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We investigate in the present paper the maximization problem for the functional F µ (m) := 1 0 (θ m,µ -cm), where θ m,µ is the unique positive solution of -µθ ′′ = θ(m -θ) in (0, 1), θ ′ (0) = θ ′ (1) = 0, and 0 ≤ m ≤ κ. We assume c ∈ (1, 3). It is already known that the BV norms of maximizers of this functional blow up when the diffusivity µ tends to 0. Here, we first show that the maximizers are always BV (0, 1). Next, we completely characterize the limit of the maximas of this functional as µ → 0, and we show that one can construct a quasi-maximizer which is periodic, in a sense, and with a BV norm behaving like 1/ √ µ. Lastly, we prove that along a subsequence µ k → 0, any maximizer of F µ k is periodic, in a sense.

Introduction

The aim of this article is to describe the maximizers of

F µ (m) := 1 0 (θ m,µ -cm)
where θ = θ m,µ is the unique positive solution of

-µθ ′′ = θ(m -θ) in (0, 1), θ ′ (0) = θ ′ (1) = 0, (1.1) 
which is well-defined for all m ∈ A(0, 1)\{0}, where A(0, 1) := {m ∈ L ∞ (0, 1), 0 ≤ m ≤ κ a.e. [0, 1]}.

We consider the distribution of resources m in the set of admissible functions A(0, 1).

Earlier works

This problem has first been raised by Lou [START_REF] Lou | Some challenging mathematical problems in evolution of dispersal and population dynamics[END_REF] in a slightly different form, namely, he investigated the maximizers of

G µ (m) := 1 0 θ m,µ
that the BV norm is defined as

∥m∥ BV (0,1) := ∥m∥ L 1 (Ω) + sup 1 0 m(x)ϕ ′ (x)dx, ϕ ∈ C 1 c (0, 1), ∥ϕ∥ ∞ ≤ 1 .
When m is bang-bang, then it is equivalent to the perimeter of the set {m = κ}. They also proved in the same paper that the maximizers are always bang-bang, regardless of any regularity or large diffusivity assumption. The method used to derive this property is quite general and was used to derive bang-bang properties for a wide class of bilinear control problems by Mazari [START_REF] Mazari | The bang-bang property in some parabolic bilinear optimal control problems via two-scale asymptotic expansions[END_REF].

A discretized version of the problem, with discrete Laplacian, was investigated by Lou, Nagahara, and Yanagida in [START_REF] Nagahara | Maximizing the total population with logistic growth in a patchy environment[END_REF]. In that case, they managed to fully describe the maximizers when µ → 0. These maximizers are close to a periodic function. However, the connection between this discrete problem and the continuous one is not clear in the small diffusivity regime µ → 0. Another discretized version of the equation, with equal diffusion rate between each patches, was investigated in [START_REF] Liang | The optimal distribution of resources and rate of migration maximizing the population size in logistic model with identical migration[END_REF].

Another related problem raised attention these last years: the maximization of the ratio 1 0 θ m,µ / 1 0 m under the constraint m ≥ 0, m ̸ ≡ 0 on the growth rate. Bai, He and Li [START_REF] Bai | An optimization problem and its application in population dynamics[END_REF] proved that the supremum of this ratio is exactly 3, and that a maximizing sequence (m n ) n is the one concentrating to a Dirac mass at x = 1. Inoue described the behaviour of θ m,µ along such a sequence in [START_REF] Inoue | Limiting profile for stationary solutions maximizing the total population of a diffusive logistic equation[END_REF]. This ratio is not bounded anymore in multidimensional domains [START_REF] Inoue | On the unboundedness of the ratio of species and resources for the diffusive logistic equation[END_REF].

Statement of the results

Let now come back to the maximization of

F µ (m) := 1 0 (θ m,µ -cm).
We assume in the present paper that c ∈ (1, 3).

If c ≥ 3, then the unique maximizer of F µ is 0. Indeed, in that case, it has been proved in [START_REF] Bai | An optimization problem and its application in population dynamics[END_REF]] that 1 0 θ m,µ < 3 1 0 m for any non-constant m. Hence, F µ (m) < 0 as soon as m is non constant for c ≥ 3. As θ m,µ ≡ m when m is constant, one concludes that 0 is the unique maximizer.

If c ≤ 0, then clearly m ≡ κ is the unique global maximizer. Thus, only the case c ∈ (0, 1] remains relevant and is not covered by the present paper. We explain in Remark 2.3 the main obstacles in trying to extend the present method to c ∈ (0, 1].

