKq. Indeed, replacing
the linear feedback law into the optimality condition of Eq. (72),
it is found that K ¼ BHX=c2. The optimal linear feedback control

law K can be therefore computed from X. Differentiating wrt to
time the relation a ¼ Xq and then using Eqs. (73)–(74), the fol-
lowing Riccati equation for X is found:

ÿ
dX

dt
¼ XAþ ATXþQÿ

1

c2
XBBTX; XðTÞ ¼ 0 (75)

that must be integrated backward in time starting from T. Taking
the transpose of Eq. (75), it is easily seen that if X is a solution,
then XT is also a solution of the equation. The solution XðtÞ
allows us to design the optimal feedback control law KðtÞ. As
mentioned, however, in many applications, storing the whole tem-
poral history of the N � N operator KðtÞ can be not practical or
unaffordable. If the time horizon goes to infinity (T ! 1), under
some conditions, it can be proved that the solution of the differen-
tial Riccati equation converges to the steady real, symmetric solu-
tion X1 of the algebraic Riccati equation

X1Aþ ATX1 þQÿ
1

c2
X1BBTX1 ¼ 0 (76)

Standard methods exist to compute solutions of the algebraic
Riccati equation and are implemented in standard software such
as OCTAVE, SCILAB, and MATLAB. Once X1 is known, the time-
independent feedback operator is easily computed.

Example: Consider the following LQ problem with:

A ¼
ÿ1=Re 0

1 ÿ3=Re

� �

; B ¼
1 0

0 1

� �

; Q ¼
1 0

0 1

� �

We have already seen that the linear operator A defines a stable
system that, however, can sustain large transient energy growths
for sufficiently large Re. In the following, we will consider, e.g.,
Re ¼ 100. We want to verify what is the effect of a Riccati-based
optimal feedback control on transient growths supported by this
system. The SCILAB program below is used to solve the algebraic
Riccati equation associated to this system and compute the (time-
constant) Riccati-based feedback matrix K for selected values
c ¼ 1000; 100; 10, and 1. To quantify the ability of Riccati-based
feedback control to reduce the worst-case transient growths, the
optimal transient growth is computed on the closed-loop con-
trolled system whose evolution equation is given by

dq=dt ¼ ðAÿ BKÞq

From the results reported in Fig. 3, it is seen that the optimal tran-
sient growth is reduced by more than one half even for the very
large value of the control cost c ¼ 1000. For c ¼ 100, i.e., assum-
ing that the energy of the control costs c2 ¼ 104 times the energy
of the controlled state, the maximum transient growth is reduced
by a factor larger that 102 and it is almost completely suppressed
for c ¼ 10. Optimal Riccati-based feedback control is therefore
quite effective in reducing worst-case transient growths in stable
non-normal linear systems. Similar results, complicated by the
issue of state observations and that the control is limited to the
boundary, have been obtained, e.g., in the case of plane Poiseuille
flow, where the system is given by the linearized Navier–Stokes
equations [12,13].

// define system

Rey¼100

A¼[ÿ1/Rey, 0; 1, ÿ3/Rey]

B¼[1, 0; 0, 1]

Q¼[1, 0; 0, 1]

gam¼1000

// solve Riccati equation

R¼B0*B/gam̂ 2;

X¼riccati(A, R, Q, ‘c’, ‘schur’)

// compute feedback matrix

Fig. 3 Example of Riccati-based feedback control of a non-
normal linear stable system supporting transient energy
growths. The optimal transient growth GðT Þ of the uncontrolled
system (solid line, black) is compared to the controlled cases
Riccati-based feedback for decreasing values of the cost
parameter c. For large values of c the optimal transient growth
is reduced and it is completely suppressed when c is lowered
enough. For, e.g., c5 10, Gmax 5 1.



K¼B0*X/gam̂ 2

// linear modal stability of uncontrolled system

spec(A)

// optimal transient energy growth of uncontrolled

// system is the L2 norm of exp(At)

Nt¼200; t¼linspace(0,3*Rey,Nt);

for j¼1:Nt;

Gfree(j)¼norm(expm(A*t(j)))̂ 2;

end

Gfreemax¼max(Gfree)

// linear modal stability of controlled system

spec(A – B*K)

// optimal transient energy growth of controlled

// system is the L2 norm of exp((A – BK)t)

for j¼1:Nt

Gcont(j)¼norm(expm((A – B*K)*t(j)))̂ 2;

end

Gcontmax¼max(Gcont)

plot2d(t,[(Gfree),(Gcont)])

// end of program j

Exercise: Consider the system defined in the above example.
Compute and plot the curves GmaxðReÞ for Re ranging from 10 to
1000, for the controlled systems obtained for c ¼ 1000; 100; 10,
and 1 and compare them to the uncontrolled case curve. For each
one of these cases, plot the curve of the raw control cost
Jg ¼ ð1=2Þ

Ð T

0
g � gdt computed for the worst case initial condition

realizing the maximum transient growth, Gmax. Plot the results as
a curve JgðcÞ for the selected RE. j

Exercise: Consider now the LQ problem defined by

A ¼
2 0

0 ÿ1

� �

; B ¼
1 0

0 1

� �

; Q ¼
1 0

0 1

� �

where the uncontrolled system is unstable. Modify the SCILAB pro-
gram given in the example above to solve the algebraic Riccati
equation associated to this system and compute the (time-
constant) Riccati-based feedback matrix K for the following
selected values of the control cost weight parameter
c ¼ 1000; 100; 10, and 1. Analyze the linear stability of the con-
trolled system and comment on the results. Compute also which is
the worst case initial condition realizing the maximum energy
growth and, for this initial condition, compute Jg ¼ 1

2

Ð T

0
g � gdt.

