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Introduction

Let n ¥ 2. This paper is the first of a sequence of papers where we study the exponential growth of elements of OutpF n q, the outer automorphism group of a nonabelian free group F n of rank n. Let rgs be the conjugacy class of a nontrivial element g of F n , let φ OutpF n q and let Φ AutpF n q be a representative of φ. We say that rgs has exponential growth under iterates of φ if there exists a basis B of F n such that the length of rΦ n pgqs with respect to the word metric relative to B grows exponentially fast with n. It is known, using for instance the technology of relative train tracks (see [BH]) that, otherwise, rgs has polynomial growth under iterates of φ. Let Polypφq be the set of conjugacy classes of elements of F n whose growth under iteration of φ is polynomial.

For a subgroup H of F n , let PolypHq φH Polypφq. The aim of these three papers is to prove the following result:

Theorem 1.1 ( [START_REF] Guerch | Polynomial growth and subgroups of OutpF n q[END_REF]). Let n ¥ 3 and let H be a subgroup of OutpF n q. There exists φ H such that Polypφq PolypHq. Theorem 1.1 is proved using dynamical methods developed mainly in [START_REF] Guerch | North-South type dynamics of relative atoroidal automorphisms of free groups[END_REF]. In the present article, we introduce the topological space associated with the dynamics. Informally, Theorem 1.1 shows that the exponential growth of a subgroup H of OutpF n q is encaptured by the exponential growth of a single element of H. In this paper, we 1 03/12/2021 construct a space which is well-adapted for our considerations, the space of currents relative to a malnormal subgroup system. These relative currents are positive F n -invariant Radon measures on an appropriate subspace of the double boundary at infinity of F n .

Let φ OutpF n q. When the malnormal subgroup system is appropriately chosen, this space has the property that its points corresponding to conjugacy classes of elements in F n ¡ Polypφq are dense in it (see Theorem 1.2).

The space of currents that we construct in this paper builds on objects introduced for similar purposes. For instance, the study of the mapping class group ModpSq of a connected, compact, oriented surface S has benefited from the study of the action of ModpSq on the space of geodesic currents CurrpSq, introduced by Ruelle and Sullivan in [RS] (see also the work of Bonahon [Bon1]). It is defined as the space of π 1 pSq-invariant and flip invariant nonnegative Radon measures on the double boundary f 2 r S of a universal cover r S of S, equipped with the weak-star topology. Considering the space of projective geodesic currents PCurrpSq, one can show that PCurrpSq can be viewed as a completion of the currents associated with weighted nontrivial homotopy classes of closed curves on S. The space PCurrpSq is well-adapted to the study of ModpSq. For instance, it can be used for counting closed geodesics whose length is bounded by a given constant when the surface S is equipped with a hyperbolic metric (see [EU] for a survey). Concerning dynamical properties, a result of Thurston ( [Thu], see also [START_REF] Uyanik | Generalized north-south dynamics on the space of geodesic currents[END_REF]) implies that pseudo-Anosov diffeomorphisms act with North-South dynamics on the space PCurrpSq: every pseudo-Anosov element f ModpSq has exactly two fixed points in PCurrpSq and any other nonfixed point in PCurrpSq converges to one of the fixed points under positive or negative iterates of f . Moreover, this convergence can be made uniform on compact subsets of PCurrpSq which do not contain the fixed points.

In the specific context of free groups, building on [START_REF] Bonahon | Geodesic currents on negatively curved groups[END_REF] for general hyperbolic groups, the space of currents CurrpF n q was first studied by Martin [Mar]. It is defined as the space of F n -invariant, flip invariant nonnegative Radon measure on the double boundary f 2 F n of F n equipped with the weak-star topology. Martin showed that the set of currents associated with conjugacy classes of nontrivial elements of F n is dense in the space PCurrpF n q of projective currents. Currents for free groups have also been studied

in [Kap, KL, CHL]. Similarly to pseudo-Anosov elements of ModpSq on PCurrpSq, fully irreducible automorphisms of F n and atoroidal automorphisms of F n act with North-South type dynamics on PCurrpF n q (see [START_REF] Uyanik | Generalized north-south dynamics on the space of geodesic currents[END_REF][START_REF] Uyanik | Hyperbolic extensions of free groups from atoroidal ping-pong[END_REF]).

Currents on free groups have also been studied in a relative context, more precisely, in the context of free factor systems. A free factor system F is a finite set of conjugacy classes F trA 1 s, . . . , rA k su of nontrivial subgroups A 1 , . . . , A k of F n such that there exists a subgroup B of F n with F n A 1 ¦ . . . A k ¦ B. Gupta [Gup] (see also Guirardel-Horbez [GH]) introduced the space CurrpF n , Fq of currents relative to the free factor system F. Relative currents are then F n -invariant, flip invariant nonnegative Radon measures on a subspace of the double boundary of F n which does not intersect the double boundary of any conjugate of A i , equipped with the weak-star topology. Gupta [Gup] then showed that the set of currents associated with conjugacy classes of nonperipheral elements of F n , that is, elements of F n that do not belong to any conjugate of some A i , is dense in PCurrpF n , Fq. She then showed that fully irreducible outer automorphisms relative to F act with a North-South type dynamics on PCurrpF n , Fq.

In order to study the purely exponential growth part of an outer automorphism of F n , we need to consider currents relative to a class of subgroup systems which is larger than the class of free factor systems. Indeed, if φ OutpF n q, the set of all maximal conjugacy classes of subgroups of F n consisting of elements with polynomial growth under iterates of φ is not necessarily a free factor system. However, Levitt [START_REF] Levitt | Counting growth types of automorphisms of free groups[END_REF]Proposition 1.4] proved that this set is a malnormal subgroup system. A malnormal subgroup system A is a finite set of conjugacy classes A trA 1 s, . . . , rA k su of nontrivial subgroups of F n such that, for every i t1, . . . , ku, the group A i is malnormal and, for every subgroups B 1 , B 2 of

F n such that rB 1 s, rB 2 s A, if the intersection B 1 B 2 is nontrivial, then B 1 B 2 . A
free factor system is, in particular, a malnormal subgroup system but the converse does not hold (see Section 2).

Let A trA 1 s, . . . , rA k su be a malnormal subgroup system. We define the space CurrpF n , Aq of currents relative to A as the space of F n -invariant, flip invariant nonnegative Radon measures on a natural space f 2 pF n , Aq, the double boundary of F n relative to A equipped with the weak-star topology. The space f 2 pF n , Aq is a subspace of f 2 F n which does not intersect the double boundary of any conjugate of A i (see Section 2.4 for precise definitions). In this article, we prove the following result. An element of F n is non-A-peripheral if it is not contained in any conjugate of any A i with i t1, . . . , ku. Theorem 1.2. Let n ¥ 3 and let A be a malnormal subgroup system. The set of currents associated with conjugacy classes of non-A-peripheral elements of F n is dense in the space PCurrpF n , Aq of projective currents relative to A.

Let φ OutpF n q. If A is the set of conjugacy classes of maximal polynomial subgroups of φ, then Theorem 1.2 shows that the set of projective currents associated with exponentially growing elements of F n under iterates of φ is dense in PCurrpF n , Aq. Therefore, the space PCurrpF n , Aq is a natural topological space for the study of the action of φ on elements of F n with exponential growth under iterates of φ. A subsequent paper [START_REF] Guerch | North-South type dynamics of relative atoroidal automorphisms of free groups[END_REF] will then show that φ acts with North-South type dynamics on PCurrpF n , Aq. This North-South dynamics will be a central argument in the proof of Theorem 1.1.

We now give an outline of the proof of Theorem 1.2. The proof follows the one of a similar result in the context of currents relative to free factor systems due to Gupta [Gup]. However, in the case of free factor systems, the proof relies on the existence of an adapted free basis of F n associated with the free factor system, which does not necessarily exist in the case of malnormal subgroup systems. Our new argument in order to overcome this difficulty is the description of a finite set of elements of F n associated with a malnormal subgroup system and a free basis of F n which completely determines whether an element of F n is contained in a conjugate of a subgroup of the malnormal subgroup system or not (see Lemma 2.3).

Let A be a malnormal subgroup system and let µ PCurrpF n , Aq. We first show that µ can be extended into a signed measured current r µ on F n , that is an F n -invariant and flip invariant Radon measure on f 2 F n . Even though r µ might have negative values, we show that r µ can be chosen so that r µ gives positive value to sufficiently many Borel subsets of f 2 F n . One can then use the density of currents associated with conjugacy classes of nontrivial elements of F n in the space CurrpF n q in order to conclude the proof.

