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APPLICATION OF THE NOTION OF ϕ-OBJECT TO THE STUDY

OF p-CLASS GROUPS AND p-RAMIFIED TORSION GROUPS

OF ABELIAN EXTENSIONS

GEORGES GRAS

Abstract. We revisit, in an elementary way, the statement of the “Main Con-
jecture” for p-class groups and p-ramified torsion groups in abelian fields K, in

the non semi-simple case p | [K : Q]; for this, we use an “arithmetic” definition
of the p-adic isotopic components, different from the “algebraic” one used in the
literature but inappropriate with respect to analytical formulas. The two notions
coincide for relative class groups and real torsion groups of p-ramification theory,
but not for real class groups. Numerical evidence of the gap between the two no-
tions is given (Examples 3.12, 3.13). It would remain to make use of classical tools
for this non semi-simple real context, still unproved as explained § 1.4.
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Foreword and preliminary remarks

This survey provides improvements, new results, numerical illustrations (with PARI
programs) and some history, regarding our original articles [Gra1976, Gra1977]. These
two papers were written, in French, with illegible fonts due to the use of ”typits” on
typewriters and hand written characters, for mathematical symbols ! So they were
hardly accessible. This survey also mention, in § 1.1, pioneering references, as well as
some Leopldt’s papers on cyclotomy [Leo1954, Leo1962], written in Germain in the
1950/1960’s.

The “Main Conjecture” for abelian number fields (giving analytic expressions of
annihilators and orders of the p-adic isotopic components of class groups) that we
revisit here, were first stated (especially in the non semi-simple case) in the papers
mentioned above (but not in [Gra1977b], as erroneously stated by some authors), and
given at the meeting “Journées arithmétiques de Caen” (1976) as it is correctly recalled
for instance in [Sol1990, Rib2008]. This gives the occasion to mention that [Gra1977b]
(only recalling the statements in the semi-simple case) is also devoted to a method using
formal series, giving non trivial congruences when p-adic L-functions have a trivial
zero; for instance we proved the following complement of Ankeny–Artin–Chowla–Kudo
congruences:

Let f ≡ 0 (mod 3) be the conductor of a real quadratic field K; we consider the case

f/3 ≡ −1 (mod 3) (“special case” when 3 splits in the mirror field K ′ := Q(
√
−f/3).

Let ε = t+ u
√
f , t, u > 0, be the fundamental unit of K and let h and h′ be the class

numbers of K and K ′, respectively. Then h·t·u+ h′ ≡ 0 (mod 3).

Note that ε must be written on the Q-basis {1,√f}, even if 4 | f , and chosen with
positive coefficients. The following program verifies the congruence:

{for(m=5,10^4,if(core(m)!=m,next);if(Mod(m,9)!=-3,next);f=m;if(Mod(m,4)!=1,f=4*m);

PP=x^2-f;PM=x^2+f/3;KP=bnfinit(PP,1);KM=bnfinit(PM,1);hP=KP.no;hM=KM.no;

E=lift(KP.fu[1]);t=abs(polcoeff(E,0));u=abs(polcoeff(E,1));X=hP*t*u+hM;

print("f=",f," t=",t," u=",u," h=",hP," h’=",hM," htu+h’=",lift(Mod(X,3))))}

The Main Conjecture has been proven in the semi-simple case, then in the non
semi-simple one for relative class groups and Iwasawa’s theory (a main overview on
the precise proofs and classical references are given in Washington’s book [Was1997,
Chapters 6, 8, 13, 15]).

The non semi-simple case of even p-adic characters ϕ, was less understood because
of a problematic definition of p-adic isotopic components and cyclotomic units; but at
the time, we proposed another more natural conjectural context, still unproved to our
knowledge, for which the definition of “Arithmetic ϕ-objects” may be necessary since



NOTION OF ARITHMETIC ϕ-OBJECTS 3

the distinction between “Algebraic” and “Arithmetic” definitions is crucial regarding
analytic formulas (we shall give more comments in Remarks 7.7).

Let G := Gal(Qab/Q) be the Galois group of the maximal abelian extension Qab of
Q and denote by K any subfield of finite degree of Qab. The present article is divided
into the following three parts, after an Introduction giving a brief description about
the story (rather prehistory) that led to the numerous approaches giving, under some
assumptions, proofs of a “Main Theorem”:

(i) An algebraic part giving a systematic study of families (MK)K of Z[G ]-modules
and of the Zp[G ]-modules MK := MK ⊗ Zp, including the non semi-simple case p |
[K : Q]. This study leads to the definition of sub-modules M alg

ϕ (algebraic) and M ar
ϕ

(arithmetic), indexed by the set of irreducible p-adic characters ϕ of G . The difference
between M alg

ϕ (used in all the literature) and M ar
ϕ is that the first one relates to

algebraic norms νk/k′ ∈ Z[Gal(k/k′)] for their properties in relative sub-extensions of
K/Q, while the second one uses arithmetic norms Nk/k′ , the gap being given by the
relation:

νk/k′ = Jk/k′ ◦Nk/k′ ,

where the transfer maps Jk/k′ are often non injective in p-extensions (see § 3.3 for
examples justifying Definition 3.11 for the statement of the Main Conjecture and § 4.3
for the main properties). Moreover, the “arithmetic” point of view is naturally related
to the analytical formula:

#MK =
∏

ϕ∈ΦK

#M
ar
ϕ (Theorems 3.15, 4.5).

(ii) An arithmetic part where we apply the above results to p-class groups HK ,
K real or imaginary, then to torsion groups TK of the Galois group of the maximal
p-ramified abelian pro-p-extension of K real.

For rational characters χ and p-adic characters ϕ | χ, we define the “Class Invari-
ants” malg

ϕ (H ) (algebraic), mar
ϕ (H ), mar

ϕ (T ) (arithmetic) then, in § 8.2, the correspond-
ing “Analytic Invariants” man

ϕ (H ), man
ϕ (T ) suggested by the analytic formulas of the

arithmetic χ-components deduced from Theorem 2.1 (Theorems 5.10, 6.2, 7.5) and we
develop the problem of their comparison. We conjecture a new annihilation theorem
for H ar

ϕ , ϕ even, in the non semi-simple case (Conjecture 7.9).

In the § 7.6, we shed new light on the proof of the Main Conjecture in the real semi-
simple case, in the spirit of Thaine’s theorem described in Washington’s book, and we
give numerical illustrations. It becomes clear that the knowledge of the sole cyclotomic
unit ηK of the base field K contains, by means of very elementary arithmetic, all the
information on annihilation and orders of the ϕ-components of its p-class group.

(iii) An illustration, in the semi-simple case, is given with cyclic cubic fields for p ≡ 1
(mod 3), as well as a PARI program computing the above invariants, which was not
possible in the 1970’s. It would remain to give non semi-simple computations to verify
the conjecture in the real case.

1. Introduction and brief historical survey

1.1. Main bibliographic reminders. It is difficult to give here the full story of such
a subject, from Bernoulli, Kummer, Herbrand classical context, the initiating work of
Iwasawa, Leopoldt, Greenberg, on the conjecture, then the deep results obtained by
Ribet, Mazur, Wiles, Thaine, Rubin, Kolyvagin, Solomon, Greither, Coates, Sinnott,
and others, on cyclotomy and p-adic L-functions. Several papers also give the Iwasawa
formulation of the Main Theorem (see e.g., [Gree1975, Gree1977]); Iwasawa’s theory
is less general than the expected results for finite extensions, but more conceptual
in broader contexts (in fact, describing the similarity with the theory of p-adic L-
functions, a generalizable feature to many fields). Let’s give less known contributions
of the beginnings:

We refer, for a very nice story of pioneering works, to Ribet [Rib2008, Rib2008b],
for detailed proofs of Iwasawa Main Conjecture to Washington [Was1997, Chap. 15]
following techniques initiated by Thaine then Kolyvagin, Ribet (exposed by Lang
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[Lang1990]). A Bourbaki Seminar, by Perrin-Riou [PeRi1990], gives a significant lec-
ture (with an impressive bibliography) on the works of Kolyvagin, Rubin and others
about the Main Conjectures for number fields and elliptic curves.

The story is also given in the famous Mazur–Wiles paper, where the attribution
of the various statements of the conjecture (in the semi-simple case) is accurately
discussed (see [MaWi1984, § 1 and § 10 (i, ii)] for more comments on the works of
Iwasawa, Leopoldt, Greenberg and ours), even if some references are missing.

Finally, proofs of our conjecture for the relative p-class groups H − and the real tor-
sion groups T of the Galois groups of the maximal abelian p-ramified pro-p-extensions
were given (Solomon for H − and p 6= 2 [Sol1990, Theorem II.1], Greither for H −,
T with p ≥ 2 and H + in a semi-simple context [Grei1992, Theorems A, B, C, 4.14,
Corollary 4.15]). Let us mention the proof by Rubin [Rub1990], from the Kolyvagin
Euler systems [Kol2007] used in above proofs.

Many complementary works about the order or the annihilation of the Hϕ’s, for
irreducible p-adic characters ϕ, were published before or after the decisive proofs
(e.g., [Gra1977b, Gil1977, Gra1979, Or1981, Or1986, GrKu2004, BeNg2005, All2013,
BeMa2014, GrKu2014, All2017, Gra2018b, GrKu2021, Jau2021, Jau2022, Jau2022b]).
Let’s mention a result of Oriat using reflection theorem [Or1986, Théorème, p. 333].

In the same way, it is hopeless to outline all generalizations giving “Main Conjec-
tures” in other contexts than the absolute abelian case (e.g., [Dar1995, MaRu2011,
CoLi2019, DaKa2020, CoLi2020, BBDS21, BDSS21]), using essentially the technique
of Kolyvagin’s Euler systems; an expository book may be [CoSu2006] for recent works,
but excluding the story of the origins of the Main Conjecture as explained in Solomon–
Greither papers [Sol1990, Grei1992], Washington’s book [Was1997] and Ribet’s Lec-
tures [Rib2008, Rib2008b].

In another direction, we refer to enlargements of the algebraic/arithmetic aspects of
p-adic characters in the area of metabelian Galois groups by Jaulent, with applications
to class groups and units (see for instance [Jau1981, Théorème 1 and consequences],
[Jau1984, Jau1986] in a class field theory context, then [Lec2018, SchS2019] in a geo-
metric or Galois cohomology context).

Due to the huge number of articles dealing with the concept of “Main Conjecture”,
many recent (or not) articles may have escaped our notice.

1.2. Introduction of Arithmetic ϕ-objects. Nevertheless, all these works deal with
an algebraic definition of the ϕ-class groups H alg

ϕ , from the p-class group HK (for
irreducible p-adic characters ϕ); that is to say, when G := Gal(K/Q) is cyclic, of order
g (i.e., K is the fixed field by the kernel of a rational character χ),

H
alg
ϕ := HK ⊗Zp[G] Zp[µg], for all ϕ | χ,

with the Zp[µg]-action σ ∈ G 7→ ψ(σ) (ψ | ϕ of order g).

We then prove (Theorem 3.7) that:

H
alg
ϕ = {x ∈ HK , νK/k(x) = 1, ∀ k & K} ⊗Zp[G] Zp[µg]

(where νK/k is the algebraic norm), contrary to our definition:

H
ar
ϕ := {x ∈ HK , NK/k(x) = 1, ∀ k & K} ⊗Zp[G] Zp[µg],

where NK/k is the arithmetic norm.

See § 2.2 for other equivalent characterizations of H alg
ϕ and H ar

ϕ using cyclotomic
polynomials, then for a summary of the main properties and results of the paper.

In the non semi-simple case p | g, the distinction between algebraic and arithmetic
ϕ-components is not done in the literature. This does not matter for relative p-class
groups H

−
K and torsion p-groups TK since we will prove that the two notions coincide

(Theorems 5.8, 6.1); so the case of these invariants is definitely solved, contrary to that
of ϕ-components of p-class groups of real fields K in the non semi-simple case deduced
from the “χ-formulas” given in Theorem 7.5 and the important relation:

#HK =
∏

ϕ∈ΦK

#H
ar
ϕ (Theorems 3.15, 4.5).



NOTION OF ARITHMETIC ϕ-OBJECTS 5

We compare the two definitions H alg, H ar in §§ 3.3, 3.4, with numerical illustration
showing the gap between them and involving capitulation phenomenon of p-classes in
p-extensions (Examples 3.12, 3.13).

1.3. Relation between the modules H and T . If one considers, in the real case,
the Zp[G ]-modules TK , one gets, for them, an easier annihilation theorem from the
p-adic Mellin transform of Stickelberger elements (see § 6.2). Moreover, the norm maps
Nk/k′ are surjective and the transfer maps Jk/k′ are injective under Leopoldt’s con-
jecture [Gra1982, Théorème I.1], [Jau1986, Ng1986, Jau1998] (collected in [Gra2005,
Theorem IV.2.1]); so this family behaves as that of relative class groups, which allows
an obvious statement of the Main Conjecture and then its proof with similar techniques,
as done for instance in [Grei1992].

The order of the p-group TK is closely related to the p-adic L-functions “at s =
1” [Coa1977] and a particularity of TK is its interpretation by means of the three
Zp[G ]-modules H

cyc
K , RK and WK ; see [Gra2005, Lemma III.4.2.4] leading to the

exact sequence (6.1) and the formula #TK = #H
cyc
K · #RK · #WK , where WK is an

easy canonical invariant depending on local p-roots of unity, RK is the normalized
p-adic regulator [Gra2018, Lemma 3.1] and H

cyc
K a subgroup of HK (equal to HK ,

except “the part” corresponding to the maximal unramified extension contained in the
cyclotomic Zp-extension of K).

The order of the group RK is (up to an obvious factor) the classical p-adic reg-
ulator which intervenes in the p-adic analytic formulas due to the pioneering works
of Kubota–Leopoldt on p-adic L-functions, then that of Amice–Fresnel–Barsky (e.g.,
[Fre1965]), Coates, Ribet and many other; see a survey in [Gra1978b] and a lecture
in [Rib1979] where is used the beginnings of the concept of p-adic pseudo-measures
of Mazur, developed by Serre [Ser1978]). See in [Gra2016, Gra2019] more complete
studies and conjectures about RK and TK .

At this time was stated the Iwasawa formalism of the Main Conjecture by Greenberg
[Gree1975, Gree1977] after Iwasawa [Iwa1964].

1.4. Main unsolved problem today. Let K/Q be a cyclic real extension with a
non trivial maximal p-sub-extension (non semi-simple case). Let EK (resp. FK) be
the group of units (resp. of Leopoldt’s cyclotomic units) then EK = EK ⊗ Zp and
FK = FK ⊗ Zp; let E 0

K ⊆ EK be the subgroup generated by the Ek for all k & K.

It would remain to prove our conjecture [Gra1977, § III] for the even p-adic characters
ϕ of K saying that (see also Remarks 7.7 and 8.2):

#H
ar
ϕ = wϕ · #(EK/E 0

K · FK)ϕ, wϕ ∈ {1, p},

where (EK/E
0
K · FK)ϕ := {ε̃ ∈ EK/E

0
K · FK , Pϕ(σ) · ε̃ = 1} and:

H
ar
ϕ :=

{
x ∈ HK , Pϕ(σ) · x = 1 & NK/k(x) = 1 ∀ k & K

}
,

where Pϕ is the local cyclotomic polynomial attached to ϕ and σ a generator of
Gal(K/Q).

For the ϕ-component (EK/E
0
K · FK)ϕ, the two notions (arithmetic and algebraic)

obviously coincide, but the ϕ-class group must be defined in the arithmetic sense.

2. Abelian extensions

The idea of definition of the ϕ-objects owes a lot to the work of Leopoldt [Leo1954,
Leo1962] and their writing, in french, by Oriat in [Or1975, Or1975b]. Some outdated
notations in these papers and ours are modified, after changing ℓ into p (e.g., Ωp 7→ Qp,

Ω̂p 7→ Cp, Γ 7→ Zp).
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2.1. Characters. Let Qab be the maximal abelian extension of Q contained in an
algebraic closure Q of Q; let Qp be the p-adic field and Qp an algebraic closure of Qp
containing Q. We put G := Gal(Qab/Q)):

Let Ψ be the set of irreducible characters of G , of degree 1 and finite order, with
values in Qp. We define the sets of irreducible p-adic characters Φ, for a prime p ≥ 2,
the set X of irreducible rational characters and the sets of irreducible characters ΨK ,
ΦK , XK , of K ⊂ Qab.

The notation ψ | ϕ | χ (for ψ ∈ Ψ, ϕ ∈ Φ, χ ∈ X ) means that ϕ is a term of χ and
ψ a term of ϕ.

Let s∞ ∈ G be the complex conjugation and ψ ∈ ΨK ; if ψ(s∞) = 1 (resp.
ψ(s∞) = −1), we say that ψ is even (resp. odd) and we denote by Ψ+

K (resp. Ψ−
K)

the corresponding subsets of characters. Since Ψ±
K is stable by any conjugation, this

defines Φ±
K , X

±
K .

Let χ ∈ X ; we denote by gχ, Kχ, Gχ, fχ, Q(µgχ), the order of any ψ | χ, the
subfield of K fixed by Ker(χ) := Ker(ψ), Gal(Kχ/Q), the conductor of Kχ, the field of
values of the characters, respectively. The set X has the following obvious property to
be considered as the “Main theorem” for rational components (e.g., [Leo1954, Chap.
I, § 1, 1]):

Theorem 2.1. Let K/Q be a finite abelian extension and let (Aχ)χ∈XK , (A′
χ)χ∈XK be

two families of positive numbers, indexed by the set XK of irreducible rational charac-
ters of K. If for all subfields k of K, one has

∏
χ∈Xk

A′
χ =

∏
χ∈Xk

Aχ, then A
′
χ = Aχ

for all χ ∈ XK .

2.2. Main results of the article. Let M = (MK)K∈K be a family of Z[G ]-modules,
indexed with the set K of finite abelian extensions and provided with the arithmetic
norms NK/k and transfer maps JK/k, for any k ⊆ K, where JK/k ◦ NK/k = νK/k ∈
Z[Gal(K/k)] (algebraic norm); we will give more definitions and well-known details in
Section 3.1.

We associate with M the family of Zp[G ]-modules M := M⊗ Zp.

We define various χ-components Malg
χ , Mar

χ , M alg
χ , M ar

χ (for χ ∈ X ) and the

associated ϕ-components M alg
ϕ , M ar

ϕ (for ϕ ∈ Φ), as follows:

Let Pχ be the global gχth cyclotomic polynomial, let Pϕ be the local cyclotomic
polynomial associated with ϕ | χ (so that Pχ =

∏
ϕ|χ Pϕ in Zp[X ]). We define (with

group algebras actions xΩ written Ω · x):




Malg
χ :=

{
x ∈ MKχ , Pχ(σχ) · x = 1}, M

alg
χ := Malg

χ ⊗ Zp,

M
alg
ϕ :=

{
x ∈ M

alg
χ , Pϕ(σχ) · x = 1

}
,

Mar
χ := {x ∈ Malg

χ ,NKχ/k(x) = 1, ∀ k & Kχ}, M
ar
χ := Mar

χ ⊗ Zp,

M
ar
ϕ := {x ∈ M

alg
ϕ , NKχ/k(x) = 1, ∀ k & Kχ}.

Then M ar
ϕ =

{
x ∈ MKχ , Pϕ(σχ) · x = 1 & NKχ/k(x) = 1, ∀ k & Kχ

}
.

Being annihilated by Pχ(σχ) (resp. Pϕ(σχ)) M
alg
χ and M alg

χ (resp. Malg
ϕ and M alg

ϕ )
are Z[µgχ ]-modules (resp. Zp[µgχ ]-modules), for the law defined via σ ∈ G 7→ ψ(σ) ∈
µgχ , for ψ | χ (resp. ψ | ϕ).

(i) Then we have the following results:

• Malg
χ =

{
x ∈ MKχ , νKχ/k(x) = 1, ∀ k & Kχ} (Theorem 3.7),

• M alg
χ =

⊕
ϕ|χ

M
alg
ϕ , M ar

χ =
⊕
ϕ|χ

M
ar
ϕ (Theorems 4.1, 4.5).

(ii) Assume that K/Q is cyclic and MK finite:

(ii ′) If, for all sub-extensions k/k′ of K/Q, the norm maps Nk/k′ are surjective,
then:

• #MK =
∏

χ∈XK

#Mar
χ (Theorem 3.15),
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(ii ′′) Let K/K0 be the maximal p-sub-extension of K; if, for all sub-extensions
k/k′ of K/K0, the norm maps Nk/k′ are surjective, then:

• #M ar
χ =

∏
ϕ|χ

#M
ar
ϕ (Theorem 4.5).

The above conditions of surjectivity of the norms are automatically fulfilled for the
families H (class groups), H = H ⊗ Zp (p-class groups) and T (torsion groups of
abelian p-ramification).

(iii) Applying this to H and T , we obtain:

(iii ′) For all characters χ ∈ X −, we have:

• Har
χ = Halg

χ and H ar
ϕ = H alg

ϕ , ∀ϕ | χ (Theorem 5.8);

• #Har
χ = #Halg

χ = 2αχ ·wχ ·
∏
ψ|χ

(
− 1

2 B1(ψ
−1)

)
(Theorem 5.10), in terms of Bernoulli

numbers.

(iii ′′) For all characters χ ∈ X +, we have:

• Har
χ ⊆ Halg

χ and H ar
ϕ ⊆ H alg

ϕ , ∀ϕ | χ (see Examples 3.12, 3.13 for strict
inclusions);

• #Har
χ = wχ ·

(
EKχ : E0

Kχ
·FKχ

)
(Theorem 7.5), in terms of cyclotomic units, where

E0
Kχ

:= 〈Ek 〉k&Kχ
.

(iii ′′′) For all even characters χ, we have:

• T ar
χ = T alg

χ and T ar
ϕ = T alg

ϕ , ∀ϕ | χ (Theorem 6.1);

• #T ar
χ = w cyc

χ ·
∏
ψ|χ

1
2 Lp(1, ψ) (Theorem 6.2), in terms of p-adic L-functions.

(iv) The Arithmetic Invariants of finite Zp[G ] modules MK are defined by means of
the obvious algebraic writing of Zp[µgχ ]-modules:

M
ar
ϕ ≃

∏
i≥1

[
Zp[µgχ ]

/
p
nar
ϕ,i(M )

ϕ

]
, mar

ϕ (M ) :=
∑
i
nar
ϕ,i(M ),

where pϕ is the maximal ideal of Zp[µgχ ]; the definition of the Analytic Invariants

man
ϕ (M ) comes directly from the formulas of #M ar

χ given above in (iii), taking into
account the decompositions M ar

χ = ⊕ϕ|χM ar
ϕ , whence the statement of the Main Con-

jecture “mar
ϕ (M ) = man

ϕ (M ), for all ϕ ∈ Φ” (Section 8, Conjecture 8.1).

3. Definition and study of the ϕ-objects

We shall give, in this section, the general definition of θ-objects, θ being an irre-
ducible character (rational or p-adic), the Galois modules which intervene in the defini-
tion of the θ-objects being not necessarily finite, as it is the case for unit groups; finally,
the prime p is arbitrary and we shall emphasize on the non semi-simple framework.

3.1. The Algebraic and Arithmetic G -families. Let K be the family of finite
extensions K of Q, contained in Qab, of Galois group GK . We assume to have a
family M of (multiplicative) Z[G ]-modules, indexed by K (called a G -family), M =
(MK)K∈K .

In general there exist two families of G -homomorphisms, indexed by the set of sub-
extensionsK/k,NK/k : MK → Mk (arithmetic norms), JK/k : Mk → MK (arithmetic

transfers). For all sub-extensions K/k, we put νK/k :=
∑

σ∈Gal(K/k)
σ ∈ Z[Gal(K/k)]

(algebraic norm).

We consider the three following conditions:

(a) For all K ∈ K , M
Gal(Qab/K)
K = MK (so, for x ∈ MK and σ ∈ G , xσ = xσK ,

where σK ∈ GK is the restriction of σ to K).

(b) For all sub-extension K/k, the arithmetic maps NK/k and JK/k are G -module
homomorphisms fulfilling the transitivity formulas:

NK/k ◦NL/K = NL/k and JL/K ◦ JK/k = JL/k,



8 GEORGES GRAS

for all k,K,L ∈ K , k ⊆ K ⊆ L.

(c) For all sub-extension K/k, JK/k ◦NK/k = νK/k on MK .

Definitions 3.1. (i) If M = (MK)K∈K only fulfills condition (a), we shall say that
the family (M,ν ) is an algebraic G -family; one may only use Galois theory in K/k
and the algebraic norms νK/k ∈ Z[Gal(K/k)].

(ii) If moreover, there exist two families (NK/k) and (JK/k) (canonically associated
with M) fulfilling conditions (b) and (c), we shall say that the family (M,N,J) is an
arithmetic G -family.

The following properties of MK and MK := MK ⊗ Zp are elementary:

Proposition 3.2. (i) For all K ∈ K , νK/K , NK/K , JK/K are the identity, id, on
MK .

(ii) If the map NK/k is surjective or if the map JK/k is injective, then NK/k ◦JK/k
is the elevation to the power [K : k].

Remark 3.3. Note that cohomology is only of algebraic nature since, for instance in
the case of a cyclic extension K/k of Galois group G =: 〈σ〉, using the class group HK ,
we have:

H1(G,HK) = Ker(νK/k)
/
H1−σ
K , H2(G,HK) = HG

K

/
νK/k(HK);

in general νK/k(HK) is not isomorphic to NK/k(HK) ⊆ Hk, even if the arithmetic
norm is surjective, since the transfer map JK/k is often non-injective on class groups.

