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Abstract
In this paper, the regular languages of wire linear AC0 are characterized as the languages expressible
in the two-variable fragment of first-order logic with regular predicates, FO2[reg]. Additionally, they
are characterized as the languages recognized by the algebraic class QLDA. The class is shown to
be decidable and examples of languages in and outside of it are presented.
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1 Introduction

A recurring theme in the work of Klaus-Jörn Lange is the interplay of logic, algebra, and
circuit complexity. In this paper dedicated to his 70th birthday, we exhibit one of these tight
relationships by looking at the class of regular languages recognized by circuits of very low
complexity.

For a family of Boolean circuits (Cn)n≥0, where each Ci has i inputs and one output, its
language is the set of words w such that C|w| outputs 1 when w is placed as input. Circuit
complexity is the study of how certain parameters of Cn evolve as n grows. The classical
class AC0 is defined by taking Boolean circuits with unbounded fan-in, constant depth, and
a polynomial number of gates. The regular languages of AC0 are well understood: they have
an algebraic characterization (the class QA of quasi-aperiodic stamps) and correspond to the
logic FO[reg] of first-order sentences with regular predicates (see, e.g., the splendid account
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of Straubing [17]). Our interest lies in restricting the number of gates and wires in these
circuits even further and characterizing the regular languages that can still be defined.

Define LAC0 as the subclass of AC0 where the number of gates is restricted to be linear
in the input length and WLAC0 the subclass where the number of wires is restricted to
be linear. Naturally, it is not useful to have more gates than wires, so WLAC0 ⊆ LAC0,
this inclusion is in fact strict [10]. The class LAC0 also enjoys a logical characterization:
it is equivalent to FO2[arb], the two-variable fragment of first-order logic [10]. No such
characterization is known for WLAC0.

Perhaps surprisingly, there are still some important open problems in the regular language
realms of LAC0 and WLAC0. Most striking among these:

▶ Conjecture 1. Do LAC0 and WLAC0 recognize the same regular languages?

In studying this question, Koucký, Pudlák, and Thérien [10] gave a beautiful character-
ization of a subclass of the regular languages in WLAC0: those with a neutral letter. A
language has a neutral letter c if c can be added or removed from words without impacting
their membership to the language. Koucký et al. showed that, for neutral-letter languages,
the regular languages of WLAC0 are those definable in FO2[<]. This raised the question of
whether the full class of regular languages in WLAC0 can be similarly characterized.

On the power of neutral letters. When adding a neutral letter to a language, a property
on words as anodyne as “each third position contains the letter a” becomes “each position
such that the number of nonneutral letters before it is congruent to zero modulo three contains
the letter a,” which is much harder to implement (in fact, provably not in AC0). Indeed, on
inputs w1w2 · · ·w6 of length 6 and over the alphabet {a, b}, the former is implemented by a
circuit that tests w3 = a ∧ w6 = a, while the latter, with c a neutral letter, is much more
complex:

w1
a b c

∨

w2
a b c

∨

w3
a b c

∨

w4
a b c

∨

w5
a b c

∨

w6
a b c

∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

Figure 1 A circuit checking that each third nonneutral letter is a.

This brought the idea that, when considering only languages with a neutral letter, no
interesting information can be extracted from the position numbers (besides order). In other
words, the subset of languages with a neutral letter in a class ought to be much less complex
than the whole class. This is formalized as the Crane Beach property, the name stemming
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for the disproved conjecture of the same name which stated that the neutral-letter languages
of FO[arb] were in FO[<]. For FO2[arb], this is open:

▶ Conjecture 2 (Crane Beach property). Are all the neutral-letter languages of FO2[arb]
definable in FO2[<]?

Circling back to WLAC0, Koucký et al. showed that all the regular languages in WLAC0

with a neutral-letter belong to FO2[<]. This left the possibility that the whole class of regular
languages of WLAC0 could necessitate more expressive power than what FO2[<] offers.

Contributions. We show that WLAC0 ∩ Reg is precisely FO2[reg], or in other words, that
dropping the neutral-letter restriction requires adding the regular predicates to the logic.
We also provide an algebraic characterization of that class as QLDA. As this latter class is
decidable, this leads to a decision procedure to test if a regular language belongs to WLAC0.
This comes short of providing an answer to the above open problems, but this shows in
particular that Section 1 admits a positive answer iff FO2[arb] has the so-called Straubing
property:

▶ Conjecture 3 (Straubing property). Are all the regular languages of FO2[arb] definable in
FO2[reg]?

2 Preliminaries

We assume familiarity with regular languages, logic, and circuits, although we strive to keep
this presentation self-contained. We write Reg for the class of regular languages.

