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NOTION OF ABELIAN ARITHMETIC ϕ-OBJECT

FOR THE STUDY OF p-CLASS GROUPS

AND p-RAMIFIED TORSION GROUPS

GEORGES GRAS

Abstract. We revisit, in an elementary way, the classical state-
ment of various “Main Conjectures” for p-class groups HK and
p-ramified torsion groups TK of abelian fields K, in the non semi-
simple case p | [K : Q]. The classical “algebraic” definition of the

p-adic isotopic components, H
alg
K,ϕ, used in the literature, is inap-

propriate with respect to analytical formulas. For that reason we
have introduced, in the 1970’s, an “arithmetic” definition, H ar

K,ϕ,

in perfect correspondence with all analytical formulas and giving
a natural “Main Conjecture”, still unproved for real fields in the
non semi-simple case. The two notions coincide for relative class
groups H

−

K and groups TK since, in p-extensions, transfer maps
are injective for these groups but not necessarily for real class
groups. Numerical evidence of the gap between the two notions

is given (Examples A.2.2, A.2.3) and PARI calculations corrobo-
rate that the true Real Main Conjecture for K writes on the form
#H ar

K,ϕ = #(EK/ÊK FK)ϕ, in terms of units EK , ÊK (units of the

strict subfields) and FK (Leopoldt’s cyclotomic units). A recent
approach, conjecturing the capitulation of HK in some auxiliary
cyclotomic extensions K(µℓ), proves the difficult real case.
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Foreword and preliminary remarks

This survey provides improvements, new results, numerical illustra-
tions (with PARI programs) and some history, regarding our original
articles [Gra1976, Gra1977]. These two papers were written, in French,
with illegible fonts due to the use of ”typits” on typewriters and hand
written characters, for mathematical symbols ! So they were hardly ac-
cessible and only [Gra1977b] is cited in replacement of them. This survey
also mention, in Subsection 1.1, pioneering references, as well as some
significant Leopldt’s papers on cyclotomy [Leo1954, Leo1962], written in
german in the 1950/1960’s.

As the Referee pointed us, one must avoid any confusion with the
Iwasawa Main Conjecture, dealing, for instance, with cyclotomic Zp-
extensions; so, the Conjectures for the case of finite abelian extensions
(giving the most precise relations with analytic information) will be
called “Finite Abelian Main Conjectures” in this paper (Finite AMC for
short). This may be legitimate since beyond the Iwasawa Main Conjec-
ture (or Mazur–Wiles’ Main Theorem and generalizations) our purposes
and conjectures deal always with finite abelian extensions, a con-
text which, of course, must apply to the finite layers of the cyclotomic
Zp-extension. Moreover, Thaine’s technique and our new philosophy,
using capitulation of classes in auxiliary cyclotomic extensions K(µℓ),
strengthen the interest of the finite cases.
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The Finite AMC (giving analytic expressions of annihilators and or-
ders of p-adic isotopic components of class groups) that we revisit here,
were first stated (especially in the non semi-simple case) in our papers
mentioned above (but not in [Gra1977b], as erroneously stated by some
authors), and were given at the meeting “Journées arithmétiques de
Caen” (1976) as it is correctly recalled for instance in [Sol1990, Rib2008].
This gives the occasion to mention that [Gra1977b] (only recalling the
statements of the conjectues in the semi-simple case) is especially de-
voted to a method using formal series, giving non trivial congruences
when p-adic L-functions have a trivial zero; for instance we proved the
following complement of Ankeny–Artin–Chowla–Kudo congruences (cf.
[AAC1952, Kudo1975] and [Was1997, Theorem 5.37]):

Proposition 0.1. Let f ≡ 0 (mod 3) be the conductor of a real qua-
dratic field K; we consider the case f/3 ≡ −1 (mod 3) (“special case”

when 3 splits in the mirror field K ′ := Q(
√
−f/3)). Let ε = t + u

√
f ,

t, u > 0, be the fundamental unit of K and let h and h′ be the class
numbers of K and K ′, respectively. Then h·t·u+ h′ ≡ 0 (mod 3).

A program (Appendix A.1) only checks the congruence. But this ana-
lytic result, which seems unknown, is perhaps off topic for our purpose.

The Finite AMC has been proven in the semi-simple case, then in
the non semi-simple one for imaginary relative class groups and mainly
in the framework of Iwasawa’s theory (a large overview on the precise
proofs and classical references are given in Washington’s book [Was1997,
Chapters 6, 8, 13, 15]).

The non semi-simple case of even p-adic characters ϕ (real case), was
less understood because of a problematic definition of p-adic isotopic
components and cyclotomic units; but at the time, we proposed another
more natural conjectural context, still unproved, for which the definition
of “Arithmetic ϕ-objects” has become essential since the distinction be-
tween “Algebraic” definitions (classical framework) and “Arithmetic”
definitions is crucial regarding analytic formulas (we shall give more
comments in Remarks 7.7).

Let G := Gal(Qab/Q) be the Galois group of the maximal abelian
extension Qab of Q and denote by K a subfield of finite degree of Qab. In
fact, since abelian arithmetic deals with cyclic fields “K = Kχ” indexed
by rational characters, there is no restriction to take cyclic K’s in any
result or comment. The present article is divided into the following
three parts, after an Introduction giving a brief description about the
story (rather prehistory) that led to the numerous approaches giving,
under some assumptions, proofs of a “Main Theorem”:

(i) An algebraic part giving a systematic study of families (MK)K
of Z[G ]-modules and of the Zp[G ]-modules MK := MK ⊗ Zp, including
the non semi-simple case p | [K : Q]. This study leads to the defini-
tion of sub-modules M alg

ϕ (algebraic) and M ar
ϕ (arithmetic), indexed by

the set of irreducible p-adic characters ϕ of G . The difference between
M alg

ϕ (used in all the literature) and M ar
ϕ is that the first one relates to

algebraic norms νk/k′ ∈ Z[Gal(k/k′)] for their properties in relative sub-
extensions of K/Q, while the second one uses arithmetic norms Nk/k′ ,
the gap being given by the relation:

νk/k′ = Jk/k′ ◦Nk/k′ ,

where the transfer maps Jk/k′ are often non injective in p-extensions (see
§ 3.3 for examples justifying Definition 3.11 for the statement of the Fi-
nite AMC and § 4.3 for the main properties). Moreover, the “arithmetic”



4 GEORGES GRAS

point of view is naturally related to the formula:

#MK =
∏

ϕ∈ΦK

#M
ar
ϕ (Theorems 3.12 and 4.5),

where the #M ar
ϕ ’s have (conjecturally) analytic expressions, contrary to

the #M alg
ϕ ’s which do not always fulfill this relation.

(ii) An arithmetic part where we apply the above results to p-class
groups HK ,K real or imaginary, then to torsion groups TK of the Galois
group of the maximal p-ramified abelian pro-p-extension of K real.

For rational characters χ and p-adic characters ϕ | χ, we define
the “Class Invariants”malg

ϕ (H ) (algebraic), mar
ϕ (H ), mar

ϕ (T ) (arithmetic)
then, in § 8.2, the corresponding “Analytic Invariants” man

ϕ (H ), man
ϕ (T )

suggested by the analytic formulas of the arithmetic χ-components de-
duced from Leopoldt’s Theorem 2.2 (cf. Theorems 5.10, 6.2, 7.5) and we
develop the problem of their comparison. We conjecture a new annihila-
tion theorem for H ar

ϕ in the real non semi-simple case (Conjecture 7.9).

In § 7.6, we shed new light on the proof of the Finite AMC in the
real semi-simple case for K, in the spirit of Thaine’s theorem described
in Washington’s book, and we give numerical illustrations. It becomes
clear that the knowledge of the sole cyclotomic unit ηK of K contains, by
means of very elementary arithmetic, all the information on annihilation
and orders of the ϕ-components of its p-class group. A new observation
is that Thaine’s method uses auxiliary cyclotomic extensions K(µℓ) with
ℓ totally split in K, while our approach in [Gra2022, Gra2023, Gra2023b]
uses the same auxiliary extensions, but with ℓ totally inert in K.

(iii) An illustration, in the semi-simple case, is given with cyclic cu-
bic fields for p ≡ 1 (mod 3), as well as a PARI program computing the
above invariants, which was not possible in the 1970’s. Since the submis-
sion of this paper, more computations have been done and confirm the
theoretical claims. Since numerical experiments have some importance
and take much place, we report in the Appendix, PARI programs, tables
and explanations for their use; the programs may be copied and pasted
from any pdf-file (e.g., https://arxiv.org/pdf/2112.02865.pdf).

1. Introduction and brief historical survey

1.1. Main bibliographic reminders. It is difficult to give here the
full story of such a subject, from Bernoulli, Kummer, Herbrand clas-
sical context, the initiating work of Iwasawa, Leopoldt, Greenberg, on
the conjecture, then the deep results obtained by Ribet, Mazur, Wiles,
Thaine, Rubin, Kolyvagin, Solomon, Greither, Coates, Sinnott, and oth-
ers, on cyclotomy and p-adic L-functions. Several papers also give
the Iwasawa formulation of the Main Theorem (see e.g., [Gree1975,
Gree1977]), in terms of p-adic L-functions, a generalizable feature to
many fields. The fundamental difference, regarding finite p-extensions,
is that, in Iwasawa’s theory, capitulation kernels are hidden in state-
ments using pseudo-isomorphisms, whence only giving results for the
projective limit of the p-class groups in the Zp-extensions and, in gen-
eral, no precise information is available in the finite layers (it’s quite clear
in a numerical setting that any possible structure occurs in the first lay-
ers, up to the algebraic regularity predicted by Iwasawa’s theory; see
for instance the numerical computations given in Kraft–Schoof–Pagani
[KS1995, Paga2022]). A clear result about capitulation kernels is given
in Grandet–Jaulent [GrJa1985, Théorème, p. 214]

Let’s give less known contributions of the beginnings:

https://arxiv.org/pdf/2112.02865.pdf
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We refer, for a very nice story of pioneering works, to Ribet [Rib2008,
Rib2008b], for detailed proofs of Iwasawa Main Conjecture to Washing-
ton [Was1997, Chap. 15] following techniques initiated by Thaine then
Kolyvagin, Ribet (exposed by Lang [Lang1990]). A Bourbaki Seminar,
by Perrin-Riou [PeRi1990], gives a significant lecture (with an impressive
bibliography) on the works of Kolyvagin, Rubin and others about the
Main Conjectures for number fields and elliptic curves.

The story is also given in the famous Mazur–Wiles paper, where the
attribution of the various statements of the conjecture (in the semi-
simple case) is accurately discussed (see [MaWi1984, § 1 and § 10 (i, ii)]
for more comments on the works of Iwasawa, Leopoldt, Greenberg and
us), even if some references are missing.

Finally, proofs of our conjecture for the relative p-class groups H −

and the real torsion groups T of the Galois groups of the maximal
abelian p-ramified pro-p-extensions were given (Solomon for H − and
p 6= 2 [Sol1990, Theorem II.1], Greither for H −, T with p ≥ 2 and
H +, but in a semi-simple context [Grei1992, Theorems A, B, C, 4.14,
Corollary 4.15]). Let’s mention the proof by Rubin [Rub1990], from the
Kolyvagin Euler systems [Kol2007] used in above proofs.

Many complementary works about the order or the annihilation of
the Hϕ’s, for irreducible p-adic characters ϕ, were published before or
after the decisive proofs (e.g., [Gra1977b, Gil1977, Gra1979, Or1981,
Or1986, GrKu2004, BeNg2005, All2013, BeMa2014, GrKu2014, All2017,
Gra2018b, GrKu2021, Jau2021, Jau2022, Jau2022b]). Mention a result
of Oriat using reflection theorem [Or1986, Théorème, p. 333].

In the same way, it is hopeless to outline all generalizations giving
“Main Conjectures” in other contexts than the absolute abelian case
(e.g., [Dar1995, MaRu2011, CoLi2019, DaKa2020, CoLi2020, BBDS21,
BDSS21, Vig2011]), using essentially the technique of Kolyvagin’s Eu-
ler systems; an expository book may be [CoSu2006] for recent works,
but excluding the story of the origins of the Main Conjecture as ex-
plained in Solomon–Greither papers [Sol1990, Grei1992], Washington’s
book [Was1997] and Ribet’s Lectures [Rib2008, Rib2008b].

In another direction, we refer to enlargements of the algebraic/arith-
metic aspects of p-adic characters in the area of metabelian Galois groups
by Jaulent, with applications to class groups and units (see for instance
[Jau1981, Théorème 1 and consequences], [Jau1984, Jau1986] in a class
field theory context, then [Lec2018, SchS2019] in a geometric or Galois
cohomology context).

Due to the huge number of articles dealing with the concept of “Main
Conjecture”, many recent (or not) articles may have escaped our notice.

1.2. Introduction of Arithmetic ϕ-objects. Nevertheless, all these
works deal with an algebraic definition of the ϕ-class groups H alg

ϕ , from
the p-class group HK (for irreducible p-adic characters ϕ); that is to say,
when GK := Gal(K/Q) is cyclic, of order g (i.e., K = Kχ is the fixed
field by the kernel of a rational character χ as we have explained):

H
alg
ϕ := HK ⊗Zp[GK ] Zp[µg], for all ϕ | χ,

with the Zp[µg]-action σ ∈ GK 7→ ψ(σ) (ψ | ϕ of degree 1 and order g).

Put K = K ′K0, where [K0 : Q] is prime to p and [K ′ : Q] a p-power.
We then prove (Theorem 4.1 (ii)) that, from the expression:

H
alg
χ =

{
x ∈ HK , νK/k(x) = 1, ∀ k & K}
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(Theorem 3.7, where νK/k is the algebraic norm), one gets:

H
alg
ϕ =

(
{x ∈ HK , νK/k(x) = 1, ∀ k & K}

)
ϕ0

,

(where ϕ = ϕ0ϕp, ϕ0 of prime to p order, ϕp of p-power order and
where ( )ϕ0

denotes a ϕ0-component obtained with the corresponding
semi-simple idempotent), contrary to our definition:

H
ar
ϕ :=

(
{x ∈ HK , NK/k(x) = 1, ∀ k & K}

)
ϕ0

,

where NK/k is the arithmetic norm.

See § 2.2 for equivalent characterizations of H alg
ϕ and H ar

ϕ using local
cyclotomic polynomials Pϕ, then for a summary of the main properties
and results of the paper.

In the non semi-simple case p | g, the distinction between algebraic
and arithmetic ϕ-components is not done in the literature. This does not
matter for relative p-class groups H

−
K and torsion p-groups TK since we

will prove that the two notions coincide (Theorems 5.8, 6.1); so the case
of these invariants is definitely solved, contrary to that of ϕ-components
of p-class groups of real fields K in the non semi-simple case deduced
from the “χ-formulas” given in Theorem 7.5 and the important relation
that we talked about:

#HK =
∏

ϕ∈ΦK

#H
ar
ϕ (Theorems 3.12, 4.5).

We compare the two definitions H alg, H ar in § 3.3 and Appendix A.2,
with numerical illustrations showing the gap between them and involving
capitulation phenomenon of p-classes in p-extensions (see the detailed
Examples A.2.2, A.2.3).

1.3. Relation between the modules H and T . If one considers, in
the real case, the Zp[G ]-modules TK , one gets, for them, an easier anni-
hilation theorem from the p-adic Mellin transform of Stickelberger ele-
ments (see § 6.2). Moreover, the norm maps Nk/k′ are surjective and the
transfer maps Jk/k′ are injective under Leopoldt’s conjecture [Gra1982,
Théorème I.1], [Jau1986, Ng1986, Jau1998] (collected in [Gra2005, The-
orem IV.2.1]); so this family behaves as that of relative class groups,
which allows an obvious statement of the Finite AMC and then its proof
with similar techniques, as done for instance in [Grei1992].

The order of the p-groupTK is closely related to the p-adic L-functions
“at s = 1” [Coa1977] and a particularity of TK is its interpretation by
means of the three Zp[G ]-modules H

cyc
K , RK and WK ; see [Gra2005,

Lemma III.4.2.4] leading to the exact sequence (6.1) and the formula
#TK = #H

cyc
K · #RK · #WK , where WK is an easy canonical invariant

depending on local p-roots of unity, RK is the normalized p-adic regula-
tor [Gra2018, Lemma 3.1] and H

cyc
K a subgroup of HK (equal to HK ,

except “the part” corresponding to the maximal unramified extension
contained in the cyclotomic Zp-extension of K, which simply depends
on ramification of p in K).

The order of the group RK is (up to an obvious factor) the classical
p-adic regulator which intervenes in the p-adic analytic formulas due to
the pioneering works of Kubota–Leopoldt on p-adic L-functions, then
that of Amice–Fresnel–Barsky (e.g., [Fre1965]), Coates, Ribet and many
other; see a survey in [Gra1978b] and a lecture in [Rib1979] where is
used the beginnings of the concept of p-adic pseudo-measures of Mazur,
developed by Serre [Ser1978]). See in [Gra2016, Gra2019] more complete
studies and conjectures about RK and TK .
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At this time was stated the Iwasawa formalism of the Main Conjecture
by Greenberg [Gree1975, Gree1977] after Iwasawa [Iwa1964].

1.4. Main unsolved problem today. Let K/Q be a real cyclic exten-
sion with a non trivial maximal p-sub-extension (non semi-simple case).
Let EK (resp. FK) be the group of units (resp. of Leopoldt’s cyclotomic

units) then EK = EK ⊗Zp and FK = FK ⊗Zp; let ÊK be the subgroup
of EK generated by the Ek’s for all k & K.

It would remain to prove our conjecture [Gra1977, § III] for the p-adic
characters ϕ of K saying that (see also Remarks 7.7 and 8.2):

#H
ar
ϕ = wϕ · #(EK/ÊK · FK)ϕ, wϕ ∈ {1, p},

where:

H
ar
ϕ :=

{
x ∈ HK , x

Pϕ(σ) = 1 & NK/k(x) = 1, ∀ k & K
}

and:
(EK/ÊK · FK)ϕ := {ε̃ ∈ EK/ÊK · FK , ε̃

Pϕ(σ) = 1},
where Pϕ is the local cyclotomic polynomial attached to ϕ and σ a

generator of Gal(K/Q). For the ϕ-component (EK/ÊK · FK)ϕ, the
two notions (arithmetic and algebraic) coincide, but the ϕ-class group
must be defined in the arithmetic sense. One proves, Theorem 4.1, that

(EK/ÊK ·FK)ϕ = (EK/ÊK ·FK)ϕ0
, ϕ = ϕ0ϕp; indeed, (EK/ÊK ·FK) is

a χ-object for χ above ϕ since it is annihilated by all the relative norms.