Examples 3.4. The most straightforward examples of such arithmetic G -families MK

are the following ones:

(i) the group EK of units of K (for which the maps JK/k are injective);

(ii) the class group HK of K, or the p-class group HK .

(iii) the torsion group TK of the Galois group of the maximal p-ramified abelian
pro-p-extension of K.

(iv) the group-algebra A[GK ], where A is a commutative ring; then A[GK ] is a A[G ]-
module if one puts σ ·Ω = σKΩ (product in A[GK ]), for all Ω ∈ A[GK ] and σ ∈ G . The
maps NK/k and JK/k are defined by A-linearity by NK/k(σK) := σk and, for σk ∈ Gk,
by JK/k(σk) :=

∑
τ∈Gal(K/k) τ · σ′

k = νK/k · σ′
k = νK/kσ

′
k, where σ

′
k is any extension of

σk in GK . So, for σK ∈ GK , νK/k(σK) =
(∑

τ∈Gal(K/k) τ
)
· σK = νK/kσK .

3.2. Definition of the G -modules Malg
χ , Mar

χ , M alg
ϕ , M ar

ϕ . We shall assume in the
sequel that A ∈ {Z, Zp}.

3.2.1. The Γκ-conjugation. Let χ ∈ X . Let Pχ(X) ∈ Z[X ] be the gχth global cyclo-
tomic polynomial. Let κA be the field of quotients of A and let κA(µgχ)/κA be the

extension by the gχth roots of unity; so, ΓκA,χ := Gal(κA(µgχ)/κA) is isomorphic to a

subgroup of (Z/gχZ)
×.

One defines, following [Ser1998], the ΓκA-conjugation on Ψ by putting, for all τ ∈
ΓκA,χ and ψ ∈ Ψ, ψ | χ, ψτ := ψa, where a ∈ Z is a representative of τ in (Z/gχZ)

×.
If σχ is a generator of Gχ := GKχ , then the ψτ (σχ) are the conjugates of ψ(σχ)
in κA(µgχ)/κA. This defines the irreducible characters over κA (with values in A),

θ =
∑

τ∈ΓκA, χ
ψτ .

3.2.2. Correspondence between characters and cyclotomic polynomials. Let χ ∈ X . In
κA[X ], Pχ splits into a product of irreducible distinct polynomials Pχ,i; each Pχ,i splits
into degree 1 polynomials over κA(µgχ) and is of degree [κA(µgχ) : κA].

If ζi ∈ µgχ is a root of Pχ,i, the other roots are the ζ
τ
i for τ ∈ ΓκA, χ; thus, these sets

of roots are in one by one correspondence with the sets of the form (ψτ (σχ))τ∈ΓκA, χ ,

ψτ | χ, ψτ ∈ Ψ of order gχ, describing a representative set of characters for the ΓκA-
conjugation. One may index, non-canonically, the irreducible divisors of Pχ in κA[X ]
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by means of the characters θ obtained from the characters ψ ∈ Ψ of orders gχ and by
choosing a generator σχ of Gχ. Put:

(3.1) Pθ :=
∏
ψ|θ

(X − ψ(σχ)) ∈ A[X ].

Thus Pχ =
∏
θ|χ
Pθ; for A = Zp we get Pχ =

∏
ϕ∈Φ, ϕ|χ

Pϕ, for A = Z, Pχ is irreducible.

So, A[Gχ]/(Pθ(σχ)) ≃ A[X ]/(Xgχ − 1, Pθ(X)) ≃ A[µgχ ]; then any module annihilated

by Pθ(σχ) is a A[µgχ ]-module; the law is realized, for ψ | θ, via σ ∈ Gχ 7→ ψ(σ) ∈ µgχ .

3.2.3. The Z[µgχ ]-modules Malg
χ and the Zp[µgχ ]-modules M alg

ϕ . We fix a prime p and
consider the set Φ of irreducible p-adic characters of G .

Definition 3.5. Let M = (MK)K∈K be a family of Z[G ]-modules and let M :=
M ⊗ Zp = (MK)K∈K . Put, for χ ∈ X and ϕ | χ, ϕ ∈ Φ:





Malg
χ :=

{
x ∈ MKχ , Pχ(σχ) · x = 1

}
,

M
alg
χ := Malg

χ ⊗ Zp =
{
x ∈ MKχ , Pχ(σχ) · x = 1

}
,

M
alg
ϕ :=

{
x ∈ MKχ , Pϕ(σχ) · x = 1

}
=

{
x ∈ M

alg
χ , Pϕ(σχ) · x = 1

}
.

So, M alg
ϕ is a sub-Zp[µgχ ]-module of MKχ (or of M alg

χ ), for the law σ ∈ GKχ 7→ ψ(σ),

ψ | ϕ, and the elements of M alg
ϕ are called algebraic ϕ-objects.

From relation (3.1), the polynomials Pϕ depend on the choice of the generator σχ
of Gχ, but we have the following canonical property:

Lemma 3.6. The Definitions 3.5, of the Z[µgχ ]-modules Malg
χ and the Zp[µgχ ]-modules

M alg
ϕ , do not depend on the choice of σχ.

Proof. Let ϕ | χ. We have Pϕ(σχ) =
∏
ψ|ϕ

(σχ−ψ(σχ)) and, for a > 0 with gcd(a, gχ) = 1,

let σ′
χ =: σaχ another generator of Gχ giving the relation P ′

ϕ(σ
′
χ) =

∏
ψ|ϕ

(σ′
χ − ψ(σ′

χ));

one must compare Pϕ(σχ) and P
′
ϕ(σ

′
χ). Then:

P ′
ϕ(σ

a
χ) =

∏
ψ|ϕ

(σaχ − ψ(σaχ)) =
∏
ψ|ϕ

[
(σχ − ψ(σχ))× (σa−1

χ + · · ·+ ψa−1(σχ))
]
,

and similarly, writing 1 ≡ a a∗ (mod gχ), where a∗ > 0 represents an inverse of a

modulo gχ, we have, from σχ = (σaχ)
a∗ :

Pϕ(σχ) =
∏
ψ|ϕ

[
(σaχ − ψ(σaχ))× (σa(a

∗−1)
χ + · · ·+ ψa(a

∗−1)(σχ))
]
.

Since P ′
ϕ(σ

′
χ) ∈ Pϕ(σχ)Zp[Gχ] and Pϕ(σχ) ∈ P ′

ϕ(σ
′
χ)Zp[Gχ] the invariance of the

definition of the ϕ-objects follows, as well as that of χ-objects since Pχ =
∏
ϕ|χ

Pϕ. �

3.2.4. Characterization of Malg
χ , M alg

χ , with algebraic norms. For any χ ∈ X , we have

defined Malg
χ and M alg

χ . We then have the following characterization, only valid for
rational characters, but which will allow another definition of χ and ϕ-objects (that of
“Arithmetic” objects):

Theorem 3.7. Let M be a G -family of Z[G ]-modules and define, for any χ ∈ X ,
Malg

χ :=
{
x ∈ MKχ , Pχ(σχ) · x = 1

}
. Then:

{
Malg

χ =
{
x ∈ MKχ , νKχ/k(x) = 1, for all k & Kχ},

M
alg
χ =

{
x ∈ MKχ , νKχ/k(x) = 1, for all k & Kχ}

(one may limit the norm conditions to νKχ/kℓ
(x) = 1 for all prime divisors ℓ of [Kχ : Q],

where kℓ ⊂ Kχ is such that [Kχ : kℓ] = ℓ).

Proof. With a contribution of a personal communication from Jacques Martinet (Oc-
tober 1968). We need three preliminary lemmas:
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Lemma 3.8. Let n ≥ 1 and let q be an arbitrary prime number. Denote by Pn the nth
cyclotomic polynomial in Z[X ]; then:

(i) Pn(X
q) = Pnq(X), if q | n;

(ii) Pn(X
q) = Pnq(X)Pn(X), if q ∤ n.

Proof. Obvious for (i), (ii) by means of comparison of the sets of roots of these poly-
nomials. �

Lemma 3.9. Let n = ℓ1 · · · ℓt, t ≥ 2, the ℓi’s being distinct prime numbers. Then for
all pair (i, j), i 6= j, there exist Aji and Aij in Z[X ], such that AjiP n

ℓ
i

+AijP n
ℓ
j

= 1.

Proof. This can be proved by induction on t ≥ 2.

If t = 2, n = ℓ1ℓ2 and:

P n
ℓ2

= Pℓ1 = Xℓ1−1 + · · ·+X + 1, P n
ℓ1

= Pℓ2 = Xℓ2−1 + · · ·+X + 1.

Let’s call “geometric polynomial” any polynomial in Z[X ] of the form Xd+Xd−1+
· · ·+X + 1, d ≥ 0 (including the polynomial 0).

Then if P and Q 6= 0 are geometric, the residue R of P modulo Q is geometric with
residue (P −R)Q−1 ∈ Z[X ]; indeed, if m ≥ n and m+1 = q(n+1)+ r, 0 ≤ r < n, we
get:

Xm + · ·+X + 1 =

(Xn + · ·+X + 1)×
[
Xm+1−(n+1)+Xm+1−2(n+1)+ · ·+Xm+1−q(n+1)

]

+ 1 +X + · ·+Xr−1

(if r ≥ 1, otherwise the residue R is 0). In particular, the gcd algorithm gives geometric
polynomials; as the unique non-zero constant geometric polynomial is 1, it follows that
if P and Q are co-prime polynomials in Q[X ], gcd(P,Q) = 1 and the Bézout relation
takes place in Z[X ], which is the case for the geometric polynomials Pℓ1 and Pℓ2 .

Suppose t ≥ 3. Let ℓi, ℓj, q, be three distinct primes dividing n; put n′ :=
n

q
; by

induction, since ℓi and ℓj divide n
′, there exist polynomials A′j

i , A
′i
j in Z[X ], such that

A′j
i (X)Pn′

ℓ
i

(X) + A′i
j (X)Pn′

ℓ
j

(X) = 1, thus, A′j
i (X

q)Pn′

ℓ
i

(Xq) + A′i
j (X

q)Pn′

ℓ
j

(Xq) = 1.

But Lemma 3.8 (ii) gives:

Pn′

ℓ
i

(Xq) = P n
ℓ
i

(X)Pn′

ℓ
i

(X) & Pn′

ℓ
j

(Xq) = P n
ℓ
j

(X)Pn′

ℓ
j

(X),

which yields A′j
i (X

q)P n
ℓ
i

(X)Pn′

ℓ
i

(X) +A′i
j (X

q)P n
ℓ
j

(X)Pn′

ℓ
j

(X) = 1.

We have proved the co-maximality, in Z[X ], of any pair of ideals (P n
ℓ
i

(X)), (P n
ℓ
j

(X)),

i 6= j (the case n = ℓ giving the prime ideal (Pℓ(X)Z[X ])). �

Lemma 3.10. Let n =
t∏
i=1

ℓaii > 1, ai ≥ 1; put Nn,ℓ(X) :=
ℓ−1∑
i=0

X
n
ℓ i for any

prime ℓ dividing n. Then there exist polynomials Aℓ(X) ∈ Z[X ] such that Pn(X) =∑
ℓ|n
Aℓ(X)Nn,ℓ(X) and

〈
Nn, ℓ(X), ℓ | n

〉
Z[X]

= Pn(X)Z[X ].

Proof. Assume by induction on n that Pn(X) =
∑
ℓ|n
Aℓ(X)Nn,ℓ(X) (with t fixed), and

let q | n; we have, from Lemma 3.8 (i):

Pnq(X) = Pn(X
q) =

∑
ℓ|n
Aℓ(X

q)Nn,ℓ(X
q).

Since we have Nn,ℓ(X
q) =

ℓ−1∑
i=0

X
n
ℓ q i = Nnq,ℓ(X), we obtain that if the lemma is true

for n, it is true for nq for all q | n. It follows that if the property is true for all square-
free integers n, it is true for all n > 1. So we may assume n square-free to prove the
lemma by induction on t.
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If n = ℓ1, Pℓ1(X) = Xℓ1−1 + · · · + X + 1 = Nℓ1,ℓ1(X) and the claim is obvious.
If n = ℓ1ℓ2 · · · ℓt, t ≥ 2, with distinct primes, put nk = n

ℓk
for all k; by assumption,

Pn
k
(X) =

∑
1≤s≤t, s6=k

Aks (X)Nn
k
,ℓs(X), hence:

Pn
k
(Xℓk) = Pn

k
ℓk(X) · Pn

k
(X)

= Pn(X)Pn
k
(X) =

∑
1≤s≤t s6=k

Aks (X
ℓk)Nn,ℓs(X),

whence Pn(X)Pn
k
(X) ∈

〈
Nn, ℓ(X), ℓ | n

〉
Z[X]

, for all k; since t ≥ 2, Lemma 3.9

applies; a Bézout relation in Z[X ] between any two of the Pn
k
(say Pni

and Pnj
) yields

Pn(X)× 1 ∈ 〈Nn, ℓ(X), ℓ | n〉Z[X], giving the result.

We have proved that the ideal generated, in Z[X ], by the Nn,ℓ(X), ℓ | n, contains
Pn(X)Z[X ]. Let’s see that Pn(X) contains that ideal; it is sufficient to see that for all
ℓ | n, Nn,ℓ(X) = Pℓ(X

n
ℓ ); any root of unity ζn of order n (i.e., root of Pn(X)), is a root

of Nn,ℓ(X) since ζ
n
ℓ
n = ζℓ 6= 1 and

ℓ−1∑
i=0

ζiℓ = 0; then Pn(X) | Nn,ℓ(X) in Z[X ] (monic

polynomials). �

We apply this to Pχ(σχ) = Pgχ(σχ) and to Ngχ,ℓ(σχ) = νKχ/kℓ
, where kℓ is, for

all ℓ | gχ, the unique sub-extension of Kχ such that [Kχ : kℓ] = ℓ. The theorem
immediately follows. �

3.2.5. Application to the definition of Mar
χ . Let M be an arithmetic G -family, provided

with norms N and transfer maps J with J ◦N = ν.

Definition 3.11. By analogy with Theorem 3.7 giving, for χ-objects, the definition
Malg

χ :=
{
x ∈ MKχ , νKχ/k(x) = 1, for all k & Kχ} and M alg

χ = Malg
χ ⊗ Zp, we define

the modules of arithmetic χ-objects:
{
Mar

χ := {x ∈ MKχ , NKχ/k(x) = 1, for all k & Kχ} ⊆ Malg
χ

M
ar
χ := Mar

χ ⊗ Zp.

Then Mar
χ is a sub-Z[µgχ ]-module of Malg

χ and M ar
χ is a sub-Zp[µgχ ]-module of M alg

χ ,

with laws defined via the choice of ψ | χ (resp. ψ | ϕ).
We have Mar

χ = Malg
χ as soon as the JKχ/k’s are injective (for all k & Kχ or simply

the kℓ’s). One verifies easily that if the norms NKχ/kℓ
are surjective for all ℓ | gχ, then

Malg
χ /Mar

χ has exponent a divisor of
∏
ℓ|gχ

ℓ, whence M alg
χ /M ar

χ of exponent 1 or p.

3.3. Comparison with classical definitions of θ-components. In all classical pa-
pers, the θ-components Mθ (θ rational or p-adic, above ψ ∈ Ψ) is defined, in an abelian
field K of Galois group G, by:

Mθ := M⊗A[G] A[θ],

where A[θ] := A[ψ] is the ring of values of θ over A; the action being defined via
(σ, x) ∈ G × Mθ 7→ ψ(σ) · x ∈ Mθ. As for the example of cohomology groups,
this definition is only algebraic and not arithmetic. We shall compare this definition
with Definition 3.11 considering irreducible p-adic characters ϕ. We have the classical
algebraic definition of ϕ-objects attached to M , that is to say, the largest quotient
such that Gχ acts by ψ ([Grei1992, Definition, p. 451], [PeRi1990, § 1.3]):

M̂ϕ := M ⊗Zp[Gχ]
Zp[µgχ ] ≃ M /Pϕ(σχ) · M

Another viewpoint [Sol1990, § II.1, pp. 469–471], is to define M̂ ϕ as the largest
sub-Zp[Gχ]-module of M , such that Gχ acts by ψ. Whence:

M̂
ϕ := {x ∈ M , Pϕ(σχ) · x = 1} = M

alg
ϕ ,

with the exact sequence 1 → M̂ ϕ = M alg
ϕ −→ M −→ Pϕ(σχ) · M → 1 giving the

equalities #M̂ϕ = #M̂ ϕ = #M alg
ϕ for finite modules.
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Moreover, our forthcoming Definition 4.3 of M ar
ϕ :

M
ar
ϕ := M

ar
χ ∩ M

alg
ϕ (with Definition 3.11 of M ar

χ ),

introduces another kind of computations. Indeed, the Main Theorem on abelian fields

in the literature is concerned by algebraic definitions similar to M̂ϕ or M̂ ϕ, but our
conjecture given in the 1970’s used M ar

ϕ and new analytic expressions giving #M ar
χ ,

justifying the conjectural values of #M ar
ϕ for finite MK ’s.

It is immediate to verify that, in the non semi-simple case p | gχ, (M alg
ϕ : M ar

ϕ ) is
equal to the order of the capitulation kernel of JKχ/kp , where kp is the subfield of Kχ

such that [Kχ : kp] = p. In the semi-simple case p ∤ #Gχ, M ≃ Mϕ ⊕
[
Pϕ(σχ) · M

]

whatever the definitions.

3.4. Numerical examples. Let k = Q(
√
m) be a real quadratic field and let K be

the compositum of k with a cyclic extension L of Q of p-power degree; the field K is of
the form Kχ for χ ∈ X + which is also irreducible p-adic. We have given in [Gra2021b]
many examples of capitulations of the p-class group of k in K, giving H ar

χ & H alg
χ .

3.4.1. General PARI program [Pari2016]. For the program, one must precise the prime
p > 2, the minimal required p-rank rpmin of Hk, the length N of the sub-tower consid-
ered and the interval for m (the program uses primes ℓ (in ell) congruent to 1 modulo
2pN ; the class group (resp. the p-class group) is computed in Ck (resp. Ckp):

{p=3;rpmin=1;N=2;bm=2;Bm=10^4;for(m=bm,Bm,if(core(m)!=m,next);P=x^2-m;

k=bnfinit(P,1);Ck=k.clgp;r=matsize(Ck[2])[2];Ckp=List;Ekp=List;rp=0;

for(i=1,r,ei=Ck[2][i];vi=valuation(ei,p);if(vi>0,rp=rp+1;

ai=idealpow(k,Ck[3][i],ei/p^vi);listput(Ckp,ai,rp);

listput(Ekp,p^vi,rp)));if(rp<rpmin,next);L0=List;

for(i=1,rp,listput(L0,0,i));forprime(ell=2,10^4,

if(Mod(ell-1,2*p^N)!=0 || Mod(m,ell)==0,next);

Lq=List;for(i=1,rp,A=Ckp[i];forprime(q=2,10^5,if(q==ell,next);

if(kronecker(m,q)!=1 || Mod((ell-1)/znorder(Mod(q,ell)),p)==0,next);

F=idealfactor(k,q);qi=component(F,1)[1];cij=qi;for(j=1,Ekp[i]-1,

cij=idealmul(k,cij,A);if(Mod(j,p)==0,next);

if(List(bnfisprincipal(k,cij)[1])==L0,listput(Lq,q,i);break(2)))));

print("____");print();print("m=",m," ell=",ell," Lq=",Lq);

for(n=0,N,R=polcompositum(P,polsubcyclo(ell,p^n))[1];K=bnfinit(R,1);

print();print("C",n,"=",K.cyc);for(i=1,rp,Fi=idealfactor(K,Lq[i]);

Qi=component(Fi,1)[1];print(bnfisprincipal(K,Qi)[1])))))}

We shall consider the base field k = Q(
√
4409) (i.e., m = 4409 in the program) with

ℓ = 19.

Example 3.12. Let L be the degree 9 subfield of Q(µ19); for convenience, put k0 := k,
k1 := L1k0 (resp. k2 := L2k0), where L1 (resp. L2) is the degree 3 (resp. 9) subfield of
Q(µ19). The prime 2 splits in k0, is inert in k2/k0 and such that Q0 | 2 in k0 generates
Hk0 (cyclic of order 9); considering the extensions Qi = Jki/k0(Q0) of Q0 in ki, we
test its order in Hki , i = 1, 2 (we are going to see that Hki ≃ Z/9Z for all i, which is
supported by the fact that Nk2/k0(Q2) = Q9

0 but Nk2/k0(Hk2) = Hk0 since k2/k0 is
totally ramified at 19):

C0=[9] [4]~ C1=[9] [6]~ C2=[9] [0]~

More precisely, C0 = [9] denotes the class group of k0 and, using the instruction
bnfisprincipal, [4]∼ means that the class of Q0 | 2 is h40, where h0 is the generator
(of order 9) given in kn.cyc by PARI; then C1 = [9], [6]∼, is the similar data for k1 in
which we see a partial capitulation since the class of Q1 = Jk1/k0(Q0) becomes of order
3. Finally, C2 = [9], [0]∼ shows the complete capitulation in k2; the 18 large integers
below are the coefficients, over an integral basis, of a generator of Q2 in k2:

[[0]~,[-270476874595642910,323533824277028894,-236208800298303000,

119737461690335806,-255607858779215282,-198423813102857420,

410588865020870414,-110028179006577678,-449600797918214026,

-4906665437527948,10274048566854232,4319852458093887,

13258715755947394,-6817941144899095,-15448507867705832,

2623003974789062,-3264916449440532,-16606126998680345]~]
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We use obvious notations for the characters defining the fields ki, i = 0, 1, 2. Since
arithmetic norms are surjective (here, they are isomorphisms), the above computations
prove that:

νk2/k1(Hk2 ) = Jk2/k1 ◦Nk2/k1(Hk2 ) = Jk2/k1(Hk1) ≃ Z/3Z,

since Nk2/k1 ◦ Jk2/k1(Hk1 ) = H 3
k1
, or simply Jk2/k1(Hk1 ) = H 3

k2
(partial capitulation

of Hk1 ≃ Z/9Z). Whence:




H
ar
χ2

= {x ∈ Hk2 , Nk2/k1(x) = 1} = 1,

H
alg
χ2

= {x ∈ Hk2 , Pχ2
(σχ2

) · x = 1}
= {x ∈ Hk2 , νk2/k1(x) = 1} = H

3
k2 ≃ Z/3Z.

We have Pχ2
(σχ2

) = σ6
χ2

+ σ3
χ2

+ 1 = νk2/k1 (since L is principal, the norms νki/Li

does not intervene in the definition of the H alg
χi

’s).

Similarly, we have:

νk1/k0(Hk1) = Jk1/k0 ◦Nk1/k0(Hk1 ) = Jk1/k0(Hk0 ) ≃ Z/3Z

(partial capitulation of Hk0 ≃ Z/9Z); whence:
{

H
ar
χ1

= {x ∈ Hk1 , Nk1/k0(x) = 1} = 1,

H
alg
χ1

= {x ∈ Hk1 , νk1/k0(x) = 1} = H
3
k1 ≃ Z/3Z.

Thus, the forthcoming formula of Theorem 3.15 giving:

#Hk2 = #H
ar
χ0

· #H
ar
χ1

· #H
ar
χ2

is of the form #Hk2 = 9× 1× 1, then #Hk1 = 9× 1 since H ar
χ0

= Hk0
.

These formulas are not fulfilled in the algebraic sense, because:

#H
alg
χ0

· #H
alg
χ1

= 9× 3 = 33 and #H
alg
χ0

· #H
alg
χ1

· #H
alg
χ2

= 9× 3× 3 = 34.

Now we intend to compute #H ar
χ1

= #(Ek1/E
0
k1

·Fk1) (analytic formula of Theorem

7.5); in the general definition, Fk denotes the Leopoldt group of cyclotomic units of k,
E 0
k the group of units generated by the units of the strict subfields of k.

We give numerical values of the units |e0 | of k0, |ei | of L1, |Ej | of k1, and their
logarithms; they are, respectively (standard PARI programs):

Units Logarithms

e0=664.00150602068057486397714386165380 6.49828441757729630972016

e1=0.2851424818297853643941198735306274 -1.25476628739511494204754

e2=4.5070186440929762986607999237156780 1.50563588039686576534798

E1=0.2851424818297853643941198735306274 -1.25476628739511494204754

E2=0.2218761622631909342666800501850506 -1.50563588039686576534798

E3=664.00150602068057486397714386165380 6.49828441757729630972016

E4=945628377316488.87204143428389231544 34.4828707719825581974318

E5=0.0025736519075274654929993463127951 -5.96242941301396593243487

Cyclotomic units:

{f=19*4409;z=exp(I*Pi/f);g1=lift(Mod(74956,f)^2);g2=lift(Mod(4410,f)^3);

frob=1;for(s=1,6,frob=lift(Mod(3*frob,f));Eta=1;for(k=1,(4409-1)/2,

for(j=1,(19-1)/3,as=lift(Mod(g1^k*g2^j*frob,f));if(as>f/2,next);

Eta=Eta*(z^as-z^-as)));print("Eta^s",s,"=",Eta," ",log(abs(Eta))))}

Eta^s1=945628377316488.87204143428 34.4828707719825581974318471

Eta^s2=2433718277092.6834663091300 28.5204413589685922649969695

Eta^s3=0.0025736519075274654929993 -5.96242941301396593243487762

Eta^s4=1.0574978754738804652063 E-15 -34.4828707719825581974318471

Eta^s5=4.1089390231091111982824 E-13 -28.5204413589685922649969695

Eta^s6=388.55293409150677930552135 5.96242941301396593243487762

One obtains easily the following relations:

E1=e1, E2=e2^-1, E3=e0, E_4^2=Eta^s, E5^2=Eta^-1,

Eta^{s^3+1}=1, Eta^{s^2-s+1}=1, giving: Eta^(s^2)=E4^2.E5^2.
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Then, one gets (Ek1 : E 0
k1
·Fk1) = (Ek1 : Ek0 ·EL1 ·Fk1) = 1 as expected since H ar

χ1
= 1.