We start with a regularity result on the maximizers. Theorem 1.1 Assume that c ∈ [START_REF] Bai | An optimization problem and its application in population dynamics[END_REF][START_REF] Inoue | On the unboundedness of the ratio of species and resources for the diffusive logistic equation[END_REF]. Let m µ be a maximizer of F µ and assume that m µ ̸ ≡ 0 and m µ ̸ ≡ κ. Then the function θ ′ mµ,µ admits a finite number of zeros, and m µ admits exactly one jump from 0 to κ or from κ to 0 between each of these zeros. In particular, m µ is BV (0, 1).

We will prove in Lemma 3.10, using a result of [START_REF] Bai | An optimization problem and its application in population dynamics[END_REF], that max A(0,1) F µ > 0 when µ is small enough. Hence, the hypotheses m µ ̸ ≡ 0 and m µ ̸ ≡ κ are satisfied for µ small enough.

We now introduce a notion of functions of particular interest. Such functions appeared in the numerics performed in [START_REF] Mazari | A fragmentation phenomenon for a nonenergetic optimal control problem: Optimization of the total population size in logistic diffusive models[END_REF]. Definition 1.2 We say that a function m ∈ L ∞ (0, 1) is k-symmetric, for k ∈ N\{0}, if there exists a function m 0 ∈ L ∞ (0, 1), such that for all l ≤ ⌊k/2⌋:

m(x) :=      m 0 (ky) if x = 2l k + y, y ∈ [0, 1 k ), m 0 (1 -ky) if x = 2l + 1 k + y, y ∈ [0, 1 k ).
An example of a k-symmetric function is given at the bottom of Figure 1 below. If k = 2l is even, then m is periodic, in the sense that it could be written m(x) = m per (lx) for some 1-periodic even function m per . Hence, the notion of k-symmetry is somehow an extended notion of periodicity.

Let us denote for all ℓ ∈ [0, 1] the crenel distribution as: [START_REF] Inoue | On the unboundedness of the ratio of species and resources for the diffusive logistic equation[END_REF]. Then µ inf is well-defined and positive. For all µ > 0, there exists mµ ∈ A(0, 1) such that ∥ mµ ∥ BV (0,1) = k µ as µ → 0, mµ is k µ -symmetric with pattern m cr,ℓ for some ℓ ∈ (0, 1), and

m cr,ℓ (x) := κ if x ∈ [0, ℓ], 0 if x ∈ (ℓ, 1]. Define G(µ) := max ℓ∈[0,1] F µ (m cr,ℓ ) and µ inf := inf{µ > 0, G(µ) = sup µ ′ >0 G(µ ′ )} Theorem 1.3 Assume that c ∈ (1,
max m ′ ∈A(0,1) F µ (m ′ ) -2κ µ/µ inf ≤ F µ ( mµ ) ≤ max m ′ ∈A(0,1) F µ (m ′ ). Lastly, max m ′ ∈A(0,1) F µ (m ′ ) → G(µ inf ) = sup µ>0 G(µ) as µ → 0.
Remark 1.4 We leave as an open problem the conjecture that G admits a unique maximizer. This would imply the convergence of µk 2 µ as µ → 0 to this unique maximizer. Liang and Lou [START_REF] Liang | On the dependence of population size upon random dispersal rate[END_REF] provided an example of growth rate m for which µ → F µ (m) admits at least two maximas. However, the growth rates considered in the present paper are quite different from the one considered in [START_REF] Liang | On the dependence of population size upon random dispersal rate[END_REF], which was the perturbation of a constant function, and we thus still believe that the maximizer µ inf is unique here.

We do not know if the maximizers are always k-symmetric for µ small. In the numerics performed in [START_REF] Mazari | A fragmentation phenomenon for a nonenergetic optimal control problem: Optimization of the total population size in logistic diffusive models[END_REF], the maximizers did not always look like k-symmetric functions. However, when the diffusivity is well scaled, in a sense, we are able to prove such a k-symmetry.

Theorem 1.5 Assume that c ∈ (1, 3). If one can write µ = µ/k 2 for some k ∈ N\{0} and µ a maximizer of µ > 0 → G(µ), then any maximizer m µ of F µ is K-symmetric with pattern m cr,ℓ for some ℓ > 0 and K ∈ N\{0}. Moreover, if G admits a unique maximizer µ, then K = k.

