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Abstract

We present VISUALHINTS, a novel environment for multi-
modal reinforcement learning (RL) involving text-based in-
teractions along with visual hints (obtained from the environ-
ment). Real-life problems often demand that agents interact
with the environment using both natural language informa-
tion and visual perception towards solving a goal. However,
most traditional RL environments either solve pure vision-
based tasks like Atari games or video-based robotic manipu-
lation; or entirely use natural language as a mode of interac-
tion, like Text-based games and dialog systems. In this work,
we aim to bridge this gap and unify these two approaches
in a single environment for multimodal RL. We introduce
an extension of the TextWorld cooking environment with the
addition of visual clues interspersed throughout the environ-
ment. The goal is to force an RL agent to use both text and
visual features to predict natural language action commands
for solving the final task of cooking a meal. We enable vari-
ations and difficulties in our environment to emulate various
interactive real-world scenarios. We present a baseline multi-
modal agent for solving such problems using CNN-based fea-
ture extraction from visual hints and LSTMs for textual fea-
ture extraction. We believe that our proposed visual-lingual
environment will facilitate novel problem settings for the RL
community.

1 Introduction
Reinforcement Learning (RL) methods (Sutton and Barto
1998) learn action policies for agents to achieve a given task
by maximizing a guiding reward signal. Recently, there has
been great interest in the RL community in using deep learn-
ing (DL) based methods, following up on the success of deep
RL (Mnih et al. 2015; Schulman et al. 2015) in vision-based
high dimensional environments like Atari (Bellemare et al.
2013; Brockman et al. 2016) and Mujoco (Todorov, Erez,
and Tassa 2012). Similarly, RL methods are increasingly be-
ing used to solve real-world problems involving sequential
decision making from natural language descriptions. Typ-
ical applications in this domain include text-based game
agents (Narasimhan, Kulkarni, and Barzilay 2015; He et al.
2016; Yuan et al. 2018), chatbots (Serban et al. 2017), and
personal conversation assistants (Dhingra et al. 2017). While
these methods focus either on purely image-based or purely
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text-based observations respectively, there is a lack of meth-
ods that address joint multimodal learning from both these
domains. In this paper, we present a visual-lingual environ-
ment to facilitate action policy learning via multimodal RL.

Humans interact with their environments using various
modalities of input. For example, let us say that a person
wants to drive up to a certain location. For that purpose, they
use visual inputs for determining the direction of navigation
from a map. However, an announcement on the car radio
warns of traffic congestion on the designated route. In this
situation, humans can replan and find the new optimal path
(with respect to time) using multiple input modalities. How-
ever, previous environments for RL primarily provide obser-
vations from a single input modality – either image or text.
For such RL methods to generalize and scale to real-world
applications, it is necessary to handle multimodal inputs for
solving the required task. The target environment should be
such that both the textual and visual modalities are required
to solve the problem; unimodal input is not enough to solve
the problem successfully.

Our goal is to develop an environment that provides both
image and text information for agents to interact with. There
are many real-world applications for such environments.
One of them is chatbots in online shopping websites that
can use pictures and textual descriptions from the user to
enhance their ability to advise the customer and to carry
on a conversation in a natural way. Another example is in
construction areas, where agents have to move equipment or
materials following the verbal instructions of the foreman,
and a map of the construction site. These examples show the
necessity of building agents that can extract and relate tex-
tual and visual clues; prioritize them; and use them at the
right time.

In this work, we present VISUALHINTS, a visual-lingual
environment for multimodal, natural interactions. Such in-
teractions should help agents build representations of the
environment’s state faster and more accurately than a uni-
modal approach. In this work, we have expanded the natu-
ral language problem to a problem that couples both natural
language and vision. We used Cooking Game, a text-based
game (TBG) generated by TextWorld (Côté et al. 2018) (a
sandbox developed by Microsoft) as our base environment;
we added visual clues to this base. A visual clue is a help-
ful hint that agents can very likely expect from humans in
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You are hungry! Let' s cook a delicious 
meal. Check the cookbook in the 
kitchen for the recipe. Once done,
enjoy your meal! You find yourself in a 
driveway. An usual kind of place. You
start to take note of what' s in the room.
There is a closed glass door leading 
east. There is an exit to the west. Don't
worry, there is no door. There is a hint 
on the floor.