Moreover, we see that the conjugates of the cyclotomic units are not independent (due,
from Lemma 5.17, to norm relations in ki/k0 and ki/Li since 19 splits in k0 and 4409
splits in the Li’s), but, with our point of view, this does not matter since E 0

k1
is of

Z3-rank 3 and Fk1 is of Z3-rank 2. Indeed, these relations lead to some difficulties
in χ-formulas of the literature using larger groups of cyclotomic units like Sinnott’s
cyclotomic units (see Remark 7.7).

To be complete, compute the classical index of Fk0 =: 〈η0〉 in Ek0 :

{f=4409;z=exp(I*Pi/f);Eta0=1;g=znprimroot(f)^2;for(k=1,(f-1)/2,

a=lift(g^k);if(a>f/2,next);Eta0=Eta0*(z^a-z^-a)/(z^(3*a)-z^-(3*a)));

print("Eta0=",Eta0," log(Eta0)=",log(abs(Eta0)))}

Eta0=3.985459685929 E-26 log(Eta0)=-58.484559758195

giving immediately log(Eta0) = −9 ∗ log(e0) from the above computation of log(e0);
whence #H ar

χ0
= (Ek0 : E 0

k0
· Fk0) = (Ek0 : Fk0) = 9; obviously, 9 is the annihilator of

Ek0/Fk0 and H ar
χ0

(Conjecture 7.9).

The verification of (Ek2 : E 0
k2

· Fk2) = 1 is analogous since Fk2 is of Z3-rank 8
(Nk2/k1(Fk2) = Fk1 , Nk2/k0(Fk2) = 1, Nk2/L2

(Fk2) = 1).

Example 3.13. Consider the same framework, replacing 19 by the prime 1747; one
obtains the data showing, as before with Q0 | 2, a partial capitulation of Hk0 in k1
(but Hk1 is not cyclic):

C0=[9] [4]~ C1=[9,3,3] [6,0,0]~

One verifies that the ideal Q1, extending Q0 in k1, is non-principal and such that its
class is h61 h

0
2 h

0
3 on the PARI basis {h1, h2, h3}:

bnfisprincipal(K,[2, [-1,0,0,1,0,0]~,1,3,[0,0,0,1,0,0]~]) = [[6,0,0]~

but its 6-power gives as expected the principality and a generator:

bnfisprincipal(K,[64,0,0,21,0,0;0,64,0,0,0,42;0,0,64,0,21,0;0,0,0,1,0,0;

0,0,0,0,1,0;0,0,0,0,0,1])

=[[0,0,0]~,[8217190756304871153969213,526028282779527429138218,

-687786029075595676594134,251301709772155482917577,

-21032376402967976888126,-15609327127430752932511]~]

The kernel of the arithmetic norm is isomorphic to Z/3Z× Z/3Z, thus:
{

H
ar
χ1

= {x ∈ Hk1 , Nk1/k0(x) = 1} ≃ Z/3Z× Z/3Z,

H
alg
χ1

= {x ∈ Hk1 , νk1/k0(x) = 1} ≃ Z/3Z× Z/3Z× Z/3Z.

since the transfer map applies H ar
χ0

≃ Z/9Z onto 〈h61〉.
Formula of Theorem 3.15 is of the form #Hk1 = #H ar

χ0
· #H ar

χ1
= 9 × 9, since we

have H ar
χ0

= Hk0 of order 9; of course a same formula with the H alg’s does not exist

since #H alg
χ0

· #H alg
χ1

= 9× 27.

Remark 3.14. The program gives the following other results, varying only ell, where
q is the prime split in k0 and inert in k2:

ell=37 q=2 C0=[9] [4]~ C1=[18] [6]~ C2=[18] [0]~

ell=73 q=2 C0=[9] [4]~ C1=[9] [6]~ C2=[171] [0]~

ell=109 q=5 C0=[9] [1]~ C1=[9] [6]~ C2=[9] [0]~

ell=127 q=23 C0=[9] [4]~ C1=[9] [6]~ C2=[9] [0]~

ell=163 q=2 C0=[9] [4]~ C1=[54] [12]~ C2=[54] [18]~

ell=181 q=2 C0=[9] [4]~ C1=[27] [12]~ C2=[81] [63]~

ell=199 q=2 C0=[9] [4]~ C1=[9,3] [6,0]~ C2=[27,3] [9,0]~

The image of Hk0 in k1 is of order 3, except for ℓ ∈ {163, 181}; then Hk0 capitulates
in k2, except for ℓ ∈ {163, 181, 199}. One verifies that formula of Theorem 3.15 holds

with the #H ar
ki

but not for the #H
alg
ki

.
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3.5. Arithmetic factorization of #MK and #MK. Let M be an arithmetic G -
family where all the Z[G ]-modules MK , K ∈ K , are finite; then we can state:

Theorem 3.15. Let K/Q be a cyclic extension and assume that for all sub-extension
k/k′ of K/Q, the maps Nk/k′ are surjective. Then:

#MK =
∏

χ∈XK

#Mar
χ ,

where Mar
χ := {x ∈ MKχ , NKχ/k(x) = 1, ∀ k & Kχ} (Definition 3.11).

Assuming only the cyclicity of the p-Sylow subgroup of GK , one obtains, #MK =∏
χ∈XK

#M
ar
χ .

Proof. One may replace the Mk, k ⊆ K, by the finite Zp[GK ]-modules Mk := Mk⊗Zp,
for all primes dividing #MK , using the previous results, then globalizing at the end.
Two classical lemmas are necessary.

Lemma 3.16. Assume that p ∤ [k : k′]. If Nk/k′ : Mk −→ Mk′ is surjective (resp. if
Jk/k′ : Mk′ −→ Mk is injective), then Jk/k′ is injective (resp. Nk/k′ is surjective).

Proof. From Proposition 3.2, we know that Nk/k′ ◦ Jk/k′ = [k : k′]; whence the proofs
since [k : k′] is invertible modulo p. �

Put GK = G0 ⊕ H , where G0 is a subgroup of prime-to-p order and H (cyclic of
order pn) is the p-Sylow subgroup of GK . Let K0 (resp. K ′

n) be the field fixed by H
(resp. G0).

The set of subfields of K is of the form {Kχi
, χi ∈ XK , 0 ≤ i ≤ n}, where χi is the

rational character above ψi := ψ0 ψ
pn−i

p , where ψp ∈ ΨK′
n
is of order pn and ψ0 ∈ ΨK0 ;

thus Kχi
is the compositum Kχ0

K ′
i:

3.5.1. Schema I.

pi

Kn=KKχn

Kχ
i

K ′
n

KiK ′

i

Kχ0
K0K ′

0=Q

G0

H

g0G0

Let M ∗
Kχ

i

:= Ker(NKχ
i
/Kχ

i−1
), 1 ≤ i ≤ n, then put M ∗

Kχ0
:= MKχ

0
. By assump-

tion, we have the exact sequences of Zp[GK ]-modules:

(3.2) 1 −→ M
∗
Kχ

i
−−−→ MKχ

i

NKχi
/Kχi−1−−−−−−→MKχ

i−1
−→ 1, 1 ≤ i ≤ n.

One considers them as exact sequences of Zp[G0]-modules. The idempotents of this
algebra are, for all χ0 ∈ XK0 , of the form:

eχ0
=

1

#G0

∑
σ∈G0

χ0(σ
−1)σ ∈ Zp[G0].

From Leopoldt [Leo1954], [Leo1962, Chap. V, § 2], as the norm maps are surjective
and the transfer maps injective, regarding the sub-extensions k/k′ of prime-to-p degrees
in K/Q, we get the following canonical identifications:

Lemma 3.17. Let M be an arithmetic G -family whose elements MK are Zp[G0⊕H ]-

modules in the above sense. Then M
eχ

0

Ki
≃ M

eχ
0

Kχ
i

and (M ∗
Ki

)eχ0 ≃ (M ∗
Kχ

i

)eχ0 .

Proof. For all i, we identifie Gal(Ki/K
′
i) with G0 acting by restriction and put G0 :=

G0/g0, where g0 := Gal(Kn/Kχn
). Thus, by abuse of notation, we identify νKi/Kχ

i

with νKn/Kχn
=: νg0 ; moreover, since the degrees of these extensions are prime to p,

we may identify NKi/Kχ
i
with NKn/Kχn

=: Ng0
and JKi/Kχ

i
with JKn/Kχn

=: Jg0 .
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Thus Ng0
is surjective and Jg0 injective. One computes that eχ0

=
νg0
#g0

eχ0
, where

eχ0
:=

1

#G0

∑
σ∈G0

χ0(σ
−1)σ ∈ Zp[G0]; but we have:

(3.3) νg0
(MKi) = Jg0 ◦Ng0

(MKi) ≃ Ng0(MKi) ≃ MKχ
i
;

whence M
eχ0

Ki
≃ M

eχ0

Kχ
i

. To get (M ∗
Ki

)eχ0 ≃ Ng0
(M ∗

Ki
)eχ0 ≃ (M ∗

Kχ
i

)eχ0 , it suffices to

verify that, for all i ≥ 1, Ng0
(M ∗

Ki
) = M ∗

Kχ
i

. The inclusion Ng0
(M ∗

Ki
) ⊆ M ∗

Kχ
i

being

obvious, let x ∈ M ∗
Kχ

i

; we have x = Ng0
(y), y ∈ MKi , then 1 = NKχ

i
/Kχ

i−1
◦Ng0

(y) =

Ng0
◦NKi/Ki−1

(y). Let z := NKi/Ki−1
(y), we have Ng0

(z) = 1; applying JKi−1/Kχ
i−1

,

one gets νg0(z) = 1; but we have, as for (3.3), νg0(MKi−1) ≃ MKχ
i−1

; whence z = 1,

y ∈ M ∗
Ki

and x ∈ Ng0
(M ∗

Ki
). �

From [Leo1954, Chap. I, § 1, 2; formula (6), p. 21] or our previous norm computations
since p ∤ #G0, we have the relations (surjectivity of the norms and Lemma 3.16):





M
eχ

0

Kχ
i

= {x ∈ MKχ
i
, NKχ

i
/k(x) = 1 for all k, K ′

i ⊆ k & Kχi
},

M
∗ eχ

0

Kχ
i

= {x ∈ M
∗
Kχ

i
, NKχ

i
/k(x) = 1 for all k, K ′

i ⊆ k & Kχi
}.

From the norm definitions of (M ar
Kχ

i

)χ0
and from:

M
∗
Kχ

i
:= {x ∈ MKχ

i
, NKχ

i
/Kχ

i−1
(x) = 1},

it follows that M
∗ eχ0

Kχ
i

= M ar
χi
, for all i ≥ 1. In the finite case, this yields, using the

above, the exact sequence (3.2) and M ∗
K0

= MK0 :

(3.4)





n∏
i=0

#M
∗ eχ

0

Kχ
i

= #M
∗ eχ

0

K0

n∏
i=1

#M
eχ

0

Ki

#M
eχ

0

Ki−1

= #M
eχ

0

K ,

∏
χ∈XK

#M
ar
χ =

∏
χ0

#M
eχ0

K = #MK .

Which ends the proof of the theorem and gives useful relations. �

The assumption on the surjectivity of the norms is fulfilled for class groups H (resp.
p-class groups H and p-torsion groups T ), as soon as K/Q (resp. the maximal p-sub-
extension of K/Q) is cyclic, whence totally ramified, class field theory implying the
claim.

4. Semi-simple decomposition of Aχ := Zp[Gχ]/(Pχ(σχ))

Let M be a G -family of Zp[G ]-modules provided with norms and transfer maps
as usual. From ψ ∈ Ψ given, there exist unique ψ0, ψp ∈ Ψ such that ψ = ψ0 ψp,
ψ0 of prime-to-p order and ψp of p-power order. We restrict the study to K := Kχ

for the rational character χ above ψ, so that, from the previous § 3.5, GK becomes
Gχ = G0 ⊕H of order gχ = gχ0

· pn.
We shall use what we call the “semi-simple idempotents” of Zp[Gχ]:

(4.1) eϕ0 :=
1

gχ0

∑
σ∈G0

ϕ0(σ
−1)σ ∈ Zp[G0],

where ϕ0 is the p-adic character over ψ0. In the semi-simple case ψp = 1, then ϕ0 = ϕ.

4.1. Semi-simple decomposition of the Aχ-modules M alg
χ . The algebra Aχ oc-

curs naturally because the M alg
χ are, by definition, Zp[Gχ]-modules annihilated by

Pχ(σχ), then modules over Aχ; this algebra is an integral domain if and only if p does
not split in Q(µgχ)/Q. We shall see that it is semi-simple even when Gχ is not of
prime-to-p order.
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Theorem 4.1. Let M be a G -family of Zp[G ]-modules.

(i) For all χ ∈ X we get, by means of the irreducible p-adic characters ϕ ∈ Φ, the

decompositions M alg
χ =

⊕
ϕ|χ

M
alg
ϕ (cf. Definition 3.5).

More generally, if M ′
χ is a sub-Aχ-module of M alg

χ , then M ′
χ= ⊕ϕ|χM ′

ϕ, where M ′
ϕ =

{x′ ∈ M ′
χ, Pϕ(σχ) · x′ = 1} ⊆ M alg

ϕ .

(ii) The sub-Aχ-modules M alg
ϕ , ϕ | χ, coincide with the (M alg

χ )e
ϕ0 ’s, where eϕ0 is

the semi-simple idempotent (4.1) associated to ϕ0 above the component ψ0 of prime-to-p
order of ψ | ϕ | χ.

(iii) These modules M alg
ϕ , M ′

ϕ are canonically Zp[µgχ ]-modules by means of the

choice of ψ | ϕ and the action σ ∈ Gχ 7→ ψ(σ) ∈ µgχ .

Proof. One may suppose that gχ ≡ 0 (mod p), otherwise we are in the semi-simple
case and the proof is obvious [Or1975, Part II].

Let ϕ1 and ϕ2 be two distinct p-adic characters dividing χ (if χ = ϕ is p-adic
irreducible, the result is trivial). Put Pϕ1

=: Q1, Pϕ2
(X) =: Q2 (cf. § 3.2.2 for the

definition of Pϕ). The following lemma is probably clear for abelian polynomials, but
it is not general (e.g., for p = 5, take P = x4 − 2x3 + 55x2 − 54x+ 379, irreducible in
Z[X ], giving, in Z5[X ], P ≡ (x2 + 24x+ 12) · (x2 + 24x+ 17) (mod 52) and the PARI
relation bezout(x2 + 24 ∗ x+ 12, x2 + 24 ∗ x+ 17) = [−1/5, 1/5, 1]).

Lemma 4.2. There exist U1, U2 ∈ Zp[X ] such that U1Q1 + U2Q2 = 1.

Proof. Since the distinct polynomials Q1 and Q2 are irreducible in Qp[X ], one may
write a Bézout relation in Zp[X ] of the form:

U1Q1 + U2Q2 = pk, k ≥ 1,

choosing U1 (resp. U2) of degree less than the degree of Q2 (resp. Q1); moreover, since
Q1 and Q2 are monic, one may suppose that (for instance) the coefficients of U2 are
not all divisible by p, otherwise, necessarily U1 ≡ 0 (mod p) and one can decrease k.

Let Dχ be the decomposition group of p in Q(µgχ)/Q and let ζ ∈ µgχ be a root of

Q1 (ζ is of order gχ and the other roots are the ζa for Artin symbols σa ∈ Dχ); we
then have:

(4.2) U2(ζ)Q2(ζ) = pk in Z[µgχ ];

but Q2(X) =
∏
σa∈Dχ

(X − ζa1 ), where ζ1 =: ζc, for some σc /∈ Dχ; thus:

Q2(ζ) =
∏

σa∈Dχ

(ζ − ζa1 ) =
∏

σa∈Dχ

(ζ − ζac) =
∏

σa∈Dχ

[
ζ(1 − ζac−1)

]
.

Recall that gχ = gχ0
pn, n ≥ 1. Then 1−ζac−1 is non invertible in Zp[µgχ ] if and only

if ac − 1 ≡ 0 (mod gχ0
), which implies σaσc ∈ Dχ since Gal(Q(µgχ)/Q(µgχ0

)) ⊆ Dχ

because of the total ramification of p in the p-extension, but σa ∈ Dχ implies σc ∈ Dχ

(absurd). So Q2(ζ) is a p-adic unit, whence, from (4.2), U2(ζ) ≡ 0 (mod pk), k ≥ 1.

Denote by p the maximal ideal of Zp[µgχ ] and let F p := Zp[µgχ ]/p be the residue

field; for any P ∈ Zp[X ], let P be its image in Fp[X ] and let ζ be the image of ζ in F p.
We have, in Fp[X ]:

(4.3) Q1 = (Q0)
e,

where e = pn−1(p−1) (ramification index of p in Q(µgχ)/Q) and whereQ0 is irreducible

in Fp[X ] (i.e., the irreducible polynomial of ζ, in fact that of the image of a generator
of µgχ

0
).

With these notations, any polynomial P ∈ Zp[X ] such that P (ζ) ≡ 0 (mod p) is

such that P ∈ Q0 Fp[X ]; in particular, it is the case of U2, so we will have, in Fp[X ]

(since U2 6= 0 in Fp[X ] by assumption), U2 = A (Q0)
α, α ≥ 1, A 6= 0, Q0 ∤ A. We may

assume that A, Q0 ∈ Zp[X ] have same degrees as their images in Fp[X ]. This yields:

U2 = AQα0 + pB, B ∈ Zp[X ],
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thus U2(ζ) = A(ζ)Qα0 (ζ) + pB(ζ) ≡ 0 (mod pk), whence A(ζ)Qα0 (ζ) ≡ 0 (mod p).
But A(ζ) is a p-adic unit (since Q0 ∤ A), which gives:

(4.4) Qα0 (ζ) ≡ 0 (mod p).

Let’s show that α ≥ e; the unique case where, possibly, p | gχ and e = 1 is the case
p = 2, n = 1; this case trivially gives α ≥ e. Consider the gχ0

th cyclotomic polynomial.

Assuming e > 1, we have:

Pgχ
0
(ζ) =

∏
a∈(Z/gχ

0
Z)∗

(ζ − ζp
na) =

∏
a
[ ζ(1 − ζp

na−1) ];

ζp
na−1 is of p-power order if and only if pna ≡ 1 (mod gχ0

); taking into account

the domain of a, this defines a0 such that pna0 ≡ 1 (mod gχ0
), whence pna0 6≡ 1

(mod pgχ0
) and 1−ζpna0−1 ∈ p\p2, thus the fact that Pgχ0

(ζ) ∈ p\p2; it follows, from
Pgχ0

= C Qβ0+pD, β ≥ 1, C,D ∈ Zp[X ], C(ζ) 6≡ 0 (mod p), that Pgχ0
(ζ) ≡ C(ζ)Qβ0 (ζ)

(mod pe), thus Qβ0 (ζ) ∈ p \ p2 since e > 1. This implies β = 1 and Q0(ζ) ∈ p \ p2.
The congruence (4.4), written Qα0 (ζ) ≡ 0 (mod pe), implies α ≥ e and U2 = A′Qe0+

pB, where A′ := AQα−e0 ; but we also have from (4.3):

Q1 = Qe0 + p T , T ∈ Zp[X ],

hence U2 = A′ (Q1 − p T ) + pB = A′Q1 + p S, S ∈ Zp[X ]. Since A 6= 0 may be chosen
monic by assumption, A′ 6= 0 is monic, U2 is of degree larger or equal to that of Q1

(absurd). In conclusion, U2 = 0, contrary to the assumption k ≥ 1 in (4.2). �

Give now some properties of the system of idempotents of Aχ = Zp[Gχ]/(Pχ(σχ)).

Let {ϕ1, . . . , ϕgp} be the set of distinct p-adic characters dividing χ (thus, gp | φ(gχ0
)

is the number of prime ideals dividing p in Q(µgχ0
)/Q, so that, only the case gp = 1 is

trivial for the Main Conjecture); from the property of co-maximality, given by Lemma
4.2, one may write:

(4.5) Zp[X ]
/
(Pχ(X)) ≃

gp∏
u=1

Zp[X ]/
(
Qu(X)

)
≃ (Zp[µgχ ])

gp .

There exist elements eϕu
(X) ∈ Zp[X ], whose images modulo Pχ(X) constitute an

exact system of orthogonal idempotents of Zp[X ]/(Pχ(X)). Whence the system of
orthogonal idempotents eϕu

(σχ) of Zp[Gχ].

Since (M alg
χ )Pχ(σχ) = 1, we obtain (in the algebraic meaning):

(4.6) M
alg
χ =

gp⊕
u=1

(M alg
χ )eϕu

(σχ).

It remains to verify that:

(M alg
χ )eϕu

(σχ) = M
alg
ϕu

= {x ∈ M
alg
χ , Pϕu

(σχ) · x = 1}.

If x ∈ (M alg
χ )eϕu

(σχ), x = yeϕu
(σχ) with y ∈ M alg

χ ; then xPϕu
(σχ) = yeϕu

(σχ)Pϕu
(σχ),

but eϕu
(σχ)Pϕu

(σχ)) ≡ 0 (mod Pχ(σχ)), whence y
eϕu

(σχ)Pϕu
(σχ) = 1 since y ∈ M alg

χ

and x ∈ M alg
ϕu

.

If x ∈ M alg
ϕu

, then xPϕu
(σχ) = 1; writing x =

∏gp
j=1 x

eϕv
(σχ), we get eϕv

(σχ) ≡ δu,v

(mod Pϕu
(σχ)), thus eϕv

(σχ) ≡ 0 (mod Pϕu
(σχ)) for v 6= u and xeϕv

(σχ) = 1, for

v 6= u. Whence x = xeϕu
(σχ).

In the algebra Aχ = Zp[Gχ]/(Pχ(σχ)), we obtain two systems of idempotents, that
is to say, the images in Aχ of the eϕu,0

∈ Zp[G0], where ϕu,0 is above the component

ψu,0, of prime-to-p order, of ψu, and that of the eϕu
(σχ) corresponding to ϕu. Fixing

the character ϕu =: ϕ above ψ =: ψ0 ψp and its non p-part ϕ0 above ψ0, we consider
both:

(4.7) eϕ0 :=
1

gχ0

∑
σ∈G0

ϕ0(σ
−1)σ
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and eϕ0
(σχ) defined as follows by means of polynomial relations in Z[X ] deduced from

(4.5):

(4.8)





eϕ0
(σχ) =Λϕ(σχ) ·

∏
ϕ′ 6=ϕ

Pϕ′(σχ), such that:

Λϕ(X) ·
∏
ϕ′ 6=ϕ

Pϕ′(X) ≡ 1 (mod Pϕ(X));

we denote eϕ0
(σχ) simply by eϕ0

, which is legitimate by Lemma 3.6.

To verify that (M alg
χ )e

ϕ0 = (M alg
χ )eϕ0 , it suffices to show that eϕ0 and eϕ0

cor-
respond to the same simple factor of the algebra Aχ. For this, we remark that the
homomorphism defined, for the fixed character ϕ, by σχ 7→ ψ(σχ), ψ | ϕ, induces a

surjective homomorphism Aχ −→ Zp[µgχ ] whose kernel is equal to
⊕
ϕ 6=ϕ

Aχ eϕ′
0
.

Thus, to show that Aχe
ϕ0 = Aχeϕ0

, it suffices to show that ψ(eϕ0) 6= 0; but, from

(4.7), eϕ0 is a sum of the idempotents eψ′
0
= 1

gχ
0

∑
σ∈G0

ψ′
0(σ)σ

−1 where ψ′
0 | ϕ0. It

follows, since ψ = ψ0 ψp, that ψ(σ) = ψ0(σ) and then:

ψ(eψ′
0
) =

1

gχ0

∑
σ∈G0

ψ′
0(σ)ψ(σ)

−1 =
1

gχ0

∑
σ∈G0

ψ′
0(σ)ψ0(σ)

−1,

which is zero for all ψ′
0 except ψ′

0 = ψ0 where ψ(eψ0
) = 1. Whence ψ(eϕ0) 6= 0. Let

M alg
χ as Aχ-module; on may write M alg

χ =
⊕
ϕ|χ

(M alg
χ )eϕ0 (from (4.6)) but (M alg

χ )eϕ0

coincides with (M alg
χ )e

ϕ0 = M alg
ϕ (Definition (4.7)); then, due to the properties of the

eϕ0
(defined by (4.8)):

(M alg
χ )eϕ0 = {x ∈ M

alg
χ , Pϕ(σχ) · x = 1} = M

alg
ϕ .

Denote by eϕ0
any of these two semi-simple idempotents eϕ0 or eϕ0

.

If M ′
χ is a sub-Aχ-module of M alg

χ , then:

M
′
ϕ := (M ′

χ)
eϕ0 = {x′ ∈ M

′
χ, Pϕ(σχ) · x′ = 1}.

Since Aχ eϕ0
≃ Zp[µgχ ], M alg

ϕ and M ′
ϕ are canonically Zp[µgχ ]-modules.