BV regularity of the maximizers

The aim of this section is to prove Theorem 1.1.

Consider the Hamiltonian defined for all

x ∈ [0, 1], θ, θ ′ , m ∈ R, η ∈ R 2 by H(x, θ, θ ′ , η, m) := η 1 θ ′ - 1 µ η 2 θ(m -θ) - 1 µ (θ -cm)
and the cost

C(m) := 1 0 (-θ m,µ + cm) = -F µ (m).
The Hamiltonian is related to θ m,µ through the equation:

d dt θ m,µ θ ′ m,µ = ∂ η H(x, θ m,µ , θ ′ m,µ , η, m)
and there exists a solution η of the adjoint equation

d dt η 1 η 2 = - ∂ θ H(x, θ m,µ , θ ′ m,µ , η, m) ∂ θ ′ H(x, θ m,µ , θ ′ m,µ , η, m) = 1 µ (m -2θ m,µ )η 2 + 1 -η 1
Defining p m,µ := η 2 , we find that it is indeed the unique solution of

-µp ′′ -(m -2θ m,µ )p = 1 in (0, 1), p ′ (0) = p ′ (1) = 0. (2.1)
The Pontryagin maximum principle (see for instance Theorem 3 of Chapter 5 of [START_REF] Lee | Foundations of optimal control theory[END_REF]) yields that a minimizer m µ of the cost (that is, a maximizer of

F µ ) minimizes m ∈ [0, κ] → H x, θ m,µ (x), θ ′ m,µ (x), -p ′ m,µ (x), p m,µ (x), m) for all x ∈ [0, 1], that is: m µ (x) = κ if c < p m,µ (x)θ m,µ (x), 0 if c > p m,µ (x)θ m,µ (x). (2.2) 
We will now denote m = m µ , θ = θ m,µ and p = p m,µ when there is no ambiguity in order to enlight the notations, and Φ := θp.

Lastly, the Hamiltonian H is constant along the trajectories:

µp ′ θ ′ + pθ(m -θ) + θ -cm = cste in (0, 1). (2.
3)

The next lemmas provide as a by-product an alternative proof of the bang-bang property of maximizers, which could also be obtained by duality from Theorem I of [START_REF]Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate[END_REF]. 

Proof.

We just prove the first part, the other one being proved similarly. As Φ is continuous, we know that Φ < c in a right neighborhood (a, a + ε) of a and thus m = 0 in (a, a + ε). It follows that µθ ′′ = θ 2 > 0 in (a, a + ε) (since θ > 0 due to m ̸ ≡ 0) and thus, as θ ′ (a) = 0, θ ′ > 0 in (a, a + ε). As θ ′ (1) = 0, b is well-defined and strictly larger than a.

Next, assume Φ(b) ≤ c by contradiction. We know that if Φ < c in (a, b), then one would have m = 0 a.e. and θ ′′ > 0 a.e. in (a, b), contradicting θ ′ (b) = 0. Hence, there exists an interval [x 0 , y 0 ] ⊂ [a, b] such that Φ ≥ c in this interval. Moreover, we could assume that Φ(y 0 ) = p(y 0 )θ(y 0 ) = c and as Φ(a) = p(a)θ(a) < c , one gets from (2.3):

(1 -c)θ(a) < -p(a)θ 2 (a) + θ(a) = µp ′ (y 0 )θ ′ (y 0 ) + c(m(y 0 ) -θ(y 0 )) + θ(y 0 ) -cm(y 0 ) = µp ′ (y 0 )θ ′ (y 0 ) + (1 -c)θ(y 0 ).
As θ ′ > 0 over (a, b), one has θ(y 0 ) > θ(a) and thus, as c > 1, one gets p ′ (y 0 ) > 0. This implies Φ ′ (y 0 ) > 0, a contradiction since Φ(y 0 ) = c and Φ ≥ c in (x 0 , y 0 ). We have also proved that Φ only crosses c once in (a, b], otherwise, there exist (x 0 , y 0 ) as above and we could conclude similarly. □ Lemma 2.2 Assume that c > 1. Then for all a ∈ [0, 1] such that θ ′ (a) = 0, one has Φ(a) ̸ = c.

Proof.