Textual observation

AGENT

Visual observation

Only Textual
Observation

Command:
Examine hint
(activates visual

observation)

1. Go west (Penalty on “street”)
2. Go south (Dead-end)
3. Go north (retracing)
4. Go east (back to starting room)
(above process can repeat with no memory)

Unimodal (text-only) action commands

1. Open glass door (use text+vision) 
2. Go east (use vision) 
3. Go south (use vision)
4. Go east (use vision)
5. Go south (reached kitchen) 

Multimodal (text+vision) action commands

Only Textual
Observation

Only Visual
Observation

+

Figure 1: An overview of our VISUALHINTS environment. The agent starts at the “driveway” where it only receives the textual
observation. From this textual observation, the agent can issue the command “examine hint” to obtain the visual hint shown on
the top-right. If the agent does not use the visual hint and simply tries to use textual observation, then it is likely to venture in
a wrong path “driveway”→“street”→“supermarket” due to partial observability. Using both text and visual observation (after
picking up the hint), the agent has a better context to reach the “kitchen”. However, our environment design necessitates both
visual and textual information, which requires solving novel problem settings compared to existing works for multimodal RL.

real-world interaction contexts. We decided to impose two
constraints on the visual clues: (i) preservation of the partial
observability of the environment (to maintain the nature of
the game as a Partially Observable Markov Decision Pro-
cess (POMDP)); and (ii) different levels of granularity with
respect to the visual indicators (to reveal smaller or larger
parts of the environment).

To meet the above constraints for the VISUALHINTS envi-
ronment, we generated maps for all the preexisting Cooking
Games in the form of a floor plan; with textual indications
(clues) that allow each map to be interpreted, and for which
the difficulty level can be set. The map-clue (visual-lingual)
pair allows us to encode varying degrees of abstract infor-
mation, ranging from a factual and spatial description of the
environment to a reward oriented description of the game.
The agent thus has to learn the interactive meaning between
vision and text to obtain reliable information. No previous
work on TBGs has considered such a setting: we therefore
developed a program that encapsulates TextWorld’s games,
and generates clues and maps related to each game. We
have also built a baseline agent that can use a multimodal
approach to solve the game. This agent combines a tex-
tual module inspired by the work of Adolphs and Hofmann
(2019) and a visual module that we have designed ourselves
to analyze the floor plan.
The main contributions of this paper are:

• We introduce VISUALHINTS, a visual-lingual environ-
ment for multimodal reinforcement learning that requires
inputs from both textual and visual components of the in-
put observation. Our proposed visual hints are generaliz-
able and can be generated automatically across domains.
In this paper, we show the Cooking Games task from

TextWorld with different structures of the visual hints.

• We propose a baseline agent for solving the Cooking
World task of preparing and eating a meal that can use
both textual input using LSTM features, and visual indi-
cations using CNNs to successfully solve a problem.

• We analyse how the visual model interacts with the input
image to understand a map and its topology based on a
pre-training task.

The paper is organized as follows. We first present the design
of VISUALHINTS, a multimodal learning environment using
the image and textual observations in the context of a Par-
tially Observable Markov Decision Process (POMDP). We
present the architecture of a baseline multimodal agent with
an Advantage Actor Critic (A2C) based model-free algo-
rithm to solve such a problem. We then explain our method-
ology to build the map and the puzzle; to train the visual part
of the model; and to train the full model. Following this, we
analyze the results of pretraining the visual module of the
agent. Finally, we evaluate the baseline multimodal agent
in comparison with previous state-of-the-art text-only meth-
ods.

2 Related Work
Given the nature of our contribution, we examine related
works along the two modalities that we consider: text-based
games and image-based interactive environments.

2.1 Text-Based Games
LSTM-DQN (Narasimhan, Kulkarni, and Barzilay 2015)
was the first work to tackle text-based games using RL;
it uses deep Q-learning-based reinforcement learning to



jointly learn state representations and action policies using
game rewards as feedback. The Textworld (Côté et al. 2018)
framework enabled the generation of many different con-
figurations of text-based games. Using this framework, text
descriptions can be mapped into vector representations that
capture the semantics of game states. LSTM-DQN assumed
some structure in the output command setting; this was tack-
led by DRRN (Deep Reinforcement Relevance Network) by
addressing a natural language action space for generating ac-
tion commands (He et al. 2016). This method uses separate
embedding vectors for action and state spaces: an interaction
function combines them for input to the Q-function module.