2. Abelian extensions

The idea of definition of the ϕ-objects owes a lot to the work of
Leopoldt [Leo1954, Leo1962] and their writing, in french, by Oriat in
[Or1975, Or1975b]. Some outdated notations in these papers and ours

are modified, after changing ℓ into p (e.g., Ωp 7→ Qp, Ω̂p 7→ Cp, Γ 7→ Zp).

2.1. Characters. Let Qab be the maximal abelian extension of Q con-
tained in an algebraic closure Q of Q; let Qp be the p-adic field and Qp
an algebraic closure of Qp containing Q. We put G := Gal(Qab/Q)):

Notations 2.1. Let Ψ be the set of irreducible characters of G , of de-
gree 1 and finite order, with values in Qp. We define the sets of irre-
ducible p-adic characters Φ, for a prime p ≥ 2, the set X of irreducible
rational characters and the sets of irreducible characters ΨK , ΦK , XK ,
of K ⊂ Qab.

The notation ψ | ϕ | χ (for ψ ∈ Ψ, ϕ ∈ Φ, χ ∈ X ) means that ϕ is a
term of χ and ψ a term of ϕ.

Let s∞ ∈ G be the complex conjugation and ψ ∈ ΨK ; if ψ(s∞) = 1
(resp. ψ(s∞) = −1), we say that ψ is even (resp. odd) and we denote
by Ψ+

K (resp. Ψ−
K) the corresponding subsets of characters. Since Ψ±

K is

stable by any conjugation, this defines Φ±
K , X

±
K .

Let χ ∈ X ; we denote by gχ, Kχ, Gχ =: 〈σχ〉, fχ, Q(µgχ), the order

of any ψ | χ, the subfield of K fixed by Ker(χ) := Ker(ψ), Gal(Kχ/Q),
the conductor of Kχ, the field of values of the characters, respectively.

The set X has the following easy property considered as the “Main
theorem” for rational components (e.g., [Leo1954, Chap. I, § 1, 1]):

Theorem 2.2. Let K/Q be a finite abelian extension and let (Aχ)χ∈XK ,
(A′

χ)χ∈XK be two families of positive numbers, indexed by the set XK

of irreducible rational characters of K. If for all subfields k of K, one
has

∏
χ∈Xk

A′
χ =

∏
χ∈Xk

Aχ, then A
′
χ = Aχ for all χ ∈ XK .
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The interest of this property is that analytic formulas (giving for in-
stance orders AK of some finite p-adic invariants AK of abelian fields K)
may be canonically decomposed under identities AK =

∏
χ∈XK

Aχ, to

be compared with algebraic relations #AK =
∏
χ∈XK

#Aχ for suitable

Zp[G ]-modules Aχ, so that #Aχ = Aχ for all χ; the corresponding Fi-
nite AMC being the same statement, replacing rational characters χ by
p-adic ones ϕ, under the existence of natural relations #Aχ =

∏
ϕ|χ

#Aϕ

and Aχ =
∏
ϕ|χAϕ for suitable Zp[G ]-modules Aϕ; the main problem

being precisely what definition for the isotopic components Aχ and Aϕ.

2.2. Main results of the article. Let M = (MK)K∈K be a family of
Z[G ]-modules, indexed with the set K of finite abelian extensions and
provided with the arithmetic norms NK/k and transfer maps JK/k, for
any k ⊆ K, where JK/k ◦NK/k = νK/k ∈ Z[Gal(K/k)] (algebraic norm).
We associate with M the family of Zp[G ]-modules M := M⊗ Zp.

We will give more definitions and details in Section 3.1, but we take
note of the fact that, in the class field theory framework about p-class
groups and generalizations, the following remarks are of great specific
significance:

Remarks 2.3. (i) Let Hnr
k and Hnr

K be the p-Hilbert class fields of k
and K, respectively; then the map Gal(Hnr

K /K) → Gal(Hnr
k /k), given by

the restriction of the Artin automorphisms, corresponds, by class field
theory, to the map NK/k : HK → Hk (from norms of ideals) which is
surjective as soon as the p-sub-extension of K/k is totally ramified, which
is almost always the case in the present abelian theory; more precisely,
this is always the case when K = Kχ, since then K is the compositum of
K0, of prime-to-p degree, with K ′ cyclic of p-power degree over Q, thus
totally ramified.

(ii) On the contrary, the transfer map JK/k, corresponding to exten-
sion of classes (from that of ideals), is not necessarily injective in p-
extensions; if this fact is well known precisely in Hnr

k /k (but Hnr
k is not

abelian over Q), it is very frequent in totally ramified abelian p-extensions
as K/K0, described above; a fact less known which has interesting conse-
quences (see, e.g., [Gra2022, Gra2023, Gra2023b] for an extensive study
of capitulation phenomena, where numerical experiments show that ca-
pitulation is a common occurrence contrary to what one might think).

We define various χ-components Malg
χ , Mar

χ , M alg
χ , M ar

χ (for χ ∈ X )

and the associated ϕ-components M alg
ϕ , M ar

ϕ (for ϕ ∈ Φ), as follows:

Let Pχ be the global gχth cyclotomic polynomial, let Pϕ be the local
cyclotomic polynomial associated with ϕ | χ (so that Pχ =

∏
ϕ|χ Pϕ in

Zp[X ]). We define:




Malg
χ :=

{
x ∈ MKχ , x

Pχ(σχ) = 1}, M
alg
χ := Malg

χ ⊗ Zp,

M
alg
ϕ :=

{
x ∈ M

alg
χ , xPϕ(σχ) = 1

}
,

Mar
χ := {x ∈ MKχ ,NKχ/k(x) = 1, ∀ k & Kχ}, M

ar
χ := Mar

χ ⊗ Zp,

M
ar
ϕ := {x ∈ M

alg
ϕ , NKχ/k(x) = 1, ∀ k & Kχ}.

Then M ar
ϕ =

{
x ∈ MKχ , x

Pϕ(σχ) = 1 & NKχ/k(x) = 1, ∀ k & Kχ

}
,

also equal to the ϕ0-component of M ar
χ .

Being annihilated by Pχ(σχ) (resp. Pϕ(σχ)) Malg
χ and M alg

χ (resp.

Malg
ϕ and M alg

ϕ ) are Z[µgχ ]-modules (resp. Zp[µgχ ]-modules), for the

law defined via σ ∈ G 7→ ψ(σ) ∈ µgχ , for ψ | χ (resp. ψ | ϕ).
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(i) Then we have the following results:

• Malg
χ =

{
x ∈ MKχ , νKχ/k(x) = 1, ∀ k & Kχ} (Theorem 3.7),

• M alg
χ =

⊕
ϕ|χ

M
alg
ϕ , M ar

χ =
⊕
ϕ|χ

M
ar
ϕ (Theorems 4.1, 4.5).

(ii) Assume that K/Q is cyclic and MK finite:

(ii ′) If, for all sub-extensions k/k′ of K/Q, the norm maps Nk/k′

are surjective, then:

• #MK =
∏

χ∈XK

#Mar
χ (Theorem 3.12),

(ii ′′) Let K/K0 be the maximal p-sub-extension of K; if, for all
sub-extensions k/k′ of K/K0, the norm maps Nk/k′ are surjective, then:

• #M ar
χ =

∏
ϕ|χ

#M
ar
ϕ (Theorem 4.5).

The above conditions of surjectivity of the norms are automatically
fulfilled for the families H (class groups), H = H⊗ Zp (p-class groups)
and T (torsion groups of abelian p-ramification).

(iii) Applying this to H and T , we obtain:

(iii ′) For all characters χ ∈ X −, we have:

• Har
χ = Halg

χ and H ar
ϕ = H alg

ϕ , ∀ϕ | χ (Theorem 5.8);

• #Har
χ = #Halg

χ = 2αχ · wχ ·
∏
ψ|χ

(
− 1

2 B1(ψ
−1)

)
(Theorem 5.10), in

terms of generalized Bernoulli numbers.

(iii ′′) For all characters χ ∈ X +, we have:

• Har
χ ⊆ Halg

χ and H ar
ϕ ⊆ H alg

ϕ , ∀ϕ | χ (see Examples A.2.2, A.2.3
for strict inclusions);

• #Har
χ = wχ ·

(
EKχ : ÊKχ·FKχ

)
(Theorem 7.5), in terms of cyclotomic

units, where ÊKχ := 〈Ek 〉k&Kχ
.

(iii ′′′) For all even characters χ, we have:

• T ar
χ = T alg

χ and T ar
ϕ = T alg

ϕ , ∀ϕ | χ (Theorem 6.1);

• #T ar
χ = w cyc

χ ·
∏
ψ|χ

1
2 Lp(1, ψ) (Theorem 6.2), in terms of p-adic L-

functions.

(iv) The Arithmetic Invariants of finite Zp[G ] modules MK are defined
by means of the obvious algebraic writing of Zp[µgχ ]-modules:

M
ar
ϕ ≃

∏
i≥1

[
Zp[µgχ ]

/
p
nar
ϕ,i(M )

ϕ

]
, mar

ϕ (M ) :=
∑
i
nar
ϕ,i(M ),

where pϕ is the maximal ideal of Zp[µgχ ]; the definition of the Analytic

Invariantsman
ϕ (M ) comes directly from the formulas of #M ar

χ given above
in (iii), taking into account the decompositions M ar

χ = ⊕ϕ|χM ar
ϕ , whence

the statement of the Finite AMC “mar
ϕ (M ) = man

ϕ (M ), for all ϕ ∈ Φ”
(Section 8, Conjecture 8.1).

3. Definition and study of the ϕ-objects

We shall give, in this section, the general definition of θ-objects, θ
being an irreducible character (rational or p-adic), the Galois modules
which intervene in the definition of the θ-objects being not necessarily
finite, as it is the case for unit groups; finally, the prime p is arbitrary
and we shall emphasize on the non semi-simple framework.



10 GEORGES GRAS

3.1. The Algebraic and Arithmetic G -families. Let K be the fam-
ily of finite extensions K of Q, contained in Qab, of Galois group GK .
We assume to have a familyM of (multiplicative) Z[G ]-modules, indexed
by K (called a G -family), M = (MK)K∈K .

In general there exist two families of G -homomorphisms, indexed by
the set of sub-extensions K/k, NK/k : MK → Mk (arithmetic norms),
JK/k : Mk → MK (arithmetic transfers). For all sub-extensions K/k,

we put νK/k :=
∑

σ∈Gal(K/k)
σ ∈ Z[Gal(K/k)] (algebraic norm).

We consider the three following conditions:

(a) For all K ∈ K , M
Gal(Qab/K)
K = MK (so, for x ∈ MK and

σ ∈ G , xσ = xσK , where σK ∈ GK is the restriction of σ to K).

(b) For all sub-extensionK/k, the arithmetic maps NK/k and JK/k
are G -module homomorphisms fulfilling the transitivity formulas:

NK/k ◦NL/K = NL/k and JL/K ◦ JK/k = JL/k,

for all k,K,L ∈ K , k ⊆ K ⊆ L.

(c) For all sub-extension K/k, JK/k ◦NK/k = νK/k on MK .

Definitions 3.1. (i) If M = (MK)K∈K only fulfills condition (a), we
shall say that the family (M,ν ) is an algebraic G -family; one may only
use Galois theory in K/k and the algebraic norms νK/k ∈ Z[Gal(K/k)].

(ii) If moreover, there exist two families (NK/k) and (JK/k) (canon-
ically associated with M) fulfilling conditions (b) and (c), we shall say
that the family (M,N,J) is an arithmetic G -family.

The following properties ofMK and MK := MK⊗Zp are elementary:

Proposition 3.2. (i) For all K ∈ K , νK/K , NK/K , JK/K are the
identity, id, on MK .

(ii) If the map NK/k is surjective or if the map JK/k is injective, then
NK/k ◦ JK/k = [K : k].

Remark 3.3. Note that cohomology is only of algebraic nature since, for
instance in the case of a cyclic extension K/k of Galois group G =: 〈σ〉,
using the class group HK , we have:

H1(G,HK) ≃ Ker(νK/k)
/
H1−σ
K , H2(G,HK) ≃ HG

K

/
νK/k(HK);

in general νK/k(HK) is not isomorphic to NK/k(HK) ⊆ Hk, even if the
arithmetic norm is surjective.

Examples 3.4. The most straightforward examples of such arithmetic
G -families MK are the following ones:

(i) the group EK of units of K (for which maps JK/k are injective);

(ii) the class group HK of K, or the p-class group HK .

(iii) the torsion group TK of the Galois group of the maximal p-
ramified abelian pro-p-extension of K.

(iv) the group-algebra A[GK ], where A is a commutative ring; then
A[GK ] is a A[G ]-module if one puts σ · Ω = σKΩ (product in A[GK ]),
for all Ω ∈ A[GK ] and σ ∈ G . The maps NK/k and JK/k are defined
by A-linearity by NK/k(σK) := σk and, for σk ∈ Gk, by JK/k(σk) :=∑

τ∈Gal(K/k) τ ·σ′
k = νK/k ·σ′

k = νK/kσ
′
k, where σ

′
k is any extension of σk

in GK . So, for σK ∈ GK , νK/k(σK) =
(∑

τ∈Gal(K/k) τ
)
·σK = νK/kσK .

3.2. Definition of the G -modules Malg
χ , Mar

χ , M alg
ϕ , M ar

ϕ . We shall
assume in the sequel that A ∈ {Z, Zp}.
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3.2.1. The Γκ-conjugation. Let χ ∈ X . Let Pχ(X) ∈ Z[X ] be the
gχth global cyclotomic polynomial. Let κA be the field of quotients of
A and let κA(µgχ)/κA be the extension by the gχth roots of unity; so,

Γκ
A
,χ := Gal(κA(µgχ)/κA) is isomorphic to a subgroup of (Z/gχZ)

×.

One defines, following [Ser1998], the Γκ
A
-conjugation on Ψ by putting,

for all τ ∈ Γκ
A
,χ and ψ ∈ Ψ, ψ | χ, ψτ := ψa, where a ∈ Z is a represen-

tative of τ in (Z/gχZ)
×. Then the ψτ (σχ) are the conjugates of ψ(σχ)

in κA(µgχ)/κA. This defines the irreducible characters over κA (with

values in A), θ =
∑

τ∈Γκ
A
, χ
ψτ .

3.2.2. Correspondence between characters and cyclotomic polynomials.
Let χ ∈ X . In κA[X ], Pχ splits into a product of irreducible distinct
polynomials Pχ,i; each Pχ,i splits into degree 1 polynomials over κA(µgχ)

and is of degree [κA(µgχ) : κA].

If ζi ∈ µgχ is a root of Pχ,i, the other roots are the ζτi for τ ∈ Γκ
A
, χ;

thus, these sets of roots are in one by one correspondence with the sets
of the form (ψτ (σχ))τ∈Γ

κ
A
, χ
, ψτ | χ, ψτ ∈ Ψ of order gχ, describing a

representative set of characters for the Γκ
A
-conjugation. One may index,

non-canonically, the irreducible divisors of Pχ in κA[X ] by means of the
characters θ obtained from the characters ψ ∈ Ψ of orders gχ and by
choosing a generator σχ of Gχ. Put:

(3.1) Pθ :=
∏
ψ|θ

(X − ψ(σχ)) ∈ A[X ].

Thus Pχ =
∏
θ|χ
Pθ; for A = Zp we get Pχ =

∏
ϕ∈Φ, ϕ|χ

Pϕ, for A = Z, Pχ

is irreducible. So, A[Gχ]/(Pθ(σχ)) ≃ A[X ]/(Xgχ − 1, Pθ(X)) ≃ A[µgχ ];
then any module annihilated by Pθ(σχ) is a A[µgχ ]-module; the law is

realized, for ψ | θ, via σ ∈ Gχ 7→ ψ(σ) ∈ µgχ .

3.2.3. The Z[µgχ ]-modules Malg
χ and the Zp[µgχ ]-modules M alg

ϕ . We fix
a prime p and consider the set Φ of irreducible p-adic characters of G .

Definition 3.5. Let M = (MK)K∈K be a family of Z[G ]-modules and
let M := M⊗ Zp = (MK)K∈K . Put, for χ ∈ X and ϕ | χ, ϕ ∈ Φ:





Malg
χ :=

{
x ∈ MKχ , x

Pχ(σχ) = 1
}
,

M
alg
χ := Malg

χ ⊗ Zp =
{
x ∈ MKχ , x

Pχ(σχ) = 1
}
,

M
alg
ϕ :=

{
x ∈ MKχ , x

Pϕ(σχ) = 1
}
=

{
x ∈ M

alg
χ , xPϕ(σχ) = 1

}
.

So, M alg
ϕ is a sub-Zp[µgχ ]-module of MKχ (or of M alg

χ ), for the law

σ ∈ Gχ 7→ ψ(σ), ψ | ϕ, and the elements of M alg
ϕ are called algebraic

ϕ-objects.

From relation (3.1), the polynomials Pϕ depend on the choice of the
generator σχ of Gχ, but we have the following property:

Lemma 3.6. The Definitions 3.5, of the Z[µgχ ]-modules Malg
χ and the

Zp[µgχ ]-modules M alg
ϕ , do not depend on the choice of σχ.

Proof. Let ϕ | χ. We have Pϕ(σχ) =
∏
ψ|ϕ

(σχ−ψ(σχ)) and, for a > 0 with

gcd(a, gχ) = 1, let σ′
χ =: σaχ another generator of Gχ giving the relation

P ′
ϕ(σ

′
χ) =

∏
ψ|ϕ

(σ′
χ−ψ(σ′

χ)); one must compare Pϕ(σχ) and P
′
ϕ(σ

′
χ). Then:

P ′
ϕ(σ

a
χ) =

∏
ψ|ϕ

(σaχ−ψ(σaχ)) =
∏
ψ|ϕ

[
(σχ−ψ(σχ))×(σa−1

χ +· · ·+ψa−1(σχ))
]
,
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and similarly, writing 1 ≡ a a∗ (mod gχ), where a
∗ > 0 represents an

inverse of a modulo gχ, we have, from σχ = (σaχ)
a∗ :

Pϕ(σχ) =
∏
ψ|ϕ

[
(σaχ − ψ(σaχ))× (σa(a

∗−1)
χ + · · ·+ ψa(a

∗−1)(σχ))
]
.