To our knowledge, the objects we construct in this paper have not been studied or constructed for larger classes of groups, such as relatively hyperbolic groups and quasiconvex almost malnormal subgroups of hyperbolic groups. Nevertheless, the extension of our definitions to this context seems natural since a result of Bowditch [START_REF] Bowditch | Relatively hyperbolic groups[END_REF]Theorem 7.11] shows that the group F n is always hyperbolic relative to a malnormal subgroup system A. But as we explained in Remark 2.8, the natural double boundary associated with a relative hyperbolic group will have less information than the boundary f 2 pF n , Aq.

Therefore, it would require new techniques to develop the notion of currents for relative hyperbolic groups or quasi-convex almost malnormal subgroups of hyperbolic groups.
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Malnormal subgroup systems

Malnormal subgroup systems

Let n be an integer greater than 1 and let F n be a free group of rank n. In this section, we define, following Handel and Mosher [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Section I.1.1.2], malnormal subgroups systems and study some of their properties.

A subgroup system of F n is a finite (possibly empty) set A whose elements are conjugacy classes of nontrivial (that is distinct from t1u and F n ) finite rank subgroups of F n . Note that a subgroup system A is completely determined by the set of subgroups A of F n such that rAs A. There exists a preorder on the set of subgroup systems of F n , where A 1 ¤ A 2 if for every subgroup A 1 of F n such that rA 1 s A 1 , there exists a subgroup A 2 of F n such that rA 2 s A 2 and A 1 is a subgroup of A 2 . The stabilizer in OutpF n q of a subgroup system A, denoted by OutpF n , Aq, is the set of all elements φ OutpF n q such that φpAq A.

Recall that a subgroup A of F n is malnormal if for every element x F n ¡ A, we have xAx ¡1 A teu. A subgroup system A is said to be malnormal if every subgroup A of F n such that rAs A is malnormal and, for any subgroups A 1 , A 2 of F n such that rA 1 s, rA 2 s A, if A 1 A 2 is nontrivial then A 1 A 2 . There are equivalent formulations of malnormality which we present now (see [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Section I.1.1.2]). Let T be the Cayley graph of F n with respect to some given free basis of F n . For every subgroup A of F n , let T A be the minimal A-invariant subtree of T . Then a subgroup system A made of conjugacy classes of malnormal subgroups is malnormal if and only if there exists a finite constant L ¡ 0 such that for any distinct subgroups A 1 , A 2 of F n such that rA 1 s, rA 2 s A, the diameter of the intersection T A 1 T A 2 is at most equal to L. Malnormality of a subgroup system A made of conjugacy classes of malnormal subgroups is also equivalent to the fact that, for any distinct subgroups A 1 and A 2 of

F n such that rA 1 s, rA 2 s A, we have f V T A 1 f V T A 2 ∅.

Properness at infinity

Let f V F n be the Gromov boundary of F n . Let B be a free basis of F n and let T be the Cayley graph of F n with respect to B. For convenience, we suppose that B ¡1 B. The boundary of T is naturally homeomorphic to f V F n . For an element w F n , we denote by γ w the path in T starting from e corresponding to the word w. We denote by w V the element in f V F n corresponding to the quasi-geodesic starting at e obtained by concatenating paths in T labeled by w.

Let A be a subgroup of F n of finite rank. The inclusion A F n induces an Aequivariant inclusion f V A ã Ñ f V F n . Note that the F n -orbit of the image of this map only depends on the conjugacy class of A in F n .

Let A be a subgroup system of F n . The subgroup system A is said to be proper at infinity if, for every element g of F n , the following assertions are equivalent: there exists a subgroup A of F n such that rAs A and g V f V A; there exists a subgroup A of F n such that rAs A and g A.

For the proof of Lemma 2.2 below, we need the following result (see for instance [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Fact 1.2]). This is a particular case of the same result valid for all quasi-convex subgroups A 1 , A 2 of any word hyperbolic group, see [Swe], that has been for instance generalized in [START_REF] Tran | On strongly quasiconvex subgroups[END_REF]Theorem 1.4].

Lemma 2.1. For every finitely generated subgroups A 1 and A 2 of F n , we have

f V pA 1 A 2 q f V A 1 f V A 2 .
A subgroup A of F n is root-closed if for every g F n and every k N ¦ such that g k A, we have g A.

Lemma 2.2. Let A be a subgroup system. The following are equivalent: p1q the subgroup system A is proper at infinity; p2q every subgroup A of F n such that rAs A is root-closed.

In particular, a malnormal subgroup system is proper at infinity. Proof. Suppose that A is proper at infinity and let A be a subgroup of F n such that rAs A. Let g F n and k N ¦ be such that g k A. Let us prove that g A. Since g k A, we see that g V f V A. Since A is proper at infinity, we have g A. Hence A is root-closed. Suppose now that every subgroup A of F n such that rAs A is rootclosed. Let g F n and let A be a subgroup of F n such that rAs A and g V f V A. By Lemma 2.1 applied to xgy and A, there exists k N ¦ such that g k A. Since A is root-closed, we see that g A. Hence A is proper at infinity. This shows the equivalence.

Let A be a malnormal subgroup system and let A be a subgroup of F n such that rAs A. We prove that A is root-closed. Let g F n and let k N ¦ be such that g k A. We claim that g A. Indeed, suppose towards a contradiction that g A. Then g k gg k g ¡1 belongs to A gAg ¡1 which is equal to teu, a contradiction.

Let A be a malnormal subgroup system. An element g F n is A-peripheral (or simply peripheral if there is no ambiguity) if it is trivial or conjugate into one of the subgroups of A, and non-A-peripheral otherwise. Note that, since A $ trF n su, there always exists a non-A-peripheral element. Since A is proper at infinity by Lemma 2.2, we see that an element g of F n is A-peripheral if and only if there exists a subgroup A of F n such that rAs A and g V f V A.

Let A trA 1 s, . . . , rA r su be a malnormal subgroup system of F n . For every element i t1, . . . , ru, let T A i be the minimal A i -invariant subtree of T . Suppose that for every i t1, . . . , ru, the representative A i of rA i s is chosen so that the tree T A i contains the base point e of T . By malnormality of A, there exists L N ¦ such that for any distinct subgroups A, B of F n such that rAs, rBs A, the diameter of the intersection T A T B is at most L. Let i t1, . . . , ru. Let Γ i be the set of subgroups B of F n such that there exists g B F n such that B g B A i g ¡1

B and the tree T B contains the base point e of T . Note that, by malnormality of A, for every i t1, . . . , ru, the set Γ i is finite. Let C i be the set of elements w of F n such that the length of γ w is equal to L 2 and, for every

B Γ i , the path γ w is not contained in T B . Let C r i1 C i . Since we are looking at geodesic paths of length equal to L 2, the set C is finite. If γ is a path in T , the element of F n corresponding to γ is the element h F n such that the path γ is labeled by h. Lemma 2.3. Let B, T , A trA 1 s, . . . , rA r su, L N ¦ , Γ 1 , .
. . , Γ r , C be as above. The finite set C C pA 1 , . . . , A r q is nonempty. Moreover, it satisfies the following: p1q every element g F n such that the length of γ g is at least equal to L 2 and such that γ g is not contained in a tree T B with B r i1 Γ i contains an element of C as a subword. In particular, every non-A-peripheral cyclically reduced element g F n has a power which contains an element of C as a subword; p2q for every non-A-peripheral cyclically reduced element g F n , if c g is the geodesic ray in T starting from e obtained by concatenating edge paths labeled by g, there exists an edge path in c g labeled by a word in C at distance at most L 2 from

r i1 BΓ i T B ;
p3q if an element w F n contains an element of C as a subword, then for every i t1, . . . , ru, the element w is not contained in A i . Proof. We first prove that p1q and p2q hold and that C is nonempty. Let g be as in the first claim of Assertion p1q. First note that, by the choice of L, for every i, j t1, . . . , ru and every distinct A Γ i and B Γ j , the intersection T A T B is contained in the closed ball of radius L centered at e. We consider the geodesic path c g : r0, 1s Ñ T such that cp0q e and such that c g p1q is the terminal endpoint of γ g . Let i t1, . . . , ru and let

t 0 max 5 t r0, 1s | c g ptq r ¤ i1 ¤ AΓ i T A C .
The point c g pt 0 q is a vertex and is distinct from c g p1q by assumption. We denote by c A the geodesic segment c g r i1 AΓ i T A . Suppose first that the length of c A is at most equal to L 1. Let c 0 be the geodesic segment contained in c g which originates at c g pt 0 q and such that the length of c A c 0 is equal to L 2. Such a path c A c 0 exists since the length of γ g is at least equal to L 2. Then the element h of F n corresponding to c A c 0 is in C and is a subword of g. This concludes the proof in this case.