LSTM-DRQN (Yuan et al. 2018) is one of the state-of-
the-art methods for the TextWorld Coin Collector domain:
it was proposed in order to address the issue of partial ob-
servability. This method processes textual observations for
the recurrent policy to generate a vector representation that
estimates Q-values for all verbs Q(s, v) and objects Q(s, o).
This work also proposes discovery bonuses for generalizing
better on unseen games. There were two types of bonuses:
a cumulative counting bonus which gradually converges to
0; and an episodic discovery bonus which encourages only
first-time discovery of unseen states.

There are some prior efforts (Fulda et al. 2017; Za-
havy et al. 2018) that deal with pruning action tokens
which do not agree with the current state’s context; this
brings about accelerated convergence of the RL agent. Fulda
et al. (2017) proposed a method for affordance extraction
via word embeddings trained on a Wikipedia corpus: they
showed that previously intractable search spaces can be
efficiently navigated when word embeddings are used to
identify context-dependent affordances. AE-DQN (Action-
Elimination DQN)—which is a combination of a Deep
RL algorithm with an action eliminating network for sub-
optimal actions—was proposed by Zahavy et al. (2018).
The action eliminating network is trained to predict invalid
actions, supervised by an external elimination signal pro-
vided by the environment. More recent methods (Adolphs
and Hofmann 2019; Ammanabrolu and Riedl 2018; Am-
manabrolu and Hausknecht 2020; Yin and May 2019; Ad-
hikari et al. 2020) use different heuristics to learn better state
representations for efficiently solving complex TBGs.

2.2 Image-Based Interactive Environments
In the past couple of years, there has also been a proliferation
of environments that focus on the visual modality, and rep-
resent the environment in terms of an image or video feed.
Examples of such environments include AI2-THOR (Kolve
et al. 2017), Habitat (Savva et al. 2019), ALFRED (Shrid-
har et al. 2020), and AllenAct (Weihs et al. 2020). These
environments typically feature an agent that is situated in
a home-like environment, and must accomplish tasks by
using its perception capabilities. However, these environ-
ments have a fixed set of action commands to choose from
based on the visual observation and scenario. For example,
near the object “TV”, the interactive commands are limited
and structured, e.g. turn on or turn off. Additionally, some
of these environments offer the agent the ability to sub-
sample the space in a specific modality: for e.g., agents in

Figure 2: Example of visual hints with various distance of
puzzle values.

AI2-THOR can choose to receive state information purely
as text-based logical state descriptors, thus greatly cutting
down on the complexity of the inherent task. In contrast, our
environment provides natural language action commands
that are much more difficult to handle due to the large ac-
tion space. Moreover, we make sure that for games in our
environment, both visual and textual modalities are required
in order to arrive at a solution; this is not guaranteed by the
other environments.

3 Problem Setting: Multimodal RL
Text-based games (TBGs) are sequential decision-making
problems that we aim to solve using model-free RL algo-
rithms. These environments form POMDPs (Partially Ob-
servable Markov Decision Processes) because the agent re-
ceives partial information about its surroundings from the
environment. In this paper, we aim to add visual information
in the form of a map of the environment to help the agent in
its quest to solve the game. In a typical Cooking World TBG
with a map, the POMDP is defined by (S,A, T,Ω, O,R, γ);
where S is a non-empty finite set of possible states of the
system to be controlled, A is the Action space, i.e., the non-
empty finite set of actions that can be performed to control
the system. In our case, we have natural language action
commands which are a combination of Verbs × Adjectives
×Nouns. T : S×S×A→ [0; 1] is the transition function of
the system (which we do not know in a model-free setting);
and Ω is a set of observable symbols. O denotes the obser-
vation, which is a part of the state that is observed by the
agent. Typically in TBGs, only a textual descriptionOtextt of
the world forms the observation; whereas in visual environ-
ments like Atari, only image-based observations Oimaget are
obtained. In VISUALHINTS, we necessitate that both visual
and textual information be used for action command gener-
ation. Thus, we define a policy π : Otextt , Oimaget → At that
generates trajectories in this environment. The goal of mul-
timodal RL is to find a policy π by maximizing the expected
reward J(π) = Eτ∼π[

∑
t∈τ γ

trt].