Monoid, morphisms, quotient. A monoid is a set equipped with a binary associative
operation, denoted multiplicatively, with a unit element. Within a finite monoid M , we write
ω for the smallest value such that aω = a2ω for all a ∈ M . For an alphabet A, the set A∗ is
the free monoid generated by A, its unit element being the empty word ε. A morphism is a
map ϕ : M → N satisfying ϕ(ab) = ϕ(a)ϕ(b) and ϕ(1) = 1, with a, b ∈ M and 1 denoting the
unit element of M and N . If for a morphism ϕ : A∗ → B∗ there is a k such that ϕ(A) ⊆ Bk,
we call ϕ an lm-morphism, where lm stands for length-multiplying. Given a language L and a
letter a, the left quotient of L by a is the set a−1L = {v | av ∈ L}. The right quotient La−1

is defined symmetrically. An lm-variety of languages is a set of languages closed under the
Boolean operations, quotient, and inverse lm-morphisms. We say that a language L has a
neutral letter if there is a letter c such that u · c · v ∈ L ⇔ u · v ∈ L for all words u, v.

Logic. We work with first-order logics recognizing languages. For instance, the formula over
the alphabet {a, b}

(∀x)(∃y)[max(x) ∨ (y = x+ 1) ∧ (a(x) ↔ b(y))]

asserts that, in a given word w, for every position x there is another position y such that
either x is the last position of the word (max) or y is just after x and w has different letters
at x and y. The predicates max and +1 are numerical predicates, i.e., they only speak about
the numerical positions, not the content of the input word. The predicates a(·) and b(·) are
the letter predicates.

In this work, logics are specified by restricting two aspects:
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The number of variables; we define FO2 as the logic with only two variables that can be
reused (e.g., (∃x)(∀y)[· · · ∧ (∃x)[· · · ]] is allowed). The unrestricted logic is simply written
FO.
The numerical predicates allowed. We will be using in particular <, +1 (the successor
predicates, including adding any constant), and the modulo predicates asserting that a
position is congruent to zero modulo a fixed number. These form the regular predicates
and we write reg for that class (e.g., FO2[reg]). The term “regular” stems from the
fact that these are the properties on numerical positions that automata can express.
More generally, we specify the allowed numerical predicates in bracket, e.g., FO[<] or
FO2[<,+1]. If we allow any arbitrary numerical predicate, we write arb in the brackets;
for instance, in FO[arb], a formula can use the predicate “these two positions are coprime.”

We write w |= ϕ, for a formula ϕ, to indicate that w satisfies ϕ, with the obvious meaning
where quantifications are made over the positions of w. The language of ϕ is the set of words
that satisfy it. A class of formulas is seen as the class of languages the formulas recognize.

Circuits. We denote by AC0 the class of languages computed by families of constant-depth,
polynomial-size circuits consisting of unbounded fan-in ∧- and ∨-gates and unary ¬-gates.
Such a family is an infinite set (Cn)n≥0 where the circuit Ci has i inputs and one output
gate; a (binary) word w is deemed accepted if the circuit C|w| outputs 1 when w is placed as
input.

We will explore languages over alphabets larger than the binary alphabet; for these, an
encoding of the alphabet is usually necessary. Our results are not influenced by the choice of
encoding so we will not specify one.

We denote by LAC0 the subclass of AC0 languages that are computable by AC0-circuits
having a linear number of gates. We write WLAC0 for the class with the added restriction
of having a linear number of wires.

Stamps and varieties thereof.1

A stamp [16] is a surjective monoid morphism µ : A∗ → M from a free monoid to a finite
monoid. A language L ⊆ A∗ is recognized by µ if there is a set E ⊆ M such that L = µ−1(E).
The following two definitions are necessary for completeness but will not play an important
role in what follows; if new to the reader, they can be safely skipped on first reading. We say
that a stamp µ : A∗ → M lm-divides a stamp ρ : B∗ → N if ρ = τ ◦ µ ◦ ϕ where h : A∗ → B∗

is an lm-morphism and τ : N → M is a partial surjective morphism. The product of two
stamps µ and ρ with the same domain A∗ is the stamp mapping a ∈ A to (µ(a), ρ(a)).

Finally, an lm-variety of stamps is a class of stamps containing the stamps A∗ → {1} and
closed under lm-division and product. One salient feature of lm-varieties of stamps is that
they correspond one-to-one to lm-varieties of languages: if V is an lm-variety of stamps, we
write V for the lm-variety of languages that are recognized by the stamps in V.

For a stamp µ : A∗ → M , we write ω for the value of ω in M , so that for any word u,
µ(uω) = µ(u2ω). (In more details: µ(uω) = µ(u)ω since µ is a morphism, µ(u)ω = µ(u)2ω by
definition of ω, and µ(u)2ω = µ(u2ω) since µ is a morphism.)

The L operator: Augmenting varieties with local predicates. Let µ : A∗ → M

1 For the reader familiar with algebraic language theory: note that to simplify presentation, we do not
define varieties of monoids and see them as varieties of stamps.
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be a stamp. We are interested in looking at the portion of µ that does not care about
neighboring information on positions. To do so, consider a nonempty word x such that µ(x)
is an idempotent. If x appears in another word, say w = uxv, then x can be repeated any
number of times without changing its image via µ, e.g., µ(w) = µ(ux42v). This means that
the neighboring information between u and v was not important: this is the “portion of µ”
we are interested in.