Suppose now that the length of c A is greater than L 1. Let c A pt 0 ¡ L ¡ 1q be the vertex in c A at distance L 1 from c g pt 0 q, and let g 0 be the corresponding element of F n . Let s 0 be the geodesic path between c A pt 0 ¡ L ¡ 1q and c g pt 0 q. Since the geodesic path s 0 has length equal to L 1, there exists a unique i t1, . . . , ru and a unique A Γ i such that s 0 is contained in T A . Let e 0 be the edge in c g which originates at c g pt 0 q. Let h F n be the element corresponding to the edge path s 1 between c g pt 0 ¡ L ¡ 1q and the terminal point of e 0 . We claim that h C . Indeed, suppose towards a contradiction that h C . Then there exists j t1, . . . , ru and B Γ j such that the edge path γ h is contained in T B . Since γ h has length equal to L 2, the integer j and the subgroup B are unique. Remark that g ¡1 0 sends the geodesic path s 0 to the initial segment of length L 1 of γ h . Since g ¡1 0 s 0 has length equal to L 1, the subgroup B is the unique element of r 1 Γ such that the tree T B contains g ¡1 0 s 0 . But s 0 is contained in T A and the tree T A is sent by g ¡1 0 to the tree T g ¡1 0 Ag 0 . Therefore, we see that B g ¡1

0 Ag 0 . But g ¡1 0 induces an isometry between T A and T g ¡1 0 Ag 0 . Therefore, since s 1 is not contained in T A , we see that γ h g ¡1 0 s 1 is not contained in T g ¡1 0 Ag 0 .
This leads to a contradiction. Hence h C and h is a subword of g. This proves the first claim of Assertion p1q. We now prove the second claim of Assertion p1q. Let g be a non-A-peripheral cyclically reduced element of F n . Let c I g : R Ñ T be the geodesic ray in T starting from e obtained by concatenating edge paths labeled by g. Recall that, for every i t1, . . . , ru, the set Γ i is finite. Therefore, since g is nonperipheral and since A is proper at infinity by Lemma 2.2, the intersection of c I g with r i1 AΓ i T A is compact. Hence there exists a power of g which satisfies the first claim of Assertion p1q. This proves p1q. Moreover, the terminal endpoint of the path in c g labeled by h which we have constructed is either at distance L 2 from e or is at distance at most 1 from r i1 BΓ i T B . This proves p2q. This also proves that C is nonempty as there exists a non-A-peripheral element.

We now prove p3q. Suppose towards a contradiction that there exist i t1, . . . , ru and a A i such that a contains a word of C as a subword. Thus there exist x C , b, c F n such that a bxc and the word bxc is reduced. Then since e is contained in

T A i , the path γ a is contained in T A i . But the element b ¡1 sends the tree T A i to the tree T b ¡1 A i b .
Moreover, since T A i contains the vertex labeled by b, the tree T b ¡1 A i b contains the base point e of T . But then T b ¡1 A i b contains the geodesic segment γ x . This contradicts the fact that x C C i . This concludes the proof.

Examples of malnormal subgroup systems

Let n be an integer greater than 1 and let F n be a free group of rank n. In this section, we give some examples of malnormal subgroup systems. The first one that we describe, following Handel and Mosher [HM], is an R-vertex group system. Let T be an R-tree equipped with a minimal, isometric action of F n for which no point or end of T is fixed by the whole group and with trivial arc stabilizers. A proper, nontrivial subgroup A of F n is an R-vertex group of T if there exists a point x T such that A Stabpxq. Note that every free factor of F n is an R-vertex group of some simplicial tree. Every R-vertex group has rank at most equal to n (see [GL]).

The R-vertex group system of T , denoted by A T , is the set consisting of all conjugacy classes of nontrivial point stabilizers in T . The set A T is finite and its cardinality is bounded from above by a finite constant depending only on n (see [GL]). Therefore the set A T is a subgroup system. Note that every free factor system of F n is an R-vertex group system of some simplicial tree. However, there exist R-vertex group systems which are not free factor systems. For example, let S be a compact connected oriented hyperbolic surface with one totally geodesic boundary component such that π 1 pSq is isomorphic to F n . Let T be the R-tree dual to the lift r Λ to H 2 of a measured geodesic lamination Λ without compact leaves on S. An identification of π 1 pSq with F n induces an action of F n on T which has trivial arc stabilizers. Moreover, the fundamental group of the connected component containing the boundary curve of S is the stabilizer of a point in T . Since the fundamental group of this connected component is not a free factor of F n , this shows that A T is not a free factor system. More generally, Handel and Mosher [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Proposition 3.3] give general constructions of R-vertex group systems which are not free factor systems.

Lemma 2.4. [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Lemma 3.1] The subgroup system A T is a malnormal subgroup system.

Another example of malnormal subgroup systems is the following. An outer automorphism φ OutpF n q is exponentially growing if there exists g F n such that the length of the conjugacy class rgs of g in F n with respect to some basis of F n grows exponentially fast under iteration of φ. If φ OutpF n q is not exponentially growing, then the length of the conjugacy class of every element of F n is polynomially growing under iteration of φ and φ is said to be polynomially growing. One similarly says that an automorphism α AutpF n q is exponentially growing or polynomially growing. Let φ OutpF n q be exponentially growing. A subgroup P of F n is a polynomial subgroup of φ if there exist k N ¦ and a representative α of φ k such that αpP q P and α| P is polynomially growing. By [START_REF] Levitt | Counting growth types of automorphisms of free groups[END_REF]Proposition 1.4], there exist finitely many conjugacy classes rH 1 s, . . . , rH k s of maximal polynomial subgroups of φ and the set H trH 1 s, . . . , rH k su is a malnormal subgroup system.

Double boundary of F n relative to a malnormal subgroup system

In this section, we construct a boundary of F n relative to a malnormal subgroup system. We follow a similar construction made by Gupta in [START_REF] Gupta | Relative currents[END_REF]Section 3.1] in the case of the boundary relative to a free factor system. The double boundary of F n is the quotient topological space

f 2 F n pf V F n ¢ f V F n z∆q { ,
where is the equivalence relation generated by the flip relation px, yq py, xq and ∆ is the diagonal, endowed with the diagonal action of F n . We denote by tx, yu the equivalence class of px, yq.

Let A trA 1 s, . . . , rA r su be a malnormal subgroup system of 

F n . Let B, T , L N ¦ , Γ 1 , . . . ,
f 2 F n is Hausdorff. The action of F n on f 2 F n has a dense orbit.
Let A be a nontrivial subgroup of F n of finite rank. The induced A-equivariant

inclusion f V A ã Ñ f V F n induces an inclusion f 2 A ã Ñ f 2 F n . Let f 2 A r ¤ i1 ¤ gFn f 2 gA i g ¡1 . Let f 2 pF n , Aq f 2 F n ¡ f 2 A be the double boundary of F n relative to A.
This subset is invariant under the action of F n on f 2 F n and inherits the subspace topology of f 2 F n , denoted by τ .

Lemma 2.5. Let CylpC q be the set of cylinder sets of the form Cpγq, where the element of F n determined by the geodesic edge path γ contains an element of C as a subword. We have

f 2 pF n , Aq ¤ CpγqCylpC q Cpγq.
In particular, the space f 2 pF n , Aq is an open subset of f 2 F n .

Proof. Let y f 2 pF n , Aq. Let c be an oriented geodesic line c in T which belongs to the equivalence class y. Let v be a vertex of T contained in c and let g 0 be the corresponding element of F n . Suppose first that the intersection cg 0 r i1 BΓ i T B ¨is either compact or a halfline. In particular, the intersection c g 0 r i1 BΓ i T B ¨has a terminal point v I . Let x be the vertex in c at distance L 2 from v I . Let g F n be the element corresponding to the geodesic edge path between v and x. Note that the edge path γ g is not contained in r i1 BΓ i T B since, for every nontrivial subgroup A of F n of finite rank, the element g 0 sends T A to T g 0 Ag ¡1 0 . By Lemma 2.3 p2q, the word g contains a word of C as a subword. Then y g 0 Cpγ g q, and g 0 Cpγ g q CylpC q.