4 The VISUALHINTS Environment
As shown in Figure 1, our VISUALHINTS environment pro-
vides a visual clue along with a short hint text, which can be
used for the multimodal RL setting described in Section 3.
Such multimodal observations can give information to the



agent to efficiently explore and solve the game. We add var-
ious modes in our VISUALHINTS environment that we de-
scribe in detail in the following section.

While performing correct action command prediction is
paramount for solving RL tasks, it is also important in real-
world applications to learn what action commands should
not be generated to prevent fatally dangerous situations. To
simulate this effect, we have added the notion of “death
rooms”, which are rooms that lead to the death of the agent,
with large negative rewards. These rooms are similar in spirit
to the notion of “dead end” states that make a problem
“probabilistically interesting” (Little and Thiebaux 2007).
Such death rooms can also be placed on the direct path be-
tween the source and destination rooms in the environment,
in which case the agent has to find an alternative route that
may not be the shortest path, but is safe.

A game begins with some information on the board,
which the agent has to read by issuing the “read board” com-
mand. The board indicates the presence and location of the
death room. The board is always placed in the first room to
ensure that the player always has a chance to know where
the death room is before encountering it. Somewhere during
the course of the game, the agent finds a hint which is made
up of textual and visual information (floor layout) as shown
in Figure 1. The text gives some information on how to in-
terpret the map. For instance, the agent can find this map
alongside a textual clue: ’take the ingredients in the kitchen,
the supermarket, and cook in the kitchen, and avoid the death
room which is the bathroom’. In the example of Figure 2, the
player is in the living room. The death room is in red, and
the pathway leading to the cooking location is in green.

4.1 Generating Hints from TextWorld
We use the cooking games used by Adolphs and Hofmann
(2019) as the base games upon which we add the visual hints
for multimodal RL. In order to implement the automatic and
general addition of visual hints and textual clues to the ex-
isting textual observation space, we create an extra layer be-
tween the agent and the TextWorld game. The visual hints
are generated alongside textual clues. A total of 7 differ-
ent modes can be tuned to automatically generate the map,
which we describe here.

Distance of Puzzle This mode controls the distance be-
tween the room where the hint is found and the primary
destination (the cooking location). This emulates the diffi-
culty of learning the visual component of the RL model. A
high value would correspond to high difficulty in learning
the navigation commands, whereas a low value would cor-
respond to a simpler learning setting. Figure 2 shows varia-
tions on this factor.

Death Room Another decision factor in the environment
is the presence of the death room. It is possible that a death
room may not be added to a specific game instance: for ex-
ample, if the game has only one room, or if all rooms are
necessary to arrive at a solution. Adding a death room emu-
lates the factor of safety in real-world tasks, and makes the
final task more difficult to achieve.

Figure 3: Architecture of the CNN-LSTM based visual ob-
servation parsing module of the agent.

Color Path This allows for the coloring of the path be-
tween the agent’s current location (the location where the
hint is found) and the primary goal (the cooking location).
This helps the RL agent by providing a color-based visual
guide that would be otherwise difficult to obtain.

Name Type These following options enable the control of
the visualization of each individual room for the sake of giv-
ing control to the learning type.

• literal: the established name of the room (‘pantry’,
‘kitchen’)

• random_numbers: the name of a room is a random
number (all rooms have different numbers)

• room_importance: the name of a room is a number
denoting the importance of that room in that specific game

– 1 if it is the primary goal (the cooking location)
– 2 if it is a secondary goal (contains an ingredient)
– 0 otherwise

Draw Passages This option determines whether passages
(open or closed) are drawn between adjacent rooms on the
map. If this information is provided, the agent can obtain
all of the required navigational information purely from the
visual hint; otherwise, the agent will need to read the corre-
sponding text as well in order to find out which direction is
accessible.