Assume that there exists a ∈ [0, 1] such that θ ′ (a) = 0, and Φ(a) = c. Let us prove by contradiction that this implies that for all ã ∈ [0, 1] such that θ ′ (ã) = 0, one has Φ(ã) = c. Hence, consider ã ∈ [0, 1] such that θ ′ (ã) = 0 and Φ(ã) ̸ = c. If ã < a, as any such ã is isolated by Lemma 2.1, one can assume that ã is the largest one satisfying this property. But then, either Φ(ã) > c and then b := min{x ∈ (a, L], θ ′ (x) = 0} satisfies Φ(b) < c, which contradicts the definition of ã since b is either a or another point x such that θ ′ (x) = 0 and Φ(x) = c. Similarly, if Φ(ã) < c, then Φ(b) > c and we also reach a contradiction. If ã > a, we reach a similar contradiction by assuming that ã is the smallest one satisfying this property and using again Lemma 2.1. Hence, we have proved by contradiction that for all ã such that θ ′ (ã) = 0, one has Φ(ã) = c. In particular Φ(0) = Φ(1) = c.

Next, assume that there exists an interval (x 0 , y 0 ) such that Φ > c on this interval. We could assume that Φ(x 0 ) = Φ(y 0 ) = c. The function θ ′ does not vanish on (x 0 , y 0 ) since Φ > c. Assume first that θ ′ > 0 on (x 0 , y 0 ). We define a = max{x ∈ [0,

x 0 ], θ ′ (x) = 0} and b = min{x ∈ [0, x 0 ], θ ′ (x) = 0}. Then Φ(a) = Φ(b) = c since θ ′ (a) = θ ′ (b) =
0 and the same computations as in the proof of Lemma 2.1 yield

(1 -c)θ(a) = µp ′ (y 0 )θ ′ (y 0 ) + (1 -c)θ(y 0 ).
It follows that p ′ (y 0 ) > 0 since θ(y 0 ) > θ(a) and c > 1, a contradiction since Φ(y 0 ) = c and Φ > c in (x 0 , y 0 ). If there exists an interval (x 0 , y 0 ) such that Φ < c on this interval, we reach a contradiction similarly.

Hence, we have proved by contradiction that if there exists a ∈ [0, 1] such that θ ′ (a) = 0, and Φ(a) = c, then Φ ≡ c on (0, 1). This is a contradiction with Lemma 2.1. □ Proof of Theorem 1.1. By Lemmas 2.1 and 2.2, we know that all the zeros of θ ′ in [0, 1] are isolated. Hence, as [0, 1] is compact, θ ′ only admits a finite number of zeros. Hence, by Lemma 2.1, Φ only crosses c a finite number of times. By characterization (2.2), m is BV (0, 1) and admits exactly one jumps between each zeros of θ ′ . □ Remark 2.3 We do not know if Theorem 1.1 still holds when 0 < c ≤ 1. The main difference when c < 1 is that the constant function m(x) = κ satisfies the first order optimality conditions. Indeed, in that case θ ≡ κ, p ≡ 1/κ and Φ ≡ 1 ≥ c almost everywhere. Hence, Lemmas 2.1 and 2.2 cannot hold for any functions (θ, p, m) satisfying (1.1), (2.1), (2.2) and (2.3). However, m ≡ κ might only be a local maximizer of F µ , not a global one, and maybe Lemmas 2.1 and 2.2 still hold for global maximizers. We leave this possible extension as an open problem.

Existence of a quasi-maximizer

The aim of this section is to prove Theorem 1.3. In all this section, we will specify the dependence of F µ with respect to the interval considered. That is, we define

F (a,b) µ (m) := b a (θ -cm)
where 0 ≤ a < b ≤ 1 and θ is the unique positive solution of

-µθ ′′ = θ(m -θ) in (a, b), θ ′ (a) = θ ′ (b) = 0.
(3.1)

Construction of the quasi-maximizer mµ

We consider m = m µ such that F (0,1) µ (m) = max m ′ ∈A(0,1) F (0,1) µ (m ′ ). By Theorem 1.1, we denote by (a i ) 1≤i≤N +1 the zeros of θ ′ , with a 0 = 0 and a N +1 = 1, and we know that m only jumps from 0 to κ or from κ to 0 once in each interval (a i , a i+1 ). In other words, ∥m |(a i ,a i+1 ) ∥ BV (a i ,a i+1 ) = 1. Lemma 3.1 One has for all i ≥ 1:

F (0,1) µ (m) = N i=0 F (a i ,a i+1 ) µ (m).
Proof. As θ ′ (a i ) = θ ′ (a i+1 ) = 0, the solution θ of (3.1), with a = a i and b = a i+1 is just θ restricted to (a i , a i+1 ) by uniqueness. Hence,

F (a i ,a i+1 ) µ (m) = a i+1 a i (θ -cm). The decomposition F (0,1) µ (m) = N i=0 F (a i ,a i+1 ) µ (m) follows. □
As m| (0,a 1 ) maximizes F (0,a 1 ) µ

, one has m(x) = κ if q(x)θ(x) > c and m(x) = 0 if q(x)θ(x) < c. We know from Theorem 1.1 that m only jumps once from 0 to κ in (0, a 1 ). Let ℓ be the point where the value of m changes. Then q(ℓ)θ(ℓ) = c. but we also know that p(ℓ)θ(ℓ) = c. Hence, q(ℓ) = p(ℓ). Moreover, q ′ (0) = p ′ (0) = 0 and these two functions both satisfy (4.1). Let z := p -q. One has

-µz ′′ -(m -2θ)z = 0 in (0, ℓ), z ′ (0) = 0, z(ℓ) = 0. Moreover, if y := z/θ, then -µy ′′ -2µ θ ′ θ y ′ + θy = 0 in (0, ℓ), y ′ (0) = 0, y(ℓ) = 0.
It follows from the elliptic maximum principle that y ≡ 0 and thus z ≡ 0 and p ≡ q in (0, ℓ). This identity extends to (0, a 1 ) by the Cauchy-Lipschitz theorem, and in particular, p ′ (a 1 ) = 0. It follows from Lemma 4.1 that m is K-symmetric for some K.

It follows from Lemma 3.3 that:

F (0,1) µ (m) = F (0,1) µK 2 (m cr,ℓ ) = G(µ).
Hence, if G admits a unique maximizer µ, then µK 2 = µ = µk 2 by hypothesis, and thus k = K. □ Remark 4.2 If G admits several maximizers, it follows from the above arguments that µK 2 and µk 2 are both maximizers of G, possibly with k ̸ = K two positive integers. This seems very unlikely and we believe that G admits a unique maximizer.

Discussion and open problems

The main restriction of the present paper is c > 1 and we leave as an open problem the case c ∈ (0, 1]. We have already discussed about this hypothesis above. The reader could notice that, even without extending Theorem 1.1, many results would extend if one could prove that the BV norm of the maximizers is uniformly bounded with respect to µ between two critical points of θ m,µ . Also, it would be good to reformulate the hypothesis c > 1 in terms of an hypothesis on m 0 when considering the maximization problem for G µ on the functions m ∈ A such that 1 0 m = m 0 . About the BV norm of m µ , we have proved in [START_REF]Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate[END_REF] that it is bounded from below by C/ √ µ.

In the present paper, we have proved that it is bounded and that a function with BV norm k µ of order 1/δ µ is a quasi-maximizer. We leave as an open problem to show that µ inf = µ sup defined in Proposition 3.8 are equal, which would imply that k µ ≃ µ inf /µ. Also, we do not know if one can prove a bound from above of order 1/ √ µ on the BV norm of original maximizer m µ , or the convergence of ∥m µ ∥ BV (0,1) √ µ as µ → 0.

Next, we have constructed a quasi-maximizer mµ using m µ , but we were not able to show that these two functions are close in a sense.

Lastly, the present method only works in dimension 1, and the multidimensional framework remains open. The numerics displayed in [START_REF] Mazari | A fragmentation phenomenon for a nonenergetic optimal control problem: Optimization of the total population size in logistic diffusive models[END_REF] indicate that the optimizers in multidimensional domains might be particularly irregular when µ → 0, despite some patterns seem to emerge.

Lemma 2 . 1

 21 Assume that c > 1. Let 0 ≤ a < 1 be such that θ ′ (a) = 0 and Φ(a) < c. Then b := min{x ∈ (a, 1], θ ′ (x) = 0} is well-defined, θ ′ > 0 in (a, b), Φ only crosses c once in (a, b], and Φ(b) > c. Similarly, if Φ(a) > c, then b is still well-defined and θ ′ < 0 in (a, b], Φ only crosses c once in (a, b), and Φ(b) < c.
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We now define

It follows from Lemma 3.1 that

Let i µ be such that max 0≤i≤N A i = A iµ . One obtains

Let 1 = k µ (a iµ+1 -a iµ ) + r µ , with 0 ≤ r µ < a iµ+1 -a iµ .