Suppose now that the intersection c g 0 r i1 BΓ i T B ¨is not compact. Since y f 2 pF n , Aq, the path c cannot be contained in a single tree g 0 T B with B r i1 Γ i .

By the definition of L, there exist exactly two subgroups A, B r i1 Γ i such that c is contained in g 0 T A g 0 T B . By the definition of the constant L, the intersection g 0 T A g 0 T B has diameter at most equal to L. Let c 0 be the subpath of c of length 2L 2 whose middle point is v and whose starting point is in g 0 T A and let g be the element of F n corresponding to c 0 . Let v I be the initial vertex of c 0 and let g I be the element of F n associated with v I . Note that the intersection of c 0 with g 0 T A and g 0 T B has length at least equal to L 1. Up to considering a larger path c 0 , we may suppose that g is cyclically reduced. We claim that g contains an element of C as a subword. Indeed, suppose towards a contradiction that g does not contain an element of C as a subword. By Lemma 2.3 p1q, there exist i t1, . . . , ru and H Γ i such that γ g T H .

But then g I γ g c 0 and is contained in g I T H . Thus the diameter of the intersection g I T H with g 0 T A and g 0 T B is at least equal to L 1. By definition of L, this means that g I T H g 0 T A g 0 T B . This means that A B, a contradiction. Hence g contains an element of C as a subword. Thus we have y g 0 Cpγ g q, with g 0 Cpγ g q CylpC q.

Therefore, we see that

f 2 pF n , Aq ¤ CpγqCylpC q Cpγq.
Conversely, let γ be a geodesic path in T such that Cpγq CylpC q. Suppose towards a contradiction that there exists y f 2 A such that y Cpγq. Thus, there exist elements i t1, . . . , ru, g F n and a gA i g ¡1 such that ta V , a ¡V u Cpγq. Therefore, we see that γ is a subpath of T gA i g ¡1. Decompose γ as γ τ 1 δτ 2 where δ is labeled by a word w in C . Let v be the origin of δ and let h be the element of F n corresponding to v. Then h ¡1 T gA i g ¡1 T h ¡1 gA i g ¡1 h Γ i and contains γ w with w C , a contradiction.

Note that Lemma 2.5 implies that we can define a topology on f 2 pF n , Aq, denoted by τ I , where cylinder sets in CylpC q generate the topology. Lemma 2.5 also implies that the two topologies τ and τ I are equal.

Since f 2 F n is locally compact and since f 2 pF n , Aq is an open subset of f 2 F n by Lemma 2.5, we have the following result.

Lemma 2.6. The space f 2 pF n , Aq is locally compact. Lemma 2.7. The action of F n on f 2 pF n , Aq has a dense orbit. Proof. Recall that there exists g F n such that the action of g on f 2 F n has a dense orbit. Since f 2 pF n , Aq is an open subset of f 2 F n , the element g also acts on f 2 pF n , Aq with a dense orbit.

Remark 2.8. We now compare our definition with other natural constructions of double boundaries. The first one is to see the double boundary of F n relative to a malnormal subgroup system as the double boundary of a Gromov hyperbolic space. Indeed, if A trA 1 s, . . . , rA r su is a malnormal subgroup system, by a result of Bowditch (see [START_REF] Bowditch | Relatively hyperbolic groups[END_REF]Theorem 7.11]), the group F n is hyperbolic relative to A. In particular, there is a natural (that is well-defined up to quasi-isometry) proper geodesic Gromov hyperbolic space X on which F n acts by isometries and such that the subgroups of F n whose conjugacy classes are in A are precisely the maximal parabolic subgroups of the action of F n on the Gromovboundary of X (see [Bow] for a precise description of X). Thus a natural construction for another type of double boundary of F n relative to A is to define it as the double boundary of X. This definition seems to extend to the more general case of relatively hyperbolic groups. However, the relative double boundary f 2 pF n , Aq has the advantage of being an open subset of f 2 F n , so that one can use the cylinder sets of f 2 F n as a basis for the topology of f 2 pF n , Aq. Moreover, the natural application from fF n to fX sends the boundary of a parabolic subgroup to a point. Therefore, the relative double boundary f 2 pF n , Aq seems to contain more information about the geodesic lines whose endpoints are in the Gromov boundary of distinct parabolic subgroups.

Another candidate for the double boundary of the pair pF n , Aq is the following. Let p T be the graph obtained from T by adding one vertex vpgAq for every coset gA with A a subgroup of F n such that rAs A and by adding an edge from vpgAq to every vertex of T labeled by an element in gA. The graph p T is Gromov hyperbolic (see for instance [START_REF] Kapovich | On hyperbolicity of free splitting and free factor complexes[END_REF]Proposition 2.6] or [Bow]) and the Gromov boundary of p T is homeomorphic to the space

f V F n ¡ r i1
gFn f V gA i (see for instance [START_REF] Abbott | Acylindrically hyperbolic groups and their quasiisometrically embedded subgroups[END_REF]Theorem 1.6] or [DT, Bow]). However, the double boundary f 2 p T does not contain any geodesic line whose endpoints are in distinct parabolic subgroups, which makes it a proper subspace of f 2 pF n , Aq which does not seem to be a union of cylinder sets.

Currents relative to a malnormal subgroup system

In this section, we define currents of F n relative to a malnormal subgroup system. We follow the construction of Gupta [START_REF] Gupta | Relative currents[END_REF]Section 3.2] of currents relative to a free factor system.

Let A trA 1 s, . . . , rA r su be a malnormal subgroup system of F n . Let B, T , L N ¦ , Γ 1 , . . . , Γ r , C be as above Lemma 2.3.

A relative current on pF n , Aq is an F n -invariant nonnegative Radon measure µ on the locally compact space (by Lemma 2.6) f 2 pF n , Aq (that is µ gives finite measure to compact subsets of f 2 pF n , Aq, is inner and outer regular). The set CurrpF n , Aq of all relative currents on f 2 pF n , Aq is equipped with the weak-star topology: a sequence pµ n q nN in CurrpF n , Aq N converges to a current µ CurrpF n , Aq if and only if for every disjoint clopen subsets S, S I f 2 pF n , Aq, the sequence pµ n pS ¢ S I qq nN converges to µpS ¢ S I q. The space CurrpF n , Aq is naturally identified with the space of non-negative, F n -invariant, continuous linear functionals on the space C c pf 2 pF n , Aqq (equipped with the uniform norm) of continuous compactly supported functions of f 2 pF n , Aq (see [START_REF] Cohn | Measure theory[END_REF]Theorem 7.5.5]). Therefore, the space CurrpF n , Aq is homeomorphic to a subspace of C c pf 2 pF n , Aqq ¦ equipped with the weak-star topology. Equipped with the uniform structure induced by the weak-star topology on C c pf 2 pF n , Aqq ¦ , we see that the space CurrpF n , Aq is metrisable and complete (see [START_REF] Bourbaki | Intégration : chap[END_REF]Chap. 3, Section 1, Proposition 14]).

The group OutpF n , Aq acts on CurrpF n , Aq as follows. Let φ OutpF n , Aq, let Φ be a representative of φ, let µ CurrpF n , Aq and let C be a Borel subset of f 2 pF n , Aq. Then, since φ preserves A, we see that Φ ¡1 pCq is a Borel subset of f 2 pF n , Aq. Then we set φpµqpCq µpΦ ¡1 pCqq, which is independent of the choice of the representative Φ since µ is F n -invariant and the extension to the boundary of the action by conjugation and by left translation of F n on itself coincide.

We now describe some coordinates for CurrpF n , Aq. Recall that CylpC q is the set of cylinder sets of the form Cpγq, where the element of F n determined by the geodesic path γ contains an element of C as a subword. Recall that

f 2 pF n , Aq ¤ CpγqCylpC q Cpγq.
Let η CurrpF n , Aq. Let w F n be such that Cpγ w q CylpC q and let w w 1 . . . w k be the reduced word associated with w written in the basis B. Then Cpγ w q ² Cpγ wb q, where the union is taken over all elements b of B B ¡1 except b w ¡1 k . The σ-additivity of a relative current η implies that:

ηpCpγ w qq b$w ¡1 k ηpCpγ wb qq.
Finally, we note that, for every element w F n such that Cpγ w q CylpC q, we have ηpCpγ w qq ηpCpγ w ¡1qq. Indeed, this follows from the fact that Cpγ w q wCpγ w ¡1q and from the F n -invariance of η. p1q For every i t1, . . . , ku, we have Cpγ i q CylpC q; p2q for every distinct i, j t1, . . . , ku we have Cpγ i q Cpγ j q ∅; p3q we have C k i1 Cpγ i q. Proof. Since C is a compact open subset of f 2 F n , using the topology τ I , the set C can be written as a union of cylinder sets Cpγ 1 q, . . . , Cpγ q, where, for every i t1, . . . , u, we have Cpγ i q CylpC q. We may suppose that for every distinct i, j t1, . . . , u, we have Cpγ i q Cpγ j q. In particular, there does not exist i, j t1, . . . , u such that γ i γ j . Let m be the number of pairs of distinct elements i, j t1, . . . , u such that Cpγ i q Cpγ j q $ ∅. We prove Lemma 3.1 by induction on m. If for every distinct i, j t1, . . . , u, we have Cpγ i q Cpγ j q ∅, then the set tγ 1 , . . . , γ u satisfies the conclusion of the lemma. Suppose that there exists m pairs of distinct elements i, j t1, . . . , u such that Cpγ i q Cpγ j q $ ∅, with m ¥ 1.