Formally, the local stamps of µ are derived from any idempotent in e ∈ µ(A+) by:

µe : A∗ → e ·M · e (Note that eMe is a monoid.)

a ∈ A 7→ e · µ(a) · e

For a variety of stamps V, we define LV as the variety of stamps whose local stamps are all
in V. It can be shown [15] that when V satisfies some technical property, one can see LV as
V augmented with the neighboring information on positions.

The Q operator: Augmenting varieties with modulo predicates.
Let µ : A∗ → M be a stamp. Since µ(A) can be seen as an element of the powerset

monoid of M , there is an integer s > 0 such that µ(A)s = (µ(A)s)2; the smallest such s is
the stability index of µ. By construction, µ(A)s is closed under multiplication and we write
S(µ) for that set with possibly an identity element added so that it is a monoid. The stable
stamp of µ is that same stamp but taking As as alphabet, i.e.:

ρ : (As)∗ → S(µ)
w 7→ µ(w).

For a variety of stamps V, we define QV as the variety of stamps whose stable stamps
belongs to V. Intuitively, the stable stamp of µ embeds in the alphabet itself the information
of modulo values of positions in the word. Again, it can be shown [15] that under some
hypothesis on V, one can see QV as V augmented with modulo counting on the positions.

Some lm-varieties. We will rely on a few classical lm-varieties of stamps:
A: the aperiodic stamps. These are the stamps µ that satisfy, for all words u, µ(uω) =
µ(uω+1). It holds that A = FO[<].
DA. Stamps therein are those that satisfy, for all words x, y, µ((xy)ωx(xy)ω) = µ((xy)ω).
The class DA enjoys a wealth of different characterizations [18], it holds in particular
that DA = FO2[<].
QA. This is Q applied to A and was historically one of the first lm-varieties of stamps
studied [2]. It holds that QA = FO[reg] = AC0 ∩ Reg.

3 Algebra, logic, and circuits

As it is often witnessed in the low-level reaches of circuit complexity, we will observe that the
class WLAC0 ∩ Reg exhibits a beautiful interplay between algebra, logic, and circuits. With
NL the class of languages with a neutral letter, Koucký, Pudlák, and Thérien [10] already
showed:

▶ Theorem 4 ([19, 10]). DA ∩ NL = FO2[<] ∩ NL = WLAC0 ∩ Reg ∩ NL.

Our goal in this section is to fully characterize WLAC0 ∩ Reg in a similar way. We prove
the inclusion of the algebra-flavored class into the logical one in Section 3.1, then of the
logic-flavored into WLAC0 in Section 3.2. To close the chain of inclusions, we take a short
detour in the purely algebraic world in Section 3.3 and conclude in Section 3.4.
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3.1 From algebra to logic
The algebraic class we will be studying is QLDA: this is to be read as Q(L(DA)), i.e., DA
on which the L operator was applied, then the Q operator. Recall that DA = FO2[<]. As we
hinted, the L operator intuitively adds the local predicates and the Q operator the modulo
predicates, it is thus not surprising that we will end up showing QLDA = FO2[reg]. This
result was announced without proof in [7] and we provide a proof here through the chain of
inclusions that will be concluded in Section 3.4. We start with:

▶ Lemma 5. QLDA ⊆ FO2[reg].

Proof. We rely on the characterization LDA = FO2[<,+1] from [19, 1] (see also [13]) and
carefully adapt the proof of QA ⊆ FO[reg] from [2].

Let L ∈ QLDA be recognized by a stamp µ : A∗ → M in QLDA, i.e., L = µ−1(E) for
some E ⊆ M . Let s be the stability index of µ, so that S(µ) = µ(A)s = µ(A)2s. We have
that:

L =
⋃

w∈A∗:
0≤|w|<s

Lw · w,

where

Lw = {u ∈ (As)∗ | u · w ∈ L}.

To show that L ∈ FO2[reg], it is thus enough to show that each Lw · w is in FO2[reg], since
the latter class is closed under union.

We first show that Lw ∈ FO2[reg] implies that Lw ·w ∈ FO2[reg]. Let w = a1a2 · · · ar and
ϕ ∈ FO2[reg] recognize Lw. Let max←r(x) be the unary predicate that is true of a position
x if x is not within r positions of the last position; note that max←r(x) can be expressed in
FO2[reg]. The formula ϕ can thus be relativized to max←r; that is, every position quantified
should satisfy max←r. Let ϕ′ be that formula; it recognizes the language Lw · (Ar). Now let
maxi(x) be the predicate that is true of a position x if x is i positions away from the last
position, this is again expressible in FO2[reg]. The formula