This finishes the proof of Theorem 4.1. �

4.2. Semi-simple decomposition of the Aχ-modules M ar
χ . From Definition 3.11,

M ar
χ := {x ∈ MKχ , NKχ/k(x) = 1, for all k & Kχ}. This invites to give the following

arithmetic definition:

Definition 4.3. Let M be an arithmetic family of Zp[G ]-modules. For any ϕ | χ,
χ ∈ X , ϕ ∈ Φ, we define the arithmetic Zp[µgχ ]-module:

M
ar
ϕ := M

alg
ϕ ∩ M

ar
χ = {x ∈ M

alg
ϕ , NKχ/k(x) = 1, for all k & Kχ}.

Note that if p | gχ, then the norm conditions may be limited to NKχ/kp(x) = 1,
with [Kχ : kp] = p.

Remark 4.4. Of course M ar
ϕ = (M ar

χ )eϕ0 , eϕ0
being defined by (4.7) or (4.8), and

M ar
ϕ is a sub-Zp[µgχ ]-module of M alg

ϕ . In the sequel, we shall privilege the notation

M ar
ϕ rather than (M ar

χ )eϕ0 since the definition of M ar
ϕ = {x ∈ M ar

χ , Pϕ(σχ) · x = 1} is
more convenient in any viewpoint.

So, we have the arithmetic version of Theorem 4.1:

Theorem 4.5. Let M be a G -family of Zp[G ]-modules. Then we get, for all χ ∈ X ,

the decomposition M ar
χ =

⊕
ϕ|χ

M
ar
ϕ .
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4.3. Summary of the properties of the G -families M alg, M ar. From Theorems
3.15, 4.1, 4.5, Definitions 3.5, 3.11, 4.3. Let χ ∈ X and let ϕ | χ, ϕ ∈ Φ. Let σχ be a
generator of Gχ = Gal(Kχ/Q); put gχ := #Gχ.

(i) Recall that Pχ (resp. Pϕ | Pχ) is the gχth global cyclotomic polynomial (resp.
the local ϕ-cyclotomic polynomial); define:





M
alg
χ :=

{
x ∈ MKχ , Pχ(σχ) · x = 1

}
,

M
alg
ϕ :=

{
x ∈ MKχ , Pϕ(σχ) · x = 1

}
,

M
ar
χ := {x ∈ M

alg
χ , NKχ/k(x) = 1, ∀ k & Kχ},

M
ar
ϕ :=

{
x ∈ M

alg
ϕ , NKχ/k(x) = 1, ∀ k & Kχ} = M

alg
ϕ ∩ M

ar
χ .

Then M alg
χ =

⊕
ϕ|χ

M
alg
ϕ and M ar

χ =
⊕
ϕ|χ

M
ar
ϕ . All these components are Zp[µgχ ]-

modules via σ ∈ Gχ 7→ ψ(σ), for ψ | χ, ψ | ϕ, respectively.
(ii) Assume that the maximal p-sub-extension of K/Q is cyclic and such that for

all its sub-extensions k/k′, the norms Nk/k′ are surjective. Then, if MK is finite,
#MK =

∏
χ∈XK

#M ar
χ =

∏
ϕ∈ΦK

#M ar
ϕ .

5. Application to relative class groups

5.1. Arithmetic definition of relative class groups. We will apply the previous
results using first odd characters χ giving Halg

χ and Har
χ . The case of even characters

requires some deepening of Leopoldt’s results [Leo1954]; it will be considered in the
next section.

For K ∈ K , we denote by HK the class group of K in the ordinary sense. If K is
imaginary, with maximal real subfield K+, we define the relative class group of K:

(5.1) (Har
K)− := {h ∈ HK , NK/K+(h) = 1}

(the notation Har recalls that the definition of the minus part uses the arithmetic norm
and not the algebraic one νK/K+).

It is classical to put H+
K := HK+ ; since K/K+ is ramified for the real infinite

places of K+, class field theory implies that NK/K+ is surjective for class groups in
the ordinary sense, giving the exact sequence:

1 → (Har
K)− −→ HK

N
K/K+−−−→HK+ = H+

K → 1

and the formula:

(5.2) #HK = #(Har
K)− · #H+

K .

We denote by HK (resp. (H ar
K )− and H

+
K := HK+), the p-Sylow subgroup of HK

(resp. (Har
K)− and H+

K). For the Zp[G ]-modules HK , we introduce the Aχ-modules
H alg
χ and H ar

χ for χ ∈ X , then their ϕ-components (Definitions 3.5, 3.11, 4.3) which
are Zp[µgχ ]-modules.

5.2. Proof of the equality Har
χ = Halg

χ , for all χ ∈ X −. To prove this equality and

then the equalities H ar
ϕ = H alg

ϕ , ϕ | χ, it is sufficient to consider, for any p ≥ 2, the

p-Sylow subgroups HKχ and to prove the equality of the χ-components H alg
χ , H ar

χ .

Lemma 5.1. Assume that H ar
χ & H alg

χ . Then there exists a unique sub-extension
Kχ′ of Kχ, such that [Kχ : Kχ′ ] = p (i.e., if ψ | χ then χ′ is above ψ′ = ψp), and a
class h ∈ H alg

χ such that h′ := NKχ/Kχ′ (h) fulfills the following properties:

(i) For all prime ℓ 6= p dividing gχ, νKχ′/k′ℓ
(h′) = 1, where k′ℓ is the unique sub-

extension of Kχ′ such that [Kχ′ : k′ℓ] = ℓ;
(ii) JKχ/Kχ′ (h

′) = 1;

(iii) h′ is of order p in HKχ′ .
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Proof. Indeed, if [Kχ : Q] is prime to p, we are in the semi-simple case and H alg
χ =

H ar
χ . So we assume that p | [Kχ : Q], whence the existence and unicity of Kχ′ .

Let h ∈ H alg
χ , h /∈ H ar

χ , and let h′ := NKχ/Kχ′ (h). Let ℓ | gχ, ℓ 6= p.

(i) We have the following diagram where kℓ is the unique sub-extension of Kχ such
that [Kχ : kℓ] = ℓ and then k′ℓ = kℓ ∩Kχ′ :

5.2.1. Schema II.
Kχkℓ

k′ℓ Kχ′

h

h′ :=NKχ/Kχ′
(h)

ℓ

ℓ

pp

We have νKχ/kℓ
(h) = 1 since h ∈ H alg

χ ; applying NKχ/Kχ′ , we get νKχ′/k′ℓ
(h′) = 1.

(ii) We have JKχ/Kχ′ (h
′) = JKχ/Kχ′ ◦ NKχ/Kχ′ (h) = νKχ/Kχ′ (h) = 1 since h ∈

H alg
χ .

(iii) Since the class h′ capitulates in Kχ, its order is 1 or p. Suppose that h′ = 1;
for ℓ 6= p, the maps JKχ/kℓ

and JKχ′/k′ℓ
are injective, so NKχ/kℓ

(h) = 1, for all ℓ 6= p

dividing gχ; since moreover h′ = NKχ/Kχ′ (h) = 1, this yields by definition h ∈ H ar
χ

(absurd). �

Lemma 5.2. Let K/k be a cyclic extension of degree p and Galois group G =: 〈σ〉.
Let Ek and EK be the unit groups of k and K, respectively. Consider the transfer
map JK/k : Hk → HK ; then Ker(JK/k) is isomorphic to a subgroup of H1(G,EK) ≃
E∗
K/E

1−σ
K (where E∗

K = Ker(νK/k)). The group E∗
K/E

1−σ
K is of exponent 1 or p.

Proof. Let Zk and ZK be the rings of integers of k andK, respectively; let cℓk(a) ∈ Hk,
with aZK =: (α)ZK , α ∈ K×. We then have α1−σ =: ε ∈ E∗

K . The map, which

associates with cℓk(a) ∈ Ker(JK/k) the class of ε modulo E1−σ
K , is obviously injective.

If ε ∈ E∗
K , then 1 = ε1+σ+···+σp−1

= εp+(σ−1)Ω, Ω ∈ Z[G]; whence εp ∈ E1−σ
K . �

5.2.2. Study of the case p 6= 2. We are in the context of Lemma 5.1. Put K := Kχ and
k := Kχ′ ; then K/k is of degree p and the class h′ = NK/k(h) ∈ Hk is of order p and
capitulates in K.

Assume that K is imaginary (i.e., χ is odd, thus h ∈ (H ar
K )−); since K/k is of

degree p 6= 2, k is also imaginary and h′ ∈ (H ar
k )−.

We introduce the maximal real subfields, giving the diagram:

5.2.3. Schema III.

KK+

k+ k

h

h′ :=NK/k(h)

2

2

pp G=〈σ〉

Lemma 5.3. Let µ∗
K be the p-torsion sub-group of E∗

K , that is to say the set of p-roots
of unity ζ of K such that NK/k(ζ) = 1. Then the image of (H ar

k )−∩Ker(JK/k), by the

map Ker(JK/k) → E∗
K/E

1−σ
K of Lemma 5.2, is contained in the image of µ∗

K modulo

E1−σ
K .

Proof. Let q be the map E∗
K → E∗

K/E
1−σ
K . Denote by x 7→ x the complex conjugation

in K. If h′ ∈ (H ar
k )− ∩ Ker(JK/k), then Nk/k+(h

′) = 1 and νk/k+(h
′) = h′h′ = 1; if

h′ = cℓk(a) we then have aa = aZk, a ∈ k×, and aZKaZK = aZK , with aZK = (α)ZK
and aZK = (α)ZK , α ∈ K× (since a and a become principal in K), which yields
relations of the form α1−σ = ε, α1−σ = ε, ε, ε ∈ E∗

K . From the relation aa = aZk, one
obtains, in K, αα = ηa, η ∈ EK , then α1−σα1−σ = η1−σ, giving εε = η1−σ.

From [Has1952, Satz 24], ε = ε+ ζ, ε+ ∈ EK+ , ζ ∈ µK . So q(εε) = q(ε+2) = 1.
Since p is odd and E∗

K/E
1−σ
K of exponent divisor of p, ε+ ∈ E1−σ

K ; since ε ∈ E∗
K , we

have ζ ∈ E∗
K , whence q(ε) = q(ζ) ∈ q(µ∗

K) = µ∗
K/(E

1−σ
K ∩ µ∗

K). �
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Lemma 5.4. The group q(µ∗
K) (of order 1 or p) is of order p if and only if µ∗

K = 〈ζ1〉
and E1−σ

K ∩ 〈ζ1〉 = 1, where ζ1 is of order p.

Proof. A direction being obvious, assume that q(µ∗
K) = µ∗

K/(E
1−σ
K ∩ µ∗

K) is of order p
and let ζ be a generator of µ∗

K (necessarily, ζ 6= 1). If ζ ∈ k, then NK/k(ζ) = ζp, so
ζp = 1 and ζ = ζ1 ∈ k.

If ζ /∈ k, K = k(ζ); it follows that ζ1 ∈ k and that ζp ∈ k (since [K : k] = [Q(ζ) :
k ∩Q(ζ)] = p), thus K/k is a Kummer extension of the form K = k( p

√
ζr), ζr of order

pr, r ≥ 1, ζ = ζr+1, and ζ1−σ = ζ1, giving NK/k(ζ) = ζp = 1, hence ζ = ζ1 ∈ k

(absurd). So we have ζ = ζ1 ∈ k and E1−σ
K ∩ µ∗

K ⊆ 〈ζ1〉. Thus, q(µ∗
K) being of order

p, necessarily E1−σ
K ∩ µ∗

K = 1. �

Lemma 5.5. If (H ar
k )− ∩ Ker(JK/k) 6= 1, this group is of order p and K/k is a

Kummer extension of the form K = k( p
√
a), a ∈ k×, aZk = ap, the ideal a of k being

non-principal (such a Kummer extension is said to be “of class type”).

Proof. If h′ ∈ (H ar
k )− ∩ Ker(JK/k), h

′ := cℓk(a) 6= 1, this means that aZK = αZK ,

α ∈ K×; so α1−σ = ε, ε ∈ E∗
K ; from Lemma 5.4, q(ε) = q(ζ1)

λ, hence ε = ζλ1 η
1−σ,

η ∈ EK , whence α1−σ = ζλ1 η
1−σ and in the equality aZK = αZK one may suppose α

chosen modulo EK such that α1−σ = ζλ1 ; moreover we have λ 6≡ 0 (mod p), otherwise α
should be in k and a should be principal. Thus α1−σ = ζ′1 of order p and αp = a ∈ k×,
whence K = k(α) is the Kummer extension k( p

√
a); we have aZK = apZK , hence

aZk = ap, since extension of ideals is injective. �

We shall show now that the context of Lemma 5.5 is not possible for a cyclic extension
K/Q, which will apply to Kχ/Q:

5.2.4. Schema IV.
K=k( p

√
a)K ′

k′ k

K0Q

p

pn−1

Since K = k( p
√
a), with aZk = ap, only the prime ideals dividing p can ramify

in K/k. Consider the above decomposition of the extension K/Q for p 6= 2, with
K/K0 and K ′/Q cyclic of p-power degree pn, K/K ′ and K0/Q of prime-to-p degree,
and let ℓ be a prime number totally ramified in K ′/Q (such a prime does exist since
GK′ ≃ Z/pnZ); this prime is then totally ramified in K/K0, hence in K/k, which
implies ℓ = p and p is the unique ramified prime in K ′/Q.

This identifies the extension K ′/Q. Its conductor is pn+1, n ≥ 1, since p 6= 2; thus
K ′ is the unique sub-extension of degree pn of Q(µpn+1) and k′ is the unique sub-
extension of degree pn−1 of Q(µpn) (in other words, K ′ is contained in the cyclotomic
Zp-extension). Since ζ1 ∈ k, one has µpn ⊂ k, µpn+1 ⊂ K and µpn+1 6⊂ k, so K =

k(ζ) = k( p
√
ζp), with ζ of order pn+1.

It suffices to apply Kummer theory which shows that k( p
√
a) = k( p

√
ζp) implies

a = ζλpbp, with p ∤ λ and b ∈ k×; so aZk = bpZk = ap, whence a = bZk principal
(absurd).

So in the case p 6= 2, for K/Q imaginary cyclic and K/k cyclic of degree p, we have
the relation (H ar

k )−∩Ker(JK/k) = 1 (injectivity of JK/k on the relative p-class group).

5.2.5. Case p = 2. The extension K/Q is still imaginary cyclic, k is necessarily equal
to K+ and σ is the complex conjugation s∞.

From [Has1952, Satz 24] the “index of units” Q−
K is trivial in the cyclic case; thus

for all ε ∈ E∗
K , ε = ε+ζ, ε+ ∈ k, ζ root of unity of 2-power order; then NK/k(ε) = 1

yields ε+2 = 1, thus ε+ = ±1 and ε = ζ′ = ±ζ; since K/Q is cyclic (whence Q(ζ)/Q
cyclic), we shall have ε ∈ {1,−1, i,−i}. Recall that h′ = NK/k(h) ∈ Ker(JK/k), h

′ =

cℓk(a) 6= 1, with aZK = αZK and α1−σ = ε ∈ E∗
K . One may assume ε ∈ {−1, i,−i}

(ε 6= 1 since α /∈ k×):
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(i) Case ε = −1. Then α1−σ = −1, α2 =: a ∈ k×, α /∈ k×, and we get the Kummer
extension K = k(

√
a) with aZk = a2, a non-principal (Kummer extension of class

type).

(ii) Case ε = ±i. Then α1−σ = ±i with −1 = (±i)1−σ; one may assume α1−σ = i.
This yields α2i−1 ∈ k×. Put α2 = ic, c ∈ k×; it follows a2ZK = α2ZK = cZK , hence
a2 = cZk.

Let τ be a generator of GK ; one has α2τ = iτcτ = −icτ = −cτ−1α2, hence α2τ =
α2d, d := −cτ−1 ∈ k×; we obtain (αZK)2τ = (αZK)2dZK , thus a2τZK = a2ZKdZK
giving a2τ = a2dZk.

If d ∈ k×2, d = e2, e ∈ k×, and aτ ∼ a saying that h′ is an invariant class in k/Q.

If d /∈ k×2, the relation α2τ = α2d shows that d = (ατ−1)2 ∈ K×2; from Kummer

theory, since K = k(
√
d) = k(i), one obtains d = −δ2, δ ∈ k×, and a2τ = a2δ2ZK , still

giving aτ = a · δZk and an invariant class in k/Q.

But K is the direct compositum over Q of k = K+ and Q(i) and must be cyclic,
so [k : Q] is necessarily odd and an invariant class in k/Q is of odd order giving the
principality of a in k (absurd).

So, only case (i) is a priori possible.

Consider the following diagram, with K/K0 and K ′/Q cyclic of 2-power order, then
K/K ′ and K0/Q of odd degree, where we recall that aZk = a2 with a non-principal
and aZK = αZK , α ∈ K×. Similarly, since K/k is only ramified at 2, then K/K0 and
K ′/Q are totally ramified at 2, the conductor of K ′ is a power of 2, say 2r+1, r ≥ 1
(K ′ is an imaginary cyclic subfield of Q(µ2r+1)):

5.2.6. Schema V.
K=k(

√
a)K ′

k′ k = K+

K0Q

2 〈 s∞ 〉

The Kummer extension K ′/k′ is 2-ramified of the form K ′ = k′(
√
a′), a′ ∈ k′×. So

we have a′Zk′ = a′2 or a′Zk′ = a′2p′, where p′ | 2 in k′. But all the subfields of Q(µ2∞)
have a trivial 2-class group; thus, one may suppose that a′ is, up to k′×2, a unit or
an uniformizing parameter of k′. Then K = k(

√
a′) is not of class type (absurd); so

h′ = 1. Whence:

Proposition 5.6. For any imaginary cyclic extension K/Q and any relative extension
K/k of prime degree, (H ar

k )− ∩ Ker(JK/k) = 1 if p 6= 2 (the relative classes of k do

not capitulate in K), then Ker(JK/K+) = 1 if p = 2 (the real 2-classes of k = K+ do
not capitulate in K).

Using the order formula (5.2), we get:

Corollary 5.7. We get JK/K+(HK+) ≃ H
+
K := HK+ = NK/K+(HK) and the direct

sum HK = (H ar
K )− ⊕ JK/K+(HK+).

We have obtained the following result about relative class groups:

Theorem 5.8. Let K be an imaginary cyclic field of maximal real subfield K+. Let p
be any prime number and set H = H⊗ Zp. Define:

(5.3)

{
(H ar

K )− := {h ∈ HK , NK/K+(h) = 1}
(H alg

K )− := {h ∈ HK , νK/K+(h) = 1}.

Then H ar
K = H

alg
K , H ar

ϕ = H alg
ϕ for all ϕ ∈ Φ−

K , (Har
K)− = (Halg

K )−.

Proof. For all subfield k ofK with [K : k] = p, JK/k is injective on (H ar
k )− if p 6= 2 and

JK/K+ is injective on HK+ for p = 2; so νK/k = JK/k◦NK/k yields (H
ar
K )− = (H alg

K )−

from Definition 3.11, then (Har
K)− = (Halg

K )− by globalization. �
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We shall write simply H−
K for the two notions “alg” and “ar” in the cyclic case.

Using Theorem 4.1 we may write, for all χ ∈ X −, #H alg
χ = #H ar

χ =
∏
ϕ|χ

#H
ar
ϕ .

Corollary 5.9. Let K/Q be an imaginary cyclic extension. Then:

#H+
K =

∏
χ∈X

+
K

#Har
χ & #H−

K =
∏
χ∈X

−
K

#Har
χ .

Proof. To apply Theorem 3.15, we shall prove that all the arithmetic norms are surjec-
tive in any sub-extension k/k′ of K/Q; we do this for each p-class group; so the proof
of the surjectivity is only necessary in the sub-extensions k/k′ of p-power degree; then
we use the fact that this property holds as soon as k/k′ is totally ramified at some
place.

Consider K as direct compositum K ′K0, over Q, where K/K0 and K ′/Q are cyclic
of p-power degree and where K/K ′ and K0/Q are of prime-to-p degree. Let ℓ be a
prime number totally ramified in K ′/Q; thus ℓ is totally ramified in any sub-extension

k/k′ of K ′/Q (and in K/K0). So Theorem 3.15 implies #HK =
∏

χ∈XK

#Har
χ .

From (5.2), #HK = #H−
K ·#H+

K and we can also apply Theorem 3.15 to the maximal

real subfield K+ of K, giving #H+
K =

∏
χ∈X

+
K

#Har
χ , whence the formulas taking into

account the relation Har
χ = Halg

χ for odd characters (Theorem 5.8). �

5.3. Computation of #Har
χ for χ ∈ X −. For an arbitrary imaginary extensionK/Q,

we have (e.g., from [Has1952, p. 12] or [Was1997, Theorem 4.17]) the formula:

#H−
K = Q−

Kw
−
K

∏
ψ∈Ψ−

K

(
− 1

2 B1(ψ
−1)

)
, B1(ψ

−1) :=
1

fχ

∑
a∈[1,fχ[

ψ−1(σa) a,

where w−
K is the order of the group of roots of unity of K and Q−

K the index of units;

from [Has1952, Satz 24], Q−
K = 1 when K/Q is cyclic. Recall that Har

χ := {h ∈
HKχ , NKχ/k(x) = 1, for all k & Kχ}; then:

Theorem 5.10. Let χ ∈ X −, let gχ be the order of χ, fχ its conductor; then #Har
χ =

#Halg
χ = 2αχ ·wχ ·

∏
ψ|χ

(
− 1

2 B1(ψ
−1)

)
, where αχ = 1 (resp. αχ = 0) if gχ is a 2-power

(resp. if not) and:

(i) wχ = 1 if Kχ is not an imaginary cyclotomic field;

(ii) wχ = p if Kχ = Q(µpn), p 6= 2 prime, n ≥ 1;

(iii) wχ = 2 if Kχ = Q(µ4) for p = 2.

Proof. We use [Or1975b, Proposition III (g)] or [Leo1954, Chap. I, § 1 (4)] recalled in
Theorem 2.1; it is sufficient to prove that for any imaginary cyclic extension K/Q,
#H−

K =
∏

χ∈X
−
K

(
2αχ · wχ ·

∏
ψ|χ

(
− 1

2 B1(ψ
−1)

))
, the expected equality will come from

Theorem 5.8 and the relation:

#H−
K =

∏
χ∈X

−
K

#Har
χ .

So, it remains to prove that
∏
χ∈X

−
K

(
2αχ · wχ

)
= w−

K .

Consider the following diagram, where K/K0 and K
′/Q are cyclic of 2-power degree

and where K/K ′ and K0/Q are of odd degree. :

5.3.1. Schema VI.
KK ′

K ′+ K+

K0Q

22

As K+ and K ′+ are real, αχ = 0, except when gχ is a 2-power, hence for the unique
χ0 defining K ′ for which αχ = 1; whence

∏
χ∈X

−
K
2αχ = 2.
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If K does not contain any cyclotomic field (different from Q), then w−
K = 2, more-

over, all the wχ are trivial and the required equality holds in that case. So, let Q(µpn),
n ≥ 1, be the largest cyclotomic field contained in K; this yields two possibilities:

5.3.2. Schema VII.
KK+

Q(µpn )+ Q(µpn )

Q Q(µp)Q(µp)+

K+ K

Q(µ4)Q

p 6= 2 p = 2

If p 6= 2,
∏
χ∈X

−
K
wχ = pn (due to the n odd characters defined by the Q(µpi),

1 ≤ i ≤ n) and, for p = 2, this gives
∏
χ∈X

−
K
wχ = 2; whence the result (cf. [Has1952,

Chap. III, § 33, Theorem 34 and others]). �

Remark 5.11. We have #H−
K =

Q−

Kw−

K

2n
−
K

∏
χ∈X

−
K

#Halg
χ , for any imaginary extension K,

where n−
K is the number of imaginary cyclic sub-extensions of K of 2-power degree and

w−
K is the 2-part of wK (resp. 1

2wK) if Q(µ4) 6⊂ K (resp. Q(µ4) ⊂ K). See [Gra1976,
Remarque II 2, p. 32].

5.4. Annihilation theorem for H
−
K . Before significant improvements by means of

Stickelberger’s elements (leading to the construction of p-adic measures, to index for-
mulas and annihilators of various invariants), Iwasawa [Iwa1962] proves the following
formula for the cyclotomic fields K = Q(µpn), p 6= 2, n ≥ 1, of Galois group GK :

#H−
K =

(
Z[GK ]− : BKZ[GK ] ∩ Z[GK ]−

)
,

where Z[GK ]− := {Ω ∈ Z[GK ], (1 + s∞) · Ω = 0}, s∞ being the complex conjugation,

and BK :=
1

pn

∑
a∈[1, pn[, p ∤ a

a σ−1
a where σa ∈ GK denotes the corresponding Artin

automorphism.

This formula does not generalize for arbitrary imaginary extension K/Q (see the
counterexample given in [Gra1976, p. 33]). Many contributions have appeared (e.g.,
[Leo1962, Gil1975, Coa1977, Gra1978, All2013, All2017]; for more precise formulas,
see [Sin1980], [Was1997, § 6.2, § 15.1], among many other). Nevertheless, we gave in
[Gra1976] another definition in the spirit of the ϕ-objects which succeeded to give
a correct formula (we shall make the same remark for the index formulas given via
cyclotomic units in the real case).

5.4.1. General definition of Stickelberger’s elements. Let K ∈ K \ {Q}. Let fK =:
f > 1 be the conductor of K and let Q(µf ) be the corresponding cyclotomic field.
Define the more suitable writing of the Stickelberger element defined in [Gra1978,
Chap.IV, § 1] or [Gra1978b, Chap.I, § 1], from the study of partial zêta-functions in
[Coa1977, §§ 2.1, 3.2], and that leads to a new normalized definition of Gauss sums (in
the summation, integers a are prime to f and Artin symbols are taken over Q):

BQ(µf ) := −
f∑
a=1

(
a

f
− 1

2

)
·
(
Q(µf )

a

)−1

.