Draw Player This option determines whether the agent’s
location on the map is included as part of the visual hint.

Clue First Room This setting forces the clue to be placed
in the first room, irrespective of the value of “distance of
puzzle”. This reduces the effort the agent has to spend in
searching for the hint during the initial stages without any
visual signal.
Along with the visual hint, two text-based clues are also pro-
vided: one at the beginning that explains where the death
room is located; and the second a text-based hint that accom-
panies the visual hint. We also add difficulty to these textual
clues (described in detail in the supplementary material).

Based on the above description, a large variety of prob-
lem settings can be generated by our VISUALHINTS envi-
ronment for multimodal RL. These tasks serve as a proxy
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Figure 4: The final multimodal RL policy architecture that
utilizes both textual and visual information.

for real-world RL tasks that utilize text and visual inputs in
the delayed reward setting. To the best of our knowledge,
there are no previous multimodal RL environments that pro-
vide such a detailed level of granularity and control. Further-
more, our environment is readily portable to other domains
within TextWorld as well. We therefore hope that our VI-
SUALHINTS environment will serve as a benchmark for the
multimodal RL community.

4.2 Various operating modes of VISUALHINTS
In addition to the various game modes that we discussed
above, we additionally show visual hints obtained under var-
ious settings of our VISUALHINTS environment, in order to
demonstrate the variety of situations that can be emulated
by our proposed multimodal environment. Figure 5 shows
a typical visual hint that can help the agent to reach the fi-
nal goal viz. the kitchen. Figure 6 introduces the concept of
death rooms, where the agent has to be careful not to venture
into dangerous areas to prevent itself from dying and ending
the game without achieving the final goal. Figure 7 masks
all irrelevant information about rooms to which travel is not
necessary in order to solve the games, making the task of
visual learning easier. Figure 8 masks the true names of the
rooms and adds room importance as a proxy for the names.
Figure 9 removes the visual information of the pathway be-
tween rooms such that the agent has to rely on both visual
and textual information to obtain the direction of an open
room, and to generate corresponding action commands. Fi-
nally, Figure 10 combines the two modes of room impor-
tance as well as the masking of visual pathways between
rooms.

5 Baseline Model
We now describe a baseline model used for multimodal RL
on our VISUALHINTS dataset. In this work, we coupled the
architecture of a textual RL agent inspired by (Adolphs and
Hofmann 2019) with a CNN-LSTM. The textual RL agent’s
architecture is used to analyze the textual part of the obser-
vation otextt , and the CNN-LSTM is used to extract infor-
mation from the visual hints (the map describing the game).
Advantage Actor Critic (A2C) (Mnih et al. 2016) was used
for model-free RL.

5.1 Extracting Useful Features from Images
To extract information from the visual hints, we used a CNN
followed by a bidirectional LSTM. The CNN encodes the
important features of the visual hint on 512 channels. Since
the original hint has a strong underlying structure made of
blocks of 100×100 pixels, we preserve this structure. Thus,
for an input picture of dimension 100n × 100m × 3 with
(n,m) ∈ N, the CNN output is of size pn × qm × 512 with
(p, q) ∈ N. In our experiments, (p, q) = (2, 2).

To find the link between rooms and shared properties,
we pass the representation from the CNN to a bidirectional
LSTM. The bidirectional LSTM encodes a spatial context
of fixed size 128 for every feature input sequence. We com-
pute the weighted sum of all the last hidden layers of the
bidirectional LSTM, and find the weights based on a second
LSTM. The weights are thus related to the spatial context of
the map room distribution.

In order to extract image features, we utilize a simple
CNN with very few layers. The simple nature of the map,
with plain colors and little text, encourages the use of sim-
pler models (easier and faster to train) which can still cap-
ture enough details to be relevant. The CNN only consists
of a convolution layer, followed by a max-pooling layer, fol-
lowed by a final convolution layer.

5.2 Combining Visual and Textual Features
The actor and critic outputs share the part of the network that
encodes information from both visual and textual observa-
tions. Observations are processed through two channels: the
textual part consisting of context and command encoding,
and the visual part which is responsible for encoding image
features. The textual component is inspired from the work
of Adolphs and Hofmann (2019).