We now construct a k µ -symmetric function from m |(a iµ ,a iµ+1 ) by symmetrization and dilation. Namely, we define δ µ := a iµ+1 -a iµ and mµ (x) := m σ µ y + a iµ if x = 2l ), for all l such that l ≤ ⌊k µ /2⌋, and where σ µ := k µ δ µ = 1 -r µ . This construction is described in Figure 1. Lemma 3.2 One has for all λ > 0, m ∈ A(0, 1):

Proof.

Let θ := θ m,µ and θ λ (x) := θ(λx). One has µ λ 2 ∆θ λ (x) = θ(λx) m(λx) -θ(λx) = θ λ (x) m(λx) -θ λ (x) on (0, 1/λ).

Hence,

Proof.

Clearly,

by symmetry, one has: 

Proof.

Let m(x) := mµ (x/σ µ ). This is the function corresponding to the second step described in Figure 1. One has by Lemma 3.2:

Next, it is clear that for all j, F (jδµ,(j+1)δµ) 

and the conclusion follows from

Proof.

The regularity follows from classical arguments and one has ∂ µ F µ ( m) = 1 0 θ, where θ is the unique solution of

Straightforward computations yield that θ m,µ /µ is a supersolution of this equation and thus the weak maximum principle yields θ ≤ θ m,µ /µ ≤ κ/µ, from which the conclusion follows. □ Lemma 3.6 For all m ∈ A(0, 1), µ > 0 and r ∈ (0, 1), one has

Proof.

There exists ξ ∈ µ(1 -r) 2 , µ such that

Hence, by Lemma 3.5, one gets

□

Gathering all the previous estimates, we have thus obtained the following intermediate result.

Lemma 3.7 There exists mµ ∈ A(0, 1) such that ∥ mµ ∥ BV (0,1) = k µ , mµ is k µ -symmetric with pattern m cr,ℓµ for some ℓ µ ∈ [0, 1] and

F µ (m).

Estimates on µ/δ 2 µ

The aim of this section is to prove Proposition 3.8, which, combined with Proposition 3.7, ends the proof of Theorem 1.3.

Lemma 3.8 Define k µ , δ µ and ℓ µ as in the previous section. Consider a sequence (µ k ) k such that

In particular, where, if we let G(µ) := max ℓ∈[0,1] F (0,1) µ (m cr,ℓ ), one defines

and these two quantities are positive and finite. As a consequence,

Let first compare the supremum F (0,1) µ (m) with an appropriate function. Consider ℓ ∈ [0, 1], k ∈ N\{0} and m(x) a k-symmetric function with pattern m cr,ℓ . Gathering all the previous inequalities and using Lemma 3.3, we have:

We now need to make sure that µ/δ µ 2 is not too large nor too small. Lemma 3.9 There exists a constant C > 0 such that for all m ∈ A(0, 1) and µ > 0, one has

Proof.

Multiplying the equation satisfied by θ m,µ by θ m,µ and integrating by parts, one gets

It follows from the (∞, 2) Poincaré inequality [START_REF] Mazya | Differentiable functions on bad domains[END_REF] that there exists a constant C > 0 such that

On the other hand, integrating the equation satisfied by θ m,µ , one gets 

Proof.

The identity between the lim sup and the sup could be proved exactly as in [START_REF] Mazari | A fragmentation phenomenon for a nonenergetic optimal control problem: Optimization of the total population size in logistic diffusive models[END_REF]. Next, we consider the sequence m cr,ε , that is

It has been proved in [START_REF] Bai | An optimization problem and its application in population dynamics[END_REF] that

Hence, we could consider c ′ ∈ (c, 3) and ε small enough such that

where we have used 1 0 m cr,ε = κε. Next, one easily checks by considering θ B := Bθ m,µ that for all µ > 0, B > 0 and m ∈ L ∞ (0, 1), m ≥ 0, one has

Hence, F

(0,1)

Proof. Assume first that there exists a sequence (µ j ) j such that lim j→∞ µ j /δ 2 µ j = 0. We can assume, up to extraction, that there exists ℓ 0 ∈ [0, 1] such that lim j→+∞ ℓ µ j = ℓ 0 . It has been proved in [START_REF] Mazari | A fragmentation phenomenon for a nonenergetic optimal control problem: Optimization of the total population size in logistic diffusive models[END_REF] that for all M > 0, ∥θ m,µ -m∥ L 1 (0,1) → 0 as µ → 0 uniformly on function m ∈ A(0, 1) such that ∥m∥ BV (0,1) ≤ M . In particular, as crenels have BV -norms equal to 1, one has ∥θ m cr,ℓ ,µ -m cr,ℓ ∥ L 1 (0,1) → 0 as µ → 0 uniformly with respect to ℓ ∈ [0, 1].