Claim. Let i, j be as above. There exists finite geodesic paths γ piq 1 , . . . , γ piq k i , γ pjq 1 , . . . , γ pjq k j in T which satisfy the following: paq for every s t1, . . . , k i u and every t t1, . . . , k j u, we have γ i γ piq s and γ j γ pjq t ;

pbq for every p ti, ju, for every distinct s, t t1, . . . , k p u, we have Cpγ ppq s qCpγ ppq t q ∅; pcq for every s t1, . . . , k i u and every t t1, . . . , k j u, either Cpγ piq s q Cpγ pjq t q or Cpγ piq s q Cpγ pjq t q ∅; pdq for every p ti, ju, we have

Cpγ p q kp ¤ s1
Cpγ ppq s q.

Proof. See Figure 1 to follow the construction. Notice that we either have γ i γ j ∅ or γ i γ j $ ∅. In both cases, we construct a path τ and vertices v i , v I i , v j , v I j that we will use in the rest of the proof. First suppose that γ i γ j ∅. Let τ be the unoriented geodesic path in T which realizes the distance between γ i and γ j . Since, by assumption, Cpγ i qCpγ j q $ ∅, the endpoints of τ are endpoints of γ i and γ j . For every p ti, ju, let v p be the common endpoint of γ p and τ and let v I p be the other endpoint of γ p . Suppose now that γ i γ j $ ∅. Then, since Cpγ i qCpγ j q $ ∅ there exist three paths τ , a i and a j such that, up to changing the orientation of γ i and γ j , we have: γ i a i τ and γ j τ a j . For every p ti, ju, let v p be the common endpoint of a p and τ and let v I p be the other endpoint of a p . p is at distance exactly 1 from the minimal edge path of T which contains τ and γ I . Note that for every p ti, ju and ti, ju ¡ tpu, there exists a unique s p t1, . . . , k p u such that γ ppq

v I i v I j v i v j e I i e I j γ I i γ I j τ γ i γ j v I i v I j v i v
sp contains e I . Note that for every p ti, ju, the integer s p is the unique integer s t1, . . . , k p u such that γ ppq s contains both γ i and γ j . Note also that γ piq

s i pγ pjq s j q ¡1 .
We claim that the paths γ piq 1 , . . . , γ piq k i , γ pjq 1 , . . . , γ pjq k j satisfy the conclusion of the claim.

Indeed, paq is satisfied by construction. We prove pbq. s q Cpγ ppq t q ∅ and this proves pbq.

We now prove pcq. Let s t1, . . . , k i u and let t t1, . . . , k j u. Suppose that we have Cpγ piq s qCpγ piq t q $ ∅. Then there exists a path γ I of T such that γ I contains both γ piq s and γ pjq t . Thus γ I contains both γ i and γ j . This implies that γ piq s γ piq s i pγ pjq s j q ¡1 pγ pjq t q ¡1

and that Cpγ piq s q Cpγ pjq t q. This proves pcq. Finally, the fact that pdq holds follows from the fact that Cpγq bET,γbγ Cpγbq. This proves the claim.

For every p ti, ju, replace γ p by the paths γ ppq 1 , . . . , γ ppq k i . Then we obtain a new set tγ I 1 , . . . , γ I 1 u such that, by the point pdq of the claim, C 1 i1 Cpγ I i q. Recall that for every p ti, ju, we have Cpγ p q CylpC q. By the point paq of the claim, for every p ti, ju and every s t1, . . . , k i u, we have γ p γ ppq s . Therefore, we see that for every p ti, ju and every s t1, . . . , k i u, we have Cpγ ppq s q CylpC q. Hence the set tγ I 1 , . . . , γ I 1 u satisfies p1q. Point paq of the claim also implies that, for every m I t1, . . . , u, and every p ti, ju, if Cpγ m Iq Cpγ p q ∅ then for every s t1, . . . , k p u, we have Cpγ m Iq Cpγ ppq s q ∅. Combined with points pbq and pcq of the claim, we see that the number of distinct elements m 1 , m 2 t1, . . . , 1 u such that Cpγ m 1 q Cpγ m 2 q $ ∅ is strictly less than m.

An inductive argument then concludes the proof.

We denote by F n ¡ A the subset of F n consisting in every element w F n such that Cpγ w q CylpC q. Note that F n ¡ A is closed under inversion since C is closed under inversion by Lemma 2.3. The next lemma gives a criterion to extend some functions defined on F n ¡ A to a relative current in CurrpF n , Aq (see [START_REF] Gupta | Relative currents[END_REF]Lemma 3.9] for the free factor system case). First we need some definitions.

Let w F n , and let k N ¦ . A length k extension of w is a word w I wx 1 . . . x k where for every i t1, . . . , k ¡ 1u, we have x i $ x ¡1 i 1 and x 1 is not the inverse of the last letter of w. An extension of w is a word w I such that there exists k N ¦ such that w I is a length k extension of w.

Lemma 3.2. Let η : F n ¡ A Ñ R be a function invariant under inversion and which satisfies, for every w F n ¡ A: ηpwq v is a length one extension of w

ηpvq.

(1)

There exists a unique element r η CurrpF n , Aq such that for every element w F n ¡ A, we have ηpwq r ηpCpγ w qq.

Proof. Since f 2 pF n , Aq is totally disconnected and locally compact by Lemma 2.6, and since a relative current is a Radon measure, a relative current is uniquely determined by its values on compact open subsets of f 2 pF n , Aq. Let C be a compact open subset of f 2 pF n , Aq. By Lemma 3.1, the subset C is a disjoint union of cylinders of finitely many geodesic edge paths γ 1 , . . . , γ k such that for every i t1, . . . , ku, we have Cpγ i q CylpC q.

For every i t1, . . . , ku, let g i be the element of F n which is the label of γ i . For every i t1, . . . , ru, since g i contains an element of C as a subword, we have g i F n ¡ A.

Hence we can set r ηpCq °k i1 ηpg i q. We claim that the value r ηpCq does not depend on the choice of the paths γ i . Indeed, let α 1 , . . . , α be another set of geodesic edge paths given by Lemma 3.1 and let h 1 , . . . , h be the corresponding elements in F n . Note that for every i t1, . . . , ku and every j t1, . . . , u such that Cpγ i q Cpα j q $ ∅, we have Cpγ i q Cpα j q Cpβ i,j q, where β i,j is a minimal edge path in T that contains both γ i and α j . We claim that for every i t1, . . . , ku, there do not exist distinct j 1 , j 2 t1, . . . , u and paths a 1 and a 2 such that β i,j 1 a 1 γ i and β i,j 2 γ i a 2 . Indeed, otherwise the path a 1 γ i a 2 is a finite path that contains both α j 1 and α j 2 . Hence Cpα j 1 q Cpα j 2 q $ ∅, a contradiction. The claim follows.

For every i t1, . . . , ku and every j t1, . . . , u such that Cpγ i q Cpα j q $ ∅, let g i,j be an element in F n corresponding to β i,j . By the above claim, for every i t1, . . . , ku, one of the following holds: paq for every j t1, . . . , u such that Cpγ i qCpα j q $ ∅, the element g i,j is an extension of g i ; pbq for every j t1, . . . , u such that Cpγ i qCpα j q $ ∅, the element g ¡1 i,j is an extension of g ¡1 i .

Since η is invariant under inversion, we may suppose that for every i t1, . . . , ku, and for every j t1, . . . , u such that Cpγ i qCpα j q $ ∅, the element g i,j is an extension of g i . Thus for every j t1, . . . , u, and for every i t1, . . . , ku such that Cpγ i q Cpα j q $ ∅, the element g ¡1 i,j is an extension of h ¡1 j .