Since P ′
ϕ(σ

′
χ) ∈ Pϕ(σχ)Zp[Gχ] and Pϕ(σχ) ∈ P ′

ϕ(σ
′
χ)Zp[Gχ] the in-

variance of the definition of the ϕ-objects follows, as well as that of
χ-objects since Pχ =

∏
ϕ|χ

Pϕ. �

3.2.4. Characterization of Malg
χ , M alg

χ , with algebraic norms. For any

χ ∈ X , we have defined Malg
χ and M alg

χ . We then have the following
characterization, only valid for rational characters, but which will allow
another definition of χ and ϕ-objects (that of “Arithmetic” objects):

Theorem 3.7. Let M be a G -family of Z[G ]-modules and for χ ∈ X ,

let Malg
χ :=

{
x ∈ MKχ , x

Pχ(σχ) = 1
}
. Then:

{
Malg

χ =
{
x ∈ MKχ , νKχ/k(x) = 1, for all k & Kχ},

M
alg
χ =

{
x ∈ MKχ , νKχ/k(x) = 1, for all k & Kχ}

(one may limit the norm conditions to νKχ/kℓ
(x) = 1 for all prime divi-

sors ℓ of [Kχ : Q], where kℓ ⊂ Kχ is such that [Kχ : kℓ] = ℓ).

Proof. With a contribution of a personal communication from Jacques
Martinet (October 1968). We need three preliminary lemmas:

Lemma 3.8. Let n ≥ 1 and let q be an arbitrary prime number. Denote
by Pn the nth cyclotomic polynomial in Z[X ]; then:

(i) Pn(X
q) = Pnq(X), if q | n;

(ii) Pn(X
q) = Pnq(X)Pn(X), if q ∤ n.

Proof. Obvious for (i), (ii) by means of comparison of the sets of roots
of these polynomials. �

Lemma 3.9. Let n = ℓ1 · · · ℓt, t ≥ 2, the ℓi’s being distinct prime
numbers. Then for all pair (i, j), i 6= j, there exist Aji and Aij in Z[X ],

such that AjiP n
ℓ
i

+AijP n
ℓ
j

= 1.

Proof. This can be proved by induction on t ≥ 2.

If t = 2, n = ℓ1ℓ2 and:

P n
ℓ
2

= Pℓ1 = Xℓ1−1 + · · ·+X + 1, P n
ℓ
1

= Pℓ2 = Xℓ2−1 + · · ·+X + 1.

Let’s call “geometric polynomial” any polynomial in Z[X ] of the form
Xd +Xd−1 + · · ·+X + 1, d ≥ 0 (including the polynomial 0).

Then if P and Q 6= 0 are geometric, the residue R of P modulo Q
is geometric with residue (P − R)Q−1 ∈ Z[X ]; indeed, if m ≥ n and
m+ 1 = q(n+ 1) + r, 0 ≤ r < n, we get:

Xm + · ·+X + 1 =

(Xn + · ·+X + 1)×
[
Xm+1−(n+1)+Xm+1−2(n+1)+ · ·+Xm+1−q(n+1)

]

+ 1 +X + · ·+Xr−1

(if r ≥ 1, otherwise the residue R is 0). In particular, the gcd algorithm
gives geometric polynomials; as the unique non-zero constant geometric
polynomial is 1, it follows that if P and Q are co-prime polynomials in
Q[X ], gcd(P,Q) = 1 and the Bézout relation takes place in Z[X ], which
is the case for the geometric polynomials Pℓ1 and Pℓ2 .
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Suppose t ≥ 3. Let ℓi, ℓj , q, be three distinct primes dividing n; put

n′ :=
n

q
; by induction, since ℓi and ℓj divide n′, there exist polynomials

A′j
i , A

′i
j in Z[X ], such that A′j

i (X)Pn′

ℓ
i

(X) + A′i
j (X)Pn′

ℓ
j

(X) = 1, thus,

A′j
i (X

q)Pn′

ℓ
i

(Xq) +A′i
j (X

q)Pn′

ℓ
j

(Xq) = 1. But Lemma 3.8 (ii) gives:

Pn′

ℓ
i

(Xq) = P n
ℓ
i

(X)Pn′

ℓ
i

(X) & Pn′

ℓ
j

(Xq) = P n
ℓ
j

(X)Pn′

ℓ
j

(X),

which yields A′j
i (X

q)P n
ℓ
i

(X)Pn′

ℓ
i

(X) +A′i
j (X

q)P n
ℓ
j

(X)Pn′

ℓ
j

(X) = 1.

We have proved the co-maximality, in Z[X ], of any pair of ideals
(P n

ℓ
i

(X)), (P n
ℓ
j

(X)), i 6= j (the case n = ℓ giving the prime ideal

(Pℓ(X)Z[X ])). �

Lemma 3.10. Let n =
t∏
i=1

ℓaii > 1, ai ≥ 1; put Nn,ℓ(X) :=
ℓ−1∑
i=0

X
n
ℓ i for

any prime ℓ dividing n. Then there exist polynomials Aℓ(X) ∈ Z[X ] such
that Pn(X)=

∑
ℓ|n
Aℓ(X)Nn,ℓ(X) and

〈
Nn, ℓ(X), ℓ | n

〉
Z[X]

= Pn(X)Z[X ].

Proof. Assume by induction on n that Pn(X) =
∑
ℓ|n
Aℓ(X)Nn,ℓ(X) (with

t fixed), and let q | n; we have, from Lemma 3.8 (i):

Pnq(X) = Pn(X
q) =

∑
ℓ|n
Aℓ(X

q)Nn,ℓ(X
q).

Since we have Nn,ℓ(X
q) =

ℓ−1∑
i=0

X
n
ℓ q i = Nnq,ℓ(X), we obtain that if the

lemma is true for n, it is true for nq for all q | n. It follows that if the
property is true for all square-free integers n, it is true for all n > 1. So
we may assume n square-free to prove the lemma by induction on t.

If n = ℓ1, Pℓ1(X) = Xℓ1−1 + · · ·+X + 1 = Nℓ1,ℓ1(X) and the claim
is obvious. If n = ℓ1ℓ2 · · · ℓt, t ≥ 2, with distinct primes, put nk = n

ℓk
for

all k; by assumption, Pn
k
(X) =

∑
1≤s≤t, s6=k

Aks (X)Nn
k
,ℓs(X), hence:

Pn
k
(Xℓk) = Pn

k
ℓk(X) · Pn

k
(X)

= Pn(X)Pn
k
(X) =

∑
1≤s≤t s6=k

Aks (X
ℓk)Nn,ℓs(X),

whence Pn(X)Pn
k
(X) ∈

〈
Nn, ℓ(X), ℓ | n

〉
Z[X]

, for all k; since t ≥ 2,

Lemma 3.9 applies; a Bézout relation in Z[X ] between any two of the
Pn

k
(say Pni

and Pnj
) yields Pn(X) × 1 ∈ 〈Nn, ℓ(X), ℓ | n〉Z[X], giving

the result.

We have proved that the ideal generated, in Z[X ], by the Nn,ℓ(X),
ℓ | n, contains Pn(X)Z[X ]. Let’s see that Pn(X) contains that ideal; it
is sufficient to see that for all ℓ | n, Nn,ℓ(X) = Pℓ(X

n
ℓ ); any root of unity

ζn of order n (i.e., root of Pn(X)), is a root of Nn,ℓ(X) since ζ
n
ℓ
n = ζℓ 6= 1

and
ℓ−1∑
i=0

ζiℓ = 0; then Pn(X) | Nn,ℓ(X) in Z[X ] (monic polynomials). �

We apply this to Pχ(σχ) = Pgχ(σχ) and to Ngχ,ℓ(σχ) = νKχ/kℓ
, where

kℓ is, for all ℓ | gχ, the unique sub-extension ofKχ such that [Kχ : kℓ] = ℓ.
The theorem immediately follows. �
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3.2.5. Application to the definition of Mar
χ . Let M be an arithmetic G -

family, provided with norms N and transfer maps J with J ◦N = ν.

Definition 3.11. By analogy with Theorem 3.7 giving, for χ-objects,
the characterization Malg

χ :=
{
x ∈ MKχ , νKχ/k(x) = 1, for all k & Kχ}

and M alg
χ = Malg

χ ⊗ Zp, we define the modules of arithmetic χ-objects:

{
Mar

χ := {x ∈ MKχ , NKχ/k(x) = 1, for all k & Kχ} ⊆ Malg
χ

M
ar
χ := Mar

χ ⊗ Zp.

Then Mar
χ is a sub-Z[µgχ ]-module of Malg

χ and M ar
χ is a sub-Zp[µgχ ]-

module of M alg
χ , with laws defined via the choice of ψ | χ (resp. ψ | ϕ).

We have Mar
χ = Malg

χ as soon as the JKχ/k’s are injective (for all
k & Kχ or simply the kℓ’s). One verifies easily that if the norms NKχ/kℓ

are surjective for all ℓ | gχ, then Malg
χ /Mar

χ has exponent a divisor of∏
ℓ|gχ

ℓ, whence M alg
χ /M ar

χ of exponent 1 or p.

3.3. Comparison with classical definitions of θ-components. In
all classical papers, the θ-components Mθ (θ rational or p-adic, above
ψ ∈ Ψ) is defined, in an abelian field K of Galois group GK , by:

Mθ := M ⊗A[GK ] A[θ],

where A[θ] := A[ψ] is the ring of values of θ over A; the action being
defined via (σ, x) ∈ GK × Mθ 7→ xψ(σ) ∈ Mθ. We shall compare this
definition with Definition 3.11 considering irreducible p-adic characters
ϕ. We have the classical algebraic definition of ϕ-objects attached to M ,
that is to say, the largest quotient such that Gχ acts by ψ ([Grei1992,
Definition, p. 451], [PeRi1990, § 1.3], [Maz2017]):

M̂ϕ := M ⊗Zp[Gχ]
Zp[µgχ ] ≃ M /Pϕ(σχ) · M

Another viewpoint [Sol1990, § II.1, pp. 469–471], is to define M̂ ϕ as
the largest sub-Zp[Gχ]-module of M , such that Gχ acts by ψ. Whence:

M̂
ϕ := {x ∈ M , xPϕ(σχ) = 1} = M

alg
ϕ ,

with the exact sequence 1 → M̂ ϕ = M alg
ϕ −→ M −→ Pϕ(σχ) · M → 1

giving the equalities #M̂ϕ = #M̂ ϕ = #M alg
ϕ for finite modules.

Moreover, our forthcoming Definition 4.3 of M ar
ϕ :

M
ar
ϕ := M

ar
χ ∩ M

alg
ϕ (with Definition 3.11 of M ar

χ ),

introduces another kind of computations. Indeed, the Main Theorem
on abelian fields in the literature is concerned by algebraic definitions

similar to M̂ϕ or M̂ ϕ, but our conjecture given in the 1970’s used M ar
ϕ

and new analytic expressions giving #M ar
χ , justifying the conjectural

values of #M ar
ϕ for finite MK ’s.

It is immediate to verify that, in the non semi-simple case p | gχ,
(M alg

ϕ : M ar
ϕ ) is equal to the order of the capitulation kernel of JKχ/kp ,

where kp is the subfield of Kχ such that [Kχ : kp] = p. In the semi-
simple case p ∤ #Gχ, M ≃ Mϕ ⊕

[
Pϕ(σχ) · M

]
whatever the definitions

(see again Examples of Appendix A.2).
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3.4. Arithmetic factorization of #MK and #MK . Let M be an
arithmetic G -family where all the Z[G ]-modules MK , K ∈ K , are finite;
then we can state:

Theorem 3.12. Let K/Q be a cyclic extension and assume that for all
sub-extension k/k′ of K/Q, the maps Nk/k′ are surjective. Then:

#MK =
∏

χ∈XK

#Mar
χ ,

where Mar
χ := {x ∈ MKχ , NKχ/k(x) = 1, ∀ k & Kχ} (Definition 3.11).

Assuming only the cyclicity of the p-Sylow subgroup of GK , one obtains,
#MK =

∏
χ∈XK

#M
ar
χ .

Proof. One may replace the Mk, k ⊆ K, by the finite Zp[GK ]-modules
Mk := Mk⊗Zp, for all primes dividing #MK , using the previous results,
then globalizing at the end. Two classical lemmas are necessary.

Lemma 3.13. Assume that p ∤ [k : k′]. If Nk/k′ : Mk −→ Mk′ is sur-
jective (resp. if Jk/k′ : Mk′ −→ Mk is injective), then Jk/k′ is injective
(resp. Nk/k′ is surjective).

Proof. From Proposition 3.2, we know that Nk/k′ ◦ Jk/k′ = [k : k′];
whence the proofs since [k : k′] is invertible modulo p. �

Put GK = G0 ⊕H , where G0 is a subgroup of prime-to-p order and
H (cyclic of order pn) is the p-Sylow subgroup of GK . Let K0 (resp.
K ′
n) be the field fixed by H (resp. G0).

The set of subfields of K is of the form {Kχi
, χi ∈ XK , 0 ≤ i ≤ n},

where χi is the rational character above ψi := ψ0 ψ
pn−i

p , where ψp ∈ ΨK′
n

is of order pn and ψ0 ∈ ΨK0 ; thus Kχi
is the compositum Kχ0

K ′
i:

3.4.1. Schema I.

pi

Kn=KKχn

Kχi

K ′
n

KiK ′

i

Kχ0
K0K ′

0=Q

G0

H

g0G0

Let M ∗
Kχ

i

:= Ker(NKχ
i
/Kχ

i−1
), 1 ≤ i ≤ n, then put M ∗

Kχ
0

:= MKχ
0
.

By assumption, we have the exact sequences of Zp[GK ]-modules:

(3.2) 1 −→ M
∗
Kχ

i
−−−→ MKχ

i

NKχi
/Kχi−1−−−−−−→ MKχ

i−1
−→ 1, 1 ≤ i ≤ n.

One considers them as exact sequences of Zp[G0]-modules. The idem-
potents of this algebra are, for all χ0 ∈ XK0 , of the form:

eχ0
=

1

#G0

∑
σ∈G0

χ0(σ
−1)σ ∈ Zp[G0].

From Leopoldt [Leo1954], [Leo1962, Chap. V, § 2], as the norm
maps are surjective and the transfer maps injective, regarding the sub-
extensions k/k′ of prime-to-p degrees inK/Q, we get the following canon-
ical identifications:

Lemma 3.14. Let M be an arithmetic G -family whose elements MK

are Zp[G0 ⊕ H ]-modules in the above sense. Then M
eχ

0

Ki
≃ M

eχ
0

Kχ
i

and

(M ∗
Ki

)eχ0 ≃ (M ∗
Kχ

i

)eχ0 .
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Proof. For all i, we identifie Gal(Ki/K
′
i) with G0 acting by restriction

and put G0 := G0/g0, where g0 := Gal(Kn/Kχn
). Thus, by abuse of

notation, we identify νKi/Kχ
i
with νKn/Kχn

=: νg0 ; moreover, since the

degrees of these extensions are prime to p, we may identify NKi/Kχ
i

with NKn/Kχn
=: Ng0

and JKi/Kχ
i
with JKn/Kχn

=: Jg0 . Thus Ng0
is

surjective and Jg0 injective. One computes that eχ0
=

νg0
#g0

eχ0
, where

eχ0
:=

1

#G0

∑
σ∈G0

χ0(σ
−1)σ ∈ Zp[G0]; but we have:

(3.3) νg0
(MKi) = Jg0 ◦Ng0

(MKi) ≃ Ng0(MKi) ≃ MKχ
i
;

whence M
eχ

0

Ki
≃ M

eχ
0

Kχ
i

. To get (M ∗
Ki

)eχ0 ≃ Ng0
(M ∗

Ki
)eχ0 ≃ (M ∗

Kχ
i

)eχ0 ,

it suffices to verify that, for all i ≥ 1, Ng0
(M ∗

Ki
) = M ∗

Kχ
i

. The inclusion

Ng0
(M ∗

Ki
) ⊆ M ∗

Kχ
i

being obvious, let x ∈ M ∗
Kχ

i

; we have x = Ng0
(y),

y ∈ MKi , then 1 = NKχ
i
/Kχ

i−1
◦ Ng0

(y) = Ng0
◦ NKi/Ki−1

(y). Let

z := NKi/Ki−1
(y), we have Ng0

(z) = 1; applying JKi−1/Kχ
i−1

, one gets

νg0
(z) = 1; but we have, as for (3.3), νg0(MKi−1) ≃ MKχ

i−1
; whence

z = 1, y ∈ M ∗
Ki

and x ∈ Ng0
(M ∗

Ki
). �

From [Leo1954, Chap. I, § 1, 2; formula (6), p. 21] or our previous
norm computations since p ∤ #G0, we have the relations (surjectivity of
the norms and Lemma 3.13):




M
eχ0

Kχ
i

= {x ∈ MKχ
i
, NKχ

i
/k(x) = 1 for all k, K ′

i ⊆ k & Kχi
},

M
∗ eχ

0

Kχ
i

= {x ∈ M
∗
Kχ

i
, NKχ

i
/k(x) = 1 for all k, K ′

i ⊆ k & Kχi
}.

From the norm definitions of (M ar
Kχ

i

)χ0
and from:

M
∗
Kχ

i
:= {x ∈ MKχ

i
, NKχ

i
/Kχ

i−1
(x) = 1},

it follows that M
∗ eχ

0

Kχ
i

= M ar
χi
, for all i ≥ 1. In the finite case, this yields,

using the above, the exact sequence (3.2) and M ∗
K0

:= MK0 :

(3.4)





n∏
i=0

#M
∗ eχ

0

Kχ
i

= #M
∗ eχ

0

K0

n∏
i=1

#M
eχ

0

Ki

#M
eχ

0

Ki−1

= #M
eχ

0

K ,

∏
χ∈XK

#M
ar
χ =

∏
χ0

#M
eχ0

K = #MK .

Which ends the proof of the theorem and gives useful relations. �

The assumption on the surjectivity of the norms is fulfilled for class
groups H (resp. p-class groups H and p-torsion groups T ), as soon as
K/Q (resp. the maximal p-sub-extension of K/Q) is cyclic, whence to-
tally ramified, class field theory implying the claim (see Remark 2.3 (i)).

4. Semi-simple decomposition of Aχ := Zp[Gχ]/(Pχ(σχ))

Let M be a G -family of Zp[G ]-modules provided with norms and
transfer maps as usual. From ψ ∈ Ψ given, there exist unique ψ0, ψp ∈ Ψ
such that ψ = ψ0 ψp, ψ0 of prime-to-p order and ψp of p-power order.
We restrict the study to K := Kχ for the rational character χ above ψ,
so that, from the previous § 3.4, GK becomes Gχ = G0 ⊕ H of order
gχ = gχ0

· pn.
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We shall use what we call the “semi-simple idempotents” of Zp[Gχ]:

(4.1) eϕ0 :=
1

gχ0

∑
σ∈G0

ϕ0(σ
−1)σ ∈ Zp[G0],

where ϕ0 is the p-adic character over ψ0.