ψ ≡
∧

i=1,...,r
(∃x)[maxr−i(x) ∧ ai(x)]

recognizes the language A∗ · w. Hence (ϕ′ ∧ ψ) ∈ FO2[reg] recognizes Lw · w.
Finally, we show that for any w, Lw ∈ FO2[reg]. Let ρ be the stable stamp of µ. Consider

B = As as an alphabet, so that ρ : B∗ → S(µ). We start by viewing Lw as a language over
B. A word v ∈ B∗ belongs to Lw iff

ρ(v) ∈ {m ∈ S(µ) | m · µ(w) ∈ E}︸ ︷︷ ︸
F

,

in other words, Lw = ρ−1(F ), implying that ρ recognizes Lw. Consequently, since ρ ∈ LDA
by definition of the Q operator, we have that Lw ∈ LDA as a language over B. As
LDA = FO2[<,+1], we have a formula ϕ ∈ FO2[<,+1] recognizing Lw, again as a language
over B.

We now modify ϕ so that it recognizes Lw over A. To do so, we first relativize each
quantification so that only positions that are zero modulo s are considered; since the latter
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predicate is regular, this results in a formula in FO2[reg]. Next, since ϕ works over B, letter
predicates in ϕ are of the form

a1a2 · · · as(x)

with each ai ∈ A. This can be rewritten over A as∧
i=1,...,s

(∃y)[y = x+ i ∧ ai(y)],

still resulting in a FO2[reg] formula. Finally, we can check that the length of the input word
is zero modulo s using (∃x)[max0(x) ∧ (x ≡ 0 mod s)]. The resulting FO2[reg] formula
defines Lw. ◀

3.2 From logic to circuits
Results showing that some logic classes correspond to some circuit classes abound in the
literature, in particular in the corpus of Lange [11, 8, 3, 4, 12, 14]. The usual pattern
is that the quantifier part (say, FO,FO2, or more exotic logics with majority quantifiers)
corresponds to the allowed circuit gates, while the numerical predicates (say, +1, reg, arb, or
multiplication) correspond to the allowed computing power to wire the circuit, the so-called
uniformity of the circuit class.

Recall that FO2[arb] = LAC0, so if we change arb to reg, we expect a reduction in how
intricate the gate wiring can be on the circuit side. In fact, our ability is so restricted that
we cannot define more than a linear number of wires:

▶ Lemma 6. FO2[reg] ⊆ WLAC0.

Proof. Let ϕ(x) ∈ FO2[reg] — this denotes that ϕ may have one free variable, and that it is
x. The proof is done by induction on the structure of ϕ and follows the steps in the proof
of [9, Theorem 2]. We will build a circuit C for ϕ(x) that has n inputs and n outputs (the
output gates need not all be distinct). The circuit C satisfies for every word w of length n:
w |= ϕ(i) iff the i-th output of C(w) is 1. We write C(i)(w) for that output and simply C(i)

for the output gate. We will make sure that the number of wires of C is linear in n.
Without loss of generality, we assume that ϕ does not contain any existential quantifier.

We proceed by structural induction along the following cases:

C1. ϕ(x) is an atomic formula. Then ϕ it is either a unary numerical predicate or a letter
predicate; in both cases, a small circuit of linear size can be produced, showing the claim.

C2. ϕ(x) is a Boolean combination of subformulas. We can construct a circuit for ϕ(x) based
on the circuits for the subformulas. For instance, with ϕ(x) ≡ ψ(x) ∨ θ(x) and circuits
Cψ and Cθ for ψ and θ, the output C(i) is the ∨ of C(i)

ψ and C
(i)
θ . The number of wires

of C is then that of Cψ plus that of Cθ, and the extra 2n wires for the new connections,
showing the claim.

C3. ϕ(x) = (∀y)[ψ(y)], so that ϕ actually has no free variable. The induction hypothesis
provides a circuit Cψ with n outputs. The output of C, which is valid for any value of x,
simply is the conjunction of the outputs of Cψ, which adds linearly many wires, showing
the claim.

C4. ϕ(x) = (∀y)[ψ(x, y)], this is the nontrivial case. Elementary symbolic manipulation on ϕ

shows that it can be written as (see [9, Theorem 2] for details):∧
ℓ=1,...,k

γℓ(x) ∨ (∀y)[δℓ(x, y) ∨ θℓ(y)],
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where, for every ℓ, δℓ(x, y) is a Boolean combination of numerical predicates, each of
them using both x and y. Additionally, all the γℓ, δℓ, θℓ are structurally simpler than ϕ,
so that we can apply the induction hypothesis on these formulas.
By induction hypothesis and Case 2 (Boolean combinations), we simply have to show
that a formula of the form

ϕ(x) = (∀y)[δ(x, y) ∨ θ(y)]

admits a WLAC0 circuit, where δ is, as above, a Boolean combination of numerical
predicates, all using both x and y. Note that the latter implies that δ is a Boolean
combination of x = y+k, with k constant, and x < y and the same with x and y swapped.
The induction hypothesis provides a circuit Cθ for θ, but we cannot simply construct a
circuit for δ, since it would have n2 outputs, one for each pair of positions. However, for
each i ∈ {1, . . . , n}, define