Note that, since C k i1 Cpγ i q j1 Cpα j q, for every i t1, . . . , ku, the subset Cpγ i q is covered by a disjoint union of finitely many Cpα j q. Hence, for every i t1, . . . , ku, Equation (1) implies that:

ηpg i q j | Cpγ i qCpα j q$∅ ηpg i,j q.
Similarly, for every j t1, . . . , u, we have:

ηph ¡1 j q i | Cpγ i qCpα j q$∅ ηpg ¡1 i,j q.
Thus, since η is invariant under inversion, we have:

j1 ηph j q j1 ηph ¡1 j q j1 i | Cpγ i qCpα j q$∅ ηpg ¡1 i,j q k i1 j | Cpγ i qCpα j q$∅ ηpg i,j q k i1 ηpg i q.
Hence the value of r ηpCq does not depend on the choice of the paths γ i . Therefore r η is an additive, F n -invariant and nonnegative function on the set of compact open subsets of f 2 pF n , Aq. We claim that r η is in fact σ-additive. Indeed, by [START_REF] Cohn | Measure theory[END_REF]Proposition 1.2.6], it suffices to prove that for every decreasing sequence pC n q nN of compact open subsets of f 2 pF n , Aq such that nN C n ∅, we have lim nÑV r ηpC n q 0.

But since a decreasing sequence of nonempty compact subsets is a nonempty compact subset, there exists n N such that C n ∅. This proves the claim. By Carathéodory extension theorem (see [START_REF] Cohn | Measure theory[END_REF]Proposition 1.2.6,Theorem 1.3.6]), the function r η has a unique extension as a Radon measure on the σ-algebra of Borel sets of f 2 pF n , Aq.

Let

PCurrpF n , Aq pCurrpF n , Aq ¡ t0uq {R ¦ be the set of projectivized relative currents (where R ¦ acts on CurrpF n , Aq by homo- thety), equipped with the quotient topology which is metrizable. The next result is a generalization of [START_REF] Gupta | Relative currents[END_REF]Lemma 3.11].

Lemma 3.3. The metrisable space PCurrpF n , Aq is compact.

Proof. Let prη n sq nN be a sequence of projective currents relative to A. We prove that it has a convergent subsequence. Let C be the finite set given by Lemma 2.3. For every n N, let η n be a representative of rη n s such that, for every w C , we have ηpCpγ w qq ¤ 1, with equality for some w C , independent of n up to extraction. The set C being finite, there exists a subsequence pn k q kN such that for every u C , the sequence pη n k pCpγ u qqq kN converges. Moreover, there exists u 0 C such that the limit lim kÑV pη n k pCpγ u 0 qqq kN is not equal to zero. Let w F n be such that Cpγ w q CylpC q.

There exists u w C such that u w is a subword of w. Therefore, for every k N, we have η n k pCpγ w qq ¤ η n k pCpγ uw qq ¤ 1. Therefore, for every element w F n ¡A, the sequence pη n k Cppγ w qqq kN has a convergent subsequence. By a diagonal argument, up to extraction, for every Cpγ w q CylpC q, the sequence pη n k pCpγ w qqq kN converges. Moreover, there exists Cpγ w q CylpC q such that pη n k pCpγ w qqq kN converges to a nonzero element.

Let η : F n ¡ A Ñ R be the function defined by, for every w F n ¡ A: ηpwq lim kÑV η n k pCpγ w qq.

Since for every k N, the function η n k is a relative current, the function η satisfies the assumptions of Lemma 3.2. Therefore, by Lemma 3.2, there exists a unique relative current r η CurrpF n , Aq such that for every element w F n ¡ A, we have ηpwq r ηpCpγ w qq. Hence prη n k sq kN converges to rr ηs.

Density of rational currents

In this section, let n ¥ 3. Let r N and let A trA 1 s, . . . , rA r su be a malnormal subgroup system of F n . Let B, T , L N ¦ , Γ 1 , . . . , Γ r , C be as above Lemma 2.3. Let : F n Ñ N be the length function corresponding to B.

Every conjugacy class of nonperipheral element g F n determines a relative current η g as follows. Suppose first that g is root-free, that is, g is not a proper power of any element in F n . Let γ be a finite geodesic path in the Cayley graph T such that Cpγq CylpC q. Then η g pCpγqq is the number of unoriented translation axes in T of conjugates of g that contain the path γ. If g h k with k ¥ 2 and h root-free, we set η g k η h . Such currents are called rational currents. Note that for every nonperipheral element g F n , the current η g only depends on the conjugacy class of g. Therefore, we can talk about rational currents induced by conjugacy classes of nonperipheral elements of F n and write η rgs for the rational current associated with the conjugacy class of a nonperipheral element g F n . We prove the following proposition. Proposition 4.1. Let n ¥ 3 and let A be a malnormal subgroup system of F n . The set of projectivized rational currents induced by conjugacy classes of nonperipheral elements of F n is dense in PCurrpF n , Aq.

We follow Gupta's proof ( [START_REF] Gupta | Relative currents[END_REF]Proposition 3.12]) in the special case of free factor systems. The proof consists in approximating currents in PCurrpF n , Aq with signed measured currents on f 2 F n , which are F n -invariant and σ-additive real-valued functions on the set of Borel subsets of f 2 F n . We will then conclude using the following lemma, due to Martin (see also [START_REF] Gupta | Relative currents[END_REF]Lemma 3.15]).

Lemma 4.2. [START_REF] Martin | Non-uniquely ergodic foliations of thin-type, measured currents and automorphisms of free groups[END_REF]Lemma 15] Let n ¥ 3. Suppose that A ∅. Let k I ¥ 1, let k ¥ 2 with k I ¤ k and let η be a signed measured current such that, for every w F n with k I ¤ pwq ¤ k, we have ηpCpγ w qq ¥ 0. Let P 2np2n ¡ 1q 2np2n¡1q k¡2 . If there exists w 0 F n such that pw 0 q k and ηpCpγ w 0 qq ¥ P , then there exists α F n ¡ teu such that, for every w F n with k I ¤ pwq ¤ k, we have ηpCpγ w qq ¥ η rαs pCpγ w qq. Remark 4.3. p1q The hypotheses in [START_REF] Martin | Non-uniquely ergodic foliations of thin-type, measured currents and automorphisms of free groups[END_REF]Lemma 15] requires that k I 1. However, the proof of Martin works by studying words of length exactly k and then extend the result to words of length at most k by additivity of the measures. Thus the proof with k I ¡ 1 is identical.

p2q For the rational current η rαs constructed in Lemma 4.2, there exists w F n with k I ¤ pwq ¤ k such that η rαs pCpγ w qq ¡ 0.

Recall that CylpC q is the set of cylinder sets of the form Cpγ w q, where w is a word of F n containing a word of C as a subword. Let η 0 CurrpF n , Aq and let k ¥ L 2. Let η be a signed measured current such that, for every element w F n with Cpγ w q CylpC q, we have ηpCpγ w qq η 0 pCpγ w qq and for every element w F n of length between L 2 and k, we have ηpCpγ w qq ¥ 0. Then η is called a k-extension of η 0 . The key lemma in order to prove Proposition 4.1 is the following result (see [START_REF] Gupta | Relative currents[END_REF]Lemma 3.15] for the same statement in the particular case free factor systems):

Lemma 4.4. Let η 0 be a relative current and let k ¥ L 2. There exists a signed measured current η : f 2 F n Ñ R which is a k-extension of η 0 .

Let η 0 be a relative current. In order to prove Lemma 4.4, we need some preliminary results. We follow [START_REF] Gupta | Relative currents[END_REF]Section 8.1]. For k N ¦ , let S k be the set of elements of F n of length k which do not contain an element of C as a subword. Note that, since C is closed under inversion by Lemma 2.3, we see that, for every k N ¦ , the set S k is closed under inversion. For k 0, we set S 0 teu. Note also that, if k L 2, then S k contains all words of length k since every element of C has length equal to L 2. Lemma 4.5. p1q If A $ ∅, for every k N ¦ , the set S k is not empty. p2q For every k ¥ L 2 and every w S k , there exist w I S k 1 , i t1, . . . , ru, g F n and a gA i g ¡1 such that w I is a length 1 extension of w and a is an extension of w I . Proof. p1q Since the group A 1 is infinite, the minimal subtree T A 1 is infinite. Recall that the tree T A 1 is supposed to contain the origin e of T . Let γ be a geodesic path contained in T A 1 , starting from e and of length equal to k, and let h F n be the corresponding element of F n . Then there exists a A 1 such that a is an extension of h. We have h S k as otherwise a would contradict Lemma 2.3 p3q. This proves p1q. p2q Let k ¥ L 2 and let w S k . By Lemma 2.3 p1q, there exist i t1, . . . , ru and g F n such that γ w is contained in T gA i g ¡1. As T gA i g ¡1 does not contain any univalent vertex, there exists a geodesic ray c in T gA i g ¡1 starting from e which contains the path γ w . Let γ I be the geodesic path in c of length k 1 containing γ w , and let w I be the corresponding element in F n . Then w I S k 1 and w I is a length 1 extension of w. This proves p2q and this concludes the proof.