The CNN extracts local information on the map from
the input channels to 512 channels as described previously.
The LSTM layer finds a link between the extracted fea-
tures, resulting in a vector it ∈ R256. The textual and vi-
sual representations are concatenated, and we feed the con-
catenated inputs to single-layered multi-layer perceptrons
(MLPs) for the value function and action probability dis-
tribution. The critic part of the network takes the encoded
context ht ∈ R256 concatenated with the encoded image it
as input; and passes this input through an MLP with a sin-
gle hidden layer of size 256 to compute the scalar value of
the game’s state. The actor part of the network takes a ma-
trix composed of the concatenation of the encoded context
and encoded image with each of the k encoded commands.
This vector of size Rk×32+512 is passed through an MLP of
size R256 to compute the score vector of size Rk, on which
we apply the softmax function to build a categorical dis-
tribution. We sample the action at (one of the k commands)
based on this distribution.

6 Results
6.1 Experimental Details
Our experiments were performed on Ubuntu16.04 with TI-
TAN X (Pascal) GPU. For the visual CNN, we used two-
layers of convolutional filters with the configuration of



(a) Game 27 (b) Game 35 (c) Game 40 (d) Game 45

Figure 5: Showing different configurations of the VisualHints used in the cooking game. The goal of the agent is to reach the
kitchen room, where the agent has to prepare the meal and eat the meal to win the game.

(a) Game 27 (b) Game 35 (c) Game 40 (d) Game 45

Figure 6: Adding death room to VisualHints to emulate the role of safety in the real world. The modified goal of the agent is
to reach the kitchen room while avoiding going to the death-room. The agent dies and the game is over if the agent visits the
death-room.

(a) Game 27 (b) Game 35 (c) Game 40 (d) Game 45

Figure 7: Showing masked configuration of the game where only the pathway to the kitchen is highlighted and other details
are masked. This will make it easier for the agent to reach the target which is the kitchen in this case. However, even the death
room is masked and hence it is dangerous for the agent to deviate from the shown green pathway.

(channels=256, kernel size=10, stride=5, padding=4) and
(channels=512, kernel size=2, stride=2, padding=0) respec-
tively. We used a Max-Pooling2D layer between the two
convolutional layers.

In the following, we present some results pertaining to our
baseline multimodal agent in the VISUALHINTS domain.
We first describe the pre-training of the visual component;

followed by an analysis of the CNN’s output; and finally the
overall performance of the baseline multimodal agent in our
environment. While our results do not beat the current state-
of-the-art, they are intended more as a demonstration of the
potential of the VISUALHINTS domain to challenge the ex-
isting best methods.



(a) Game 27 (b) Game 35 (c) Game 40 (d) Game 45

Figure 8: In this mode, the name of the room is masked and only the room importance is displayed. For the primary tar-
get (kitchen) the room importance is kept at 1 and for secondary targets (like rooms where the ingredients need to be picked
from) are shown with importance of 2. All other rooms are shown with importance of 0.

(a) Game 27 (b) Game 35 (c) Game 40 (d) Game 45

Figure 9: In this mode, the pathways between each room are masked and the agent cannot have a notion of which direction is
available for travel only from the visual hint. In such a case, the multi-modal agent has to rely on the textual observation to
ascertain which direction has an open door and thus decide to take action accordingly.

(a) Game 27 (b) Game 35 (c) Game 40 (d) Game 45

Figure 10: This mode combines the previous two modes where the pathways between each room are masked in addition to the
roomnames being replaced with room importance.

6.2 Pre-training of the CNN-LSTM

To obtain better features on the current domain, we pre-
trained the visual component of the agent using 42 questions
divided into two categories:

• Easy questions, which do not require an understanding
of the links between the different rooms on the map. For

instance: Is there a ‘death room’? Does the name ‘pantry’
appear?

• Hard questions, which require the relations between
the different rooms. For example, “how many rooms are
blocked by the death room?”

Each such set of 42 questions is treated as binary/categorical



Figure 11: F1 score at various thresholds for each class in
the pre-training task for the visual model.

classifiers. The CNN-LSTM was trained using an L2 loss on
46, 080 generated examples, and tested on 11, 520 examples.