4.1. Semi-simple decomposition of the Aχ-modules M alg
χ . The

algebra Aχ occurs naturally because the M alg
χ are, by definition, Zp[Gχ]-

modules annihilated by Pχ(σχ), then modules over Aχ; this algebra is
an integral domain if and only if p does not split in Q(µgχ)/Q. We shall
see that it is semi-simple even when Gχ is not of prime-to-p order.

Theorem 4.1. Let M be a G -family of Zp[G ]-modules.

(i) For all χ ∈ X we get, by means of the irreducible p-adic characters

ϕ ∈ Φ, the decompositions M alg
χ =

⊕
ϕ|χ

M
alg
ϕ (cf. Definition 3.5).

More generally, if M ′
χ is a sub-Aχ-module of M alg

χ , then M ′
χ= ⊕ϕ|χM ′

ϕ,

where M ′
ϕ = {x′ ∈ M ′

χ, x
′Pϕ(σχ) = 1} ⊆ M alg

ϕ .

(ii) The sub-Aχ-modules M alg
ϕ , ϕ | χ, coincide with the (M alg

χ )e
ϕ0 ’s,

where eϕ0 is the semi-simple idempotent (4.1) associated to ϕ0 above the
component ψ0 of prime-to-p order of ψ | ϕ | χ.

(iii) These modules M alg
ϕ , M ′

ϕ are canonically Zp[µgχ ]-modules by

means of the choice of ψ | ϕ and the action σ ∈ Gχ 7→ ψ(σ) ∈ µgχ .

Proof. One may suppose that gχ ≡ 0 (mod p), otherwise we are in the
semi-simple case and the proof is obvious [Or1975, Part II].

Let ϕ1 and ϕ2 be two distinct p-adic characters dividing χ (if χ = ϕ
is p-adic irreducible, the result is trivial). Put Pϕ1

=: Q1, Pϕ2
(X) =: Q2

(cf. § 3.2.2 for the definition of Pϕ). The following lemma is probably
clear for cyclotomic polynomials, but it is not general (e.g., for p = 5,
take P = x4 − 2x3 + 55x2 − 54x + 379, irreducible in Z[X ], giving, in
Z5[X ], P ≡ (x2 + 24x + 12) · (x2 + 24x + 17) (mod 52) and the PARI
relation bezout(x2 + 24 ∗ x+ 12, x2 + 24 ∗ x+ 17) = [−1/5, 1/5, 1]).

Lemma 4.2. There exist U1, U2 ∈ Zp[X ] such that U1Q1 + U2Q2 = 1.

Proof. We assume that such a relation does not exist and we shall find a
contradiction. Since the distinct polynomials Q1 and Q2 are irreducible
in Qp[X ], one may write a Bézout relation in Zp[X ] of the form (with
U1, U2 not both in pZp[X ]):

U1Q1 + U2Q2 = pk, k ≥ 1,

choosing U1 (resp. U2) of degree less than the degree of Q2 (resp. of
Q1); moreover, since Q1 and Q2 are monic, one may suppose that (for
instance):

U2 /∈ pZp[X ],

otherwise, since k ≥ 1, necessarily U1 ∈ pZp[X ], which is excluded.

Let Dχ be the decomposition group of p in Q(µgχ)/Q and let ζ ∈ µgχ
be a root of Q1 (ζ is of order gχ and the other roots are the ζa for Artin
symbols σa ∈ Dχ); we then have:

(4.2) U2(ζ)Q2(ζ) = pk in Zp[µgχ ];

but Q2(X) =
∏
σa∈Dχ

(X − ζa1 ), where ζ1 =: ζc, for some σc /∈ Dχ; thus:

Q2(ζ) =
∏

σa∈Dχ

(ζ − ζa1 ) =
∏

σa∈Dχ

(ζ − ζac) =
∏

σa∈Dχ

[
ζ(1 − ζac−1)

]
.

Recall that gχ = gχ0
pn, n ≥ 1. Then 1 − ζac−1 is non invertible in

Zp[µgχ ] if and only if ac − 1 ≡ 0 (mod gχ0
), which implies σaσc ∈ Dχ
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since Gal(Q(µgχ)/Q(µgχ0
)) ⊆ Dχ because of the total ramification of p

in the p-extension, but σa ∈ Dχ implies σc ∈ Dχ (absurd). So Q2(ζ) is
a p-adic unit, whence, from (4.2), U2(ζ) ≡ 0 (mod pk), k ≥ 1.

Denote by p the maximal ideal of Zp[µgχ ] and let F p := Zp[µgχ ]/p be

the residue field; for any P ∈ Zp[X ], let P be its image in Fp[X ] and let

ζ be the image of ζ in F p. We have, in Fp[X ]:

(4.3) Q1 = (Q0)
e,

where e = pn−1(p− 1) (ramification index of p in Q(µgχ)/Q) and where

Q0 is irreducible in Fp[X ] (i.e., the irreducible polynomial of ζ, in fact
that of the image of a generator of µgχ0

).

With these notations, any polynomial P ∈ Zp[X ] such that P (ζ) ≡ 0

(mod p) is such that P ∈ Q0 Fp[X ]; in particular, it is the case of U2,

so we will have, in Fp[X ] (since U2 6= 0 in Fp[X ] by assumption), U2 =

A (Q0)
α, α ≥ 1, A 6= 0, Q0 ∤ A. We may assume that A, Q0 ∈ Zp[X ]

have same degrees as their images in Fp[X ]. This yields:

U2 = AQα0 + pB, B ∈ Zp[X ],

thus U2(ζ) = A(ζ)Qα0 (ζ)+pB(ζ) ≡ 0 (mod pk), whence A(ζ)Qα0 (ζ) ≡ 0
(mod p). But A(ζ) is a p-adic unit (since Q0 ∤ A), which gives:

(4.4) Qα0 (ζ) ≡ 0 (mod p).

Let’s show that α ≥ e; the unique case where, possibly, p | gχ and
e = 1 is the case p = 2, n = 1; this case trivially gives α ≥ e. Consider
the gχ0

th cyclotomic polynomial. Assuming e > 1, we have:

Pgχ0
(ζ) =

∏
a∈(Z/gχ

0
Z)∗

(ζ − ζp
na) =

∏
a
[ ζ(1 − ζp

na−1) ];

ζp
na−1 is of p-power order if and only if pna ≡ 1 (mod gχ0

); taking into

account the domain of a, this defines a0 such that pna0 ≡ 1 (mod gχ0
),

whence pna0 6≡ 1 (mod pgχ0
) and 1 − ζp

na0−1 ∈ p \ p2, thus the fact

that Pgχ
0
(ζ) ∈ p \ p2; it follows, from Pgχ

0
= C Qβ0 + pD, β ≥ 1,

C,D ∈ Zp[X ], C(ζ) 6≡ 0 (mod p), that Pgχ
0
(ζ) ≡ C(ζ)Qβ0 (ζ) (mod pe),

thus Qβ0 (ζ) ∈ p \ p2 since e > 1. This implies β = 1 and Q0(ζ) ∈ p \ p2.
The congruence (4.4), written Qα0 (ζ) ≡ 0 (mod pe), implies α ≥ e

and U2 = A′Qe0+pB, where A′ := AQα−e0 ; but we also have from (4.3):

Q1 = Qe0 + p T , T ∈ Zp[X ],

hence U2 = A′ (Q1 − p T ) + pB = A′Q1 + p S, S ∈ Zp[X ]. Since A 6= 0
may be chosen monic by assumption, A′ 6= 0 is monic, U2 is of degree
larger or equal to that of Q1 (absurd), whence A′ = 0 and U2 = 0,
contrary to the assumption U2 /∈ pZp[X ]. �

Give now some properties of the system of idempotents of Aχ =
Zp[Gχ]/(Pχ(σχ)).

Let {ϕ1, . . . , ϕgp} be the set of distinct p-adic characters dividing χ

(thus, gp | φ(gχ0
) is the number of prime ideals dividing p in Q(µgχ0

)/Q,

so that, only the case gp = 1 is trivial for the Finite AMC); from the
property of co-maximality, given by Lemma 4.2, one may write:

(4.5) Zp[X ]
/
(Pχ(X)) ≃

gp∏
u=1

Zp[X ]/
(
Qu(X)

)
≃ (Zp[µgχ ])

gp .
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There exist elements eϕu
(X) ∈ Zp[X ], whose images modulo Pχ(X)

constitute an exact system of orthogonal idempotents of Zp[X ]/(Pχ(X)).
Whence the system of orthogonal idempotents eϕu

(σχ) of Zp[Gχ].

Since (M alg
χ )Pχ(σχ) = 1, we obtain (in the algebraic meaning):

(4.6) M
alg
χ =

gp⊕
u=1

(M alg
χ )eϕu

(σχ).

It remains to verify that:

(M alg
χ )eϕu

(σχ) = M
alg
ϕu

= {x ∈ M
alg
χ , xPϕu

(σχ) = 1}.

If x ∈ (M alg
χ )eϕu

(σχ), x = yeϕu
(σχ) with y ∈ M alg

χ ; then we have

xPϕu
(σχ) = yeϕu

(σχ)Pϕu
(σχ), but eϕu

(σχ)Pϕu
(σχ)) ≡ 0 (mod Pχ(σχ)),

whence yeϕu
(σχ)Pϕu

(σχ) = 1 since y ∈ M alg
χ and x ∈ M alg

ϕu
.

If x ∈ M alg
ϕu

, then xPϕu
(σχ) = 1; writing x =

∏gp
j=1 x

eϕv
(σχ), we get

eϕv
(σχ) ≡ δu,v (mod Pϕu

(σχ)), thus eϕv
(σχ) ≡ 0 (mod Pϕu

(σχ)) for

v 6= u and xeϕv
(σχ) = 1, for v 6= u. Whence x = xeϕu

(σχ).

In the algebra Aχ = Zp[Gχ]/(Pχ(σχ)), we obtain two systems of idem-
potents, that is to say, the images in Aχ of the eϕu,0

∈ Zp[G0], where

ϕu,0 is above the component ψu,0, of prime-to-p order, of ψu, and that
of the eϕu

(σχ) corresponding to ϕu. Fixing the character ϕu =: ϕ above
ψ =: ψ0 ψp and its non p-part ϕ0 above ψ0, we consider both:

(4.7) eϕ0 :=
1

gχ0

∑
σ∈G0

ϕ0(σ
−1)σ

and eϕ0
(σχ) defined as follows by means of polynomial relations in Z[X ]

deduced from (4.5):

(4.8)





eϕ0
(σχ) =Λϕ(σχ) ·

∏
ϕ′ 6=ϕ

Pϕ′(σχ), such that:

Λϕ(X) ·
∏
ϕ′ 6=ϕ

Pϕ′(X) ≡ 1 (mod Pϕ(X));

we denote eϕ0
(σχ) simply by eϕ0

, which is legitimate by Lemma 3.6.

To verify that (M alg
χ )e

ϕ0 = (M alg
χ )eϕ0 , it suffices to show that eϕ0 and

eϕ0
correspond to the same simple factor of the algebra Aχ. For this, we

remark that the homomorphism defined, for the fixed character ϕ, by
σχ 7→ ψ(σχ), ψ | ϕ, induces a surjective homomorphism Aχ −→ Zp[µgχ ]

whose kernel is equal to
⊕
ϕ 6=ϕ

Aχ eϕ′
0
.

Thus, to show that Aχe
ϕ0 = Aχeϕ0

, it suffices to show that ψ(eϕ0) 6= 0;

but, from (4.7), eϕ0 is a sum of the idempotents eψ′
0
= 1

gχ
0

∑
σ∈G0

ψ′
0(σ)σ

−1

where ψ′
0 | ϕ0. It follows, since ψ = ψ0 ψp, that ψ(σ) = ψ0(σ) and then:

ψ(eψ′
0
) =

1

gχ0

∑
σ∈G0

ψ′
0(σ)ψ(σ)

−1 =
1

gχ0

∑
σ∈G0

ψ′
0(σ)ψ0(σ)

−1,

which is zero for all ψ′
0 except ψ′

0 = ψ0 where ψ(eψ0
) = 1. Whence

ψ(eϕ0) 6= 0. Let M alg
χ as Aχ-module; on may write M alg

χ =
⊕
ϕ|χ

(M alg
χ )eϕ0

(from (4.6)) but (M alg
χ )eϕ0 coincides with (M alg

χ )e
ϕ0 = M alg

ϕ (Definition
(4.7)); then, due to the properties of the eϕ0

(defined by (4.8)):

(M alg
χ )eϕ0 = {x ∈ M

alg
χ , xPϕ(σχ) = 1} = M

alg
ϕ .

Denote by eϕ0
any of these two semi-simple idempotents eϕ0 or eϕ0

.

If M ′
χ is a sub-Aχ-module of M alg

χ , then:

M
′
ϕ := (M ′

χ)
eϕ

0 = {x′ ∈ M
′
χ, x

′Pϕ(σχ) = 1}.
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Since Aχ eϕ0
≃ Zp[µgχ ], M alg

ϕ and M ′
ϕ are canonically Zp[µgχ ]-modules.

This finishes the proof of Theorem 4.1. �

4.2. Semi-simple decomposition of the Aχ-modules M ar
χ . From

Definition 3.11, M ar
χ := {x ∈ MKχ , NKχ/k(x) = 1, for all k & Kχ}.

This invites to give the following arithmetic definition:

Definition 4.3. Let M be an arithmetic family of Zp[G ]-modules. For
any ϕ | χ, χ ∈ X , ϕ ∈ Φ, we define the arithmetic Zp[µgχ ]-module:

M
ar
ϕ := M

alg
ϕ ∩ M

ar
χ = {x ∈ M

alg
ϕ , NKχ/k(x) = 1, for all k & Kχ}.

Note that if p | gχ, then the norm conditions may be limited to
NKχ/kp(x) = 1, with [Kχ : kp] = p.

Remark 4.4. So, M ar
ϕ = (M ar

χ )eϕ0 , eϕ0
being defined by (4.7) or (4.8),

and M ar
ϕ is a sub-Zp[µgχ ]-module of M alg

ϕ . In the sequel, we use both the

notations M ar
ϕ = {x ∈ M ar

χ , x
Pϕ(σχ) = 1} and (M ar

χ )eϕ0 . In some recent
papers we privilege the notations M ar

ϕ = (M ar
χ )eϕ0 =: (M ar

χ )ϕ0
, giving,

for instance, the ϕ-component (EKχ/ÊKχ · FKχ)ϕ0
of EKχ/ÊKχ · FKχ ,

since this module is a χ-object for trivial reasons.

So, we have the arithmetic version of Theorem 4.1:

Theorem 4.5. Let M be a G -family of Zp[G ]-modules. Then we get,
for all χ ∈ X , the decomposition M ar

χ =
⊕
ϕ|χ

M
ar
ϕ .

4.3. Summary of the properties of the G -families M alg, M ar.

From Notations 2.1, Theorems 3.12, 4.1, 4.5, Definitions 3.5, 3.11, 4.3:

(i) Recall that Pχ (resp. Pϕ | Pχ) is the gχth global cyclotomic poly-
nomial (resp. the local ϕ-cyclotomic polynomial); let’s define:





M
alg
χ :=

{
x ∈ MKχ , x

Pχ(σχ) = 1
}
,

M
alg
ϕ :=

{
x ∈ MKχ , x

Pϕ(σχ) = 1
}
=: (M alg

χ )ϕ0
,

M
ar
χ := {x ∈ M

alg
χ , NKχ/k(x) = 1, ∀ k & Kχ},

M
ar
ϕ :=

{
x ∈ M

alg
ϕ , NKχ/k(x) = 1, ∀ k & Kχ} =: (M ar

χ )ϕ0
.

Then M alg
χ =

⊕
ϕ|χ

M
alg
ϕ and M ar

χ =
⊕
ϕ|χ

M
ar
ϕ . All these components

are Zp[µgχ ]-modules via σ ∈ Gχ 7→ ψ(σ), for ψ | χ, ψ | ϕ, respectively.
(ii) Assume that the maximal p-sub-extension of K/Q is cyclic and

such that for all its sub-extensions k/k′, the norms Nk/k′ are surjective.
Then, if MK is finite, #MK =

∏
χ∈XK

#M ar
χ =

∏
ϕ∈ΦK

#M ar
ϕ .

5. Application to relative class groups

5.1. Arithmetic definition of relative class groups. We will apply
the previous results using first odd characters χ giving Halg

χ and Har
χ .

The case of even characters requires some deepening of Leopoldt’s results
[Leo1954]; it will be considered in the next section.

For K ∈ K , we denote by HK the class group of K in the ordinary
sense. If K is imaginary, with maximal real subfield K+, we define the
relative class group of K:

(5.1) (Har
K)− := {h ∈ HK , NK/K+(h) = 1}

(the notation Har recalls that the definition of the minus part uses the
arithmetic norm and not the algebraic one νK/K+).
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It is classical to put H+
K := HK+ ; since K/K+ is ramified for the real

infinite places of K+, class field theory implies that NK/K+ is surjective
for class groups in the ordinary sense, giving the exact sequence:

1 → (Har
K)− −→ HK

N
K/K+−−−→ HK+ = H+

K → 1

and the formula:

(5.2) #HK = #(Har
K)− · #H+

K .

We denote by HK (resp. (H ar
K )− and H

+
K := HK+), the p-Sylow

subgroup of HK (resp. (Har
K)− and H+

K). For the Zp[G ]-modules HK ,
we introduce the Aχ-modules H alg

χ and H ar
χ for χ ∈ X , then their

ϕ-components (Definitions 3.5, 3.11, 4.3) which are Zp[µgχ ]-modules.

5.2. Proof of the equality Har
χ = Halg

χ , for all χ ∈ X −. To prove

this equality and then the equalities H ar
ϕ = H alg

ϕ , ϕ | χ, it is sufficient
to consider, for any p ≥ 2, the p-Sylow subgroups HKχ and to prove the

equality of the χ-components H alg
χ , H ar

χ .

Lemma 5.1. Assume that H ar
χ & H alg

χ . Then there exists a unique
sub-extension Kχ′ of Kχ, such that [Kχ : Kχ′ ] = p (i.e., if ψ | χ then
χ′ is above ψ′ = ψp), and a class h ∈ H alg

χ such that h′ := NKχ/Kχ′ (h)

fulfills the following properties:

(i) For all prime ℓ 6= p dividing gχ, νKχ′/k′ℓ
(h′) = 1, where k′ℓ is the

unique sub-extension of Kχ′ such that [Kχ′ : k′ℓ] = ℓ;
(ii) JKχ/Kχ′ (h

′) = 1;

(iii) h′ is of order p in HKχ′ .