Yi = {j ∈ {1, . . . , n} | an |= ¬δ(i, j)},

for some a ∈ A (since δ does not have any letter predicate, the choice of letter is not
important). By construction, we have, for any word w ∈ An and i ∈ {1, . . . , n}:

w |= ϕ(i) iff w |=
∧
j∈Yi

θ(j). (1)

Note that when constructing a circuit C for ϕ, we cannot wire C(i) as the logical-and of
the outputs C(j)

θ with j ∈ Yi. Indeed, although this would be semantically correct, this
output gate would require a linear number of wires and we need n such outputs. We thus
investigate the set Yi more precisely.
Because δ only contains the +1 and < predicates, each set Yi is the union of a finite set
whose size does not depend on n, a (possibly empty) starting segment of {1, . . . , n}, and
a (possibly empty) finishing segment of {1, . . . , n}; in symbols, for any i there is a set Fi
and two values si, ti such that:

Yi = Fi ∪ {j | j ≤ si ∨ ti ≤ j} ∩ {1, . . . , n}. (2)

(We allow these values to lie outside of {1, . . . , n} to make the corresponding part empty.)
We rely on the existence of the following WLAC0 circuits:

▷ Claim 7 (P refix-and and Suffix-and circuits [6]). For any n, there is a circuit P with n
inputs, n outputs, and a linear number of wires, such that P (i) computes the logical-and
of the i first inputs. Similarly, there is a circuit S that does the same but for the i last
inputs.

We can now start the construction of a circuit C for ϕ. Recall that Cθ is the circuit for θ
and let us plug its n outputs, corresponding to different values of y, as inputs of both
P and S. This contributes 2n new wires, in addition to those of P and S. Combining
Equations 1 and 2, we obtain that the i-th output of C should compute:

∧
j∈Yi

C
(j)
θ ≡

 ∧
j∈Fi

C
(j)
θ

 ∧

 ∧
j≤si

C
(j)
θ

 ∧

 ∧
j≥ti

C
(j)
θ


≡

 ∧
j∈Fi

C
(j)
θ

 ∧ P (si) ∧ S(ti).
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Since the size of Fi only depends on the formula, the last expression can be wired using a
constant number of wires. This concludes the construction.

◀

3.3 Back to algebra
In order to finish our chain of inclusions, we will study the class QLDA on its own in this
section and show that it can be characterized by the languages that are not in it. For the
rest of this paper, we let K = (c+ ac∗b)∗, a regular language with a neutral letter that was
shown to lie outside of WLAC0 by Koucký, Pudlák, and Thérien [10].

▶ Lemma 8. Let V be an lm-variety of languages. If QLDA ⊆ V ⊆ QA and K /∈ V, then
V = QLDA.

Proof. Let V such that QLDA ⊆ V ⊆ QA. We will show that if QLDA ⊊ V then K ′ is
in V where:

K ′ = (c+ ac∗b)∗ac∗ = (K ∩ {a, b, c}∗b)b−1.

Naturally, K ′ is in V if and only if K is; we use K ′ to slightly simplify our presentation.
Let µ : A∗ → M be in V but not in QLDA, we will derive from µ a stamp in V that

recognizes K ′. Let ρ : (As)∗ → S(µ) be its stable stamp, which is in A since µ ∈ QA.
Since ρ /∈ LDA, there is an e ∈ ρ((As)+) such that the local stamp ρe of ρ induced by e

is not in DA. In turn, this means there are two words x, y ∈ (As)∗ such that:

ρe((xy)ωx(xy)ω) ̸= ρe((xy)ω),

for succinctness, we will identify in the rest of this proof x with ρe(x), and similarly for y.
Note that (xy)ωx ∈ S(µ), and since S(µ) = µ(As), this means there is a word u ∈ As

such that µ(u) = (xy)ωx. Similarly, there are words v, w ∈ As such that µ(v) = y(xy)ω and
µ(w) = e.

Let ϕ : {a, b, c}∗ → A∗ be an lm-morphism defined by ϕ(a) = u, ϕ(b) = v, ϕ(c) = w and
finally combine it with µ to form η : A∗ → eS(µ)e = µ ◦ ϕ. We claim that η recognizes K ′.
Note that η ∈ V ∩ A.

We first derive some inequalities and a few identities about η; inequalities characterize
what η can distinguish, while identities exemplify what it cannot distinguish. Our inequalities
mostly say that η can distinguish one letter from two.