List of labels for pre-training: For learning features spe-
cific to the room layout images that were are part of the Vi-
sual Hints setup, we pre-trained the visual part of the model
on 42 different tasks. The following are the list of those 42
binary tasks: {DEATH ROOM Y, DEATH ROOM N, LITERAL,
RANDOM NUMBER, ROOM IMPORTANCE, COLORWAY Y,
COLORWAY N, LIVING ROOM, GARDEN, DRIVEWAY, BED-
ROOM, BATHROOM, CORRIDOR, SHED, PANTRY, BACK-
YARD, SUPERMARKET, KITCHEN, STREET, 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, PLAYER IN Y, PLAYER IN N, ROOM
INACCESSIBLE=0, ROOM INACCESSIBLE=1, ROOM INAC-
CESSIBLE=2, ROOM INACCESSIBLE=3, ROOMS IN COL-
ORWAY=0, ROOMS IN COLORWAY=1, ROOMS IN COLOR-
WAY=2, ROOMS IN COLORWAY=3, ROOMS IN COLOR-
WAY=4}. Pre-training on these multiple binary tasks im-
proves the feature extraction capability of the CNN that is
suited for tasks like death-room detection or ‘kitchen’ ex-
traction from text, which is ultimately going to be useful for
the reinforcement learning agent.

We plot the F1 score function of the threshold for each
class in Figure 11. The F1 score at the threshold of 0.5 is
nearly perfect for all the easy questions (around or above
0.999) and still reasonably good for hard questions (around
0.8). We observe that the most difficult task is to find the
number of inaccessible rooms for inaccessible rooms = 2
and inaccessible rooms = 3. This result was expected, be-
cause it requires finding a relation between rooms with only
the clue of open doors, compared to the other hard questions:
number of rooms in the color path, where all rooms are fully
green. We also see that for these two questions, the F1 score
curve is less flat, showing the difficulty that the network has
in discriminating the answer in two groups.

6.3 Spatial Attention Analysis of the CNN output
To further analyze the features learned by our visual model,
we try to understand the information that is encoded at
the output of the CNN layer; and whether the LSTM layer
makes the links between the different rooms as intended

Figure 12: CNN outputs indicating the evolution of two
maps based on variance in the the presence and position of
the death room.

when we designed the CNN-LSTM architecture. A visual
examination of the output of the CNN (Figure 12) reveals
that certain filters in the CNN extract the general shape and
highlight individual rooms. In Figure 12(b), we show some
room layouts and their evolution when we vary the location
of the death room on the map. Some convolutional filters
are receptive to specific characteristics like the presence of
a death room, a color path, a player, etc. – this further illus-
trates that our visual model learns the semantics of the room
layouts, which are useful features for the final RL task.

6.4 Results of Baseline Multimodal Agent
Our multimodal agent was evaluated against the previous
best method viz. LeDeepChef (Adolphs and Hofmann 2019)
to compare the quality of generated action commands for
solving the cooking games. The objective in these games
is to gather all the ingredients needed for cooking a meal
by following a recipe available in the kitchen. The agent
may not start at the kitchen, and has to navigate through
the rooms to reach the kitchen. Upon reaching, the agent
then has to follow the descriptions from the recipe to inter-
act with the objects in the scene, and finally make a meal.
Intermediate rewards are obtained along the way.

Based on the type and difficulty of the games, we divide
them into two distinct categories. (i) NAVIGATION GAMES:
These are games that require some form of navigation ac-
tions to reach a destination where non-navigation commands
are used to finish the goal. We further subdivide these games
into 3 categories based on difficulty. Each navigation game
consists of either 6, 9, or 12 rooms which determine the
difficulty. (ii) NON-NAVIGATION GAMES: These are games
that usually start at the kitchen and can be solved by non-
navigation based commands only. These games are typically



LeDeepChef Visual-Lingual Model (our)

Success Rate Train Valid Test Train Valid Test
Navigation (6 rooms) 0.93 0.96 0.90 0.86 0.94 0.74
Navigation (9 rooms) 0.78 0.83 0.56 0.62 0.47 0.30

Navigation (12 rooms) 0.64 0.67 0.31 0.47 0.46 0.13
Navigation (All) 0.79 0.82 0.59 0.65 0.68 0.39
Non-Navigation 0.91 0.94 0.91 0.92 0.95 0.85

Total 0.82 0.86 0.68 0.73 0.76 0.52

Table 1: Performance of our baseline model in terms of success rate compared to the state-of-the-art model,
LeDeepChef (Adolphs and Hofmann 2019).