Consider the JgðcÞ dependence and comment on the results. j

8 Conclusion

In these lecture notes, a very informal introduction to con-
strained optimization techniques has been given. The specific con-
sidered case has been the one of equality constraints and
differentiability has been (implicitly) assumed on the constraints,
the functional, the state, and control variables. Many of these
assumptions can be relaxed without major difficulties, but this
goes beyond the scope of the these lecture notes.

Other important issues have also been ignored here. For
instance, the system we want to control may be not controllable in
the sense that a part of the admissible states of the system may not
be accessible under any admissible control law. This is a problem,
e.g., in iterative methods, if the convergence path crosses one of
these regions. In addition, in finding optimal control laws it has
been assumed that information about the full state is available.
This is rarely the case in practical fluid dynamics applications
where only an “output” y ¼ Yðq; gÞ is accessible. In this case, the
state needs to be estimated from the knowledge of y, which of
course sets the problem of observability of a state, i.e., to know if
all allowed states can be identified from the knowledge of y and g.
Moreover, the system’s uncertainty has been ignored. In real sys-
tems, noise enters the system as an additional input in addition to

the control law, and noise can pollute the observations of the sys-
tem y. Furthermore, the parameters or the coefficient of the state
equation itself can be subject to uncertainty. In this context, it is
very important to design a control that is robust to these different
uncertainties, i.e., that does not lead to undesired outcomes
because of them. A quite complete theoretical framework
addressing all these issues exists in the case of linear systems with
quadratic cost functions and Gaussian noise. We refer the reader
to the excellent monographs dedicated to these issues, such as,
e.g., Ref. [6].

Many of the difficulties mentioned above, such as a lack of con-
trollability or observability of some states, often derive from the
fact that the choice of the control type, of the type and location of
the measures of the state providing the observation vector and of
the cost function, has been made without a proper understanding
of the physics of the considered system or without taking it into
account when posing the optimization problem. If, e.g., you want
to drive a house to a desired temperature in a cold winter and you
look for an optimal control law to minimize the energy consump-
tion (see Sec. 4.2), the problem will have no solution if, e.g., the
maximum available heating power is not able to overcome the
natural cooling of the house, which technically would arise as
uncontrollability of the system. Also, the optimal control will
probably fail if you do not take into account system uncertainties
such as someone leaving randomly the entrance door open, or if
using a sensor-based control, the thermometer is placed outside
the house (unobservability) or near the heater (poor observability)
or near the entrance door that you leave often open (random input
much larger than state or control input). These considerations
also apply to fluid dynamics applications. Consider, e.g., the
case where one wants to stabilize a given basic flow against a
convective instability, which essentially amplifies downstream
perturbations that enter the flow upstream. In such a case, one
would, e.g., put actuators upstream of the domain where the
cost function is defined. Not doing so would result in trivial
uncontrollability.

Another type of problem which has not been taken into account
is the one of model reduction. In fluid dynamic applications, the
dimension of the state vector can quickly become exceedingly
large if, e.g., considering large domains or complex geometries or
even moderately large Reynolds numbers. This leads to optimiza-
tion procedure whose cost could be too large for practical applica-
tions, even with the most advanced and efficient control
algorithms. Model reduction, in some situations can be a remedy
to this problem. The main idea of model reduction is to expand
the state into a linear combination of basis functions
qðx; tÞ ¼

PM
j¼1 q̂jðtÞ/jðxÞ where the dimension M is smaller than

the problem dimension N. An efficient model reduction requires
that one is sufficiently smart (or lucky) to be able to find a “good”
type of functions and order them in a “good” way, so as to be able
with a (relatively) small M to design a control law able to suffi-
ciently approach the optimal J . This reduced system approach
of course would, e.g., require the definition of a reduced state
equation, but leads to large computational gains. By now, model
reduction is a well-developed, almost autonomous field by its
own, which is still an active field of research, with well-
developed techniques such as the proper orthogonal decomposi-
tion (based on the empirical orthogonal eigenfunctions, see,
e.g., Ref. [14]), balanced truncation (see, e.g., Refs. [6,15]),
Koopman modes (see, e.g., Ref. [16]), etc. Of course, in addi-
tion to model reduction, other techniques are available to bypass
excessively costly standard optimization procedures applied to
large systems typical of fluid dynamics applications (see, e.g.,
Ref. [17]).
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