Note that the part
∑f

a=1

(Q(µf )
a

)−1
is the algebraic norm νQ(µf )/Q which does not

modify the image of BQ(µf ) by ψ, for ψ ∈ Ψ, ψ 6= 1.

We shall use two arithmetic G -families: the G -family M, for which MK = Z[GK ]
and the G -family S defined by:

(5.4)





SK := BKZ[GK ] ∩ Z[GK ], where

BK := NQ(µf )/K(BQ(µf ))=−
f∑
a=1

(
a

f
− 1

2

)(
K

a

)−1

.
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Lemma 5.12. For any c, prime to 2f , let Bc
K :=

(
1 − c

(
K

c

)−1)
·BK ; then Bc

K ∈
Z[GK ].

Proof. We have:

Bc
K =

−1

f

∑
a

[
a
(
K

a

)−1

− ac
(
K

a

)−1(K

c

)−1]
+

1− c

2

∑
a

(
K

a

)−1

.

Let a′c ∈ [1, f ] be the unique integer such that a′c · c ≡ a (mod f); put:

a′c · c = a+ λa(c)f , λa(c) ∈ Z;

using the bijection a 7→ a′c in the summation of the second term in between
[ ]

and

the relation
(
K

a′c

)(
K

c

)
=

(
K

a

)
, this yields:

Bc
K =

−1

f

[∑
a
a
(
K

a

)−1

−
∑
a
a′c · c

(
K

a′c

)−1(K

c

)−1]
+

1− c

2

∑
a

(
K

a

)−1

=
−1

f

∑
a

[
a− a′c · c

](
K

a

)−1

+
1− c

2

∑
a

(
K

a

)−1

=
∑
a

[
λa(c) +

1− c

2

](
K

a

)−1

∈ Z[GK ].

We have λf−a(c) +
1−c
2 = −

(
λa(c) +

1−c
2

)
, which proves that:

(5.5) Bc
K = B′c

K · (1− s∞), B′c
K ∈ Z[GK ],

useful in the case p = 2 and giving NK/K+(Bc
K) = 0. �

Definition 5.13. Let K be an imaginary abelian field. Put:

AK := {Ω ∈ Z[GK ], ΩBK ∈ Z[GK ]}
(AK is an ideal of Z[GK ] and SK := BK ·AK (cf. (5.4)). Denote by ΛK ∈ AK the least
rational integer such that ΛKBK ∈ Z[GK ] (thus ΛK | 2f , where f is the conductor of
K).

For K = Kχ, χ ∈ X −, we put AKχ =: Aχ and ΛKχ =: Λχ.

Since we will only use images by ψ ∈ Ψ− of elements of Q[GK ], we can ne-

glect, by abuse, the term
∑f

a=1
1
2

(
K
a

)−1
in some reasonings and computations, using

1
f

∑f
a=1 a

(
K
a

)−1
instead of BK .

Note that for any odd c prime to f ,
(
1− c

(
K

c

)−1)
·
f∑
a=1

1

2

(
K

a

)−1

is in Z[GK ] and

that such considerations only concerns the case p = 2 when f is an odd prime power
with [Q(µf ) : K] odd (see Example 5.20 with K = Q(µ47)).

Lemma 5.14. Let ασ be the coefficient of σ ∈ GK in the writing of
f∑
a=1

a
(
K

a

)−1

on the canonical basis GK of Z[GK ]; in particular, we have α1 =
∑

a, σa|K
=1

a. Then

ασ ≡ c α1 (mod f), where c is a representative modulo f such that σc = σ−1. Thus,

we have ΛK =
f

gcd(f, α1)
.

Proof. The first claim is obvious and ΛK is the least integer Λ such that
Λ · α1

f
∈ Z,

since Λ
f∑
a=1

a

f

(
K

a

)−1

∈ Z[GK ] if and only if
Λ · ασ

f
∈ Z for all σ ∈ GK , thus, for instance,

for σ = 1. �

Proposition 5.15. (i) The ideal AK of Z[GK ] is a free Z-module; a Z-basis is given
by the set

{
· · · ,

(
K
a

)
− a, · · · ; ΛK

}
, for the representatives a of (Z/fZ)× \ {1}.

(ii) If K/Q is cyclic, then AK is the ideal of Z[GK ] generated by
(
K
c

)
− c and ΛK ,

where
(
K
c

)
is any generator of GK .

Proof. See [Gra1976, p. 35–36]. �
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5.4.2. Study of the algebraic G -families MK := Z[GK ], SK := BKAK . We then have
(where Mχ and Sχ are ideals of MKχ):{

MKχ = Z[Gχ], SKχ = BKχ Aχ,

Mχ = {Ω ∈ Z[Gχ], Pχ(σχ) · Ω = 0}, Sχ = BKχAχ ∩Mχ

Lemma 5.16. We have Mχ =
∏
ℓ|gχ

(1 − σ
gχ/ℓ
χ )Z[Gχ], aχ := ψ(Mχ) =

∏
ℓ|gχ

(
1 −

ψ(σχ)
gχ/ℓ

)
; then Sχ gives rise to an ideal bχ multiple of aχ.

Proof. See [Gra1976, Lemmes II.8 and II.9, pp. 37/39]. �

The computation of bχ needs to recall the norm action on Stickelberger’s elements;
because of the similarity of the result for the norm action on cyclotomic numbers, we
recall, without proof, the following well-known formulas (see, e.g., [Gra2018b, Section
4]):

Lemma 5.17. Let f > 1 and m | f , m > 1, be any modulus; let Q(µf ), Q(µm) ⊆
Q(µf ), be the corresponding cyclotomic fields. Let:

BQ(µf ) := −
f∑
a=1

(
a

f
− 1

2

)
·
(
Q(µf )

a

)−1

, CQ(µf )
:= 1− ζf .

We have, where NQ(µf )/Q(µm) : Q[GQ(µf )] −→ Q[GQ(µm)]:

NQ(µf )/Q(µm)(BQ(µf )) = Ω ·BQ(µm), NQ(µf )/Q(µm)(CQ(µf )
) = CΩ

Q(µm),

where Ω :=
∏
p|f, p∤m

(
1−

(Q(µm)

p

)−1)
.

We can conclude by the following [Gra1976, Théorèmes II.5, II.6]:

Theorem 5.18. Let χ ∈ X − and ψ | χ. The Z[µgχ ]-module Halg
χ = Har

χ is annihilated

by the ideal B1(ψ
−1) · (ψ(σa)− a,Λχ) of Z[µgχ ], where σa :=

(
K
a

)
is any generator of

GK (Lemma 5.14, Proposition 5.15).

The ideal (ψ(σa) − a,Λχ) is the unit ideal except if Kχ 6= Q(µ4) is an extension of
Q(µp) of p-power degree and if Λχ ≡ 0 (mod p), in which case, this ideal is a prime
ideal pχ | p in Q(µgχ). If Kχ = Q(µ4), this ideal is the ideal (4).

Theorem 5.19. Let ϕ ∈ Φ− and let ψ | ϕ. Then the Zp[µgχ ]-module H alg
ϕ = H ar

ϕ is

annihilated by the ideal B1(ψ
−1) · (ψ(σa)−a,Λχ) of Zp[µgχ ], where σa is any generator

of GK .

The ideal (ψ(σa)−a,Λχ) of Zp[µgχ ] is the unit ideal except if Kχ 6= Q(µ4) is extension

of Q(µp) of p-power degree, if Λχ ≡ 0 (mod p) and if λ = 1 in the writing ψ = ωλ ·ψp
(where ω is the Teichmüller character and ψp of p-power order), in which case, this
ideal is the prime ideal of Zp[µgχ ].

If Kχ = Q(µ4), this ideal is the ideal (4).

Example 5.20. Let K := Kχ be the field Q(µ47), of degree gχ = 46. From Theorem

5.10, we have #Hχ = 2αχ · wχ · ∏ψ|χ

(
− 1

2B1(ψ
−1)

)
with in that case αχ = 0 and

wχ = 47 and where by definition:

−1

2
B1(ψ

−1) = −1

2

46∑
a=1

( a

47
− 1

2

)
ψ−1(σa) = −1

2

46∑
a=1

a

47
ψ−1(σa).

Let’s compute #Hχ = 47 ·NQ(µ46)/Q
(
− 1

2

46∑
a=1

a

47
ψ−1(σa)

)
:

{P=polcyclo(46);g=lift(znprimroot(47));A=0;for(n=0,45,

a=lift(Mod(g,47)^n);A=A+x^n*(1/47*a-1/2));B=Mod(-1/2*A,P);

print(47*norm(B))}

139

Note that − 47
2 B1(ψ

−1) is, writing x = ζ46, the PARI integer:

4*x^21+25*x^20+9*x^19+26*x^18-19*x^17+11*x^16-22*x^15

+x^14-24*x^13+10*x^12+6*x^11+16*x^10-21*x^9+20*x^8

+8*x^7+7*x^6-4*x^5+14*x^4-12*x^3+3*x^2+14*x+27
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Whence #Hχ = 139 and Hχ ≃ Z[µ46]/p139. Since Λχ = 47, the ideal AK is(
σa − a, 47

)
, with for instance a = 5 (Lemma 5.14), and AK · 1

2
BK annihilates Hχ;

since the image of AK · 1
2
BK is the ideal

( 1
2
B1(ψ

−1)
)
= p139, the annihilator of Hχ is

p139. But this ideal is not principal in Q(µ46) (from [Gra1979b]):

{L=bnfinit(polcyclo(46));F=idealfactor(L,139);

print(bnfisprincipal(L,component(F,1)[1])[1])}

[2]~

showing that its class is the square of the PARI generating class. More precisely, the
class group of Q(µ46) = Q(µ23) is equal to 3; then any q47 | 47 or q139 | 139 generates
this class group.

In [Gra1978, Chap. IV, § 2; Théorème IV1], [Gra1979b, Théorèmes 1, 2, 3], we have
given improvements of the annihilation for 2-class groups but it is difficult to say if the
case p = 2 is optimal or not. By way of example, we cite the following under the above
context:

Theorem 5.21. Let χ ∈ X − and ψ | ϕ | χ with ψ = ψ0 ψ2, ψ0 6= 1 of even order, ψ2

of 2-power order. Put K := Kχ. The Z2[µgχ ]-module Hϕ

/
JK/K+(H +

ϕ′ ) is annihilated

by
(
1
2B1(ψ

−1)
)
, where H +

ϕ := {h ∈ HK+ , Pϕ′(σχ) · x = 1} with ϕ′ ∈ Φ+ is above

ψ′ := ψ0 ψ
2
2.

6. Application to torsion groups of abelian p-ramification

Let K be a totally real number field and let TK be the torsion group of the Galois
group of the maximal p-ramified abelian pro-p-extension Hpr

K of K.
Under Leopoldt’s conjecture, we have TK = Gal(Hpr

K /K
cyc), where K cyc is the

cyclotomic Zp-extension of K.

Let Hnr
K be the p-Hilbert class field and let Hbp

K be the Bertrandias–Payan field; the

Zp-module T
bp
K := Gal(Hbp

K /Kcyc) is the Bertrandias–Payan module ([Ng1986, Sec. 4],
[Jau1990, Sec. 2 (b)]).

6.0.1. Schema VIII.

TK

T
bp
K

HK

UK/EK

Hpr
KKcycHnr

K Hbp
KRK WKH

cyc
K

Kcyc

Hnr
KKcyc∩Hnr

K

K

Let Kv be the completion of K at the place v. The above diagram is related to the
exact sequence (where Kv is the completion of K at the place v):

(6.1)
1 → WK −→ torZp

(
UK

/
EK

) logp−−−→
RK := torZp

(
logp

(
UK

)/
logp(EK)

)
−→ 0,

where WK :=
(
⊕v|p µp(Kv)

)
/µp(K), UK denotes the group of local units at p and

EK = EK ⊗ Zp is identified with its diagonal image in UK (see [Gra2005, § III.2, (c),
Fig. 2.2; Lemma III.4.2.4] and [Gra2018]):

In all the sequel, we assume that K is abelian real.
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6.1. Computation of #TK for χ ∈ X +. The order of the Zp[GK ]-module TK is
well known and given, analytically, by the residue at s = 1 of the p-adic ζ-function of
K, whence by the values at s = 1 of p-adic L-functions of the non-trivial characters
of K (after [Coa1977, Appendix]); see for instance [Gra2019, § 3.4, formula (3.8)] for
analytic context.

In conclusion we can write:

(6.2) #TK = #H
cyc
K · #RK · #WK ∼ [K ∩ Q cyc : Q] ·

∏
ψ 6=1

1
2 Lp(1, ψ).

Since the arithmetic family of these Zp[G ]-modules TK , for real fields K, follows the
most favorable properties (surjectivity of the norms, injectivity of the transfer maps in
relative sub-extensions), we can state, in a similar context as for Theorems 5.8:

Theorem 6.1. For all χ ∈ X + (resp. ϕ ∈ Φ+, ϕ | χ), we have:




T
ar
χ = T

alg
χ = {x ∈ TKχ , Pχ(σχ) · x = 1}

= {x ∈ TKχ , NKχ/k(x) = 1, for all k & Kχ},
T

ar
ϕ = T

alg
ϕ = {x ∈ TKχ , Pϕ(σχ) · x = 1}.

Moreover, if K/Q is real cyclic, #TK =
∏

χ∈XK

#T
ar
χ =

∏
ϕ∈ΦK

#T
ar
ϕ .

We denote simply Tχ (resp. Tϕ) these components in the algebraic and arithmetic
senses. In the analytic point of view, we have the analogue of Theorems 5.10 and
7.5 (see some p-adic formulas about Lp-functions, from classical papers [KuLe1964,
AmFr1972, Gra1978b] and a broad presentation in [Was1997, Theorems 5.18, 5.24]):

Theorem 6.2. Let χ ∈ X + \ {1}. Then #Tχ = w cyc
χ ·

∏
ψ|χ

1
2 Lp(1, ψ), where w

cyc
χ is

as follows, from analytic formula (6.2):

(i) w cyc
χ = 1 if Kχ is not a subfield of Q cyc;

(ii) w cyc
χ = p if Kχ is a subfield of Q cyc.

6.2. Annihilation theorem for TK . An annihilator of TK is given by the following
statement [Gra2018b, Theorem 5.5] which does not assume any hypothesis on K real
and p and gives again the known results (e.g., [Gra1979], [Or1981]):

Theorem 6.3. Let K be a real abelian field of conductor fK . Let fn be the conductor
of Ln := KQ(µqpn), n large enough, where q = p or 4 as usual. Let c ∈ Z be prime to
2pfK. For all a ∈ [1, fn], prime to fn, let a

′
c ∈ [1, fn] be the unique integer such that

a′c · c ≡ a (mod fn) and put a′c · c− a = λna(c) fn, λ
n
a(c) ∈ Z. Then consider:

AK,n(c) :=
fn∑
a=1

λna (c) a
−1

(
K

a

)
=: A′

K,n(c) · (1 + s∞) ∈ Zp[GK ],

where s∞ is the complex conjugation and A′
K,n(c) =

fn/2∑
a=1

λna (c) a
−1

(
K

a

)
.

Let AK(c) := lim
n→∞

[ fn∑
a=1

λna (c) a
−1

(
K

a

)]
=: A′

K(c) · (1 + s∞); then:

(i) For p 6= 2, A′
K(c) annihilates the Zp[GK ]-module TK .

(ii) For p = 2, the annihilation is true for 2 ·AK(c) and 4 ·A′
K(c).

Example 6.4. Consider, for p = 7, the cubic field K of conductor f = 2557 defined
by the polynomial P = x3+x2− 852 x+9281; then (using the main program of § 9.2),
one obtains:

HK ≃ Z[j]/(1 − 2j)Z[j] and EK/FK ≃ Z[j]/(1 − 2j)Z[j],

where (1− 2j)Z[j] is a prime p dividing 7, and TK ≃ Z/72Z⊕ Z/7Z .

The following program (only valid for prime conductors f) computes the annihilator
AK(c) of TK ; it defines the classes σk ·Gal(Q(µfpN )/K), k = 0, 1, 2, of Artin symbols,

giving AK(c) = A0+A1σ+A2σ
2, then β := A0−A2+(A1−A2) j, yielding (β) = pu1 ·pv2

in Z[j] (up to a prime-to-p ideal):
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{p=7;f=2557;N=4;pN=p^N;fpN=f*pN;c=lift(znprimroot(f));cm=Mod(c,fpN)^-1;

g=znprimroot(f);lg=lift(Mod((1-lift(g))/f,pN));g=Mod(lift(g)+lg*f,fpN);

g3=g^3;G=znprimroot(pN);lG=lift(Mod((1-lift(G))/pN,f));

G=Mod(lift(G)+lG*pN,fpN);A0=0;A1=0;A2=0;for(k=1,(f-1)/3,

for(j=1,p^(N-1)*(p-1),A=g3^k*G^j;gA=g*A;ggA=g^2*A;

a=lift(A);aa=lift(A*cm);la=(aa*c-a)/fpN;A0=A0+la*Mod(a,pN)^-1;

a=lift(gA);aa=lift(gA*cm);la=(aa*c-a)/fpN;A1=A1+la*Mod(a,pN)^-1;

a=lift(ggA);aa=lift(ggA*cm);la=(aa*c-a)/fpN;A2=A2+la*Mod(a,pN)^-1));

print(A0," ",A1," ",A2)}

Mod(184, 2401) Mod(1526, 2401) Mod(643, 2401)

Modulo 74, A0 = 184, A1 = 1526 and A2 = 643; this yields the ideal (1− 2j)3 = p3.
Necessarily, TK ≃ Z[j]/p2 ⊕ Z[j]/p. We note that the annihilator is p3 (and not p2)
although the structure is not Z[j]/p3.

Remarks 6.5. (i) In practice, when the exponent pe of TK is known, one can take
n = n0 + e, where n0 ≥ 0 is defined by [K ∩Q cyc : Q] =: pn0 , and use the annihilators
AK,n(c), A

′
K,n(c) (but any n ≫ 0 is suitable). When K = Kχ, the annihilator limit

AKχ(c) is related to p-adic L-functions via the formula:

ψ(AKχ(c)) = (1 − ψ(c)) · Lp(1, ψ), for ψ | χ.
If gχ is not a p-power, one can choose c such that 1−ψ(c) is invertible giving (up to a
p-adic unit) ψ(AKχ(c)) ∼ Lp(1, ψ); if gχ = pn, n ≥ 1, ψ(AKχ(c)) ∼ πχLp(1, ψ), where
πχ is an uniformizing parameter in Qp(µpn).

This theorem is the analog of Theorem 5.19, using Bernoulli’s numbers, linked to
Lp(0, ωψ

−1), instead of Lp(1, ψ).

(ii) Some other annihilation theorems exist for the Jaulent logarithmic class group
(see [Jau2021, Jau2022, Jau2022b]); [Jau2022b] is related to Greenberg’s conjecture
and, when K contains µp, [Jau2021] obtains that the Stickelberger ideal annihilates
the imaginary component of the logarithmic class group and that its reflection anni-
hilates the real component of the Bertrandias–Payan module. It will be interesting to
formulate a “Main Conjecture” about the ϕ-components of these modules.

7. Application to class groups of real abelian extensions

Denote by E the G -family for which EK , K ∈ K , is the group of absolute value of
the global units of K, the Galois action being defined by |ε|σ = |εσ| for any unit ε and
any σ ∈ G . The EK are free Z-modules of rank [K : Q]− 1 for real fields K.

7.1. The Leopoldt χ-units. In [Leo1954] Leopoldt defined unit groups, Eχ, that we
shall call (as in [Or1975b]) the group of χ-units for rational characters χ ∈ X + \ {1};
from the definition of χ-objects and the results of the previous sections we can write
(where νmay be replaced by N):

(7.1)
Eχ = {|ε| ∈ EKχ , Pχ(σχ) · |ε| = 1}

= {|ε| ∈ EKχ , νKχ/k(|ε|) = 1, for all k & Kχ}.
What follows is also available in [Leo1954, Leo1962, Or1975b].

Definitions 7.1. (i) For any cyclic real field K, denote by E0
K the subgroup of EK

generated by the Ek’s for all the subfields k & K (or simply by each of the kℓ such that
[K : kℓ] = ℓ | [K : Q], ℓ prime).

(ii) Let QK =
(
EK : ⊕χ∈XKEχ

)
where Eχ is the group of χ-units (Definition (7.1))

and, for all χ ∈ X
+
K , let Qχ =

(
EKχ : E0

Kχ
⊕Eχ

)
.

(iii) Let φ be the Euler totient function and put, for χ ∈ X +:




qχ =
∏
ℓ|gχ

ℓ
φ(gχ)

ℓ−1 , if gχ is not the power of a prime number,

qχ = ℓ
φ(gχ)

ℓ−1 −1 = ℓℓ
n−1−1, if gχ is a prime power ℓn, n ≥ 1,

q1 = 1.

Set qK =
(

gg−2

∏
χ∈XK

dχ

) 1
2

, where g := [K : Q] and dχ is the discriminant of Q(µgχ).
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Lemma 7.2. (i) We have E0
Kχ

· Eχ = E0
Kχ

⊕Eχ, for all χ ∈ X +.

(ii) We have, for all cyclic real field K, QK =
∏
χ∈XK

Qχ.

(iii) We have, for all cyclic real field K, qK =
∏
χ∈XK

qχ.

Proof. (i) One may find various equivalent definitions of the χ-units and their properties
in [Leo1954, Chap. 5, § 4] or [Or1975b]; but knowing the norm characterization (7.1)
of Eχ, the proof of (i) is obvious.

(ii) This may be proved locally; for this, we use the G -family EK := EK ⊗ Zp, for
any prime p, and the Eχ’s as above. Then one uses, inductively, Lemma 7.2 (i) with
characters ψ | ϕ | χ, written as ψ = ψ0 ψp (ψ0 of prime-to-p order, ψp of order pn,
n ≥ 0). See [Gra1976, pp. 72–75].

(iii) From [Has1952, § 15, p. 34; (2), p. 35]; see [Gra1976, pp. 76–77] for more
details. �

7.2. The Leopoldt cyclotomic units. For the main definitions and properties of
cyclotomic units, see [Leo1954, § 8 (1)] or [Or1975].

Definitions 7.3. (i) Let χ ∈ X + of conductor fχ; we define the “cyclotomic num-

bers” Cχ :=
∏
a∈Aχ

(ζa2fχ − ζ−a2fχ
), with ζ2fχ := exp

( iπ

fχ

)
, where Aχ is a half-system of

representatives, in (Z/fχZ)×, of Gal(Q(µfχ)/Kχ).

(ii) Let K be a real abelian field and let CK be the multiplicative group generated by
the conjugates of |Cχ|, for all χ ∈ XK . Then we define the group of cyclotomic units
FK := CK ∩EK and FK := FK ⊗ Zp.

Recall that C2
χ ∈ Kχ and that any conjugate C′

χ of Cχ is such that
C′

χ

Cχ
∈ EKχ . If

fχ is not a prime power, then Cχ is a unit and FK = CK .

7.3. Arithmetic computation of #Har
χ , χ ∈ X +. Using the Leopoldt formula

[Leo1954, Satz 21, § 8 (4)] and Lemma 7.2 (ii), (iii), we obtain (see [Gra1976, Théorème
III.1]):

Proposition 7.4. For all χ ∈ X + \ {1}, let ∆χ =
∏
ℓ|gχ

(
1 − σ

gχ/ℓ
χ

)
; then #Har

χ =
Qχ

qχ
· (Eχ : C

∆χ
χ ) and #Har

χ =
1

qχ

(
EKχ : E0

Kχ
⊕ C

∆χ
χ

)
, interpreting Qχ [Gra1976,

Corollaire III.1].

To interpret the coefficient qχ, we have replaced the Leopoldt group C
∆χ
χ of cy-

clotomic units by the larger group FKχ := CKχ ∩ EKχ (Definition 7.3); see the long
proof [Gra1976, Chap. III, § 3] giving the final result interpreting the coefficient qχ and
giving the analog of Theorem 5.10 for real class groups:

Theorem 7.5. Let Har
χ := {x ∈ HKχ , NKχ/k(x) = 1, for all k & Kχ}. Let gχ be the

order of χ ∈ X + \ {1} and fχ its conductor. Then:

#Har
χ = wχ ·

(
EKχ : E

0
Kχ

· FKχ

)
,

where wχ is defined as follows:

(i) Case gχ non prime power. Then wχ = 1;

(ii) Case gχ = pn, p 6= 2 prime, n ≥ 1:

(ii ′) Case fχ = ℓk, ℓ prime, k ≥ 1. Then wχ = 1;

(ii ′′) Case fχ non prime power. Then wχ = p;

(iii) Case gχ = 2n, n ≥ 1:

(iii ′) Case fχ = ℓk, ℓ prime, k ≥ 1. Then wχ = 1;

(iii ′′) Case fχ non prime power. Then wχ ∈ {1, 2}.
Proof. For the ugly proof see [Gra1976, Théorème III.2, pp. 78–85]. �

Corollary 7.6. If p ∤ gχ, #Hχ =
(
Eχ : Fχ

)
=

∏
ϕ|χ

(
Eϕ : Fϕ

)
, where Eϕ = E

eϕ
Kχ

and

Fϕ =
(
〈Cχ〉 ⊗ Zp

)eϕ
now giving #Hϕ =

(
Eϕ : Fϕ

)
.
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Proof. In the semi-simple case p ∤ gχ, for any Zp[GK ]-module MK , Mχ = M
eχ
K and

Mϕ = M
eϕ
K , with the usual semi-simple idempotents; thus, Ẽχ = Ẽ

eχ
χ = E

eχ
Kχ
/E 0

Kχ

eχ ·
F
eχ
Kχ

= Eχ/Fχ, since E 0
Kχ

eχ = 1. The claim for ϕ | χ is the Main Theorem proved in

the semi-simple context. �

Remarks 7.7. (i) The viewpoint given by Theorem 7.5, which appears to have been
ignored, seems more convenient than formulas trying to use Sinnott’s cyclotomic units.
Indeed, compare with [Grei1992, Theorem 4.14] using instead H alg

χ (in a partial semi-
simple context as explained in Remark 8.2) and Sinnott’s group of cyclotomic units,
larger than classical Leopoldt’s group of Definition 7.3, but which give rise to intricate
index formulas.