Proof. Indeed, if [Kχ : Q] is prime to p, we are in the semi-simple case
and H alg

χ = H ar
χ . So we assume that p | [Kχ : Q], whence the existence

and unicity of Kχ′ .

Let h ∈ H alg
χ , h /∈ H ar

χ , and let h′ := NKχ/Kχ′ (h). Let ℓ | gχ, ℓ 6= p.

(i) We have the following diagramwhere kℓ is the unique sub-extension
of Kχ such that [Kχ : kℓ] = ℓ and then k′ℓ = kℓ ∩Kχ′ :

5.2.1. Schema II.
Kχkℓ

k′ℓ Kχ′

h

h′ :=NKχ/Kχ′
(h)

ℓ

ℓ

pp

We have νKχ/kℓ
(h) = 1 since h ∈ H alg

χ ; applying NKχ/Kχ′ , we get

νKχ′/k′ℓ
(h′) = 1.

(ii) We have JKχ/Kχ′ (h
′) = JKχ/Kχ′ ◦NKχ/Kχ′ (h) = νKχ/Kχ′ (h) = 1

since h ∈ H alg
χ .

(iii) Since the class h′ capitulates in Kχ, its order is 1 or p. Sup-
pose that h′ = 1; for ℓ 6= p, the maps JKχ/kℓ

and JKχ′/k′ℓ
are in-

jective, so NKχ/kℓ
(h) = 1, for all ℓ 6= p dividing gχ; since moreover

h′ = NKχ/Kχ′ (h) = 1, this yields by definition h ∈ H ar
χ (absurd). �

Lemma 5.2. Let K/k be a cyclic extension of degree p and Galois group
G =: 〈σ〉. Let Ek and EK be the unit groups of k and K, respectively.
Consider the transfer map JK/k : Hk → HK ; then Ker(JK/k) is isomor-

phic to a subgroup of H1(G,EK) ≃ E∗
K/E

1−σ
K (where E∗

K = Ker(νK/k)).

The group E∗
K/E

1−σ
K is of exponent 1 or p.



22 GEORGES GRAS

Proof. Let Zk and ZK be the rings of integers of k and K, respectively;
let cℓk(a) ∈ Hk, with aZK =: (α)ZK , α ∈ K×. We then have α1−σ =:
ε ∈ E∗

K . The map, which associates with cℓk(a) ∈ Ker(JK/k) the class

of ε modulo E1−σ
K , is obviously injective.

If ε ∈ E∗
K , then 1 = ε1+σ+···+σp−1

= εp+(σ−1)Ω, Ω ∈ Z[G]; whence
εp ∈ E1−σ

K . �

5.2.2. Study of the case p 6= 2. We are in the context of Lemma 5.1.
Put K := Kχ and k := Kχ′ ; then K/k is of degree p and the class
h′ = NK/k(h) ∈ Hk is of order p and capitulates in K.

Assume that K is imaginary (i.e., χ is odd, thus h ∈ (H ar
K )−); since

K/k is of degree p 6= 2, k is also imaginary and h′ ∈ (H ar
k )−.

We introduce the maximal real subfields, giving the diagram:

5.2.3. Schema III.

KK+

k+ k

h

h′ :=NK/k(h)

2

2

pp G=〈σ〉

Lemma 5.3. Let µ∗
K be the p-torsion sub-group of E∗

K , that is to say the
set of p-roots of unity ζ of K such that NK/k(ζ) = 1. Then the image

of (H ar
k )− ∩Ker(JK/k), by the map Ker(JK/k) → E∗

K/E
1−σ
K of Lemma

5.2, is contained in the image of µ∗
K modulo E1−σ

K .

Proof. Let q be the map E∗
K → E∗

K/E
1−σ
K . Denote by x 7→ x the com-

plex conjugation in K. If h′ ∈ (H ar
k )−∩Ker(JK/k), then Nk/k+ (h

′) = 1

and νk/k+(h
′) = h′h′ = 1; if h′ = cℓk(a) we then have aa = aZk, a ∈ k×,

and aZKaZK = aZK , with aZK = (α)ZK and aZK = (α)ZK , α ∈ K×

(since a and a become principal in K), which yields relations of the
form α1−σ = ε, α1−σ = ε, ε, ε ∈ E∗

K . From the relation aa = aZk,
one obtains, in K, αα = ηa, η ∈ EK , then α1−σα1−σ = η1−σ, giving
εε = η1−σ.

From [Has1952, Satz 24], ε = ε+ ζ, ε+ ∈ EK+ , ζ ∈ µK . So q(εε) =

q(ε+2) = 1. Since p is odd and E∗
K/E

1−σ
K of exponent divisor of p,

ε+ ∈ E1−σ
K ; since ε ∈ E∗

K , we have ζ ∈ E∗
K , whence:

q(ε) = q(ζ) ∈ q(µ∗
K) = µ∗

K/(E
1−σ
K ∩ µ∗

K),

and the lemma. �

Lemma 5.4. The group q(µ∗
K) (of order 1 or p) is of order p if and

only if µ∗
K = 〈ζ1〉 and E1−σ

K ∩ 〈ζ1〉 = 1, where ζ1 is of order p.

Proof. A direction being obvious, assume that q(µ∗
K) = µ∗

K/(E
1−σ
K ∩µ∗

K)
is of order p and let ζ be a generator of µ∗

K (necessarily, ζ 6= 1). If ζ ∈ k,
then NK/k(ζ) = ζp, so ζp = 1 and ζ = ζ1 ∈ k.

If ζ /∈ k, K = k(ζ); it follows that ζ1 ∈ k and that ζp ∈ k (since
[K : k] = [Q(ζ) : k ∩ Q(ζ)] = p), thus K/k is a Kummer extension of
the form K = k( p

√
ζr), ζr of order pr, r ≥ 1, ζ = ζr+1, and ζ

1−σ = ζ1,
giving NK/k(ζ) = ζp = 1, hence ζ = ζ1 ∈ k (absurd). So we have

ζ = ζ1 ∈ k and E1−σ
K ∩ µ∗

K ⊆ 〈ζ1〉. Thus, q(µ∗
K) being of order p,

necessarily E1−σ
K ∩ µ∗

K = 1. �

Lemma 5.5. If (H ar
k )− ∩ Ker(JK/k) 6= 1, this group is of order p and

K/k is a Kummer extension of the form K = k( p
√
a), a ∈ k×, aZk = ap,
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the ideal a of k being non-principal (such a Kummer extension is said
to be “of class type”).

Proof. If h′ ∈ (H ar
k )− ∩ Ker(JK/k), h

′ := cℓk(a) 6= 1, this means that

aZK = αZK , α ∈ K×; so α1−σ = ε, ε ∈ E∗
K ; from Lemma 5.4, q(ε) =

q(ζ1)
λ, hence ε = ζλ1 η

1−σ, η ∈ EK , whence α1−σ = ζλ1 η
1−σ and in

the equality aZK = αZK one may suppose α chosen modulo EK such
that α1−σ = ζλ1 ; moreover we have λ 6≡ 0 (mod p), otherwise α should
be in k and a should be principal. Thus α1−σ = ζ′1 of order p and
αp = a ∈ k×, whence K = k(α) is the Kummer extension k( p

√
a);

we have aZK = apZK , hence aZk = ap, since extension of ideals is
injective. �

We shall show now that the context of Lemma 5.5 is not possible for
a cyclic extension K/Q, which will apply to Kχ/Q:

5.2.4. Schema IV.
K=k( p

√
a)K ′

k′ k

K0Q

p

pn−1

SinceK = k( p
√
a), with aZk = ap, only the prime ideals dividing p can

ramify in K/k. Consider the above decomposition of the extension K/Q
for p 6= 2, with K/K0 and K ′/Q cyclic of p-power degree pn, K/K ′ and
K0/Q of prime-to-p degree, and let ℓ be a prime number totally ramified
in K ′/Q (such a prime does exist since GK′ ≃ Z/pnZ); this prime is
then totally ramified in K/K0, hence in K/k, which implies ℓ = p and p
is the unique ramified prime in K ′/Q.

This identifies the extensionK ′/Q. Its conductor is pn+1, n ≥ 1, since
p 6= 2; thus K ′ is the unique sub-extension of degree pn of Q(µpn+1) and
k′ is the unique sub-extension of degree pn−1 of Q(µpn) (in other words,
K ′ is contained in the cyclotomic Zp-extension). Since ζ1 ∈ k, one has
µpn ⊂ k, µpn+1 ⊂ K and µpn+1 6⊂ k, so K = k(ζ) = k( p

√
ζp), with ζ of

order pn+1.

It suffices to apply Kummer theory which shows that k( p
√
a) = k( p

√
ζp)

implies a = ζλpbp, with p ∤ λ and b ∈ k×; so aZk = bpZk = ap, whence
a = bZk principal (absurd).

So in the case p 6= 2, for K/Q imaginary cyclic and K/k cyclic of
degree p, we have the relation (H ar

k )− ∩ Ker(JK/k) = 1 (injectivity of
JK/k on the relative p-class group).

5.2.5. Case p = 2. The extension K/Q is still imaginary cyclic, k is
necessarily equal to K+ and σ is the complex conjugation s∞.

From [Has1952, Satz 24] the “index of units” Q−
K is trivial in the

cyclic case; thus for all ε ∈ E∗
K , ε = ε+ζ, ε+ ∈ k, ζ root of unity

of 2-power order; then NK/k(ε) = 1 yields ε+2 = 1, thus ε+ = ±1
and ε = ζ′ = ±ζ; since K/Q is cyclic (whence Q(ζ)/Q cyclic), we
shall have ε ∈ {1,−1, i,−i}. Recall that h′ = NK/k(h) ∈ Ker(JK/k),

h′ = cℓk(a) 6= 1, with aZK = αZK and α1−σ = ε ∈ E∗
K . One may

assume ε ∈ {−1, i,−i} (ε 6= 1 since α /∈ k×):

(i) Case ε = −1. Then α1−σ = −1, α2 =: a ∈ k×, α /∈ k×, and we
get the Kummer extension K = k(

√
a) with aZk = a2, a non-principal

(Kummer extension of class type).
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(ii) Case ε = ±i. Then α1−σ = ±i with −1 = (±i)1−σ; one may
assume α1−σ = i. This yields α2i−1 ∈ k×. Put α2 = ic, c ∈ k×; it
follows a2ZK = α2ZK = cZK , hence a2 = cZk.

Let τ be a generator of GK ; one has α2τ = iτcτ = −icτ = −cτ−1α2,
hence α2τ = α2d, d := −cτ−1 ∈ k×; we obtain (αZK)2τ = (αZK)2dZK ,
thus a2τZK = a2ZKdZK giving a2τ = a2dZk.

If d ∈ k×2, d = e2, e ∈ k×, and aτ ∼ a saying that h′ is an invariant
class in k/Q.

If d /∈ k×2, the relation α2τ = α2d shows that d = (ατ−1)2 ∈ K×2;

from Kummer theory, since K = k(
√
d) = k(i), one obtains d = −δ2,

δ ∈ k×, and a2τ = a2δ2ZK , still giving aτ = a · δZk and an invariant
class in k/Q.

But K is the direct compositum over Q of k = K+ and Q(i) and must
be cyclic, so [k : Q] is necessarily odd and an invariant class in k/Q is of
odd order giving the principality of a in k (absurd).

So, only case (i) is a priori possible.

Consider the following diagram, with K/K0 and K ′/Q cyclic of 2-
power order, then K/K ′ and K0/Q of odd degree, where we recall that
aZk = a2 with a non-principal and aZK = αZK , α ∈ K×. Similarly,
sinceK/k is only ramified at 2, thenK/K0 andK

′/Q are totally ramified
at 2, the conductor of K ′ is a power of 2, say 2r+1, r ≥ 1 (K ′ is an
imaginary cyclic subfield of Q(µ2r+1)):

5.2.6. Schema V.
K=k(

√
a)K ′

k′ k = K+

K0Q

2 〈 s∞ 〉

The Kummer extension K ′/k′ is 2-ramified of the form K ′ = k′(
√
a′),

a′ ∈ k′×. So we have a′Zk′ = a′2 or a′Zk′ = a′2p′, where p′ | 2 in k′. But
all the subfields of Q(µ2∞) have a trivial 2-class group; thus, one may
suppose that a′ is, up to k′×2, a unit or an uniformizing parameter of
k′. Then K = k(

√
a′) is not of class type (absurd); so h′ = 1. Whence:

Proposition 5.6. For any imaginary cyclic extension K/Q and any
relative extension K/k of prime degree, (H ar

k )−∩Ker(JK/k) = 1 if p 6= 2
(the relative classes of k do not capitulate in K), then Ker(JK/K+) = 1

if p = 2 (the real 2-classes of k = K+ do not capitulate in K).

Using the order formula (5.2) yields:

Corollary 5.7. We get JK/K+(HK+) ≃ H
+
K := HK+ = NK/K+(HK)

and the direct sum HK = (H ar
K )− ⊕ JK/K+(HK+).

We have obtained the following result about relative class groups:

Theorem 5.8. Let K be an imaginary cyclic field of maximal real sub-
field K+. Let p be any prime number and set H = H⊗ Zp. Define:

(5.3)

{
(H ar

K )− := {h ∈ HK , NK/K+(h) = 1}
(H alg

K )− := {h ∈ HK , νK/K+(h) = 1}.

Then H ar
K = H

alg
K , H ar

ϕ = H alg
ϕ for all ϕ ∈ Φ−

K , (Har
K)− = (Halg

K )−.
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Proof. For all subfield k of K with [K : k] = p, JK/k is injective

on (H ar
k )− if p 6= 2 and JK/K+ is injective on HK+ for p = 2; so

νK/k = JK/k ◦ NK/k yields (H ar
K )− = (H alg

K )− from Definition 3.11,

then (Har
K)− = (Halg

K )− by globalization. �

We shall write simply H−
K for the two notions “alg” and “ar” in

the cyclic case. Using Theorem 4.1 we may write, for all χ ∈ X −,
#H alg

χ = #H ar
χ =

∏
ϕ|χ

#H
ar
ϕ .

Corollary 5.9. Let K/Q be an imaginary cyclic extension. Then:

#H+
K =

∏
χ∈X

+
K

#Har
χ & #H−

K =
∏
χ∈X

−
K

#Har
χ .

Proof. To apply Theorem 3.12, we shall prove that all the arithmetic
norms are surjective in any sub-extension k/k′ of K/Q; we do this for
each p-class group; so the proof of the surjectivity is only necessary in
the sub-extensions k/k′ of p-power degree; then we use the fact that
this property holds as soon as k/k′ is totally ramified at some place.
This comes from Remark 2.3 about cyclic extensions. So Theorem 3.12
implies #HK =

∏
χ∈XK

#Har
χ .

From (5.2), #HK = #H−
K · #H+

K and we can also apply Theorem

3.12 to the maximal real subfield K+ of K, giving #H+
K =

∏
χ∈X

+
K

#Har
χ ,

whence the formulas taking into account the relation Har
χ = Halg

χ for odd
characters (Theorem 5.8). �

5.3. Computation of #Har
χ for χ ∈ X −. For an arbitrary imaginary

extension K/Q, we have (e.g., from [Has1952, p. 12] or [Was1997, The-
orem 4.17]) the formula:

#H−
K = Q−

Kw
−
K

∏
ψ∈Ψ−

K

(
− 1

2 B1(ψ
−1)

)
, B1(ψ

−1) :=
1

fχ

∑
a∈[1,fχ[

ψ−1(σa) a,

where w−
K is the order of the group of roots of unity of K and Q−

K the

index of units; from [Has1952, Satz 24], Q−
K = 1 when K/Q is cyclic.

Recall that Har
χ := {h ∈ HKχ , NKχ/k(x) = 1, for all k & Kχ}; then:

Theorem 5.10. Let χ ∈ X −, let gχ be the order of χ, fχ its conductor;

then #Har
χ = #Halg

χ = 2αχ ·wχ ·
∏
ψ|χ

(
− 1

2 B1(ψ
−1)

)
, where αχ = 1 (resp.

αχ = 0) if gχ is a 2-power (resp. if not) and:

(i) wχ = 1 if Kχ is not an imaginary cyclotomic field;

(ii) wχ = p if Kχ = Q(µpn), p 6= 2 prime, n ≥ 1;

(iii) wχ = 2 if Kχ = Q(µ4) for p = 2.

Proof. We use [Or1975b, Proposition III (g)] or [Leo1954, Chap. I, § 1 (4)]
recalled in Theorem 2.2; it is sufficient to prove that for any imaginary
cyclic extension K/Q, #H−

K =
∏

χ∈X
−
K

(
2αχ ·wχ ·

∏
ψ|χ

(
− 1

2 B1(ψ
−1)

))
, the

expected equality will come from Theorem 5.8 and the relation:

#H−
K =

∏
χ∈X

−
K

#Har
χ .

So, it remains to prove that
∏
χ∈X

−
K

(
2αχ · wχ

)
= w−

K .

Consider the following diagram, where K/K0 and K ′/Q are cyclic of
2-power degree and where K/K ′ and K0/Q are of odd degree. :
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5.3.1. Schema VI.
KK ′

K ′+ K+

K0Q

22

As K+ and K ′+ are real, αχ = 0, except when gχ is a 2-power, hence for
the unique χ0 defining K ′ for which αχ = 1; whence

∏
χ∈X

−
K
2αχ = 2.

If K does not contain any cyclotomic field (different from Q), then
w−
K = 2, moreover, all the wχ are trivial and the required equality holds

in that case. So, let Q(µpn), n ≥ 1, be the largest cyclotomic field
contained in K; this yields two possibilities:

5.3.2. Schema VII.

KK+

Q(µpn )+ Q(µpn )

Q Q(µp)Q(µp)+

K+ K

Q(µ4)Q

p 6= 2 p = 2

If p 6= 2,
∏
χ∈X

−
K
wχ = pn (due to the n odd characters defined by the

Q(µpi), 1 ≤ i ≤ n) and, for p = 2, this gives
∏
χ∈X

−
K
wχ = 2; whence

the result (cf. [Has1952, Chap. III, § 33, Theorem 34 and others]). �

Remark 5.11. We have #H−
K =

Q−

Kw−

K

2n
−
K

∏
χ∈X

−
K

#Halg
χ , for any imag-

inary extension K, where n−
K is the number of imaginary cyclic sub-

extensions of K of 2-power degree and w−
K is the 2-part of wK (resp.

1
2wK) if Q(µ4) 6⊂ K (resp. Q(µ4) ⊂ K). See [Gra1976, Remarque II 2,
p. 32].