η can distinguish the words aab and ab, that is, η(aab) ̸= η(ab), indeed:

η(aab) = (xy)ωx · (xy)ωx · y(xy)ω

= (xy)ωx · (xy)(2ω+1)

= (xy)ωx(xy)ω. (Since ρ ∈ A)
η(ab) = (xy)ωx · y(xy)ω

= (xy)ω, (Similarly, since ρ ∈ A)

and we have that (xy)ωx(xy)ω ̸= (xy)ω.
The previous point immediately implies that η(a) ̸= η(aa) and η(b) ̸= η(ab). It also implies
that η(a) ̸= η(ab), since otherwise, as η(abab) = η(ab), we would get that η(ab) = η(aab).
These are the inequalities that we will use.
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η cannot distinguish a and aba, that is, η(a) = η(aba):

η(aba) = (xy)ωx · y(xy)ω · (xy)ωx = (xy)ωx = η(a).

Note that this implies that η(a) ̸= η(b), since otherwise η(a) = η(aω) and thus η(a) =
η(aa) = η(ab), contradicting η(a) ̸= η(ab).
η cannot distinguish b and bab, that is, η(b) = η(bab):

η(bab) = y(xy)ω · (xy)ωx · y(xy)ω = y(xy)ω = η(b).

Let us now establish how η recognizes words in K ′. Since c is a neutral letter, in the sense
that it does not affect the value of η, we have for every word w ∈ K ′ that η(w) = η((ab)ka)
for some k. As η(a) = η(aba), it holds that η(w) = η(a). We claim that K ′ = η−1({η(a)}),
with the inclusion from left to right holding by construction.

Assume for a contradiction that there is a word w /∈ K ′ such that η(w) = η(a). By
removing every c from w and repeatedly substituting b for bab and a for aba, we obtain a
word w′ such that η(w′) = η(a) and w′ falls in one of the following cases, which all lead to a
contradiction:

C1. w′ = a. This is impossible since w would have been in K ′.
C2. w′ = b. This is impossible since η(a) ̸= η(b).
C3. w′ = r · aa · t. It holds that:

η(a) = η(raat). (3)

By iterating Equation 3 onto itself, we get η(a) = η(rωa(at)ω). By aperiodicity, we thus
get that η(a) = η(ra); we can substitute this into Equation 3 and obtain η(a) = η(aat).
Now we could have iterated Equation 3 onto itself in a different way and obtain η(a) =
η((ra)ωatω), from which we deduce similarly that η(a) = η(at). Substituting this further
into Equation 3, we obtain that η(a) = η(aa), a contradiction.

C4. w′ = r · bb · t. We distinguish two cases:
C4.1. Assume (xy)ωy(xy)ω = (xy)ω. Consequently:

η(bb) = y(xy)ω · y(xy)w = y(xy)ω = η(b). (4)

In this case, we can keep on reducing w′ by replacing each bb with b, and apply one of
C2 or C3 to reach a contradiction.

C4.2. Assume (xy)ωy(xy)ω ̸= (xy)ω. From this, it holds that η can distinguish ab and abb:

η(abb) = (xy)ωx · y(xy)ω · y(xy)ω = (xy)ωy(xy)ω ̸= (xy)ω = η(ab).

This immediately implies that η(b) ̸= η(bb); also, η(a) ̸= η(ba), since otherwise,
η(aab) = η(abab) = η(ab).
We assume we are not in Case 3, so that no aa appears in w′. As w′ is fully reduced,
so that neither aba nor bab appears in w′, we are left with only a few subcases:
w′ = bbbk for some k ≥ 0. Then η(a) = η(bbbk), hence η(bab) = η(bbbbkb). The left-
hand side is η(b), which is thus equal, by iterating, to η(bω). Hence, by aperiodicity,
η(b) = η(bb), a contradiction.
w′ = abbbk for some k ≥ 0. Then η(a) = η(abbbk), and substituting, η(a) = η(abω),
showing, by aperiodicity, η(a) = η(ab), a contradiction.
w′ = bkbba for some k ≥ 0. Then η(a) = η(bkbba), and substituting, η(a) = η(bωa),
showing, by aperiodicity, η(a) = η(ba), a contradiction.
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w′ = abkbba for some k ≥ 0. Then η(a) = η(abkbba), hence η(ab) = η(abkbbab) =
η(abkbb). Iterating, this results in η(ab) = η(abω), hence, by aperiodicity, η(ab) =
η(abb), a contradiction.

◀

We can make this statement more salient by showing a characterization of lm-varieties
included in QA by exclusion and obtain:

▶ Theorem 9. QLDA is the largest lm-variety of languages that does not contain K nor the
languages, for any d ≥ 2, Ld = {w ∈ {a, c}∗ | w has 0 mod d letters a}.

Proof. We show that QA is the largest lm-variety that excludes the languages Ld. This will
show that any variety that excludes these languages is in QA, and in turn that if it excludes
K, by Lemma 5, it is in fact QLDA.

Let V be an lm-variety that excludes the languages Ld and assume there is a stamp
µ : A∗ → M in V \ QA. Let ρ be its stable stamp which, by assumption, is not in A. This
means that there is a word x ∈ As such that ρ(xω) ̸= ρ(xω+1). Let d ≥ 2 be the smallest
value such that ρ(xω) = ρ(xω+d).