Moreover, as we have mentioned in [Gra1977, Remark III.1], an analytic formula for
#H alg

χ , χ ∈ X +, does not seem obvious (if any) because of capitulation aspects (see
the numerical examples of § 3.3).

We hope that Theorem 7.5 suggests a new statement of the Main Conjecture for
the Hϕ’s, especially in the non semi-simple real case (see § 8.2 for the corresponding
analytic values).

(ii) Since NKχ/k(EKχ) ⊆ E0
Kχ

, NKχ/k(EKχ) ⊆ E 0
Kχ

, for all k & Kχ, the modules

Ẽχ := EKχ/E
0
Kχ
·FKχ and Ẽχ := EKχ/E

0
Kχ
·FKχ are χ-objects (algebraic and arithmetic).

Then Ẽχ =
⊕

ϕ|χ Ẽϕ, where the ϕ-components are Ẽϕ = {x̃ ∈ Ẽχ, Pϕ(σχ) · x̃ = 1}.

7.4. Class field theory and regulators. Let K ∈ K be a real cyclic field defining
χ ∈ X + in what follows. To simplify diagrams and statements, we assume to be in

the most common case where WK = 1 and K ∩Qcyc = Q, which gives TK = T
bp
K (cf.

Diagram of Section 6) and #TK ∼ ∏
ψ|χ, ψ 6=1

1
2 Lp(1, ψ) (Formula (6.2)).

The Galois group RK ⊆ TK may be compared with a larger “cyclotomic regulator”
R

cyc
K interpreted as a Galois group only depending of χ. For this purpose, the following

diagram of the maximal abelian pro-p-extensionKab of K is necessary (from [Gra2005,
III.4 (d) & Diagram III.4.4.1] with our present notations), where Hta

K is the maximal
tamely ramified abelian pro-p-extension of K and F×

v the p-Sylow subgroup of the
multiplicative group of the residue field of the tame place v; let L := Hpr

KH
ta
K :

7.4.1. Schema IX.
∏

v∤p F×
v

UK

Ẽχ E 0
KFK

KabL L(χ)

EK

UK/EK

TK

Hpr
K

Hta
KHnr

K

K

In this diagram, class field theory interprets Gal(Kab/Hta
K ) as the Zp-module UK

of principal local units at p (isomorphic to the direct product of the inertia groups of
the p-places) and Gal(Kab/L) as the Zp-module EK := EK ⊗ Zp (embedded both in
UK and the product

∏
v∤p F

×
v of the inertia groups of the tame places, with suitable

Artin maps described in [Gra2005, § III.4.4.5.1]).

Now, put U ∗
K := {u ∈ UK , NK/Q(u) = ±1}; since K is real, EK is of finite index

in U ∗
K and torZp

(UK/EK) = U ∗
K/EK ≃ RK .

Assume Kcyc∩Hnr
K = K to simplify; so Hta

K ∩Kcyc = Hnr
K then F := Hta

K KcycHnr
K is

fixed by U ∗
K and F ∩Hpr

K = KcycHnr
K . Recall the exact sequence 1 → Rram

K → RK →
Rnr
K → 1 [Gra2021, § 2 & Figure 3], due to genus theory; so, a sub-extension of L/F

may be unramified.

We have moreover Gal(F/KcycHnr
K ) ≃ Gal(L/Hpr

K ) ≃
(∏

v∤pF
×
v

)
/EK :
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7.4.2. Schema X.

Zp

Kcyc

HK

KcycHnr
K Hpr

K

F L L(χ) Kab

∏
v∤pF

×
v

K Hnr
K

Hta
K

U ∗

K

RK ≃U ∗

K/EK

RK

TK
EK

Ẽχ E 0
KFK

R
cyc
K

UK

UK/Ek

UK/EK

Define (under the previous assumptions), R
cyc
K := U ∗

K/E
0
K · FK , which yields, for

χ 6= 1 and K = Kχ, the Zp[GK ]-modules isomorphism:

(7.2) RK ≃ R
cyc
K /Ẽχ.

We then have R
cyc
K ≃ Gal(L(χ)/F ), where L(χ) is the subfield of Kab fixed by the

image of E 0
KFK .

Remark 7.8. Let χ ∈ X + \ {1}, K = Kχ; assume to simplify that WK = 1, wχ = 1
in Theorem 7.5, K ∩Qcyc = Q and Kcyc ∩Hnr

K = K:

(i) Theorem 7.5 and isomorphism (7.2) give, in terms of χ-components:

#Ẽχ = #R
cyc
K

/
#RK = #H ar

χ and #Tχ = #Rcyc
χ .

The Aχ-modules Tχ and Rcyc
χ (resp. Ẽχ and H ar

χ ) are not necessarily isomorphic as
shown by the following excerpt giving cyclic cubic fields K such that Rχ is of 7-rank
2 and Tχ of 7-rank ≥ 3 implying Hχ 6= 1 with Hχ ≃ Z/7Z⊕ Z/7Z for the followings
(no example of 7-rank ≥ 4 exists in the interval considered):

x^3+x^2-39666*x-2582719 Structure of the 7-torsion group: [7,7,7]

x^3+x^2-43300*x-3411104 Structure of the 7-torsion group: [7^2,7,7]

x^3+x^2-13226*x-508479 Structure of the 7-torsion group: [7^3,7,7]

x^3+x^2-427660*x-31551829 Structure of the 7-torsion group: [7^4,7,7]

x^3+x^2-2033484*x-966131001 Structure of the 7-torsion group: [7^2,7^2,7]

(ii) The sub-diagram given by the extension Kab/Kcyc, opens an access way for an
interpretation of the Main Conjecture for even characters or at least for an annihila-

tion theorem of H ar
ϕ by Ẽϕ, in the spirit of Thaine’s theorem (see § 7.6, Conjectures

7.9, 7.13). Indeed, Ẽχ has same order as H ar
χ and the units may be seen diagonally

embedded in the (infinite) product of the places of K. Remark that Ẽϕ is a sub-module
of Rcyc

ϕ (quotient Rϕ) but H ar
ϕ is a quotient of Tϕ (by Rϕ).

7.5. Annihilation conjecture for real p-class groups. Before any proof of the

conjectural equality #H ar
ϕ = #Ẽϕ = #(EKχ/E

0
Kχ

· FKχ)ϕ (giving a Main Theorem for

ϕ ∈ Φ+
K), it will be interesting to prove that any annihilator of Ẽϕ annihilates H ar

ϕ ,
which will be more precise than the annihilators of Tϕ (see Theorem 6.2, Remarks 6.5,
7.8).

To our knowledge, the best known annihilation theorem of real p-class groups is
Thaine’s Theorem [Thai1988], [Was1997, Theorem 15.2] saying that any annihilator
of EKχ/F

′
Kχ

(for a suitable definition of the group of cyclotomic units F ′
Kχ

) is an

annihilator of HKχ . But Thaine’s Theorem only concerns the semi-simple case.

Mention also annihilation theorems by Solomon [Sol1992], which are not often op-
timal because of vanishing of Euler factors; this is discussed in [Gra2018b]. Finally
mention the numerous papers of Greither and Kučera (like [GrKu2004, GrKu2014,
GrKu2021]) on the annihilation of real class groups, using special units or/and giving
information on the Fitting ideals.
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Conjecture 7.9. Let χ ∈ X + \ {1} and let ϕ | χ. Any element of Z[µgχ ] (resp.

Zp[µgχ ]) annihilating EKχ/E
0
Kχ

·FKχ (resp. (EKχ/E
0
Kχ

·FKχ)ϕ), annihilates H
ar
χ (resp.

H ar
ϕ ).

In this direction, we state the following lemma, giving some obvious prerequisites
on the subject.

Lemma 7.10. Let MKχ be a torsion-free monogenic Z[Gχ]-module (i.e., Z-free and
Z[Gχ]-generated by a single element). Let M′

Kχ
be a sub-module of MKχ such that

MKχ/M
′
Kχ

is annihilated by Pχ(σχ)Z[Gχ] and finite. Then:

(MKχ/M
′
Kχ

)ϕ :=((MKχ/M
′
Kχ

)⊗ Zp)ϕ≃ Zp[µgχ ]/p
λϕ
ϕ ,

λϕ ≥ 0, for all ϕ | χ.
Proof. By assumption, MKχ/M

′
Kχ

is a finite monogenic Z[µgχ ]-module, of the form

Z[µgχ ]/A, A 6= 0; so MKχ/M
′
Kχ

≃ (Z[µgχ ]/A)⊗ Zp, giving:

MKχ/M
′
Kχ

≃ ⊕
ϕ|χ

[
Zp[µgχ ]/p

λϕ
ϕ

]
,

with the usual correspondence between primes p | p and p-adic characters ϕ | χ; whence
the claim. �

It is well-known that there exists in EKχ a unit ε generating, with its conjugates, a
subgroup E of EKχ of prime-to-p finite index (Minkowski unit). Then M := Z[Gχ] · |ε|
is monogenic and torsion-free.

Let M′
Kχ

:= E0
Kχ

· FKχ . Taking into account orders, monogenicity and the fact

that (Pχ(σχ)) annihilates MKχ/M
′
Kχ

, Lemma 7.10 is coherent with an annihilation

theorem of the H ar
ϕ ’s from the results of § 7.4.

7.6. Mysterious link between cyclotomic units and ideal classes. The brief
overview, that we give now, must be completed by technical elements that the reader
can find especially in [Was1997, § 15.2, 15.3] (all of them borrow from classical arith-
metic) and in the references that we talked about, giving systematic generalizations of
“Euler systems”.

To simplify, consider the real semi-simple case for p > 2 with K = Kχ of conductor

f ; for ϕ | χ, we need to establish arithmetic links between Ẽϕ = Eϕ/Fϕ and Hϕ, where
Eϕ =: 〈εϕ〉Zp

and Fϕ =: 〈ηϕ〉Zp
is built from Leopoldt’s cyclotomic units (Definitions

7.3). But Ẽϕ has, a priori, no obvious connection with class groups, except the analytic

equality
∏
ϕ|χ

#Hϕ =
∏
ϕ|χ

#Ẽϕ (Corollary 7.6).

The trick, for the proof of the Main Conjecture, consists in using a classical context
of “analytic genus theory”, by means of auxiliary cyclic ℓ-ramified extensions K(µℓ) of
degree multiple of the exponent N = λ pe, e ≥ 1, of HK .

Let ℓ ∤ f , ℓ ≡ 1 (mod N), totally split in K; put L0 = Q(µℓ) and L := L0K:

Let ηfℓ = 1 − ζfℓ, ηf = 1 − ζf , ηℓ = 1 − ζℓ and consider the cyclotomic numbers
ηL := NQ(µfℓ)/L

(
ηfℓ

)
, ηK := NQ(µf )/K

(ηf ); by assumption on the total splitting of ℓ

in K/Q, NL/K(ηL) = 1 (cf. Lemma 5.17). We remark that ηfℓ ≡ ηf (mod πℓ) where
πℓ := ηℓ is an uniformizing parameter at the places above ℓ in L0, so that ηL ≡ ηK
(mod πℓ), giving a ℓ-adic link between ηK and ηL which will be fundamental for the
congruences (7.6):

7.6.1. Schema XI.

〈s〉 ℓ− 1

G Q(µfℓ)L
ηLπℓ

L0=Q(µℓ)
ηfℓ

K
ηK

Q(µf )
ηf

Q

A main step is to apply Hilbert’s Theorem 90 (Kummer’s Theorem [Kum1855, II]),
saying that ηL = αs−1

L , where s is a generator of Gal(L/K) and αL ∈ L× is such that
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(αL) ∈ I
〈s〉
L , where I denotes ideal groups; since αL is defined modulo K×, we can take

αL integer in L (or at least ℓ-integer), whence:

(7.3) (αL) = JL/K(aK) · LΩℓ
0 ,

where aK ∈ IK may be taken prime to ℓ, where L0 is a fixed prime ideal dividing ℓ in
L and:

(7.4) Ωℓ =
∑
σ∈G rσ · σ−1, rσ ≥ 0;

thus, since NL/K(L0) = l0, L0 | l0 | ℓ in L/K:

(7.5) (αK) := (NL/K(αL)) = aℓ−1
K · lΩℓ

0 .

But aℓ−1
K is principal, whence lΩℓ

0 principal.

The following property elucidates the “mysterious link” giving an information that
we can “project” on each ϕ-component and obtain the annihilation of the ϕ-class of l0
by the ϕ-component of Ωℓ:

Lemma 7.11. Except a finite number of primes ℓ, the ideal LΩℓ
0 of (7.3) gives a non

trivial relation, in the meaning that Ωℓ in (7.4) is not of the form λ · νL/L0
, λ ≥ 0,

giving lΩℓ
0 = (ℓ)λ in (7.5).

Proof. Assume that Ωℓ = λ ·νL/L0
; the character of LΩℓ

0 = (πλℓ ), as Z[G]-module, is the
unit one and any non-trivial ϕ-component αL,ϕ of αL is prime to ℓ, thus congruent,

modulo any L | ℓ, to ρ
l
∈ Z, ρ

l
6≡ 0 (mod ℓ) (residue degrees 1 in L/Q). Since Ls = L,

we obtain ηL,ϕ = αs−1
L,ϕ ≡ 1 (mod L); but ηK,ϕ ≡ ηL,ϕ (mod πℓ) leads to ηK,ϕ ≡ 1

(mod l), for all l | ℓ, giving ηK,ϕ ≡ 1 (mod ℓ) (absurd for almost all ℓ). �

Reducing modulo νL/L0
, one may get Ωℓ 6= 0 with rσ ≥ 0 for all σ ∈ G, but not all

zero. Consider
ασ
L

πrσ
ℓ

modulo L0 and the conjugations αsL = αL ·ηL and
πs
ℓ

πℓ
=

1−ζ
g
ℓ

ℓ

1−ζℓ
≡ gℓ

(mod πℓ) (where gℓ is a primitive root modulo ℓ such that ζsℓ =: ζ
gℓ

ℓ ); one gets:
(

ασ
L

πrσ
ℓ

)s
=

αsσ
L

πsrσ
ℓ

≡ ησLα
σ
L

(gℓπℓ)rσ
≡ ησL

grσ
ℓ

· ασ
L

πrσ
ℓ

(mod L0);

since the residue modulo L0 of
ασ
L

πrσ
ℓ

is non-zero and invariant by s, we obtain:

(7.6) grσℓ ≡ ησL ≡ ησK (mod l0).

So we have obtained a non-trivial relation between the classes of the conjugates

of l0; for instance, if ηK,ϕ = εp
h

K,ϕ , one gets rσ ≡ 0 (mod ph), whence a property
of annihilation of the ϕ-class group. Recall that αL is given by an explicit Hilbert
resolvent allowing explicit computations.

Remark 7.12. (i) In the literature, the properties of the αL’s give rise to an ho-

momorphism FK/F
pe

K → Z/peZ [G], of Zp[G]-modules, allowing reasoning for the ϕ-
components. To get more information, one varies ℓ, using Chebotarev’s Theorem and
Nakayama’s Lemma. Then the problem of the order of the Hϕ’s needs the knowledge
of the whole analytic formula of Theorem 7.5 (see the details in [Was1997, § 15.2, 15.3],
from Thaine’s theorem).

(ii) We will return elsewhere to the links with genus theory given by the well-known
fixed-points exact sequence:

1 → cℓL(I
〈s〉
L )⊗ Zp −→ H

〈s〉
L −→ EK ∩NL/K(L×)/NL/K(EL) → 1

and (in the present context) Chevalley’s formula [Che1933, pp. 402-406] in L/K:

#H
〈s〉
L = #HK · pe ([K:Q]−1)

(EK : EK ∩NL/K(L×))

(where pe || ℓ− 1) and similar formulas in the sub-extensions of L/K (noting that the
exact sequence and Chevalley’s formula may be written in terms of ϕ-objects without
any difficulty). The reason of such a link with genus theory is the fact that, assuming
FM = EM for the subfield M of L of degree p over K we know that NL/M (FL) =
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FM = EM , so that the above exact sequence in L/M reduces to H
〈sp〉
L = cℓL(I

〈sp〉
L )⊗Zp

and #H
〈sp〉
L = #HM · pe ([K:Q]−1).

(iii) Any “G -family of numbers η ” satisfying, in cyclic extensions L/K, relations of

the form NL/K(ηL) = η
1−FrobL/K(ℓ)

K and ηL ≡ ηK (mod
∏

l|ℓ l), for suitable primes ℓ,

is called an “Euler system” [Kol2007, PeRi1990] and gives rise to similar reasonings in
many domains.

(iv) Equations of the general form NL/K(y) = NL/K(B), giving (y) = B · As−1,
are fundamental in various questions, as Greenberg’s conjecture, in a genus theory
framework (see [Gra2018, § 3, Algorithm]). Such equations are due to some x ∈ K×,
local norm in L/K at the ℓ-places, such that (x) = NL/K(B), giving the relation
x = NL/K(y), for some unknown y (Hasse’s norm theorem in L/K). In various papers

(as [Gra2019b, § 7.1]) we have discussed these random aspects by computing some ideals
A, so that we may conjecture the following more precise property (see Schemas 7.4.1,
7.4.2, Lemma 7.11, Relations (7.3)–(7.6)).

Conjecture 7.13. Let K be a real abelian field of conductor f , of class group of
exponent N and let ηK := NQ(µf )/K

(
1− ζf

)
. Consider primes ℓ ≡ 1 (mod N), totally

split in K; let l0 | ℓ in K and let gℓ be a primitive root modulo ℓ. When ℓ varies,
ηK provides infinitely many elements Ωℓ =

∑
σ∈G rσ · σ−1, with ησK ≡ g

rσ
ℓ (mod l0),

yielding annihilators and orders of the ϕ-components H ar
ϕ as Zp[G]-modules.

The following program, for cyclic cubic fields, computes the invariants of ψ(Ωℓ) =
r1−r2−(r1+2 r2) ·j only with the knowledge of ηK ; taking a primitive root gℓ modulo
ℓ, the rσ’s come from the PARI instructions r = znlog(L[j], g), where the L[j] are the
rationals aσ such that ησK ≡ aσ (mod l0) in K (we use the results of the § 9.3 (c)

to compute ηK = εα+β σK and HK). The line Orders of components of cl(Lell) of the
form (pu, pv, · · · ) means that the components of the p-class of l0 (on the PARI system
of generators of HK), are of orders pu, pv, · · · ; one sees that the annihilator Ωℓ is
independent on these orders, but it is clear that, using Chebotarev’s theorem, any set
of components may be obtained.

{p=7;n=3;P=x^3+x^2-884540*x-393129;alpha=-112;beta=-70;

Q=y^2+y+1;k=bnfinit(Q);J=Mod(y,Q);pi=idealfactor(k,p);

pi1=component(pi,1)[1];pi2=component(pi,1)[2];

K=bnfinit(P,1);G=nfgaloisconj(P);CK=K.cyc;d=matsize(CK)[2];

CKp=List;for(i=1,d,h=p^valuation(CK[i],p);listput(CKp,h,i));

print("P=",P," p-class group=",CKp);

E=K.fu;E1=E[1];E2=nfgaloisapply(K,G[2],E[1]);

F1=E1^alpha*E2^beta;F2=nfgaloisapply(K,G[2],F1);F1=lift(F1);F2=lift(F2);

forprime(ell=1,5*10^5,

if(Mod(ell,p^n)!=1 || matsize(factor(P+O(ell)))[1]!=3,next);

g=znprimroot(ell);Lell=component(idealfactor(K,ell),1)[1];

F10=Mod(polcoeff(F1,0),ell);F11=Mod(polcoeff(F1,1),ell);

F12=Mod(polcoeff(F1,2),ell);Eta1=lift(F12*x^2+F11*x+F10);

F20=Mod(polcoeff(F2,0),ell);F21=Mod(polcoeff(F2,1),ell);

F22=Mod(polcoeff(F2,2),ell);Eta2=lift(F22*x^2+F21*x+F20);

Leta=List;listput(Leta,Eta1,1);listput(Leta,Eta2,2);

L=List;for(i=1,2,A=Mod(Leta[i],P);for(a=1,ell-1,v=idealval(K,A-a,Lell);

if(v>0,listput(L,a,i))));Lr=List;for(i=1,2,r=znlog(L[i],g);listput(Lr,r));

print();print("ell=",ell," Omega=",Lr);

X=Lr[1]-Lr[2]+(-Lr[1]-2*Lr[2])*J;w1=idealval(k,X,pi1);w2=idealval(k,X,pi2);

Y=alpha+beta*J;W1=idealval(k,Y,pi1);W2=idealval(k,Y,pi2);

print("Cyclotomic invariants=",W1,",",W2," Omega invariants=",w1,",",w2);

Exp=List;Order=bnfisprincipal(K,Lell)[1];for(i=1,d,tp=valuation(CK[i],p);

if(Order[i]==0,Or=1);if(Order[i]!=0,t=valuation(Order[i],p);Or=p^(tp-t));

listput(Exp,Or));print("Orders of components of cl(Lell)=",Exp))}

P=x^3+x^2-884540*x-393129 p-class group=List([343,7])

ell=1373 Omega=List([1162, 1246])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 7])

ell=7547 Omega=List([6888, 1526])
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Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 7])

ell=8233 Omega=List([6496, 742])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([49, 7])

ell=18523 Omega=List([11830, 12586])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 1])

ell=22639 Omega=List([4004, 13104])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 7])

ell=30871 Omega=List([27734, 5390])

Cyclotomic invariants=1,3 Omega invariants=2,3

Orders of components of cl(Lell)=List([343, 1])

ell=39103 Omega=List([32018, 35812])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([49, 7])

ell=42533 Omega=List([1330, 17262])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 7])

ell=54881 Omega=List([44366, 18662])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([49, 7])

ell=58997 Omega=List([5236, 21938])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 7])

ell=72031 Omega=List([24276, 51884])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 7])

ell=76147 Omega=List([17066, 25606])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 7])

ell=80263 Omega=List([22036, 79352])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 7])

ell=93983 Omega=List([69174, 5558])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 7])

For P = x3−4792107 x+4022175142 (conductor f = 32 ·1597369, α = −7, β = −21,
the ϕ-components of the 7-class group HK are Hϕ1

≃ Z7[j]/pϕ1
⊕ Z7[j]/pϕ1

and

Hϕ2
≃ Z7[j]/pϕ2

; nevertheless, we have Ẽϕ1
≃ Z7[j]/p

2
ϕ1

(non-isomorphic to Hϕ1
) and

Ẽϕ2
≃ Z7[j]/pϕ2

.

But almost all Ωℓ give the expected response (2, 1) whatever the order of the p-class
of l0 | ℓ:
P=x^3 - 4792107*x + 4022175142 p-class group=List([7,7,7])

ell=1373 Omega=List([917, 1267])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])

ell=8233 Omega=List([1141, 3535])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 1, 7])
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ell=49393 Omega=List([41069, 39277])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([1, 7, 1])

ell=54881 Omega=List([14357, 31311])

Cyclotomic invariants=2,1 Omega invariants=2,2

Orders of components of cl(Lell)=List([7, 7, 7])

ell=63799 Omega=List([53977, 53767])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])

ell=76147 Omega=List([44912, 73514])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([1, 7, 7])

ell=80263 Omega=List([20328, 16387])

Cyclotomic invariants=2,1 Omega invariants=3,1

Orders of components of cl(Lell)=List([1, 7, 7])

(...)

ell=329281 Omega=List([311136, 189770])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])

ell=331339 Omega=List([157696, 276465])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])

ell=343687 Omega=List([174391, 82173])

Cyclotomic invariants=2,1 Omega invariants=2,2

Orders of components of cl(Lell)=List([7, 7, 7])

ell=363581 Omega=List([204974, 276584])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])

ell=384847 Omega=List([254100, 68887])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])

ell=396509 Omega=List([114947, 1540])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])

ell=403369 Omega=List([11361, 206458])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])

ell=408857 Omega=List([364287, 259343])

Cyclotomic invariants=2,1 Omega invariants=5,1

Orders of components of cl(Lell)=List([7, 7, 1])

ell=415717 Omega=List([239225, 363657])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 1, 7])

ell=417089 Omega=List([327908, 33957])

Cyclotomic invariants=2,1 Omega invariants=3,4

Orders of components of cl(Lell)=List([1, 7, 7])

ell=419147 Omega=List([17059, 339451])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([1, 1, 1])

ell=426007 Omega=List([161434, 215859])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])
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ell=456877 Omega=List([361697, 10010])

Cyclotomic invariants=2,1 Omega invariants=3,1

Orders of components of cl(Lell)=List([7, 7, 7])

For ℓ = 419147 (first example), any prime ideal l | ℓ is principal:
bnfisprincipal(K,Lell)=[[0,0,0]~,

[1311001361541054679,35057663364174,1019317530188062]~]

but the invariants of Ωℓ are still (2, 1) giving #Hϕ1 = 72 and #Hϕ2 = 7.

The numerical experiments are particularly remarkable and confirm that the Ωℓ’s
define an universal ΩK which replaces, in the real case, the Stickelberger element of
the imaginary case.