Number of games Train Valid Test
Navigation (6 rooms) 1041 52 124
Navigation (9 rooms) 1041 52 124

Navigation (12 rooms) 1041 52 124
Navigation (All) 3123 156 372
Non-Navigation 1317 66 142

Total 4440 222 514

Table 2: Number of navigation based and non-navigation
based games in the Cooking World.

easier to solve than the former type. Table 2 shows the num-
ber of games belonging to each of these categories.

For our baseline model, we use the architecture setup as
shown in Figure 4; this simply concatenates the features
from the visual and textual components of the observation.
In our setup, we use the relatively simpler setting of Clue
First Room as true, which means that the hint is always
available in the room where the agent spawns. Therefore,
for navigation-based games, the goal of the agent is to first
reach the kitchen and then complete the task by using non-
navigation commands. Since the multimodal policy would
be beneficial in the navigation part of the game, we use a flag
that keeps track of whether the kitchen has been reached.
Thus, for navigation games, the part of the game from the
spawning location to the kitchen is handled by the visual-
lingual policy; whereas the non-navigational commands in
the kitchen are handled by the text-based policy only.

Table 2 shows the performance of our agent in terms
of success rate as compared to LeDeepChef (Adolphs and
Hofmann 2019). Although our simple multimodal policy
does not outperform the state-of-the-art method, our base-
line model provides an evaluation method based on naviga-
tion and non-navigation games; and the performance met-
rics obtained by simple features’ fusion-based policy mod-
els. However, the primary purpose of this evaluation is not
to beat the SOTA technique; but rather to show the value in
utilizing the visual information in addition to the textual in-
formation in a given game. Furthermore, Table 2 is intended
to be incomplete – this work is a call to other contenders in
the field of TBGs and RL to utilize the multiple modalities
of vision and text to beat the reigning SOTA on this prob-
lem. There is a large possibility of improved performance
with algorithmic improvements and novelty.

Furthermore, the problem settings that we have provided
in Section 4.1 enable the design of more challenging SOTA
benchmarks. The most important contribution of this work
lies in providing the extremely customizable VISUALHINTS
environment, where simple control variable alterations can
produce problems that differ significantly in terms of their
challenge to existing RL techniques. Furthermore, the gener-
ation of the visual hints is completely automated, and agnos-
tic of the specific game or even domain that the agent finds
itself in. We hope this spurs more research on the VISUAL-
HINTS environment, and the creation of diverse algorithmic
techniques that handle different variants of this complex and
challenging environment.

7 Conclusion
To bridge the gap between purely unimodal text or vision
based approaches in reinforcement learning, we present a
novel environment called VISUALHINTSthat uses both vi-
sual and textual information for multimodal reinforcement
learning. We use the cooking environment in TextWorld as
a base upon which we add visual information in the form
of room layouts as hints located at various rooms. Our pro-
posed environment showcases a high level of detailing, al-
lowing multiple RL problem settings to be emulated seam-
lessly by changing a few options. The final goal is to learn
RL agents that use such multimodal information efficiently
to outperform their unimodal counterparts. We present a
baseline multimodal agent using CNN based feature extrac-
tion from visual hints and LSTM for textual feature extrac-
tion. Furthermore, we perform pre-training on the visual
model using a 42-task classification problem for predicting
semantic information about the game world.

We achieve a high F1-score on most labels, while outputs
related to predicting relations between the rooms prove to
be the most difficult. We also train a baseline visual-lingual
policy network that concatenates visual and textual features
to perform model-free reinforcement learning to set up a
baseline score. Our proposed environment poses numerous
technical challenges like partial observability, shared fea-
ture learning, and large action space; all of which can in-
dependently be spotlighted using various settings in the en-
vironment. We believe that our proposed VISUALHINTS en-
vironment and accompanying dataset will provide a com-
mon framework to measure algorithmic progress in the mul-
timodal RL community.
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