5.4. Annihilation theorem for H
−
K . Before significant improvements

by means of Stickelberger’s elements (leading to the construction of p-
adic measures, to index formulas and annihilators of various invariants),
Iwasawa [Iwa1962] proves the following formula for the cyclotomic fields
K = Q(µpn), p 6= 2, n ≥ 1, of Galois group GK :

#H−
K =

(
Z[GK ]− : BKZ[GK ] ∩ Z[GK ]−

)
,

where Z[GK ]− := {Ω ∈ Z[GK ], (1+ s∞) ·Ω = 0}, s∞ being the complex

conjugation, and BK :=
1

pn

∑
a∈[1, pn[, p ∤ a

a σ−1
a where σa ∈ GK denotes

the corresponding Artin automorphism.

This formula does not generalize for arbitrary imaginary extension
K/Q (see the counterexample given in [Gra1976, p. 33]). Many con-
tributions have appeared (e.g., [Leo1962, Gil1975, Coa1977, Gra1978,
All2013, All2017]; for more precise formulas, see [Sin1980], [Was1997,
§ 6.2, § 15.1], among many other). Nevertheless, we gave in [Gra1976]
another definition in the spirit of the ϕ-objects which succeeded to give
a correct formula.

5.4.1. General definition of Stickelberger’s elements. Let K ∈ K \ {Q}.
Let fK =: f > 1 be the conductor of K and let Q(µf ) be the corre-
sponding cyclotomic field. Define the more suitable writing of the Stick-
elberger element defined in [Gra1978, Chap.IV, § 1] or [Gra1978b, Chap.I,
§ 1], from the study of partial zêta-functions in [Coa1977, §§ 2.1, 3.2], and
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that leads to a new normalized definition of Gauss sums (in the summa-
tion, integers a are prime to f and Artin symbols are taken over Q):

BQ(µf )
:= −

f∑
a=1

(
a

f
− 1

2

)
·
(Q(µf )

a

)−1

.

Note that the part
∑f

a=1

(Q(µf )

a

)−1
is the algebraic norm νQ(µf )/Q which

does not modify the image of BQ(µf )
by ψ, for ψ ∈ Ψ, ψ 6= 1.

We shall use two arithmetic G -families: the G -family M, for which
MK = Z[GK ] and the G -family S defined by:

(5.4)





SK := BKZ[GK ] ∩ Z[GK ], where

BK := NQ(µf )/K
(BQ(µf )

)=−
f∑
a=1

(
a

f
− 1

2

)(
K

a

)−1

.

Lemma 5.12. For any c, prime to 2f , let Bc
K :=

(
1 − c

(
K

c

)−1)
·BK ;

then Bc
K ∈ Z[GK ].

Proof. We have:

Bc
K =

−1

f

∑
a

[
a
(
K

a

)−1

− ac
(
K

a

)−1(K

c

)−1]
+

1− c

2

∑
a

(
K

a

)−1

.

Let a′c ∈ [1, f ] be the unique integer such that a′c ·c ≡ a (mod f); put:

a′c · c = a+ λa(c)f , λa(c) ∈ Z;

using the bijection a 7→ a′c in the summation of the second term in

between
[ ]

and the relation
(
K

a′c

)(
K

c

)
=

(
K

a

)
, this yields:

Bc
K =

−1

f

[∑
a
a
(
K

a

)−1

−
∑
a
a′c · c

(
K

a′c

)−1(K

c

)−1]
+

1− c

2

∑
a

(
K

a

)−1

=
−1

f

∑
a

[
a− a′c · c

](
K

a

)−1

+
1− c

2

∑
a

(
K

a

)−1

=
∑
a

[
λa(c) +

1− c

2

](
K

a

)−1

∈ Z[GK ].

We have λf−a(c) +
1−c
2 = −

(
λa(c) +

1−c
2

)
, which proves that:

(5.5) Bc
K = B′c

K · (1− s∞), B′c
K ∈ Z[GK ],

useful in the case p = 2 and giving NK/K+(Bc
K) = 0. �

Definition 5.13. Let K be an imaginary abelian field. Put:

AK := {Ω ∈ Z[GK ], ΩBK ∈ Z[GK ]}
(AK is an ideal of Z[GK ] and SK := BK · AK (cf. (5.4)). Denote by
ΛK ∈ AK the least rational integer such that ΛKBK ∈ Z[GK ] (thus
ΛK | 2f , where f is the conductor of K).

For K = Kχ, χ ∈ X −, we put AKχ =: Aχ and ΛKχ =: Λχ.

Since we will only use images by ψ ∈ Ψ− of elements of Q[GK ], we

can neglect, by abuse, the term
∑f

a=1
1
2

(
K
a

)−1
in some reasonings and

computations, using 1
f

∑f
a=1 a

(
K
a

)−1
instead of BK .

Note that for any odd c prime to f ,
(
1 − c

(
K

c

)−1)
·
f∑
a=1

1

2

(
K

a

)−1

is in Z[GK ] and that such considerations only concerns the case p = 2
when f is an odd prime power with [Q(µf ) : K] odd (see Example A.3

with K = Q(µ47)).
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Lemma 5.14. Let ασ be the coefficient of σ ∈ GK in the writing of
f∑
a=1

a
(
K

a

)−1

on the canonical basis GK of Z[GK ]; in particular, we have

α1 =
∑

a, σa|K
=1

a. Then ασ ≡ c α1 (mod f), where c is a representative

modulo f such that σc = σ−1. Thus, we have ΛK =
f

gcd(f, α1)
.

Proof. The first claim is obvious and ΛK is the least integer Λ such that

Λ · α1

f
∈ Z, since Λ

f∑
a=1

a

f

(
K

a

)−1

∈ Z[GK ] if and only if
Λ · ασ

f
∈ Z for all

σ ∈ GK , thus, for instance, for σ = 1. �

Proposition 5.15. (i) The ideal AK of Z[GK ] is a free Z-module; a Z-
basis is given by the set

{
· · · ,

(
K
a

)
−a, · · · ; ΛK

}
, for the representatives

a of (Z/fZ)× \ {1}.
(ii) If K/Q is cyclic, then AK is the ideal of Z[GK ] generated by(

K
c

)
− c and ΛK, where

(
K
c

)
is any generator of GK .

Proof. See [Gra1976, p. 35–36]. �

5.4.2. Study of the algebraic G -families MK := Z[GK ], SK := BKAK.
We then have (where Mχ and Sχ are ideals of MKχ):

{
MKχ = Z[Gχ], SKχ = BKχ Aχ,

Mχ = {Ω ∈ Z[Gχ], Pχ(σχ) · Ω = 0}, Sχ = BKχAχ ∩Mχ

Lemma 5.16. We have Mχ =
∏
ℓ|gχ

(1 − σ
gχ/ℓ
χ )Z[Gχ], aχ := ψ(Mχ) =∏

ℓ|gχ

(
1− ψ(σχ)

gχ/ℓ
)
; then Sχ gives rise to an ideal bχ multiple of aχ.

Proof. See [Gra1976, Lemmes II.8 and II.9, pp. 37/39]. �

The computation of bχ needs to recall the norm action on Stickel-
berger’s elements; because of the similarity of the result for the norm
action on cyclotomic numbers, we recall, without proof, the following
classical formulas (see, e.g., [Gra2018b, Section 4]):

Lemma 5.17. Let f > 1 and m | f , m > 1, be any modulus; let Q(µf ),

Q(µm) ⊆ Q(µf ), be the corresponding cyclotomic fields. Let:

BQ(µf )
:= −

f∑
a=1

(
a

f
− 1

2

)
·
(Q(µf )

a

)−1

, CQ(µf )
:= 1− ζf .

We have, where NQ(µf )/Q(µm) : Q[GQ(µf )
] −→ Q[GQ(µm)]:

NQ(µf )/Q(µm)(BQ(µf )
) = Ω ·BQ(µm), NQ(µf )/Q(µm)(CQ(µf )

) = CΩ
Q(µm),

where Ω :=
∏
p|f, p∤m

(
1−

(Q(µm)

p

)−1)
.

We can conclude by the following [Gra1976, Théorèmes II.5, II.6]:

Theorem 5.18. Let χ ∈ X − and ψ | χ. The Z[µgχ ]-module Halg
χ = Har

χ

is annihilated by the ideal B1(ψ
−1) · (ψ(σa) − a,Λχ) of Z[µgχ ], where

σa :=
(
K
a

)
is any generator of GK (Lemma 5.14, Proposition 5.15).

The ideal (ψ(σa) − a,Λχ) is the unit ideal except if Kχ 6= Q(µ4) is an
extension of Q(µp) of p-power degree and if Λχ ≡ 0 (mod p), in which
case, this ideal is a prime ideal pχ | p in Q(µgχ). If Kχ = Q(µ4), this

ideal is the ideal (4).
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Theorem 5.19. Let ϕ ∈ Φ− and let ψ | ϕ. Then the Zp[µgχ ]-module

H alg
ϕ = H ar

ϕ is annihilated by the ideal B1(ψ
−1) · (ψ(σa) − a,Λχ) of

Zp[µgχ ], where σa is any generator of GK .

The ideal (ψ(σa)−a,Λχ) of Zp[µgχ ] is the unit ideal except if Kχ 6= Q(µ4)

is extension of Q(µp) of p-power degree, if Λχ ≡ 0 (mod p) and if λ = 1

in the writing ψ = ωλ ·ψp (where ω is the Teichmüller character and ψp
of p-power order), in which case, this ideal is the prime ideal of Zp[µgχ ].

If Kχ = Q(µ4), this ideal is the ideal (4).

We have detailed, in Appendix A.3, the case of K := Kχ = Q(µ47)
by computing #Hχ by means of the Bernoulli number with some anni-
hilation properties.

In [Gra1978, Chap. IV, § 2; Théorème IV1], [Gra1979b, Théorèmes 1,
2, 3], we have given improvements of the annihilation for 2-class groups
but it is difficult to say if the case p = 2 is optimal or not. By way of
example, we cite the following under the above context:

Theorem 5.20. Let χ ∈ X − and ψ | ϕ | χ with ψ = ψ0 ψ2, ψ0 6= 1
of even order, ψ2 of 2-power order. Put K := Kχ. The Z2[µgχ ]-module

Hϕ

/
JK/K+(H +

ϕ′ ) is annihilated by
(
1
2B1(ψ

−1)
)
, where:

H
+
ϕ := {h ∈ HK+ , xPϕ′ (σχ) = 1},

with ϕ′ ∈ Φ+ above ψ′ := ψ0 ψ
2
2.

6. Application to torsion groups of abelian p-ramification

Let K be a totally real number field and let TK be the torsion group
of the Galois group of the maximal p-ramified abelian pro-p-extension
Hpr
K of K.
Under Leopoldt’s conjecture, we have TK = Gal(Hpr

K /K
cyc), where

K cyc is the cyclotomic Zp-extension of K.

Let Hnr
K be the p-Hilbert class field and let Hbp

K be the Bertrandias–

Payan field [BePa1972]; the Zp-module T
bp
K := Gal(Hbp

K /Kcyc) is the
Bertrandias–Payan module ([Ng1986, Sec. 4], [Jau1990, Sec. 2 (b)]).

6.0.1. Schema VIII.
TK

T
bp
K

HK

UK/EK

Hpr
KKcycHnr

K Hbp
KRK WKH

cyc
K

Kcyc

Hnr
KKcyc∩Hnr

K

K

Let Kv be the completion of K at the place v. The above diagram is
related to the exact sequence:

(6.1)
1 → WK −→ torZp

(
UK

/
EK

) logp−−−→
RK := torZp

(
logp

(
UK

)/
logp(EK)

)
−→ 0,

where WK :=
(
⊕v|pµp(Kv)

)
/µp(K), UK denotes the group of local units

at p and EK = EK ⊗Zp is identified with its diagonal image in UK (see
[Gra2005, § III.2, (c), Fig. 2.2; Lemma III.4.2.4] and [Gra2018]).
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Since [Qp(µpe) : Qp] = (p − 1)pe−1, for K fixed there are only finite
number of primes p such that WK 6= 1; for K totally real µp(K) = 1 for
all p > 2. For instance, if K = Q(

√
m) is a real quadratic field, then for

p = 2, WK ≃ µ2 × µ2/µ2 (2 split in K) or µ4/µ2 (m ≡ −1 (mod 8)); for
p = 3, WK ≃ µ3 if and only if m ≡ −3 (mod 9).

In all the sequel, we assume that K is abelian real.

6.1. Computation of #TK for χ ∈ X +. The order of the Zp[GK ]-
module TK is given, analytically, by the residue at s = 1 of the p-adic
ζ-function of K, whence by the values at s = 1 of p-adic L-functions
of the non-trivial characters of K (after [Coa1977, Appendix]); see for
instance [Gra2019, § 3.4, formula (3.8)] for analytic context.

In conclusion we can write, up to p-adic units:

(6.2) #TK = #H
cyc
K · #RK · #WK ∼ [K ∩ Q cyc : Q] ·

∏
ψ 6=1

1
2 Lp(1, ψ).

Since the arithmetic family of these Zp[G ]-modules TK , for real fields
K, follows the most favorable properties (surjectivity of the norms, in-
jectivity of the transfer maps in relative sub-extensions), we can state,
in a similar context as for Theorems 5.8:

Theorem 6.1. For all χ ∈ X + (resp. ϕ ∈ Φ+, ϕ | χ), we have:




T
ar
χ = T

alg
χ = {x ∈ TKχ , x

Pχ(σχ) = 1}
= {x ∈ TKχ , NKχ/k(x) = 1, for all k & Kχ},

T
ar
ϕ = T

alg
ϕ = {x ∈ TKχ , x

Pϕ(σχ) = 1}.

Moreover, if K/Q is real cyclic, #TK =
∏

χ∈XK

#T
ar
χ =

∏
ϕ∈ΦK

#T
ar
ϕ .

We denote simply Tχ (resp. Tϕ) these components in the algebraic
and arithmetic senses. In the analytic point of view, we have the ana-
logue of Theorems 5.10 and 7.5 (see some p-adic formulas about Lp-
functions, from classical papers [KuLe1964, AmFr1972, Gra1978b] and a
broad presentation in [Was1997, Theorems 5.18, 5.24]):

Theorem 6.2. Let χ ∈ X + \ {1}. Then #Tχ ∼ w cyc
χ ·

∏
ψ|χ

1
2 Lp(1, ψ),

where w cyc
χ is as follows, from analytic formula (6.2):

(i) w cyc
χ = 1 if Kχ is not a subfield of Q cyc;

(ii) w cyc
χ = p if Kχ is a subfield of Q cyc.

6.2. Annihilation theorem for TK . An annihilator of TK is given by
the following statement [Gra2018b, Theorem 5.5] which does not assume
any hypothesis on K real and p and gives again the following results
(e.g., [Gra1979], [Or1981]):

Theorem 6.3. Let K be a real abelian field of conductor fK . Let fn be
the conductor of Ln := KQ(µqpn), n large enough, where q = p or 4 as
usual. Let c ∈ Z be prime to 2pfK. For all a ∈ [1, fn], prime to fn, let
a′c ∈ [1, fn] be the unique integer such that a′c · c ≡ a (mod fn) and put
a′c · c− a = λna (c) fn, λ

n
a (c) ∈ Z. Then consider:

AK,n(c) :=
fn∑
a=1

λna (c) a
−1

(
K

a

)
=: A′

K,n(c) · (1 + s∞) ∈ Zp[GK ],

where s∞ is the complex conjugation and A′
K,n(c) =

fn/2∑
a=1

λna (c) a
−1

(
K

a

)
.

Let AK(c) := lim
n→∞

[ fn∑
a=1

λna (c) a
−1

(
K

a

)]
=: A′

K(c) · (1 + s∞); then:
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(i) For p 6= 2, A′
K(c) annihilates the Zp[GK ]-module TK .

(ii) For p = 2, the annihilation is true for 2 ·AK(c) and 4 ·A′
K(c).

It is immediate, using these formulas modulo a suitable power of p,
to compute annihilators; examples are given in Appendix A.4.

Remarks 6.4. (i) In practice, when the exponent pe of TK is known,
one can take n = n0+e, where n0 ≥ 0 is defined by [K∩Q cyc : Q] =: pn0 ,
and use the annihilators AK,n(c), A

′
K,n(c) (but any n ≫ 0 is suitable).

When K = Kχ, the annihilator limit AKχ(c) is related to p-adic L-
functions via the formula:

ψ(AKχ(c)) = (1− ψ(c)) · Lp(1, ψ), for ψ | χ.

If gχ is not a p-power, one can choose c such that 1−ψ(c) is invertible giv-
ing ψ(AKχ(c)) ∼ Lp(1, ψ); if gχ = pn, n ≥ 1, ψ(AKχ(c)) ∼ πχLp(1, ψ),
where πχ is an uniformizing parameter in Qp(µpn).

This theorem is the analog of Theorem 5.19, using Bernoulli’s num-
bers, linked to Lp(0, ωψ

−1), instead of Lp(1, ψ).

(ii) Some other annihilation theorems exist for the Jaulent logarithmic
class group (see [Jau2021, Jau2022, Jau2022b]); [Jau2022b] is related to
Greenberg’s conjecture and, when K contains µp, [Jau2021] obtains that
the Stickelberger ideal annihilates the imaginary component of the loga-
rithmic class group and that its reflection annihilates the real component
of the Bertrandias–Payan module. It will be interesting to formulate a
“Finite AMC” about the ϕ-components of these modules.

7. Application to class groups of real abelian extensions

Denote by E the G -family for which EK , K ∈ K , is the group of
absolute value of the global units of K, the Galois action being defined
by |ε|σ = |εσ| for any unit ε and any σ ∈ G . As we explain in the begin-
ning of the Appendix for explicit computations, conjugates of algebraic
numbers are managed by PARI in a coherent manner corresponding to
an (unknown) embedding of Q in C; thus | | is, for us, the real absolute
value, taken after a fixed embedding K → R, or after PARI numerical
results.

The EK ’s are free Z-modules of rank [K : Q]− 1 for real fields K.

7.1. The Leopoldt χ-units. In [Leo1954] Leopoldt defined unit groups,
Eχ, that we shall call (as in [Or1975b]) the group of χ-units for rational
characters χ ∈ X +\{1}; from the definition of χ-objects and the results
of the previous sections we can write (where νmay be replaced by N):

(7.1)
Eχ = {|ε| ∈ EKχ , |ε|Pχ(σχ) = 1}

= {|ε| ∈ EKχ , νKχ/k(|ε|) = 1, for all k & Kχ}.

What follows is also available in [Leo1954, Leo1962, Or1975b].