For this, we notice that the embeddings (injectivity from [Gra2005, Theorem III.4.4])
of FK and EK in the direct product

∏
v∤p(F

×
v ⊗ Zp) (see Schemas 7.4.1, 7.4.2) govern

the congruences (7.6) giving the relations Ωℓ involving only FK , without any memory
of the arithmetic of the auxiliary fields Q(µℓ). Then, the Schmidt–Chevalley theorem
(local–global principle for powers, e.g., [Gra2005, § 6.3, Theorem II.6.3.3]) claims that
there are infinitely many primes ℓ (totally split in K) giving the “good” ΩK .

From Lemma 7.10 giving standard structure of Eϕ and Fϕ, it is then obvious that
one obtains equalities of the ϕ-invariants of Eϕ/Fϕ and Hϕ in the semi-simple case.
Are there improvements of these techniques being able to distinguish, for instance, the
structures Zp[µgχ ]/pϕ ⊕ Zp[µgχ ]/pϕ and Zp[µgχ ]/p

2
ϕ ?

To day, it would remain to investigate further the context of real abelian fields
K such that Gal(K/Q) ⊗ Zp 6= 1 (non semi-simple case with the definition of the
Arithmetic ϕ-components of the p-class group).

8. Invariants (Algebraic, Arithmetic, Analytic)

We fix an irreducible rational character χ ∈ X = X + ∪ X − and we apply the
previous results to the Zp[µgχ ]-modules H alg

ϕ , H ar
ϕ and T ar

ϕ = T alg
ϕ =: Tϕ, for any

ϕ | χ, ϕ ∈ Φ+ ∪ Φ− (ϕ ∈ Φ+ for Tϕ).

8.1. Algebraic and Arithmetic Invariants malg
(M ), mar

(M ). Write simply that
H alg
ϕ , H ar

ϕ and Tϕ are finite Zp[µgχ ]-modules whatever ϕ; let pϕ be the maximal ideal

of Zp[µgχ ]: 



H
alg
ϕ ≃ ∏

i≥1 Zp[µgχ ]
/
p
nalg
ϕ,i(H )

ϕ ,

H
ar
ϕ ≃ ∏

i≥1 Zp[µgχ ]
/
p
nar
ϕ,i(H )

ϕ ,

Tϕ ≃ ∏
i≥1 Zp[µgχ ]

/
p
nar
ϕ,i(T )

ϕ ,

where the nϕ,i are decreasing integers up to 0. Put:




malg
ϕ (H ) :=

∑
i≥1 n

alg
ϕ,i(H ), malg

χ (H ) :=
∑

ϕ|χm
alg
ϕ (H ),

mar
ϕ (H ) :=

∑
i≥1 n

ar
ϕ,i(H ), mar

χ (H ) :=
∑

ϕ|χm
ar
ϕ (H ),

mar
ϕ (T ) :=

∑
i≥1 n

ar
ϕ,i(T ), mar

χ (T ) :=
∑
ϕ|χm

ar
ϕ (T ).

Whence the order formulas:

#H
alg
ϕ = pϕ(1)m

alg
ϕ (H ), #H

ar
ϕ = pϕ(1)m

ar
ϕ (H ), #Tϕ = pϕ(1)m

ar
ϕ (T ).

8.2. Analytic Invariants man
(M ). We define, in view of the statement of the Main

Conjecture, the following Analytic Invariants man
ϕ , from the expressions given with

rational characters, where valp(•) denotes the usual p-adic valuation; the purpose is to
satisfy the necessary relations implied by Theorems 3.15, 4.1 about arithmetic compo-
nents: ∑

ϕ|χ
mar
ϕ (M ) =

∑
ϕ|χ

man
ϕ (M ),

for any family M ∈ {H ,T } and χ ∈ X (cf. Theorems 5.10, 7.5, 6.2).
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8.2.1. Case ϕ ∈ Φ− for class groups. Then, Algebraic and Arithmetic Invariants coin-
cide. The definitions given in [Gra1976, Gra1977] were:

(i) Case p 6= 2 (proven by Solomon [Sol1990, Theorem II.1]).

(i′) Kχ is not of the form Q(µpn), n ≥ 1; then:

• man
ϕ (H −) := valp

( ∏
ψ|ϕ

(
− 1

2B1(ψ
−1)

))
,

(i′′) Kχ = Q(µpn), n ≥ 1; let ψ = ωλ · ψp, ψp of order pn−1 (where ω is the
Teichmüller character); then:

• man
ϕ (H −) := valp

( ∏
ψ|ϕ

(
− 1

2B1(ψ
−1)

))
, if λ 6= 1,

• man
ϕ (H −) := 0, if λ = 1.

(ii) Case p = 2 (proven by Greither [Grei1992, Theorem B], when gχ is not a 2-power
and fχ odd).

(ii′) gχ is not a 2-power; then:

• man
ϕ (H −) := val2

( ∏
ψ|ϕ

(
− 1

2B1(ψ
−1)

))
.

(ii′′) gχ is a 2-power; then:

• man
ϕ (H −) := val2

( ∏
ψ|ϕ

(
− 1

2B1(ψ
−1)

))
+ 1, if Kχ 6= Q(µ4),

• man
ϕ (H −) := 0, if Kχ = Q(µ4).

8.2.2. Case ϕ ∈ Φ+, ϕ 6= 1, for class groups. From Definition 7.3 and Theorem 7.5,
we consider any real cyclic field K, where we recall that:

E0
K := 〈Ek 〉k&K , FK := CK ∩EK , EK := EK ⊗Zp, E 0

K := E0
K ⊗Zp, FK := FK ⊗Zp,

and Ẽχ := EKχ/E
0
Kχ
·FKχ , for which we have Ẽχ =

⊕
ϕ|χ

Ẽϕ, where Ẽϕ = {x̃ ∈ Ẽχ, Pϕ(σχ) ·
x̃ = 1}.

Consider the relation #H ar
χ = wχ ·

(
EKχ : E 0

Kχ
· FKχ

)
= wχ ·∏ϕ|χ

#Ẽϕ of Theorem

7.5; we remark that wχ = p occurs only when gχ is a p-power, in which case p is totally
ramified in Q(µgχ) and ϕ = χ (which defines wϕ := wχ). So, we may define man

ϕ (H +)

and wϕ as follows from Ẽϕ ≃ Zp[µgχ ]
/
p
man

ϕ (H +)
ϕ , man

ϕ (H +) ≥ 0:

(i) Case gχ non prime power. Then wϕ = 1 and:

• man
ϕ (H +) := valp(#Ẽϕ).

(ii) Case gχ = pn, p 6= 2 prime, n ≥ 1:

(ii′) Case fχ = ℓk, ℓ prime, k ≥ 1. Then wϕ = 1 and :

• man
ϕ (H +) := valp(#Ẽϕ),

(ii′′) Case fχ non prime power. Then wϕ = p and

• man
ϕ (H +) := valp(#Ẽϕ) + 1.

(iii) Case gχ = 2n, n ≥ 1:

(iii′) Case fχ = ℓk, ℓ prime, k ≥ 1. Then wϕ = 1 and:

• man
ϕ (H +) := valp(#Ẽϕ),

(iii′′) Case fχ non prime power. Then wϕ ∈ {1, 2} and:

• man
ϕ (H +) ∈ {valp(#Ẽϕ), valp(#Ẽϕ) + 1}.

8.2.3. Case ϕ ∈ Φ+ for p-torsion groups. From Theorem 6.2, we define man
ϕ (T ) as

follows (proven by Greither [Grei1992, Theorem C], when gχ is not a 2-power):

(i) Case where gχ and fχ are not p-powers. Then:

• man
ϕ (T ) := valp

(∏
ψ|ϕ

1
2 Lp(1, ψ)

)
.

(ii) Case where gχ 6= 1 and fχ are p-powers. Then:

• man
ϕ (T ) := valp

(∏
ψ|ϕ

1
2 Lp(1, ψ)

)
+ 1.
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8.3. Main Conjecture – 1976 original statement. The conjecture we gave in
[Gra1976, Gra1977], especially in the non semi-simple case, where simply equality
of Arithmetic and Analytic ϕ-Invariants. The main justification of such equalities
comes from the easy Theorem 2.1 with the arithmetic definitions of § 8.1, the analytic
definitions of § 8.2 and the arithmetic expressions of the χ-components that we recall:

(i) Theorem 5.10: Har
χ = 2αχ · wχ ·∏ψ|χ

(
− 1

2B1(ψ
−1)

)
, for χ ∈ X −,

(ii) Theorem 6.2: #Tχ = w cyc
χ ·∏ψ|χ

1
2 Lp(1, ψ), for χ ∈ X +,

(iii) Theorem 7.5: #Har
χ = wχ · (EKχ : E0

Kχ
· FKχ), for χ ∈ X +;

they satisfy, for any family M ∈ {H −, H +, T }, the equalities:

• ∑
ϕ|χm

ar
ϕ (M ) =

∑
ϕ|χm

an
ϕ (M ), for all χ ∈ X ,

taking into account the decomposition M ar
χ = ⊕ϕ|χM ar

ϕ (Theorem 4.5).

Moreover, the annihilation properties of Theorems 5.18, 5.19, 5.21, 6.2, enforce
the conjecture as well as reflection theorems that were given, after the Leopoldt’s
Spiegelungsatz, in [Gra1998] or [Gra2005, Theorem II.5.4.5] giving a more suitable
comparison, for instance between Hϕ and Tωϕ−1 , ϕ ∈ Φ−, where ω is the Teichmüller
character. See also [Or1981, Or1986] for similar informations and complements.

Conjecture 8.1. For any p-adic irreducible character ϕ ∈ Φ, we have:

{
mar
ϕ (H ) = man

ϕ (H ) (ϕ ∈ Φ+ ∪ Φ−),

mar
ϕ (T ) = man

ϕ (T ) (ϕ ∈ Φ+).

Remark 8.2. Let K/Q with a maximal p-sub-extension K/K0 cyclic of degree pn,
n ≥ 1, and let Ki, K0 ⊆ Ki ⊂ K, be such that [Ki : K0] = pi. Let ψ0 ∈ ΨK0 and

let ψp ∈ ΨK of order pn; we put ψi = ψ0 · ψpn−i

p ∈ ΨKi and we consider the p-adic
characters ϕi above ψi, 0 ≤ i ≤ n.

The Main Conjecture proven by Greither in [Grei1992, Theorem 4.14, Corollary
4.15], using Sinnott’s cyclotomic units, deals with the semi-simple context defined by
ϕ0 above ψ0 (it is indeed that of the relations (3.4) which do not give each #H ar

ϕi

compared with #Ẽϕi).

In other words, in his pioneering work, Greither proves the relation
n∑
i=0

mar
ϕi

(H +) =

n∑
i=0

man
ϕi

(H +), for each ϕ0 ∈ ΦK0 , instead of our conjecture mar
ϕi

(H +) = man
ϕi

(H +) for

all i ∈ {0, 1, · · · , n}. However see many progress by Greither–Kučera in [GrKu2004,
GrKu2014] and some of their other papers.

Remark 8.3. It remains the problem of #H alg
χ and #H alg

ϕ , for which no analytic
formula does exist in the non semi-simple real case. For instance, in Example 3.12 with
p = 3, K is the compositum of k0 = Q(

√
4409) with the degree 9 field of conductor

19, χi = ϕi (i ∈ {1, 2}) is the character of the field ki of degree 2 · 3i; then one gets
H alg
χi

≃ Z/3Z while H ar
χi

= 1, as predicted by the conjecture and checked numerically.

In Example 3.13, one finds H alg
χ1

≃ (Z/3Z)3 while H ar
χ1

≃ (Z/3Z)2.

This phenomenon is due to the capitulation of p-classes in p-extensions and we have
given in [Gra2021b, Conjecture 4.1] a general conjecture justified by means of many
computations.

8.4. Finite Iwasawa’s theory in cyclic p-extensions. For more details and an ap-
plication to classical Iwasawa’s theory for the cyclotomic Zp-extensions, see [Gra1976,
Chap. IV] (the real case being in the spirit of Greenberg’s conjecture [Gree1976]); nev-
ertheless, the results hold in arbitrary totally ramified cyclic p-extensions of an abelian
field, as follows depending of a base field real or imaginary:
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8.4.1. Real case. Let ψ | ϕ | χ ∈ X + and set ψ = ψ0 · ψp, where ψ0 is of order g0,
prime to p, and ψp of p-power order; then, Gχ = G0 ⊕H in an obvious meaning. We

consider, temporarily, the semi-simple idempotents eϕ0
:= 1

g0

∑
σ∈G0

ϕ0(σ
−1)σ, for ϕ0

above ψ0. We have:

Ẽχ := EKχ/E
0
Kχ

· FKχ =
⊕
ϕ|χ

Ẽϕ,

with Ẽϕ = Ẽ
eϕ0
χ ; we note that E 0

Kχ

eϕ
0 ≃ Eϕ′ and Ẽϕ ≃ E

eϕ0

Kχ
/Eϕ′ · F

eϕ0

Kχ
, where ϕ′ is

above ψ0 ·ψpp and χ′ above ϕ′. This yields (EKχ/EKχ′ )ϕ ≃ Zp[µgχ ] ([Gra1976, Lemma

IV.1]) and the following principle taking place in the layers of any p-tower KN/K0, of
degree pN over an abelian field K0, totally ramified at a set S 6= ∅ of finite places of
K0 [Gra1976, Proposition IV.1]:

Theorem 8.4. Let χ ∈ X + be such that gχ = g0 · pn, p ∤ g0, n ≥ 2. Let χ′, χ′′ be
such that [Kχ : Kχ′ ] = [Kχ′ : Kχ′′ ] = p. To simplify, set K := Kχ, K

′ := Kχ′ , K ′′ :=
Kχ′′ and assume that NK/K′(FK) = FK′ (see Lemma 5.17 giving the ramification

conditions). Let pϕ be the maximal ideal of Zp[µgχ ]; put (FK/FK∩EK′)ϕ ≃ pAϕ , A ≥ 0

and, in the isomorphism (EK′/EK′′)ϕ′ ≃ Zp[µgχ/p], put:

(FK′/FK′ ∩ EK′′)ϕ′ ≃ paϕ′ ≃ ppaϕ , a ≥ 0,

(NK/K′(EK)/NK/K′(EK) ∩ EK′′)ϕ′ ≃ pbϕ′ ≃ pp bϕ , b ≥ 0.

(i) If a < pn−2 (p− 1), then A = a− b.

(ii) If a ≥ pn−2 (p− 1), then A ≥ pn−2 (p− 1)− b.

This allows to prove again Iwasawa’s formula in the case µ = 0 [Gra1976, Theorems
IV.1, IV.2, Remark IV.4] and gives an analytic algorithm to study the p-class groups
in the first layers.

Let k =: k0 be real of prime-to-p degree g and let kcyc =
⋃
n≥0 kn be its cy-

clotomic Zp-extension. The condition µ = 0 of Iwasawa’s theory is here equiva-
lent to the existence of n0 ≫ 0 (corresponding to a character χn0 of order g pn0)
such that, for each ϕn0 -component, an0−1 < pn0−2 (p − 1) (case (i) of Theorem 8.4);
then the sequence #Hχn

becomes constant giving the λ-invariant and the relations

Ekn−1 = Nkn/kn−1
(Ekn) · Ekn−2 , for all n ≫ 0; then pλ = (Ekn : E 0

kn
· Fkn) for n ≫ 0.

More precisely:
pλϕ = #(Ekn/Ekn−1 · Fkn)ϕ, n≫ 0.

This methodology does exist in terms of p-adic L-functions for abelian fields (see,
e.g., [Gra1978b, ChapitreV]).

Recall that Greenberg’s conjecture [Gree1976] for a totally real base field (i.e., λ =
µ = 0) is equivalent to the property that the norms Nkm/kn : Hkm → Hkn , m ≥ n≫ 0
are isomorphisms (see other equivalent conditions in [Gra2019, Corollary 3.4]). Whence
the result:

Theorem 8.5. Let k be a real abelian field of prime-to-p degree. Greenberg’s conjecture
is equivalent to Ekn = E 0

kn
·Fkn , for all n≫ 0, where E 0

kn
is the subgroup of Ekn generated

by the units of the strict subfields and Fkn is the group of Leopoldt cyclotomic units
(Definitions 7.1 (i), 7.3).

8.4.2. Imaginary case. This part is related to relative p-class groups for p 6= 2 [Gra1976,
Proposition IV.2, Théorème IV.2]:

Theorem 8.6. Let χ ∈ X − be such that gχ = g0 ·pn, p ∤ g0, n ≥ 2. Let χ′ be such that
[Kχ : Kχ′ ] = p. Set K := Kχ, K

′ := Kχ′ and assume that the Stickelberger elements
BK , BK′ are p-integers in Q[GK ] and that NK/K′(BK) = BK′ (see Lemma 5.17).
Put:

B1(ψ
−1)Zp[µgχ ] = pAϕ , A ≥ 0,

B1(ψ
−p)Zp[µgχ/p] = pp aϕ , a ≥ 0.

(i) If a < pn−2 (p− 1), then A = a.

(ii) If a ≥ pn−2 (p− 1), then A ≥ pn−2 (p− 1).
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Remark 8.7. The integersA and a are the Analytic Invariantsman
ϕ (H −) andman

ϕ′ (H
−),

respectively, defined § 8.2. From [Gra1976, Remark IV.4], the Iwasawa µ-invariant is
zero as soon as there exists n0 ≫ 0 such that the case (i) of the theorem is satisfied

for all ϕ of Kn0
. In a Zp-extension k̃/k, this condition implies that the p-rank of the

H ar
kn

’s is bounded (a known result of Iwasawa’s theory [Was1997, Proposition 13.23]).

9. Numerical illustrations with cyclic cubic fields

For χ ∈ X + and Ẽχ := EKχ/E
0
Kχ

· FKχ , we have #H ar
χ = wχ · #Ẽχ (Theorem 7.5),

and for any ϕ | χ we have (conjecturally):

#H
ar
ϕ = wϕ · #Ẽϕ, wϕ ∈ {1, p}, where Ẽϕ = {x̃ ∈ Ẽχ, Pϕ(σχ) · x̃ = 1}.

In another way, we have:




Ẽϕ ≃ Zp[µgχ ]
/
p
man

ϕ (H )
ϕ , man

ϕ (H ) ≥ 0,

H
ar
ϕ ≃

rϕ⊕
i=1

Zp[µgχ ]
/
p
mar

ϕ,i(H )
ϕ , rϕ ≥ 0, mar

ϕ,i(H ) ≥ 0,

and man
ϕ (H ) :=

∑rϕ
i=1m

ar
ϕ,i(H ) to be compared with mar

ϕ (H ).

We intend to see more precisely what happens for these analytic and arithmetic
invariants since the above equality defining man

ϕ (H ) can be fulfilled in various ways

(indeed, Ẽϕ is cyclic and Hϕ may have arbitrary structure). We will examine the case
of the cyclic cubic fields K = Kχ for primes p ≡ 1 (mod 3) giving two p-adic characters
ϕ | χ; in that case, E 0

K = 1 and #H ar
ϕ = (EK : FK).

For example, for p = 7, the possible structures, for the Z[j]-module EK/FK , are
of the form Z[j]

/[
(−2 + j)m1 · (3 + j)m2 · a

]
, (m1,m2 ≥ 0 and a prime to 7), giving

the two ϕ-components Z7/7
m1Z7 and Z7/7

m2Z7 (from
[
Z[j]/(−2 + j)m1

]
⊗ Z7 and[

Z[j]/(3 + j)m2 ⊗ Z7

]
), for the Ẽϕ’s.

9.1. Description of the computations. The PARI program computing all the cyclic
cubic fields is that given in [Gra2019, § 6.1].

A crucial fact, without which the checking of the ϕ-components of the GK-modules
EK/FK and HK could be misleading, is the definition of a generator σ of GK giving
the correct conjugation, both for the fundamental units, the cyclotomic ones and the
elements of the class group; this is not so easy even if a conjugation does exist for the
data given by K = bnfinit(P) from the explicit instructions G = nfgaloisconj(P), giving
xσ under the form g(x), g ∈ Q[X ], for a root x of the defining polynomial P, and
nfgaloisapply(K,G[i],X) acting on any PARI object X.

Thus it is not too difficult to find, from K.fu giving a Z-basis of EK , a “Minkowski
unit” ε and its conjugate εσ such that 〈ε, εσ〉Z = EK ; indeed, for the evaluation of
ε(x) and ε(g(x)), at a root ρ ∈ R of P , we only have a set {ρ1, ρ2, ρ3} given in a
random order by polroot(P). Any change of root gives an inconsequential permutation
(ε, εσ) 7→ (ετ , ετσ), for some τ ∈ GK .

For security, we test Reg1/Reg = 1 where Reg1 is the regulator of the units ε(ρ) and
ε(g(ρ)), computed with the root ρ, and where Reg = K.reg is the true regulator given
by PARI.

Then we must write the Leopoldt cyclotomic unit η of K of conductor f (Definition
7.3) under the form η = εα+β σ, α, β ∈ Z, which is easy as soon as we have η and ησ. But

η is computed by means of the analytic expression of |C| =
∏

a∈[1,f/2[, σa|K
=1

|ζa2f − ζ−a2f |,

as product of the |ζa2f − ζ−a2f | for the prime-to-f integers a < f/2 such that the Artin

symbol σa =
(Q(µf )/Q

a

)
is in Gal(Q(µf )/K) (which is tested using a prime qa ≡ a

(mod f) giving σa|K = 1 if and only if qa splits in K).

If f is prime, ζ2f − ζ−1
2f generates the prime ideal above f ; thus:

π := NQ(µf )/K(ζ2f − ζ−1
2f ) = ±C2
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with π3 = f · η′, η′ ∈ EK , whence π3 (1−σ) = η′1−σ = η6 := (C1−σ)6 (Proposition
7.4); the program computes 3 log(C)− 1

2 log(f) =
1
2 log(η

′), so that, to compute η from

η3 =
√
η′

1−σ
, we must divide the regulator RegC by 3 and multiply α+ j β by 1−j

3 in
that case where wχ = 1.

If f is composite, we have η = C obtained via the half-system and the class number
is the product of the index of units by wχ = 3, so this appear in the results (e.g.,
for the first example f = 13 · 97, P = x3 + x2 − 420x − 1728, classgroup = [21] and
Index [EK : CK] = 7, but α+ j β = −3− 2j of norm 7; for f = 32 · 307, P = x3− 921x−
10745, classgroup = [21, 3] and Index [EK : CK] = 21, but α+ j β = −5− j of norm 21).

To define the correct conjugation, ζ2f 7→ ζσ2f =: ζq2f , for some prime q, we use the

fundamental property of Frobenius automorphisms giving yFrob(q) ≡ yq (mod q), for
any q-integer y of K, if q is inert in K/Q; using xσ = g(x), we test the congruence

g(x)−xq (mod q) to decide if σ = Frob(q) or Frob(q)2, in which case ζσ2f = ζq2f or ζq
2

2f ,
giving easily the conjugate ησ.

9.2. The general PARI program. The program is the following and we explain,
with some examples, how to use the numerical results checking the Main Conjecture
(of course, now, the Main Theorem); hmin = pvp means that the program only computes
fields with p-class groups CKp of order at least pvp; then bf,Bf define an interval for
the conductors f.