Since the image of ρ is µ(As), we can find two words u, v ∈ As such that ρ(u) = ρ(xω)
and ρ(v) = ρ(xω+1). Let ϕ : {a, c}∗ → A∗ be the lm-morphism defined by ϕ(c) = u and
ϕ(a) = v, and write η = µ ◦ ϕ = ρ ◦ ϕ. Since V is an lm-variety, η ∈ V.

Note that η(ca) = η(ac) = ρ(xωxω+1) = ρ(x2ωx) = ρ(xω+1) = η(a), hence c is a neutral
letter for η, in the sense that adding or removing it from a word does not change the value
of η. Moreover:

η(ak) = ρ((xω+1)k)
= ρ(xkω+k)
= ρ(xω+k).

In particular, η(ak) = η(c) iff k ≡ 0 mod d. Hence η−1({η(c)}) is Ld, a contradiction. ◀

3.4 Closing the circle: from circuits to algebra
So far, we have established the following chain of inclusions:

QLDA ⊆ FO2[reg] ⊆ WLAC0 ∩ Reg,

and in addition, since AC0 ∩ Reg = QA, we have that WLAC0 ∩ Reg ⊆ QA. Hence if we
could use Lemma 5 on WLAC0 ∩ Reg, we would be done. Since K /∈ WLAC0, the only
missing piece is:

▶ Lemma 10. WLAC0 ∩ Reg is an lm-variety.

Proof. The proof is standard; in fact, WLAC0 itself is an lm-variety. We need to show that
WLAC0 is closed under the Boolean operations (which is immediate), quotient, and inverse
lm-morphism. Let L ∈ WLAC0 and (Cn) be its circuit family.

Closure under quotient. Let a be a letter, we construct a circuit family for a−1L, the
symmetric case being similar. To do so, we simply import, for input length n, the circuit
Cn+1 and hardwire its first input to a, while its other inputs are directly connected to
the inputs of the global circuit. The number of wires is that of Cn+1 plus n+ 1 wires,
which is still linear.
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Closure under inverse lm-morphism. Let ϕ : A∗ → B∗ be an lm-morphism and k be such
that ϕ(A) ⊆ Bk. We construct a circuit for ϕ−1(L) by reading the inputs over A. Each
input is converted into k inputs over B and the resulting word is plugged into the circuit
Ckn. Since k is a constant, we are only adding a linear number of wires to Ckn, which
contains itself only a linear number of wires.

◀

▶ Theorem 11. QLDA = FO2[reg] = WLAC0 ∩ Reg.

4 Applications

4.1 Decidability
Given a regular language, can we decide whether it belongs to WLAC0? Questions of this
nature come with an important application: if we can decide them, it is often the case that
we can also produce a circuit in the class under study. For instance, this is the case for AC0 —
note that all regular languages belong to the class NC1 of bounded fan-in, log-depth, poly-size
circuits and AC0 ⊊ NC1, thus a AC0 circuit would be more efficient than the “default” NC1

circuit.

▶ Theorem 12. It is decidable, given a regular language, whether it belongs to WLAC0.
Moreover, a WLAC0 circuit can be built for the language.

Proof. Given a regular language, we can compute its so-called syntactic stamp µ, which will
belong to QLDA iff the language belongs to WLAC0 by Theorem 8. Deciding this, in turn,
requires to compute the stable stamp of µ and then its local stamps, then checking that they
belong to DA. The fact that DA is decidable is a classical result [18].For the “moreover”
part, we can enumerate all FO2[reg] formulas and check whether their (regular) language
corresponds to the input language. The transformation of a FO2[reg] formula into a WLAC0

circuit is then given in the proof of Lemma 3. ◀

We note that the characterization of WLAC0 ∩ Reg ∩ NL (Theorem 1) is also effective,
but one cannot reduce membership in WLAC0 ∩ Reg to membership in WLAC0 ∩ Reg ∩ NL
just by adding a neutral letter. Indeed, the language (ab)∗ is in WLAC0 ∩ Reg, but adding a
neutral letter to it results in K.

4.2 LAC0 ∩ Reg, Straubing and Crane Beach properties
One of the most tantalizing open question in the study of the linear restrictions of AC0

is whether LAC0 ∩ Reg = WLAC0 ∩ Reg (Section 1 in the Introduction) — this is widely
believed to be true. We note that this hinges on the language K:

▶ Proposition 13. If K /∈ LAC0, then LAC0 ∩ Reg = WLAC0 ∩ Reg.

Proof. It is not hard to show, along the lines of Lemma 7, that LAC0 ∩ Reg is an lm-variety
— in fact, LAC0 itself is. Hence if K /∈ LAC0, and since LAC0 ∩Reg ⊆ QA, Lemma 5 implies
that LAC0 ∩ Reg = QLDA, which is equal to WLAC0 ∩ Reg. ◀

Similarly, showing K /∈ FO2[arb] would elucidate the Straubing property of FO2 (Section 1
in the Introduction). Indeed, since LAC0 = FO2[arb], the previous proposition can be written
as:
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▶ Proposition 14. If K /∈ FO2[arb], then FO2[arb] has the Straubing property:

FO2[arb] ∩ Reg = FO2[reg].