Let k ¥ L 2. Let S 0 k be a subset of S k (chosen once and for all) such that for every w S k exactly one of w or w ¡1 appears in S 0 k . In what follows, we adopt the convention that whenever an extension of a word w by a letter b B is written as wb (resp. bw), we assume that b is not the inverse of the last letter (resp. first letter) of the word w.

In order to construct the signed measured current which satisfies the conclusion of Lemma 4.4, we will define a signed measured current on cylinders of words in S k¡1 and use those values together with the additivity laws in order to define η on cylinders of words of length k. First we set ηpCpγ b qq 1 for every letter b of B not contained in C . By induction, assume that for every element v S k¡1 , the value ηpCpγ v qq is defined. By additivity of a signed measured current, for every v S 0 k¡1 , we want to have:

ηpCpγ v qq °bB,vbS k ηpCpγ vb qq °bB,vbS k η 0 pCpγ vb qq ηpCpγ v ¡1qq °bB,v ¡1 bS k ηpCpγ v ¡1 b qq °bB,v ¡1 bS k η 0 pCpγ v ¡1 b qq
Since η is invariant under taking inverses, the equation obtained by using forward extensions of v ¡1 is the same one as the equation obtained by using backward extensions of v. After rearranging the equations in order to have the unknown terms on the left hand side, we obtain:

°bB,vbS k ηpCpγ vb qq °bB,vbS k η 0 pCpγ vb qq ¡ ηpCpγ v qq c v °bB,v ¡1 bS k ηpCpγ v ¡1 b qq °bB,v ¡1 bS k η 0 pCpγ v ¡1 b qq ¡ ηpCpγ v ¡1qq c v ¡1.
(2) Since η is invariant under taking inverse, this shows that there are

|S k¡1 | equations in |S k |{2 |S 0 k | variables.
Denote the system of equations ( 2) by E 1 k¡1 . These are equations obtained from length 1 extensions of words in S k¡1 . Similarly, for every i t1, . . . , k ¡ 1u, we define E i k¡i as the system of equations obtained from length i extensions of words in S k¡i .

Let rM|cs be the augmented matrix for the system of equations E 1 k¡1 with rows labeled by words in S k¡1 , columns by words in S 0 k and such that for every w S 0 k and every v S k¡1 , we have M v,w 1 if there exists b B such that w vb or w ¡1 vb; and M v,w 0 otherwise. Let c be the column vector indexed by words in S k¡1 such that for every v S k¡1 , the coordinate of c at v is equal to c v . If v S k¡1 , we will denote by r v the corresponding row vector of M . Observe that each column has exactly two entries which are equal to 1. Indeed, M v,w is equal to 1 exactly when w or w ¡1 is a length 1 extension of v. Observe also that any two distinct row vectors r v 1 and r v 2 can have at most one common coordinate which is equal to 1. Indeed, let w S 0

k be such that M v 1 ,w M v 2 ,w 1. Then there exist b 1 , b 2 B such that w v 1 b 1 or w b ¡1 1 v ¡1 1 and w v 2 b 2 or w b ¡1 2 v ¡1
2 . Therefore, the word v 1 starts with b ¡1

2 and v 2 starts with b ¡1

1 . This shows that w is uniquely determined. The next lemma is the same one as [START_REF] Gupta | Relative currents[END_REF]Lemma 8.2] in the special case of free factor systems.

Lemma 4.6. p1q For every i ¥ 1, an equation in the system E i 1 k¡i¡1 is a linear combination of equations in the system E i k¡i . Thus it is sufficient to look at the system E 1 k¡1 in order to obtain every constraint satisfied by ηpCpγ w qq for every w S 0 k .

p2q Let u S k¡2 . Then the following two linear combinations of rows of M are equal: Thus we have recovered an equation in E i 1 k¡i¡1 as a linear combination of equations in E i k¡i . This proves p1q. p2q Let u S k¡2 and let w S 0 k . For every b B such that bu S k¡1 , we have M bu,w $ 0 exactly when there exists y B such that w buy ¡1 or w yu ¡1 b ¡1 (recall that the basis B is supposed to be symmetric). Therefore, if M bu,w $ 0, there exists a unique y B such that M yu ¡1 ,w $ 0. This proves p2q. p3q Let R be a relation given by °vS k¡1 d v r v 0, where d v R. Suppose that the number of terms in the sum associated with R is minimal. Such an assumption is possible as every relation is a linear combination of relations whose number of terms is minimal.

We can rescale the equation so that there exist b B and u S k¡2 such that d bu 1. For every y B such that buy ¡1 S 0 k , we have M bu,buy ¡1 M yu ¡1 ,buy ¡1 1. This implies, as explained above the lemma, that the rows r bu and r yu ¡1 share exactly one common nonzero coordinate, which is buy ¡1 . Moreover, the rows r bu and r yu ¡1 are the only rows which have a nonzero coordinate in buy ¡1 . This shows that d yu ¡1 ¡1.

Let y B be such that yu ¡1 S k¡1 . For every z B such that yu ¡1 z S 0 k , we have Hence if b, y B are such that bu S k¡1 and buy S k , then uy S k¡1 . Thus, we see that:

M yu ¡1 ,yu ¡1 z M z ¡1 u,yu ¡1 z 1.
b,yB,buS k¡1 ,buyS k ηpCpγ buy qq b,yB,buS k¡1 ,uyS k¡1 ηpCpγ buy qq. ηpCpγ y ¡1 ub ¡1qq. (7) Using Equations ( 4), ( 5), ( 6) and ( 7) with y b ¡1 , we see that of M equal to zero, then the corresponding linear combination among coordinates of the vector c is also equal to zero. Therefore, the system rM|cs has a solution.

Proof of Lemma 4.4 Let η 0 be a relative current. By Lemma 4.6, there exists a signed measured current η such that, for every element w of F n which satisfies Cpγ w q CylpC q, we have η 0 pCpγ w qq ηpCpγ w qq. This extension is not necessarily nonnegative on every element of length between L 2 and k. Let ¡M min wFn, L 2¤ pwq¤k ηpCpγ w qq.

Let S be a finite set of elements of r i1 A i such that for every element w S k , there exists g w S such that g w is an extension of w. The set exists by Lemma 4.5 p2q. Let η A ģS η rgs .

By Lemma 2.3 p3q, for every w F n such that Cpγ w q CylpC q, we have η A pCpγ w qq 0. Moreover for every w k iL 2 S i , Lemma 4.5 p2q implies that there exists w I S k such that w I is an extension of w. In particular, for every w k iL 2 S i , we have η A pCpγ w qq ¡ 0. By finiteness of k iL 2 S i , there exists a constant R ¡ 0 such that for every element w in k iL 2 S i , we have R η A pCpγ w qq ¥ M .

Then η R η A is nonnegative on words of length between L 2 and k and coincides with η 0 on elements w F n such that Cpγ w q CylpC q. This concludes the proof.

Proof of Proposition 4.1 The proof follows [START_REF] Gupta | Relative currents[END_REF]Lemma 3.15] (see also [Mar]). Let C be the set defined above Lemma 2.3. Let η 0 be a relative current and let k ¥ L 2.