Definitions 7.1. (i) For any cyclic real field K, denote by ÊK the
subgroup of EK generated by the Ek’s for all the subfields k & K (or
simply by each of the kℓ such that [K : kℓ] = ℓ | [K : Q], ℓ prime).

(ii) Let QK =
(
EK : ⊕χ∈XKEχ

)
where Eχ is the group of χ-units

(Definition (7.1)) and, for all χ ∈ X
+
K , let Qχ =

(
EKχ : ÊKχ⊕Eχ

)
.
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(iii) Let φ be the Euler totient function and put, for χ ∈ X +:




qχ =
∏
ℓ|gχ

ℓ
φ(gχ)

ℓ−1 , if gχ is not the power of a prime number,

qχ = ℓ
φ(gχ)

ℓ−1 −1 = ℓℓ
n−1−1, if gχ is a prime power ℓn, n ≥ 1,

q1 = 1.

Set qK =
(

gg−2

∏
χ∈XK

dχ

) 1
2

, where g := [K : Q] and dχ is the discrimi-

nant of Q(µgχ).

Lemma 7.2. (i) We have ÊKχ· Eχ = ÊKχ⊕Eχ, for all χ ∈ X +.

(ii) We have, for all cyclic real field K, QK =
∏
χ∈XK

Qχ.

(iii) We have, for all cyclic real field K, qK =
∏
χ∈XK

qχ.

Proof. (i) One may find various equivalent definitions of the χ-units and
their properties in [Leo1954, Chap. 5, § 4] or [Or1975b]; but knowing the
norm characterization (7.1) of Eχ, the proof of (i) is obvious.

(ii) This may be proved locally; for this, we use the G -family EK :=
EK ⊗Zp, for any prime p, and the Eχ’s as above. Then one uses, induc-
tively, Lemma 7.2 (i) with characters ψ | ϕ | χ, written as ψ = ψ0 ψp (ψ0

of prime-to-p order, ψp of order pn, n ≥ 0). See [Gra1976, pp. 72–75].

(iii) From [Has1952, § 15, p. 34; (2), p. 35]; see [Gra1976, pp. 76–77]
for more details. �

7.2. The Leopoldt cyclotomic units. For the main definitions and
properties of cyclotomic units, see [Leo1954, § 8 (1)] or [Or1975].

Definitions 7.3. (i) Let χ ∈ X + of conductor fχ; we define the “cyclo-

tomic numbers” Cχ :=
∏
a∈Aχ

(ζa2fχ−ζ
−a
2fχ

), with ζ2fχ := exp
( iπ

fχ

)
, where

Aχ is a half-system of representatives, in (Z/fχZ)×, of Gal(Q(µfχ)/Kχ).

(ii) Let K be a real abelian field and let CK be the multiplicative group
generated by the conjugates of |Cχ|, for all χ ∈ XK . Then we define the
group of cyclotomic units FK := CK ∩EK and FK := FK ⊗ Zp.

Recall that C2
χ ∈ Kχ and that any conjugate C′

χ of Cχ is such that
C′

χ

Cχ
∈ EKχ . If fχ is not a prime power, then Cχ is a unit and FK = CK .

7.3. Arithmetic computation of #Har
χ , χ ∈ X +. Using Leopoldt’s

formula [Leo1954, Satz 21, § 8 (4)] and Lemma 7.2 (ii), (iii), we obtain
(see [Gra1976, Théorème III.1]):

Proposition 7.4. For all χ ∈ X + \ {1}, let ∆χ =
∏
ℓ|gχ

(
1 − σ

gχ/ℓ
χ

)
;

then #Har
χ =

Qχ

qχ
· (Eχ : C∆χ

χ ) and #Har
χ =

1

qχ

(
EKχ : ÊKχ ⊕ C∆χ

χ

)
,

interpreting Qχ [Gra1976, Corollaire III.1].

To interpret the coefficient qχ, we have replaced the Leopoldt group

C∆χ
χ of cyclotomic units by the larger group FKχ := CKχ ∩ EKχ (Def-

inition 7.3); whence the final result interpreting the coefficient qχ and
giving the analog of Theorem 5.10 for real class groups:

Theorem 7.5. Let Har
χ := {x ∈ HKχ , NKχ/k(x) = 1, for all k & Kχ}.

Let gχ be the order of χ ∈ X + \ {1} and fχ its conductor. Then:

#Har
χ = wχ ·

(
EKχ : ÊKχ· FKχ

)
,

where wχ is defined as follows:
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(i) Case gχ non prime power. Then wχ = 1;

(ii) Case gχ = pn, p 6= 2 prime, n ≥ 1:

(ii ′) Case fχ = ℓk, ℓ prime, k ≥ 1. Then wχ = 1;

(ii ′′) Case fχ non prime power. Then wχ = p;

(iii) Case gχ = 2n, n ≥ 1:

(iii ′) Case fχ = ℓk, ℓ prime, k ≥ 1. Then wχ = 1;

(iii ′′) Case fχ non prime power. Then wχ ∈ {1, 2}.
Proof. For the ugly proof see [Gra1976, Théorème III.2, pp. 78–85]. �

Corollary 7.6. If p ∤ gχ, #Hχ =
(
Eχ : Fχ

)
=

∏
ϕ|χ

(
Eϕ : Fϕ

)
, where

Eϕ = E
eϕ
Kχ

and Fϕ =
(
〈Cχ〉 ⊗ Zp

)eϕ
now giving #Hϕ =

(
Eϕ : Fϕ

)
.

Proof. In the semi-simple case p ∤ gχ, for any Zp[GK ]-module MK ,
Mχ = M

eχ
K and Mϕ = M

eϕ
K , with the usual semi-simple idempotents;

thus, Ẽχ = Ẽ
eχ
χ = E

eχ
Kχ
/Ê

eχ
Kχ

· F eχ
Kχ

= Eχ/Fχ, since Ê
eχ
Kχ

= 1. The claim

for ϕ | χ is the Main Theorem proved in the semi-simple context. �

Remarks 7.7. The viewpoint given by Theorem 7.5, which appears to
have been ignored, seems more convenient than formulas trying to use
Sinnott’s cyclotomic units. Indeed, compare with [Grei1992, Theorem
4.14] using instead H alg

χ (in a partial semi-simple context as explained
in Remark 8.2) and Sinnott’s group of cyclotomic units, larger than clas-
sical Leopoldt’s group of Definition 7.3, but which gives rise to intricate
index formulas. For the Iwasawa context, see for instance [NgLeB06].

Moreover, as we have mentioned in [Gra1977, Remark III.1], an an-
alytic formula for #H alg

χ , χ ∈ X +, does not seem obvious (if any)
because of capitulation aspects (see the examples of Appendix A.2).

Theorem 7.5 suggests a new and simpler statement of the Finite AMC
for the Hϕ’s, especially in the non semi-simple real case (see § 8.2 for the
corresponding analytic values). Recent publications [Gra2022, Gra2023,
Gra2023b] greatly strengthen this definition of the Finite AMC, using the

χ-objects Ẽχ := EKχ/ÊKχ·FKχ and Ẽχ := EKχ/ÊKχ·FKχ (algebraic and
arithmetic). Then:

Ẽχ =
⊕
ϕ|χ

Ẽϕ =
⊕
ϕ|χ

{x̃ ∈ Ẽχ, x̃
Pϕ(σχ) = 1} =

⊕
ϕ|χ

(Ẽχ)ϕ0
.

7.4. Class field theory and regulators. Let K ∈ K be a real cyclic
field defining χ ∈ X + in what follows. To simplify some diagrams, we
assume to be in the most common case where WK = 1 and K ∩Qcyc =
Q, which gives TK = T

bp
K (cf. Diagram of Section 6) and #TK ∼∏

ψ|χ, ψ 6=1
1
2 Lp(1, ψ) (Formula (6.2)). Otherwise, formulas are modified

by means of standard coefficients or indices which do not modify the
philosophy of the results/conjectures; moreover the character of WK ,
related to local cyclotomic Teichmüller ones, gives trivial information
for conjectural aspects.

The Galois group RK ⊆ TK may be compared with a larger “cy-
clotomic regulator” R

cyc
K interpreted as a Galois group only depending

of χ. For this purpose, the following diagram of the maximal abelian
pro-p-extension Kab of K is necessary (from [Gra2005, III.4 (d) & Dia-
gram III.4.4.1] with our present notations), where Hta

K is the maximal
tamely ramified abelian pro-p-extension of K and F×

v the p-Sylow sub-
group of the multiplicative group of the residue field of the tame place v;
let L := Hpr

KH
ta
K :
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7.4.1. Schema IX. ∏
v∤p F×

v

UK

Ẽχ ÊKFK

KabL L(χ)

EK

UK/EK

TK

Hpr
K

Hta
KHnr

K

K

In this diagram, class field theory interprets Gal(Kab/Hta
K ) as the Zp-

module UK of principal local units at p (isomorphic to the direct product
of the inertia groups of the p-places) and Gal(Kab/L) as the Zp-module
EK := EK ⊗Zp (embedded both in UK and the product

∏
v∤p F

×
v of the

inertia groups of the tame places, with suitable Artin maps described in
[Gra2005, § III.4.4.5.1]).

Now, put U ∗
K := {u ∈ UK , NK/Q(u) = ±1}; since K is real, EK is of

finite index in U ∗
K and torZp

(UK/EK) = U ∗
K/EK ≃ RK .

Assume Kcyc ∩ Hnr
K = K to simplify; so Hta

K ∩ Kcyc = Hnr
K then

F := Hta
K KcycHnr

K is fixed by U ∗
K and F ∩Hpr

K = KcycHnr
K . Recall the

exact sequence 1 → Rram
K → RK → Rnr

K → 1 [Gra2021, § 2 & Figure 3],
due to genus theory; so, a sub-extension of L/F may be unramified.

We have moreover Gal(F/KcycHnr
K ) ≃ Gal(L/Hpr

K ) ≃
(∏

v∤pF
×
v

)
/EK :

7.4.2. Schema X.

Zp

Kcyc

HK

KcycHnr
K Hpr

K

F L L(χ) Kab

∏
v∤pF

×
v

K Hnr
K

Hta
K

U ∗

K

RK ≃U ∗

K/EK

RK

TK
EK

Ẽχ ÊKFK

R
cyc
K

UK

UK/Ek

UK/EK

Define (under the previous assumptions), R
cyc
K := U ∗

K/ÊK·FK , which
yields, for χ 6= 1 and K = Kχ, the Zp[GK ]-modules isomorphism:

(7.2) RK ≃ R
cyc
K /Ẽχ.

We then have R
cyc
K ≃ Gal(L(χ)/F ), where L(χ) is the subfield of Kab

fixed by the image of ÊKFK .

Remark 7.8. Let χ ∈ X + \ {1}, K = Kχ; assume to simplify that
WK = 1, wχ = 1 in Theorem 7.5, K ∩Qcyc = Q and Kcyc ∩Hnr

K = K:

(i) Theorem 7.5 and isomorphism (7.2) give, in terms of χ-compo-
nents:

#Ẽχ = #R
cyc
K

/
#RK = #H ar

χ and #Tχ = #Rcyc
χ .

The Aχ-modules Tχ and Rcyc
χ (resp. Ẽχ and H ar

χ ) are not necessarily
isomorphic as shown by the following excerpt giving cyclic cubic fields K
such that Rχ is of 7-rank 2 and Tχ of 7-rank ≥ 3 implying Hχ 6= 1 with
Hχ ≃ Z/7Z⊕ Z/7Z for the followings (no example of 7-rank ≥ 4 exists
in the interval considered):
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x^3+x^2-39666*x-2582719 Structure of the 7-torsion group:[7,7,7]

x^3+x^2-43300*x-3411104 Structure of the 7-torsion group:[7^2,7,7]

x^3+x^2-13226*x-508479 Structure of the 7-torsion group:[7^3,7,7]

x^3+x^2-427660*x-31551829 Structure of the 7-torsion group:[7^4,7,7]

x^3+x^2-2033484*x-966131001 Structure of the 7-torsion group:[7^2,7^2,7]

(ii) The sub-diagram given by the extension Kab/Kcyc, opens an ac-
cess way for an interpretation of the Finite AMC for even characters

or at least for an annihilation theorem of H ar
ϕ by Ẽϕ, in the spirit of

Thaine’s theorem (see § 7.6, Conjectures 7.9, 7.14). Indeed, Ẽχ has same
order as H ar

χ and the units may be seen diagonally embedded in the (in-

finite) product of the places of K. Remark that Ẽϕ is a sub-module of
Rcyc
ϕ (quotient Rϕ) but H ar

ϕ is a quotient of Tϕ (by Rϕ).

7.5. Annihilation conjecture for real p-class groups. Before any

proof of the conjectural equality #H ar
ϕ = #Ẽϕ0

= #(EKχ/ÊKχ· FKχ)ϕ0

(giving a Main Theorem for ϕ ∈ Φ+
K), it will be interesting to prove that

any annihilator of Ẽϕ annihilates H ar
ϕ , which will be more precise than

the annihilators of Tϕ (see Theorem 6.2, Remarks 6.4, 7.8).

To our knowledge, the best known annihilation theorem of real p-class
groups is Thaine’s Theorem [Thai1988], [Was1997, Theorem 15.2] saying
that any annihilator of EKχ/F

′
Kχ

(for a suitable definition of the group of

cyclotomic units F ′
Kχ

) is an annihilator of HKχ . But Thaine’s Theorem

only concerns the semi-simple case.

Mention also annihilation theorems by Solomon [Sol1992], which are
not often optimal because of vanishing of Euler factors; this is discussed
in [Gra2018b]. Finally mention the numerous papers of Greither and
Kučera (like [GrKu2004, GrKu2014, GrKu2021]) on the annihilation of
real class groups, using special units or/and giving information on the
Fitting ideals.

Conjecture 7.9. Let χ ∈ X +\{1} and let ϕ | χ. Any element of Z[µgχ ]

(resp. Zp[µgχ ]) annihilating EKχ/ÊKχ·FKχ (resp. (EKχ/ÊKχ·FKχ)ϕ0
),

annihilates Har
χ (resp. H ar

ϕ ).

In this direction, we state the following lemma, giving some obvious
prerequisites on the subject.

Lemma 7.10. Let MKχ be a torsion-free monogenic Z[Gχ]-module (i.e.,

Z-free and Z[Gχ]-generated by a single element). Let M′
Kχ

be a sub-

module of MKχ such that MKχ/M
′
Kχ

is annihilated by Pχ(σχ)Z[Gχ]

and finite. Then (MKχ/M
′
Kχ

)ϕ :=((MKχ/M
′
Kχ

)⊗Zp)ϕ≃ Zp[µgχ ]/p
λϕ
ϕ ,

λϕ ≥ 0, for all ϕ | χ.

Proof. By assumption, MKχ/M
′
Kχ

is a finite monogenic Z[µgχ ]-module,

of the form Z[µgχ ]/A, A 6= 0; so MKχ/M
′
Kχ

≃ (Z[µgχ ]/A) ⊗ Zp, giv-

ing MKχ/M
′
Kχ

≃ ⊕
ϕ|χ

[
Zp[µgχ ]/p

λϕ
ϕ

]
, with the usual correspondence

between primes p | p and p-adic characters ϕ | χ; whence the claim. �

Remark 7.11. From the Dirichlet–Herbrand theorem on units (see, e.g.,
[Gra2005, Corollary I.3.7.2, Remark I.3.7.3] or [Lang1990, Ch. IX,§ 4])
there exists in EKχ a unit ε generating, with its conjugates, a subgroup
E of EKχ of prime-to-p finite index (we may call it a pseudo Minkowski
unit since Minkowski unit, in the strict sense, do not exist in general).
Then M := Zp[Gχ] · |ε| is monogenic and torsion-free.
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Let M ′
Kχ

:= ÊKχ·FKχ . Taking into account orders, monogenicity and

the fact that (Pχ(σχ)) annihilates MKχ/M
′
Kχ

, Lemma 7.10 is coherent

with an annihilation theorem of the H ar
ϕ ’s from the results of § 7.4.

7.6. Mysterious link between cyclotomic units and classes. The
brief overview, that we give now, must be completed by technical ele-
ments that the reader can find especially in [Was1997, § 15.2, 15.3] (all
of them borrow from classical arithmetic) and in the references that we
talked about, giving systematic generalizations of “Euler systems”.

To simplify, consider the real semi-simple case for p > 2 with K = Kχ

of conductor f ; for ϕ | χ, we need to establish arithmetic links between

Ẽϕ = Eϕ/Fϕ and Hϕ, where Eϕ =: 〈εϕ〉Zp
and Fϕ =: 〈ηϕ〉Zp

is built

from Leopoldt’s cyclotomic units (Definitions 7.3). But Ẽϕ has, a priori,
no obvious connection with class groups, except the analytic equality∏
ϕ|χ

#Hϕ =
∏
ϕ|χ

#Ẽϕ (Corollary 7.6).

The trick, for the proof of the Finite AMC, consists in using a clas-
sical context of “analytic genus theory”, by means of auxiliary cyclic ℓ-
ramified extensions K(µℓ) of degree multiple of the exponent λ pe, e ≥ 1,
of HK (e.g., ℓ ≡ 1 (mod 2pN ), N ≫ e).

Let ℓ ∤ f , ℓ ≡ 1 (mod 2pN), totally split in K; put L0 = Q(µℓ) and
L := L0K:

Let ηfℓ = 1−ζfℓ, ηf = 1−ζf , ηℓ = 1−ζℓ and consider the cyclotomic
numbers ηL := NQ(µ

fℓ
)/L

(
ηfℓ

)
, ηK := NQ(µ

f
)/K(ηf ); by assumption

on the total splitting of ℓ in K/Q, NL/K(ηL) = 1 (cf. Lemma 5.17).
We remark that ηfℓ ≡ ηf (mod πℓ) where πℓ := ηℓ is an uniformizing
parameter at the places above ℓ in L0, so that ηL ≡ ηK (mod πℓ), giving
a ℓ-adic link between ηK and ηL which will be fundamental for the
congruences (7.6):

7.6.1. Schema XI.

〈s〉 ℓ− 1

GK Q(µfℓ)L
ηLπℓ

L0=Q(µℓ)
ηfℓ

K
ηK

Q(µf )
ηf

Q

A main step is to apply Hilbert’s Theorem 90 (Kummer’s Theo-
rem [Kum1855, II]), saying that ηL = αs−1

L , where s is a generator

of Gal(L/K) and αL ∈ L× is such that (αL) ∈ I
〈s〉
L , where I denotes

ideal groups; since αL is defined modulo K×, we can take αL integer in
L (or at least ℓ-integer), whence:

(7.3) (αL) = JL/K(aK) · LΩℓ
0 ,

where aK ∈ IK may be taken prime to ℓ, where L0 is a fixed prime ideal
dividing ℓ in L and:

(7.4) Ωℓ =
∑

σ∈GK
rσ · σ−1, rσ ≥ 0;

thus, since NL/K(L0) = l0, L0 | l0 | ℓ in L/K:

(7.5) (αK) := (NL/K(αL)) = aℓ−1
K · lΩℓ

0 .