Other indications are given in the text of the program (if necessary, the program can
be copy and past at (file “Program.tex”): https://www.dropbox.com/s/t8f4jj5v9sp629j/Program%20Phi-objects.tex?dl=0

\p 50

{p=7; \\ Take any prime p congruent to 1 modulo 3

bf=2;Bf=10^6;hmin=p^2;

\\ Arithmetic of Q(j), j^2+j+1=0:

S=y^2+y+1;kappa=bnfinit(S);Y=idealfactor(kappa,p);

\\ Decomposition (p)=P1*P2 in Z[j]:

P1=component(Y,1)[1];P2=component(Y,1)[2];

\\ Iteration over the conductors f in [bf,Bf]:

for(f=bf,Bf,vf=valuation(f,3);if(vf!=0 & vf!=2,next);

F=f/3^vf;if(core(F)!=F,next);F=factor(F);Div=component(F,1);

d=matsize(F)[1];for(j=1,d,D=Div[j];if(Mod(D,3)!=1,break));

\\ Computation of solutions a and b such that f=(a^2+27*b^2)/4:

\\ Iteration over b, then over a:

for(b=1,sqrt(4*f/27),if(vf==2 & Mod(b,3)==0,next);A=4*f-27*b^2;

if(issquare(A,&a)==1,

\\ computation of the corresponding defining polynomial P:

if(vf==0,if(Mod(a,3)==1,a=-a);P=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);

if(vf==2,if(Mod(a,9)==3,a=-a);P=x^3-f/3*x-f*a/27);

K=bnfinit(P,1); \\ PARI definition of the cubic field K

\\ Test on the p-class number #CKp regarding hmin:

if(Mod(K.no,hmin)==0,print();

G=nfgaloisconj(P); \\ Definition of the Galois group G

\\ Frob = Artin symbol defining the PARI generator sigma=G[2]:

forprime(q=2,10^4,if(Mod(f,q)==0,next);

Pq=factor(P+O(q));if(matsize(Pq)[1]==1,Frob=q;break));X=x^Frob-G[2];

if(valuation(norm(Mod(X,P)),Frob)==0,Frob=lift(Mod(Frob^2,f)));

E=K.fu;Reg=K.reg; \\ Group of units, Regulator

\\ We certify that a suitable PARI unit is a Z[G]-generator of E_K:

E1=lift(E[1]);E2=lift(nfgaloisapply(K,G[2],E[1]));

Root=polroots(P);Rho=real(Root[1]); \\ Selecting a root of P

e1= abs(polcoeff(E1,0)+polcoeff(E1,1)*Rho+polcoeff(E1,2)*Rho^2);

e2= abs(polcoeff(E2,0)+polcoeff(E2,1)*Rho+polcoeff(E2,2)*Rho^2);

l1=log(e1);l2=log(e2);Reg1=l1^2+l1*l2+l2^2;quot=Reg1/Reg;

print(quot); \\ This quotient must be equal to 1

\\ Computation of the cyclotomic units C1,C2=sigma(C1):

z=exp(I*Pi/f);C1=1;C2=1;

\\ Case of a prime conductor f using (Z/fZ)^* cyclic):

if(isprime(f)==1,g=znprimroot(f)^3;

\\ Description of a half-system:

for(k=1,(f-1)/6,gk=lift(g^k);sgk=lift(Mod(gk*Frob,f));

C1=C1*(z^gk-z^-gk);C2=C2*(z^sgk-z^-sgk));

https://www.dropbox.com/s/t8f4jj5v9sp629j/Program%20Phi-objects.tex?dl=0
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\\ Logarithms of C1,C2:

L1=3*log(abs(C1))-log(f)/2;L2=3*log(abs(C2))-log(f)/2;

\\ computation of the cyclotomic regulator and of the index Quot=(E:F):

RegC=L1^2+L1*L2+L2^2;Quot=1/3*RegC/Reg); \\ Division by 3 of RegC

\\ Case of a composite conductor:

if(isprime(f)==0,for(aa=1,(f-1)/2,if(gcd(aa,f)!=1,next);

\\ Search of a prime qa congruent to a modulo f, split in K:

qa=aa;while(isprime(qa)==0,qa=qa+f);

if(matsize(idealfactor(K,qa))[1]==1,next);

\\ The Artin symbol of aa fixes K:

C1=C1*(z^aa-z^-aa);C2=C2*(z^(Frob*aa)-z^-(Frob*aa)));

L1=log(abs(C1));L2=log(abs(C2)); \\ Logarithms of C1,C2

\\ computation of the cyclotomic regulator and the index Quot=(E:F):

RegC=L1^2+L1*L2+L2^2;Quot=RegC/Reg);

\\ printing of the basic data of K:

print("P=",P," f=",f,"=",factor(f)," (a,b)=","(",a,",",b")",

" class group=",K.cyc," sigma=",Frob);print("Index [E_K:C_K]=",Quot);

\\ Annihilator alpha+sigma.beta of the quotient E/C:

alpha=((log(e1)+log(e2))*L1+log(e2)*L2)/Reg;

beta=(log(e2)*L1-log(e1)*L2)/Reg;

\\ In the prime case one multiply alpha+j.beta by (1-j)/3:

if(isprime(f)==1,

alpha0=(alpha+beta)/3;

beta0=(-alpha+2*beta)/3;alpha=alpha0;beta=beta0);

\\ Writing of alpha and beta as reals for checking:

print("(alpha,beta)=","(",alpha,", ",beta,")");

\\ Computation of alpha and beta as integers:

alpha=sign(alpha)*floor(abs(alpha)+10^-6);

beta=sign(beta)*floor(abs(beta)+10^-6);

\\ Class group (r = global rank;rp = p-rang;expo = exposant of CKp)

\\ vp = valuations of CKp, ve = valuation of the exponent expo of CKp:

CK=K.clgp;r=matsize(CK[2])[2];CKp=List;EKp=List;rp=0;vp=0;ve=0;

for(i=1,r,ei=CK[2][i];vi=valuation(ei,p);

if(vi>0,rp=rp+1;vp=vp+vi;ve=max(ve,vi));expo=p^ve;

\\ The rp following ideals Ai generate the p-class group CKp:

Ai=idealpow(K,CK[3][i],ei/p^vi);listput(CKp,Ai,i);listput(EKp,p^vi,i));

\\ Matrices h and sh of Ai and sAi on the PARI basis of CK

L0=List;for(i=1,r,listput(L0,0,i));LH=List;LsH=List;

for(i=1,rp,Ai=CKp[i];h=bnfisprincipal(K,Ai)[1];

sAi=nfgaloisapply(K,G[2],Ai);sh=bnfisprincipal(K,sAi)[1];

print("h=",h,", ","sigma(h)=",sh);listput(LH,h,i);listput(LsH,sh,i));

\\ Determination of the Pi-valuations of (alpha+j.beta), i=1,2:

Z=Mod(alpha+y*beta,S);w1=idealval(kappa,Z,P1);w2=idealval(kappa,Z,P2);

print(w1," ",w2," P1 and P2-valuations for alpha+j*beta");

\\ Galois structure of CKp; computation of the phi-components:

if(rp==1,

u=lift(LsH[1][1]*Mod(LH[1][1],expo)^-1);

YY=Mod(y-u,S);v1=idealval(kappa,YY,P1);v2=idealval(kappa,YY,P2);

v1=min(v1,ve);v2=min(v2,ve);

print(v1," ",v2," P1 and P2-valuations for H"));

if(rp==2,

\\ Computation of ci(mod expo) such that Pi=(ci+j),i=1,2:

Sp=lift(factor(S+O(p^ve)));Sp1=component(Sp,1)[1];Sp2=component(Sp,1)[2];

c1=polcoeff(Sp1,0);c2=polcoeff(Sp2,0);

\\ Coefficients of LH[1],LsH[1],LH[2],LsH[2], on the PARI basis of CK

H1=LH[1];A1=H1[1];B1=H1[2];sH1=LsH[1];C1=sH1[1];D1=sH1[2];

H2=LH[2];A2=H2[1];B2=H2[2];sH2=LsH[2];C2=sH2[1];D2=sH2[2];

\\ Computation of the determinants of the relations:

Delta1=((C1+c1*A1)*(D2+c1*B2)-(D1+c1*B1)*(C2+c1*A2));

Delta1=lift(Mod(Delta1,expo));

Delta2=((C1+c2*A1)*(D2+c2*B2)-(D1+c2*B1)*(C2+c2*A2));

Delta2=lift(Mod(Delta2,expo));

print(Delta1," ",Delta2," Determinants: Delta1,Delta2");

\\ Computation of the relations defining the phi-components:

r11x=C1+c1*A1;r11y=C2+c1*A2;r12x=D1+c1*B1;r12y=D2+c1*B2;

r11x=lift(Mod(r11x,expo));r11y=lift(Mod(r11y,expo));

r12x=lift(Mod(r12x,expo));r12y=lift(Mod(r12y,expo));

r21x=C1+c2*A1;r21y=C2+c2*A2;r22x=D1+c2*B1;r22y=D2+c2*B2;
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r21x=lift(Mod(r21x,expo));r21y=lift(Mod(r21y,expo));

r22x=lift(Mod(r22x,expo));r22y=lift(Mod(r22y,expo));

print("R11=",r11x,"*X+",r11y,"*Y"," R12=",r12x,"*X+",r12y,"*Y");

print("R21=",r21x,"*X+",r21y,"*Y"," R22=",r22x,"*X+",r22y,"*Y"));

\\ Structure of the torsion group Tp of p-ramification:

n=6; \\ Choose any n, large enough, such that p^(n+1) annihilates Tp:

LTp=List;Kpn=bnrinit(K,p^n);Hpn=Kpn.cyc;

dim=component(matsize(Hpn),2);for(k=2,dim,c=component(Hpn,k);

if(Mod(c,p)==0,listput(LTp,p^valuation(c,p),k)));

print("Structure of the ",p,"-torsion group: ",LTp)))))}

9.3. Numerical examples. Since the approximations are in general very good (with
precision \p 50), we have suppressed useless decimals in the numerical results for inte-
gers computed and given as real numbers. But for some conductors, the precision\p 100
may be necessary, because of a fundamental unit close to 0 (e.g., f = 21193, 30223).
For f = 42667, \p 100 does not compute correctly and \p 150 gives a nice result for α
and β; but we see that, for this example,

e_1=3062171948818717694.348000505806 & e_2=1.221295564694 E-69.

Note that, according to the PARI version used, numerical data for generators of
class groups may vary and propagate in other computations, but without any trouble
for final results.

9.3.1. Galois structure of EK/FK . Let ε be the Z[G]-generator of EK and let η that of
the subgroup FK of Leopoldt’s cyclotomic units; thus we have η = εα+β σ and obtain
the isomorphism:

EK/FK ≃ Z[j]/(α+ j β)Z[j],

where j is a root of S := y2 + y + 1.

In all the sequel, from a factorization p = (r1 + j r′1) · (r2 + j r′2) giving the ideal
product (p) = p1p2 in Z[j], we associate, for the exponent pe, the two annihilators
ci + σ such that (ci + j) = pei (up to a prime-to-p ideal); this preserves the definition
of the ϕ1 and ϕ2-components.

For instance, for p = 7, p1 := (−2+ j)Z[j] and p2 := (3+ j)Z[j]; writing (α+ j β) =:

pu1 · pv2 · a, a prime to 7, we get immediately the two ϕ-components of ẼK = EK/FK

(e.g., if e = 2, the two annihilators are 19+ j and −18+ j, respectively; for p = 13, we
get 23 + j and −22 + j).

9.3.2. Galois structure of HK . Recall that bnfisprincipal(K,A)[1] gives the matrix of
components of the class of A on the basis {h1, . . . , hr} given by K.clgp (in CK) and the
fact that 0 at the place i means that the corresponding component of cl(A) on hi is
trivial.

We first replace the generators of HK by generators Ai of HK (where rp ≤ r is the
p-rank). The Galois action on the Ai is computed using the instructions (where G[2]
gives the σ-conjugate, G[1] being the identity):

h=bnfisprincipal(K,Ai)[1];sAi=nfgaloisapply(K,G[2],Ai);

sh=bnfisprincipal(K,sAi)[1]};

so the Galois structure of HK becomes linear algebra from the matrices given by the
program, via the relations:

h =
∏rp
i=1 h

ai
i (in h) & hσ =

∏rp
i=1 h

bi
i (in sh).

(a) Case of 7-rank r7 = 1. This case is obvious, writing h = ha1 , h
σ = hb1; we put

Pϕ1
≡ c1 + y (mod 7e) and Pϕ2

≡ c2 + y (mod 7e), where 7e is the exponent of HK ;

we obtain hc1+σ = hc1a+b1 and hc2+σ = hc2a+b1 ; so HK = Hϕ1
(resp. Hϕ2

) if and only
if c1a+ b ≡ 0 (mod 7e) (resp. c2a+ b ≡ 0 (mod 7e)). In fact one computes −a∗b+ j,
where a∗ is inverse of a modulo 7e, and write (−a∗b+j) = pui for the suitable i ∈ {1, 2}.

The Galois actions are to be read in columns; for instance, the valuations in the two
lines:

v 0 P1 and P2− valuations for alpha+ j ∗ beta
v 0 P1 and P2− valuations for H
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give the structures Z[j]/pv1 · p02 for “M = Ẽ = E /F and H ”, respectively, whence
Mϕ1

≃ Z[j]/pv1, Mϕ2
= 1, and so on. First examples:

P=x^3+x^2-104*x+371 f=313=Mat([313,1]) (a,b)=(35,1)

Class group=[7] sigma=4

(alpha,beta)=(-3.000000000,-2.000000000) Index [E_K:C_K]=7.000000000

h=[1]~, sigma(h)=[2]~

1 0 P1 and P2-valuations for alpha+j*beta

1 0 P1 and P2-valuations for H

Structure of the 7-torsion group: List([7,7])

We have Ẽϕ1
≃ Hϕ1

≃ (Z[j]/p1)⊗ Z7 ≃ Z/7Z and the conjugation hσ = h2, giving
the annihilator (−2 + j) = p1 as expected; whence the two columns given by the
program. We deduce that TK = HK ⊕ RK .

P=x^3+x^2-2450*x-1089 f=7351=Mat([7351,1]) (a,b)=(-1,33)

Class group=[49] sigma=4

(alpha,beta)=(5.000000000,8.000000000) Index [E_K:C_K]=49.000000000

h=[1]~, sigma(h)=[30]~

2 0 P1 and P2-valuations for alpha+j*beta

2 0 P1 and P2-valuations for H

Structure of the 7-torsion group: List([2401])

We have (α+ j β) = (5+8j), thus the annihilator (19+ j) = p21; then h
σ = h30 gives

(modulo 72) the same annihilator. The ϕ2-components are trivial. Since TK ≃ Z/74Z,
RK = T 72

K , HK ≃ TK/RK ≃ Z/72Z.

The first field such that HK ≃ Z/73Z is the following:

P=x^3+x^2-77006*x-34225 f=231019=Mat([231019,1]) (a,b)=(-1,185)

Class group=[343] sigma=4

(alpha,beta)=(19.000000000,18.000000000) Index [E_K:C_K]=343.000000000

h=[1]~, sigma(h)=[18]~

0 3 P1 and P2-valuations for alpha+j*beta

0 3 P1 and P2-valuations for H

Structure of the 7-torsion group: List([343,7])

The annihilator of HK is (−18 + j) = p32. The structures are similar with the ϕ2-
components since (19 + 18j) = p32. In that case, TK = HK ⊕ RK with HK ≃ Z/73Z
and RK ≃ Z/7Z.

(b) Case of 7-rank r7 = 2 This case depends on the matrices giving:

h = [a, b], sigma(h) = [c, d] & h′ = [a′, b′], sigma(h′) = [c′, d′];

this means that the corresponding generating classes h, h′, fulfill the relations (re-
garding the basis {h1, h2} of the class group) h = ha1 · hb2 and hσ = hc1 · hd2, then

h′ = ha
′

1 · hb′2 and hσ = hc
′

1 · hd′2 . Thus we compute the conditions Hci+σ = 1, i = 1, 2,
for H := hx · h′y; this gives the relations R11, R21 (R12, R22 are checked by security
since they must be proportional to the previous ones); whence the arrangement of lines
when the conjecture holds. The program computes the corresponding determinants of
the relation (Determinants Delta1 Delta2); this is superfluous but have been computed
(but not printed) for verification.

P=x^3+x^2-3422*x-1521 f=10267=Mat([10267,1]) (a,b)=(-1,39)

Class group=[7,7] sigma=2

(alpha,beta)=(-7.000000000,-7.000000000) Index [E_K:C_K]=49.000000000

h=[1,0]~, sigma(h)=[0,1]~

h’=[0,1]~, sigma(h’)=[6,6]~

1 1 P1 and P2-valuations for alpha+j*beta

R11=3*X+6*Y R12=1*X+2*Y

R21=5*X+6*Y R22=1*X+4*Y

Structure of the 7-torsion group: List([49,7])

This case means that ẼK ≃ Z[j]/(7), giving the two non trivial ϕ-components of
order 7. The relations, for HK , reduce to R11 and R21 Thus HK = Hϕ1

⊕ Hϕ2
≃

Z/7Z⊕ Z/7Z, RK = T 7
K ≃ Z/7Z.
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P=x^3+x^2-55296*x-1996812 f=165889=[19,1;8731,1] (a,b)=(-322,144)

Class group=[294,2,2,2] sigma=25

(alpha,beta)=(-32.000000000,-20.000000000) Index [E_K:C_K]=784.000000000

h=[6,0,0,0]~, sigma(h)=[108,1,0,0]~

0 2 P1 and P2-valuations for alpha+j*beta

0 2 P1 and P2-valuations for H

Structure of the 7-torsion group: List([49])

Here RK = 1 and TK = HK ≃ (Z[j]/p22)⊗ Z7 ≃ Z7/7
2Z7.

P=x^3+x^2-453576*x+117425873 f=1360729=Mat([1360729,1]) (a,b)=(2333,1)

Class group=[98,14] sigma=2

(alpha,beta)=(42.000000000,28.000000000) Index [E_K:C_K]=1372.000000000

h=[1,0]~, sigma(h)=[44,11]~

h’=[0,1]~, sigma(h’)=[7,11]~

2 1 P1 and P2-valuations for alpha+j*beta

R11=14*X+7*Y R12=11*X+30*Y

R21=26*X+7*Y R22=11*X+42*Y

Structure of the 7-torsion group: List([49,7,7])

We have (α + βj) = 2 · 7(3 + 2j) giving the annihilator p21p2 which is also the
annihilator of HK . The structure is TK = HK ⊕ RK .

P=x^3+x^2-884540*x-393129 f=2653621=Mat([2653621,1]) (a,b)=(-1,627)

Class group=[686,14] sigma=2

(alpha,beta)=(-112.00000000,-70.00000000) Index [E_K:C_K]=9604.00000000

h=[2,0]~, sigma(h)=[36,2]~

h’=[0,2]~, sigma(h’)=[0,4]~

1 3 P1 and P2-valuations for alpha+j*beta

R11=74*X+0*Y R12=2*X+42*Y

R21=0*X+0*Y R22=2*X+311*Y

Structure of the 7-torsion group: List([343,49])

In that case, TK ≃ Z/73Z⊕ Z/72Z and RK ≃ (Z/73Z)0 ⊕ (7Z/72Z).

(c) Larger 7-ranks. If the order 73, with 7-rank 1 or 2, is rather frequent for
the 7-class group, we find, after several days of computer, only three examples of
7-rank 3 in the interval f ∈ [7, 50071423]; they are obtained with the conductors
f = 14376321, 39368623, 43367263, giving interesting structures (use precision \p 100).
The least cubic field with 7-rank 3 is the following:

P=x^3-4792107*x+4022175142 f=14376321=[3,2;1597369,1] (a,b)=(-7554,128)

Class group=[21,7,7] sigma=5

(alpha,beta)=(-7.000000000,-21.000000000) Index [E_K:C_K]=343.000000000

h =[3,0,0]~, sigma(h) =[15, 4, 0]~

h’=[0,1,0]~, sigma(h’)=[3, 1, 0]~

h"=[0,0,1]~, sigma(h")=[6, 5, 2]~

2 1 P1 and P2-valuations for alpha+j*beta

Structure of the 7-torsion group: List([7,7,7])

Using the information on α and β, we obtain, for ẼK = EK/FK :

ẼK ≃ (Z[j]/7p2)⊗ Z7 ≃ (Z[j]/p21 p2)⊗ Z7 ≃ (Z[j]/p21 ⊕ Z[j]/p2)⊗ Z7,

where p1 = (−2 + j) and p2 = (3 + j). We get the ϕ-components:

Ẽϕ1
≃ (Z[j]/p21)⊗ Z7 ≃ Z/72Z and Ẽϕ2

≃ (Z[j]/p2)⊗ Z7 ≃ Z/7Z.

To obtain the two ϕ-components of HK = TK , we put H = hxh′yh′′z and we

determine the solutions of the two relationsHPϕ
i
(σ) = 1, i = 1, 2, that is to say,

H−2+σ = 1 and H3+σ = 1, respectively.

We then obtain the systems (considered modulo 7 since the exponent of HK is 7)
of ranks 1 and 2, respectively:

{
2x+ 3y + 6z = 0

4x+ 6y + 5z = 0
(H−2+σ = 1) &





3x+ 3y + 6z = 0

4x+ 4y + 5z = 0

z = 0,

(H3+σ = 1).

They are equivalent to:

2x+ 3y + 6z = 0 (H−2+σ= 1) &
[
x+ y = 0 & z = 0

]
(H3+σ= 1).
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Which gives, considering the F7-dimensions given by the systems:

Hϕ1
≃

[
(Z[j]/p1)⊗ Z7

]
⊕
[
(Z[j]/p1)⊗ Z7

]
& Hϕ2

≃ (Z[j]/p2)⊗ Z7.

We have indeed equalities for the orders of the ϕ-components relative to ẼK and HK ,

respectively, but of course with different structures of Z7[j]-modules since Ẽϕ1
≃ Z/72Z

and Hϕ1
≃

[
Z/7Z

]2
.

The two other examples are similar:

P=x^3+x^2-13122874*x-7765825411

f=39368623=[7,1;79,1;71191,1] (a,b)=(-5323,2187)

class group=[21,21,7] sigma=4

(alpha,beta)=(28.000000000,-7.000000000) Index [E_K:C_K]=1029.000000000

h =[3,0,0]~, sigma(h) =[3,9,0]~

h’=[0,3,0]~, sigma(h’)=[18,15,0]~

h"=[0,0,1]~, sigma(h")=[15,6,4]~

1 2 P1 and P2-valuations for alpha+j*beta

Structure of the 7-torsion group: List([7,7,7])

P=x^3+x^2-14455754*x-16977480367

f=43367263=[43,1;1008541,1] (a,b)=(-10567,1513)

class group=[273,7,7] sigma=2

(alpha,beta)=(42.000000000,77.000000000) Index [E_K:C_K]=4459.000000000

h =[39,0,0]~, sigma(h) =[0,5,1]~

h’=[0,1,0]~, sigma(h’)=[156,6,5]~

h"=[0,0,1]~, sigma(h")=[0,0,2]~

2 1 P1 and P2-valuations for alpha+j*beta

Structure of the 7-torsion group: List([49,7,7])

(d) Larger primes p. Let’s give, without comments, some examples:
p=13 P=x^3+x^2-15196*x-726047 f=45589=Mat([45589,1]) (a,b)=(-427,1)

Class group=[169] sigma=2

(alpha,beta)=(15.000000000,8.000000000) Index [E_K:C_K]=169.000000000

h=[1]~, sigma(h)=[146]~

2 0 P1 and P2-valuations for alpha+j*beta

2 0 P1 and P2-valuations for H

Structure of the 13-torsion group: List([169])

p=13 P=x^3+x^2-238516*x-7579519 f=715549=Mat([715549,1]) (a,b)=(-283,321)

Class group=[13,13] sigma=2

(alpha,beta)=(7.000000000,-8.000000000) Index [E_K:C_K]=169.000000000

h =[1,0]~, sigma(h) =[9,0]~

h’=[0,1]~, sigma(h’)=[0,9]~

0 2 P1 and P2-valuations for alpha+j*beta

R11=0*X+0*Y R12=0*X+0*Y

R21=6*X+0*Y R22=0*X+6*Y

Structure of the 13-torsion group: List([13,13])

p=19 P=x^3-137271*x+45757 f=411813=[3,2;45757,1] (a,b)=(-3,247)

Class group=[1083] sigma=2

(alpha,beta)=(-21.000000000,-5.000000000) Index [E_K:C_K]=361.000000000

h=[3]~, sigma(h)=[204]~

0 2 P1 and P2-valuations for alpha+j*beta

0 2 P1 and P2-valuations for H

Structure of the 19-torsion group: List([361])

p=19 P=x^3+x^2-162636*x+25190561 f=487909=[31,1;15739,1] (a,b)=(1397,1)

Class group=[57,19] sigma=2

(alpha,beta)=(19.00000000,4.19514516 E-69) Index [E_K:C_K]=361.00000000

h =[3,0]~, sigma(h) =[51,16]~

h’=[0,1]~, sigma(h’)=[3,1]~

1 1 P1 and P2-valuations for alpha+j*beta

R11=18*X+3*Y R12=16*X+9*Y

R21=11*X+3*Y R22=16*X+13*Y

Structure of the 19-torsion group: List([19,19])

p=31 P=x^3+x^2-63804*x+6181931 f=191413=Mat([191413,1]) (a,b)=(875,1)

class group=[31,31] sigma=4

(alpha,beta)=(31.00000000,-4.10842850 E-69) Index [E_K:C_K]=961.00000000

h=[1,0]~, sigma(h) =[30,30]~



50 GEORGES GRAS

h’=[0,1]~, sigma(h’)=[1,0]~

1 1 P1 and P2-valuations for alpha+j*beta

R11=5*X+1*Y R12=30*X+6*Y

R21=25*X+1*Y R22=30*X+26*Y

Structure of the 31-torsion group: List([31,31])

p=31 P=x^3+x^2-76004*x-8090239 f=228013=Mat([228013,1]) (a,b)=(-955,1)

class group=[961] sigma=2

(alpha,beta)=(-11.000000000,-35.000000000) Index [E_K:C_K]=961.000000000

h=[1]~, sigma(h)=[439]~

2 0 P1 and P2-valuations for alpha+j*beta

2 0 P1 and P2-valuations for H

Structure of the 31-torsion group: List([961])

Conclusion

Standard probabilistic approaches may confirm (or not) the classical Cohen–Lenstra–
Malle–Martinet heuristics on p-class groups. Indeed, heuristics on the whole p-class
group are given by that of the components H ar

ϕ ’s which must be compatible with that

obtained for the Ẽϕ’s.

Then, the main problem remains a proof of the Main Conjecture in the non semi-
simple real case using the statement with Arithmetic ϕ-objects, especially a proof that
for all abelian real field K, with a cyclic maximal p-sub-extension, we have, for all
ϕ ∈ ΦK (cf. § 8.2.2):

#H
ar
ϕ = wϕ · #(EK/E 0

K · FK)ϕ, wϕ ∈ {1, p}.

where (EK/E
0
K · FK)ϕ := {ε̃ ∈ (EK/E

0
K · FK), Pϕ(σχ) · ε̃ = 1}.
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[Has1952] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Berlin (1952). 21, 22, 24, 25, 31
[Iwa1962] K. Iwasawa, A class number formula for cyclotomic fields, Ann. of Math., Second Series

76(1) (1962), 171–179. https://doi.org/10.2307/1970270 25
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http://www.numdam.org/item?id=SDPP 1965-1966 7 2 A3 0 5

[Gil1977] R. Gillard, Sur le groupe des classes des extensions abéliennes réelles, Séminaire
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http://www.numdam.org/item/SB 1989-1990 32 69 0/ 4, 11, 36

[Rib1979] K.A. Ribet, Fonctions L p-adiques et théorie d’Iwasawa (rédigé par P. Satgé
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