Note that every word in C has length at most equal to k. Let P be the constant given by Lemma 4.2. Note that there exists an element w I in C such that η 0 pCpγ w Iqq ¡ 0. By additivity of η 0 , there exists an element w 0 F n with pw 0 q k and Cpγ w 0 q CylpC q and such that η 0 pCpγ w 0 qq ¡ 0. Let R ¡ 0 be such that R η 0 pCpγ w 0 qq ¡ P . By Lemma 4.4, there exists a signed measured current η which is a k-extension of η 0 . By Lemma 4.2 applied to R η and k I L 2, there exists α 1 F n ¡teu such that for every w F n ¡teu of length between L 2 and k, we have R ηpCpγ w qq ¥ η rα 1 s pCpγ w qq. Suppose first that for every w F n of length between L 2 and k, we have R ηpCpγ w qq ¤ η rα 1 s pCpγ w qq P. Then we stop the process and choose α 1 . Otherwise, we apply Lemma 4.2 to Rη ¡ η rα 1 s and k I L 2. This shows that there exists α 2 F n ¡teu such that for every w F n ¡teu of length between L 2 and k, we have R ηpCpγ w qq ¡ η rα 1 s pCpγ w qq ¥ η rα 2 s pCpγ w qq. Applying these arguments iteratively (the process stops by Remark 4.3 p2q), we see that there exist α 1 , . . . , α p F n ¡ teu such that for every element w F n ¡ teu of length between L 2 and k, we have: We claim that there exists i t1, . . . , pu such that α i is nonperipheral. Indeed, suppose towards a contradiction that for every i t1, . . . , pu, the element α i is peripheral. By Lemma 2.3 p3q, we have p i1 η rα i s pCpγ w 0 qq 0. This implies that R ηpCpγ w 0 qq ¤ P . This contradicts the construction of η. Therefore there exists i t1, . . . , pu such that α i is nonperipheral. Let S be the subset of tα 1 , . . . , α p u containing every nonperipheral element. Then, for every element w F n of length k such that Cpγ w q CylpC q we have: § § § § ηpCpγ w qq ¡ °αS η rαs pCpγ w qq

R § § § § ¤ P R .
For α S, let η rαs be the restriction of η rαs to the Borel subsets of f 2 pF n , Aq. By construction of η, for every element w F n of length at most k such that Cpγ w q CylpC q,

we have: § § § § η 0 pCpγ w qq ¡ °αS η rαs pCpγ w qq

R § § § § ¤ P R .
Since R can be chosen arbitrarily large, we can approximate relative currents by sum of rational relative currents. For m N ¦ , let β m ± αS α m (for any total order on S).

Then there exists m N ¦ such that °αS η rα i s can be approximated by 1 m η rβ m s . This concludes the proof.

Lemma 3. 1 .

 1 Let n ¥ 3 and let C be a compact open subset of f 2 pF n , Aq. There exist finite geodesic edge paths γ 1 , . . . , γ k such that:

Figure 1 :

 1 Figure 1: The paths constructed in the proof of Lemma 3.1.For every p ti, ju, let e I p be the edge of γ p adjacent to v I p , which exists since γ p is

  The right hand side is also equal to: ηpCpγ u qq ¡ b,yB,ub ¡1 S k¡1 ηpCpγ y ¡1 ub ¡1qq ¡ b,yB,ub ¡1 S k¡1 ,y ¡1 ub ¡1 S k ηpCpγ y ¡1 ub ¡1qq. Observe that the sum °b,yB,ub ¡1 S k¡1 ηpCpγ y ¡1 ub ¡1qq equals: b,yB,ub ¡1 S k¡1 ,y ¡1 uS k¡1 ηpCpγ y ¡1 ub ¡1qq b,yB,ub ¡1 S k¡1 ,y ¡1 uS k¡1 ηpCpγ y ¡1 ub ¡1qq. (5) Suppose first that k ¤ L 2. Then S k¡1 contains all words of length k ¡ 1. Hence we have ¡ bB,buS k¡1 c bu ηpCpγ u qq ¡ b,yB,buyS k ηpCpγ buy qq and ¡ bB,bu ¡1 S k¡1 c bu ¡1 ηpCpγ u qq ¡ b,yB,y ¡1 ub ¡1 S k ηpCpγ y ¡1 ub ¡1qq, so that Assertion p4q holds in this case with y b ¡1 . Suppose now that k ¡ L 2. Then since every element of C has length equal to L 2, an element of C contained in a word x of length k is properly contained in x.

  ,y ¡1 ub ¡1 S k ηpCpγ y ¡1 ub ¡1qq b,yB,ub ¡1 S k¡1 ,y ¡1 uS k¡1

η

  rα i s pCpγ w qq ¤ R ηpCpγ w qq ¤ p i1 η rα i s pCpγ w qq P.

  Γ r , C be as above Lemma 2.3. The boundary of T is naturally homeomorphic to f V F n and the set f 2 F n is then identified with the set of unoriented bi-infinite geodesics in T . Let γ be a finite geodesic path in T . The path γ determines a subset in f 2 F n called the cylinder set of γ, denoted by Cpγq, which consists in all unoriented bi-infinite geodesics in T that contain γ. Such cylinder sets form a basis for a topology on f 2 F n , and in this topology, the cylinder sets are both open and compact, hence closed since

  Let p ti, ju. Let s, t t1, . . . , k p u be distinct. Then γ ppq are at distance exactly 1 from the minimal edge path of T which contains τ and γ I . Therefore, the endpoint of γ ppq

s and γ ppq t share the path γ p as an initial segment. But, by construction of the paths γ ppq s and γ ppq t , the endpoints of γ ppq s and γ ppq t distinct from v I p s distinct from v I p is not contained in γ ppq t . Hence the subtree of T generated by γ ppq s and γ ppq t is a tripod. This shows that Cpγ ppq

  Every relation among the rows of M is a linear combination of relations in the set of relations (3) where u varies in S k¡2 .Proof. p1q Let i ¥ 1 and u S k¡i¡1 . Then by the system E 1

						k¡i¡1
		ηpCpγ u qq		
	By the equations in E i k¡i , we have, for every b B:
		ηpCpγ ub qq		yFn, pyqi	ηpCpγ uby qq.
	Adding all these equations over b B, we have:	
	ηpCpγ u qq	b,yFn, pbq1, pyqi	ηpCpγ uby qq	zFn, pzqi 1	ηpCpγ uz qq.
		bB,buS k¡1	r bu	bB,bu ¡1 S k¡1	r bu ¡1.	(3)
	p3q p4q We have	bB,buS k¡1	c bu	bB,bu ¡1 S k¡1	c bu ¡1,
	where for every v S k¡1 , c v is given by Equation (2).
	p5q The system of equations E 1 k¡1 is consistent and hence has a solution. Thus we can
	define η on words of length k.			

bB ηpCpγ ub qq.

  Thus we have d z ¡1 u 1. Therefore we see that S k¡1 ,bu ¡1 yS k ηpCpγ bu ¡1 y qq.

	¡	°bB,buS k¡1	c bu	°bB,buS k¡1 ηpCpγ u qq ¡ ηpCpγ bu qq ¡ °bB,buS k¡1 ηpCpγ bu qq ¡ °b,yB,buS k¡1 ,buyS k ηpCpγ u qq ¡ °b,yB,buS k¡1 ηpCpγ buy qq ¡	ηpCpγ buy qq °b,yB,buS k¡1 ,buyS k °b,yB,buS k¡1 ,buyS k ηpCpγ buy qq ηpCpγ buy qq.
		Note that we have:		
		b,yB,buS k¡1	ηpCpγ buy qq	b,yB,buS k¡1 ,uyS k¡1	ηpCpγ buy qq	b,yB,buS k¡1 ,uyS k¡1	ηpCpγ buy qq
									(4)
		Similarly, we have:			
	¡	bB,bu ¡1 S k¡1	c bu ¡1 ηpCpγ u qq¡		b,yB,bu ¡1 S k¡1	ηpCpγ bu ¡1 y qq¡	b,yB,bu
		bB,buS k¡1	d bu r bu ¡	yB,yu ¡1 S k¡1	d yu ¡1r yu ¡1	bB,buS k¡1	r bu ¡	yB,yu ¡1 S k¡1	r yu ¡1 0.
	Hence the minimal relation R is just
						bB,buS k¡1	r bu ¡	yB,yu ¡1 S k¡1	r yu ¡1 0.
	p4q Let u S k¡2 . We have, by the definition of c v :

¡1

  °b,yB,buS k¡1 ηpCpγ buy qq °b,yB,buS k¡1 ,buyS k ηpCpγ buy qq °b,yB,ub ¡1 S k¡1 ηpCpγ y ¡1 ub ¡1qq °b,yB,ub ¡1 S k¡1 ,y ¡1 ub ¡1 S k ηpCpγ y ¡1 ub ¡1qq. and this proves p4q. p5q By Assertions p3q and p4q, if R is a linear combination of relations among the rows

	This shows that	bB,buS k¡1	c bu	bB,bu ¡1 S k¡1	c bu ¡1,
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