Finally, we come short of showing the Crane Beach property for FO2[arb] (Section 1) but
we show the property holds for FO2[reg]:

▶ Proposition 15. FO2[reg] has the Crane Beach property:

FO2[reg] ∩ NL ⊆ FO2[<].

Proof. This is a direct consequence of Theorem 1 and Theorem 8. ◀

4.3 Bounded-depth Dyck languages
The language (ab)∗ can be seen as the Dyck language of depth 1: we can interpret a as
opening parenthesis and b as closing. More generally, we can define, for any k > 1:

D
(1)
1 = (ab)∗,

D
(k)
1 = (a ·D(k−1)

1 · b)∗.

These are bounded-depth Dyck languages, in the sense that the classical Dyck language D1
is the union of them all.

These languages play an interesting role in the study of FO and AC0; indeed, one can
show that D(k)

1 separates FO[<] with quantifier-depth k and k + 1. This also holds if we
were to add a neutral letter to these languages [5, 15]. It is open whether these languages
separate the depth hierarchy of AC0.

As mentioned before, if we were to add a neutral letter to D(1)
1 = (ab)∗, we would obtain

the language K and readily be out of WLAC0. However, D(1)
1 itself is in WLAC0. In fact:

▶ Proposition 16. D(k)
1 is in WLAC0 if and only if k is 1 or 2.

Proof. The case k = 1 is an easy exercise. For the case k = 2, we note that there are two
types of letters a: those at depth 1 (aabb) and those at depth 2 (aabb). Importantly, those
at depth 1 can only appear in odd positions (starting with 1), while those at depth 2 can
only appear in even positions. The symmetric consideration holds for bs. Hence a nonempty
word is in D

(2)
1 iff all of the following hold:

It starts with a and ends with b,
Each a in even position (depth 2) is followed by a b,
Each b in even position (depth 1) but the last is followed by an a,
The word is of even length.

Using the successor and modulo predicates, these three properties can easily be formulated
in FO2[reg], showing that D(2)

1 ∈ WLAC0.
For the case k = 3, we show D

(3)
1 /∈ WLAC0. As WLAC0 ∩ Reg is decidable (Theorem 9),

we could implement a procedure that checks this. This is done in the online tool Semigroup
by the second author, available at https://paperman.name/semigroup, which indicates
that D(3)

1 /∈ QLDA.
For completeness, we present an elementary ad-hoc proof. Let ϕ : {a, b, c}∗ → {a, b}∗ be

the lm-morphism defined by ϕ(a) = aa, ϕ(b) = bb, ϕ(c) = ab. Define L = ϕ−1(D(3)
1 ). Clearly,

no word in L can contain aa nor bb. Additionally, c is neutral in L, and every nonempty
word in L that does not contain c starts with a and ends with b. This shows that L is in fact
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K = (c+ ac∗b)∗. In turn, since WLAC0 is an lm-variety, if D(3)
1 is in WLAC0, so is K; this

implies that D(3)
1 /∈ WLAC0.

For the case k > 3, assume that D(k)
1 is in WLAC0 for a contradiction. Since WLAC0

is an lm-variety, it is closed under quotient, implying that a−1D
(k)
1 b−1 is in WLAC0. This

latter language is actually D
(k−1)
1 . Iterating the quotients, this shows that if D(k)

1 is in
WLAC0 for k > 3, then D

(3)
1 is in WLAC0, a contradiction with the case k = 3 above. ◀

We note that if the languages D(k)
1 were equipped with depth information, then they

would all be in WLAC0, showing that the difficulty with these languages is not the nesting,
but the fact that a letter can appear at different depths. This is in contrast with the case
where a neutral letter is added, in which no depth information can be provided to keep the
language in WLAC0. Formally, define, for all k > 1:

R
(1)
1 = (a1b1)∗,

R
(k)
1 = (ak ·R(k−1)

1 · bk)∗.

The language R(k)
1 is over the alphabet {a1, b1, . . . , ak, bk}. It holds that:

▶ Proposition 17. For every k, R(k)
1 is in WLAC0.

5 Conclusion

Our main contribution is an exact algebraic and logical characterization of the regular
languages of wire linear AC0. We noted that Open Problems 1 and 1 hinge on the membership
of a single language in LAC0: K = (c+ ac∗b)∗.

We deduced from the characterization a decidability result that follows a long line of
tradition: one can decide if a regular languages belong to WLAC0. An often overlooked
application of this type of decidability results is that they can be used to provide efficient
electronic circuits automatically for regular expressions. It is conceivable that compilation
procedures can be devised, targeting for instance FPGAs (field programmable gate arrays)
or other computing hardware exhibiting parallelism.
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