We thus obtain

by Lemma 3.10, one reaches a contradiction. Next, if there exists a sequence (µ j ) j such that lim j→∞ µ j /δ 2 µ j = +∞, then Lemma 3.9 yields

leading to a contradiction again. □

Proof of Proposition 3.8. Let (µ j ) j be such that µ j → 0, µ j /δ 2 µ j → µ 0 ∈ [1/M, M ] and ℓ µ j → ℓ 0 as j → +∞. Let η > 0, ℓ > 0 and write √ η = k j √ µ j + r j , for some k j ∈ N\{0} and 0 ≤ r j < √ µ j , so that lim j→+∞ µ j k 2 j = η. Hence, it follows from (3.2) that

F (0,1)

Hence, as this is true for any ℓ > 0 and η > 0, all these inequalities are indeed equalities, which implies that µ 0 is a maximizer of G and that lim µ→0 sup A(0,1)

Lastly, it follows from the same arguments as in the proof of Lemma 3.11 that µ inf > 0 and µ sup < ∞. □

The equality case

The aim of this section is to prove Theorem 1.5. We begin with a characterization of k-symmetric functions. We denote again m = m µ , θ = θ m,µ and p = p m,µ when there is no ambiguity.

Lemma 4.1 Assume that there exists a ∈ (0, 1) such that θ ′ (a) = 0 and p ′ (a) = 0. Then there

Proof.

By using the change of variable x ′ := 1 -x if necessary, we can always assume that a ∈ (0, 1/2]. Consider the symmetrized function m s (x) := m(2a -x) if x ∈ [a, 2a], m(x) if x ∈ [0, a], and define similarly θ s , and p s . These functions satisfy (1.1) and (2.1) on (0, 2a).

We know that Φ(a) ̸ = c by Lemma 2.2. We can assume that Φ(a) > c, the other case being treated similarly. Let x 0 := inf{x ∈ (0, a), Φ > c in (x, a)} and y 0 := inf{x ∈ (a, 2a), Φ(x) > c}.

By continuity of Φ, x 0 < a < y 0 . One has m(x) = κ for all x ∈ (a, y 0 ) and m s (x) = κ for all x ∈ (a, 2a -x 0 ). Let z 0 := min(y 0 , 2a -x 0 ) > a. Then θ and θ s both satisfy µθ ′′ + θ(κ -θ) = 0 in (a, z 0 ). Considering now ms the symmetrized function with respect to x = b, we can prove using the same method that m = ms on (0, 2b) if 2b ≤ 1, on (0, 1) otherwise. Going on iterating, we conclude that m is k-symmetric. □

Moreover

Proof of Theorem 1.5. We define (A i ) i and i µ as in Section 3.1, and we have already proved that

Moreover, as m µ only jumps once between 0 and κ, we could assume (up to the change of variable

for some ℓ ∈ [0, 1]. It follows from Lemma 3.2 that

Take µ as in the hypothesis of Theorem 1.5, that is, µ = µ/k 2 and µ maximizes G. Take ℓ such F (0,1) µ (m cr,ℓ ) = G(µ). Define mµ a k-symmetric function with pattern m cr,ℓ . Then, as m µ is a maximizer in A(0, 1), one has As F (0,1) µ/δ 2 µ (m cr,ℓ ) ≤ G(µ/δ 2 µ ) ≤ G(µ) by definitions of G and µ, this chain of inequalities is indeed an equality. Moreover, this chain of equalities also implies A i = A iµ for all i.

In particular, A 0 = F (0,1) µ (m µ ), which means that m| (0,a 1 ) maximizes F (0,a 1 ) µ . Define q the adjoint function on (a 0 , a 1 ), where we remind to the reader that a 0 := 0, that is, q is the solution of -µq ′′ -(m -2θ)q = 1 on (0, a 1 ), q ′ (0) = q ′ (a 1 ) = 0.

(4.1)