But aℓ−1
K is principal, whence lΩℓ

0 principal.

The following property elucidates the “mysterious link” giving an in-
formation that we can “project” on each ϕ-component and obtain the
annihilation of the ϕ-class of l0 by the ϕ-component of Ωℓ:
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Lemma 7.12. Except a finite number of primes ℓ, the ideal LΩℓ
0 of (7.3)

gives a non trivial relation, in the meaning that Ωℓ in (7.4) is not of the

form λ · νL/L0
, λ ≥ 0, giving lΩℓ

0 = (ℓ)λ in (7.5).

Proof. Assume that Ωℓ = λ · νL/L0
; the character of LΩℓ

0 = (πλℓ ), as
Z[GK ]-module, is the unit one and any non-trivial ϕ-component αL,ϕ
of αL is prime to ℓ, thus congruent, modulo any L | ℓ, to ρ

l
∈ Z,

ρ
l
6≡ 0 (mod ℓ) (residue degrees 1 in L/Q). Since Ls = L, we obtain

ηL,ϕ = αs−1
L,ϕ ≡ 1 (mod L); but ηK,ϕ ≡ ηL,ϕ (mod πℓ) leads to ηK,ϕ ≡ 1

(mod l), for all l | ℓ, giving ηK,ϕ ≡ 1 (mod ℓ) (absurd for almost all

ℓ). �

Reducing modulo νL/L0
, one may get Ωℓ 6= 0, “minimal” in an obvious

sense, with rσ ≥ 0 but not all zero. Consider
ασ
L

πrσ
ℓ

modulo L0 and the

conjugations αsL = αL · ηL and
πs
ℓ

πℓ
=

1−ζ
g

ℓ
ℓ

1−ζℓ
≡ gℓ (mod πℓ) (where gℓ is

a primitive root modulo ℓ such that ζsℓ =: ζ
gℓ

ℓ ); one gets:
(

ασ
L

πrσ
ℓ

)s
=

αsσ
L

πsrσ
ℓ

≡ ησLα
σ
L

(gℓπℓ)rσ
≡ ησL

grσ
ℓ

· ασ
L

πrσ
ℓ

(mod L0),

whence:

(7.6) grσℓ ≡ ησL ≡ ησK (mod l0).

Notice that if rσ = 0 for all σ ∈ GK , the above process is empty.
So we have obtained a non-trivial relation between the classes of the
conjugates of l0; for instance, if ηK,ϕ = εp

h

K,ϕ , one gets rσ ≡ 0 (mod ph),
whence a property of annihilation of the ϕ-class group. Recall that αL
is given by an explicit Hilbert resolvent allowing explicit computations.

Remark 7.13. (i) In the literature, the properties of the αL’s give rise

to an homomorphism FK/F
pN

K → Z/pNZ [GK ], of Zp[GK ]-modules, al-
lowing reasoning for the ϕ-components. To get more information, one
varies ℓ, using Chebotarev’s Theorem and Nakayama’s Lemma. Then
the problem of the order of the Hϕ’s needs the knowledge of the whole
analytic formula of Theorem 7.5 (see the details in [Was1997, § 15.2,
15.3], from Thaine’s Theorem).

(ii) We will return elsewhere to the links with genus theory given by
the following fixed-points exact sequence (obtained from the invariant
class of AL, A

1−s
L =: (αL) 7→ NL/K(αL) =: εK):

1 → cℓL(I
〈s〉
L )⊗ Zp −→ H

〈s〉
L −→ EK ∩NL/K(L×)/NL/K(EL) → 1

and (in the present context) the Chevalley–Herbrand formula [Che1933,
pp. 402-406] in L/K:

#H
〈s〉
L = #HK · pe ([K:Q]−1)

(EK : EK ∩NL/K(L×))

and similar formulas in the sub-extensions of L/K (noting that the exact
sequence and Chevalley–Herbrand’s formula may be written in terms of
ϕ-objects without any difficulty; cf. [Gra2022, Gra2023b]). The reason
of such a link with genus theory is the fact that, assuming FM = EM

for the subfield M of L of degree p over K we know that NL/M (FL) =

FM = EM , so that the above exact sequence in L/M reduces to H
〈sp〉
L =

cℓL(I
〈sp〉
L )⊗ Zp and #H

〈sp〉
L = #HM · pe ([K:Q]−1).

(iii) Any “G -family of numbers η ” satisfying, in cyclic extensions

L/K, relations of the form NL/K(ηL) = η
1−FrobL/K(ℓ)

K and ηL ≡ ηK
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(mod
∏

l|ℓ l), for suitable primes ℓ, is called an “Euler system” [Kol2007,

PeRi1990] and gives rise to similar reasonings in many domains.

(iv) Equations of the general form NL/K(y) = NL/K(B), giving

(y) = B · As−1, are fundamental in various questions, as Greenberg’s
conjecture, in a genus theory framework (see [Gra2018, § 3, Algorithm]).
Such equations are due to some x ∈ K×, local norm in L/K at the
ℓ-places, such that (x) = NL/K(B), giving the relation x = NL/K(y),
for some unknown y (Hasse’s norm theorem in L/K). In various papers
(as [Gra2019b, § 7.1]) we have discussed these random aspects by comput-
ing some ideals A, so that we may conjecture the following more precise
property (see Schemas 7.4.1, 7.4.2, Lemma 7.12, Relations (7.3)–(7.6)).

Conjecture 7.14. Let K be a real abelian field of conductor f , of p-
class group of exponent less than 2pN and let ηK := NQ(µ

f
)/K

(
1 − ζf

)
.

Consider primes ℓ ≡ 1 (mod 2pN), totally split in K; let l0 | ℓ in K
and let gℓ be a primitive root modulo ℓ. When ℓ varies, ηK provides
infinitely many elements Ωℓ =

∑
σ∈GK

rσ ·σ−1, with ησK ≡ grσℓ (mod l0),
such that the ideal generated by these relations yields annihilators of the
ϕ-components H ar

ϕ as Zp[GK ]-modules and possibly their structure.

The program, written in Appendix A.5, for cyclic cubic fields, com-
putes the invariants ψ(Ωℓ) ∈ Z[j] only with the knowledge of ηK and
gives tables of results.

These numerical experiments are particularly remarkable and confirm
that the Ωℓ’s define an universal ΩK which replaces, in the real case,
the Stickelberger element of the imaginary case. For this, we notice
that the embeddings (injectivity from [Gra2005, Theorem III.4.4]) of
FK and EK in the direct product

∏
v∤p(F

×
v ⊗ Zp) (see Schemas 7.4.1,

7.4.2) govern the congruences (7.6) giving the relations Ωℓ involving only
FK , without any memory of the arithmetic of the auxiliary fields Q(µℓ).
Then, the Schmidt–Chevalley theorem (local–global principle for powers,
e.g., [Gra2005, § 6.3, Theorem II.6.3.3]) claims that there are infinitely
many primes ℓ (totally split in K) giving the “good” ΩK .

From Lemma 7.10 giving standard structure of Eϕ and Fϕ, it is then
obvious that one obtains equalities of the ϕ-invariants mar

ϕ of Eϕ/Fϕ

and Hϕ in the semi-simple case.

Are there improvements of these techniques being able to distinguish,
for instance, the structures Zp[µgχ ]/pϕ ⊕ Zp[µgχ ]/pϕ and Zp[µgχ ]/p

2
ϕ ?

Remark 7.15. After the writing of this paper, we have considered the
phenomenon of capitulation of classes to give another approach of the
Finite AMC in any real case (semi-simple or not). We develop, in
these articles [Gra2022, Gra2023b], new promising links between: (i) the
Chevalley–Herbrand formula giving the number of “ambiguous classes”
in p-extensions L/K, L ⊂ K(µℓ), for auxiliary primes ℓ ≡ 1(mod 2pN)
inert in K; (ii) the phenomenon of capitulation of HK in L; (iii) the

real Finite AMC #H ar
ϕ = (EKχ : ÊKχ · FKχ)ϕ0

for all ϕ | χ.
We prove that the real Finite AMC is trivially fulfilled as soon as

HK capitulates in L and conjecture that there exist infinitely many such
primes ℓ leading to capitulation.

Computations with PARI programs support this new philosophy of
the Finite AMC and justifies, once again, the relevance of the analytic
definitions, especially in the non semi-simple case.
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8. Invariants (Algebraic, Arithmetic, Analytic)

We fix an irreducible rational character χ ∈ X = X + ∪ X − and
we apply the previous results to the Zp[µgχ ]-modules H alg

ϕ , H ar
ϕ and

T ar
ϕ = T alg

ϕ =: Tϕ, for any ϕ | χ, ϕ ∈ Φ+ ∪ Φ− (ϕ ∈ Φ+ for Tϕ).

8.1. Algebraic and Arithmetic Invariants malg
(M ), mar

(M ). Write
simply that H alg

ϕ , H ar
ϕ and Tϕ are finite Zp[µgχ ]-modules whatever ϕ;

let pϕ be the maximal ideal of Zp[µgχ ]:





H
alg
ϕ ≃ ∏

i≥1 Zp[µgχ ]
/
p
nalg
ϕ,i(H )

ϕ ,

H
ar
ϕ ≃ ∏

i≥1 Zp[µgχ ]
/
p
nar
ϕ,i(H )

ϕ ,

Tϕ ≃ ∏
i≥1 Zp[µgχ ]

/
p
nar
ϕ,i(T )

ϕ ,

where the nϕ,i are decreasing integers up to 0. Put:




malg
ϕ (H ) :=

∑
i≥1 n

alg
ϕ,i(H ), malg

χ (H ) :=
∑

ϕ|χm
alg
ϕ (H ),

mar
ϕ (H ) :=

∑
i≥1 n

ar
ϕ,i(H ), mar

χ (H ) :=
∑

ϕ|χm
ar
ϕ (H ),

mar
ϕ (T ) :=

∑
i≥1 n

ar
ϕ,i(T ), mar

χ (T ) :=
∑
ϕ|χm

ar
ϕ (T ).

Whence the order formulas:

#H
alg
ϕ = pϕ(1)m

alg
ϕ (H ), #H

ar
ϕ = pϕ(1)m

ar
ϕ (H ), #Tϕ = pϕ(1)m

ar
ϕ (T ).

8.2. Analytic Invariants man
(M ). We define, in view of the statement

of the Finite AMC, the following Analytic Invariants man
ϕ , from the

expressions given with rational characters, where valp(•) denotes the
usual p-adic valuation; the purpose is to satisfy the necessary relations
implied by Theorems 3.12, 4.1 about arithmetic components:

∑
ϕ|χ

mar
ϕ (M ) =

∑
ϕ|χ

man
ϕ (M ),

for any family M ∈ {H ,T } and χ ∈ X (cf. Theorems 5.10, 7.5, 6.2).

8.2.1. Case ϕ ∈ Φ− for class groups. Then, Algebraic and Arithmetic
Invariants coincide. The definitions given in [Gra1976, Gra1977] were:

(i) Case p 6= 2 (proven by Solomon [Sol1990, Theorem II.1]).

(i′) Kχ is not of the form Q(µpn), n ≥ 1; then:

• man
ϕ (H −) := valp

( ∏
ψ|ϕ

(
− 1

2B1(ψ
−1)

))
,

(i′′) Kχ = Q(µpn), n ≥ 1; let ψ = ωλ · ψp, ψp of order pn−1 (where
ω is the Teichmüller character); then:

• man
ϕ (H −) := valp

( ∏
ψ|ϕ

(
− 1

2B1(ψ
−1)

))
, if λ 6= 1,

• man
ϕ (H −) := 0, if λ = 1.

(ii) Case p = 2 (proven by Greither [Grei1992, Theorem B], when gχ
is not a 2-power and fχ odd).

(ii′) gχ is not a 2-power; then:

• man
ϕ (H −) := val2

( ∏
ψ|ϕ

(
− 1

2B1(ψ
−1)

))
.

(ii′′) gχ is a 2-power; then:

• man
ϕ (H −) := val2

( ∏
ψ|ϕ

(
− 1

2B1(ψ
−1)

))
+ 1, if Kχ 6= Q(µ4),

• man
ϕ (H −) := 0, if Kχ = Q(µ4).
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8.2.2. Case ϕ ∈ Φ+, ϕ 6= 1, for class groups. From Definition 7.3 and
Theorem 7.5, we consider any real cyclic field K, where we recall that:

ÊK := 〈Ek 〉k&K , FK := CK ∩ EK , EK := EK ⊗ Zp, ÊK := ÊK ⊗ Zp,

FK := FK ⊗Zp, and Ẽχ := EKχ/ÊKχ·FKχ , for which Ẽχ =
⊕
ϕ|χ

Ẽϕ, where

Ẽϕ = {x̃ ∈ Ẽχ, x̃
Pϕ(σχ) = 1}.

Consider the relation #H ar
χ = wχ·

(
EKχ : ÊKχ·FKχ

)
= wχ ·

∏
ϕ|χ

#Ẽϕ

of Theorem 7.5; we remark that wχ = p occurs only when gχ is a p-
power, in which case p is totally ramified in Q(µgχ) and ϕ = χ (which

defines wϕ := wχ). So, we may define man
ϕ (H +) and wϕ as follows from

Ẽϕ ≃ Zp[µgχ ]
/
p
man

ϕ (H +)
ϕ , man

ϕ (H +) ≥ 0:

(i) Case gχ non prime power. Then wϕ = 1 and:

• man
ϕ (H +) := valp(#Ẽϕ).

(ii) Case gχ = pn, p 6= 2 prime, n ≥ 1:

(ii′) Case fχ = ℓk, ℓ prime, k ≥ 1. Then wϕ = 1 and :

• man
ϕ (H +) := valp(#Ẽϕ),

(ii′′) Case fχ non prime power. Then wϕ = p and

• man
ϕ (H +) := valp(#Ẽϕ) + 1.

(iii) Case gχ = 2n, n ≥ 1:

(iii′) Case fχ = ℓk, ℓ prime, k ≥ 1. Then wϕ = 1 and:

• man
ϕ (H +) := valp(#Ẽϕ),

(iii′′) Case fχ non prime power. Then wϕ ∈ {1, 2} and:

• man
ϕ (H +) ∈ {valp(#Ẽϕ), valp(#Ẽϕ) + 1}.

8.2.3. Case ϕ ∈ Φ+ for p-torsion groups. From Theorem 6.2, we define
man
ϕ (T ) as follows (proven by Greither [Grei1992, Theorem C], when gχ

is not a 2-power):

(i) Case where gχ and fχ are not p-powers. Then:

• man
ϕ (T ) := valp

(∏
ψ|ϕ

1
2 Lp(1, ψ)

)
.

(ii) Case where gχ 6= 1 and fχ are p-powers. Then:

• man
ϕ (T ) := valp

(∏
ψ|ϕ

1
2 Lp(1, ψ)

)
+ 1.

8.3. Finite Abelian Main Conjecture. The conjecture we gave in
[Gra1976, Gra1977], especially in the non semi-simple case, where simply
equality of Arithmetic and Analytic ϕ-Invariants. The main justification
of such equalities comes from the easy Theorem 2.2 with the arithmetic
definitions of § 8.1, the analytic definitions of § 8.2 and the arithmetic
expressions of the χ-components that we recall:

(i) Theorem 5.10: Har
χ = 2αχ ·wχ ·

∏
ψ|χ

(
− 1

2B1(ψ
−1)

)
, for χ ∈ X −,

(ii) Theorem 6.2: #Tχ = w cyc
χ ·∏ψ|χ

1
2 Lp(1, ψ), for χ ∈ X +,

(iii) Theorem 7.5: #Har
χ = wχ · (EKχ : ÊKχ ·FKχ), for χ ∈ X +;

they satisfy, for any family M ∈ {H −, H +, T }, the equalities:

• ∑
ϕ|χm

ar
ϕ (M ) =

∑
ϕ|χm

an
ϕ (M ), for all χ ∈ X ,

taking into account the decomposition M ar
χ = ⊕ϕ|χM ar

ϕ (Theorem 4.5).

Moreover, the annihilation properties of Theorems 5.18, 5.19, 5.20,
6.2, enforce the conjecture as well as reflection theorems that were given,
after the Leopoldt’s Spiegelungsatz, in [Gra1998] or [Gra2005, Theorem
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II.5.4.5] giving a more suitable comparison, for instance between Hϕ

and Tωϕ−1 , ϕ ∈ Φ−, where ω is the Teichmüller character. See also
[Or1981, Or1986] for similar informations and complements.

Conjecture 8.1. For any p-adic irreducible character ϕ ∈ Φ, we have:{
mar
ϕ (H ) = man

ϕ (H ) (ϕ ∈ Φ+ ∪ Φ−),

mar
ϕ (T ) = man

ϕ (T ) (ϕ ∈ Φ+).

Remark 8.2. Let K/Q with a maximal p-sub-extension K/K0 cyclic of
degree pn, n ≥ 1, and let Ki, K0 ⊆ Ki ⊂ K, be such that [Ki : K0] = pi.

Let ψ0 ∈ ΨK0 and let ψp ∈ ΨK of order pn; we put ψi = ψ0 ·ψp
n−i

p ∈ ΨKi

and we consider the p-adic characters ϕi above ψi, 0 ≤ i ≤ n.

The Main Conjecture proven by Greither in [Grei1992, Theorem 4.14,
Corollary 4.15], using Sinnott’s cyclotomic units, deals with the semi-
simple context defined by ϕ0 above ψ0 (it is indeed that of the relations

(3.4) which do not give each #H ar
ϕi

compared with #Ẽϕi).

In other words, in his pioneering work, Greither proves the relation
n∑
i=0

mar
ϕi

(H +) =
n∑
i=0

man
ϕi

(H +), for each ϕ0 ∈ ΦK0 , instead of our conjec-

ture mar
ϕi

(H +) = man
ϕi

(H +) for all i ∈ {0, 1, · · · , n}. However see many
improvements by Greither–Kučera in [GrKu2004, GrKu2014] and some
of their other papers.

Remark 8.3. It remains the problem of #H alg
χ and #H alg

ϕ , for which
no analytic formula does exist in the non semi-simple real case. For
instance, in Example A.2.2 with p = 3, K is the compositum of k0 =
Q(

√
4409) with the degree 9 field of conductor 19, χi = ϕi (i ∈ {0, 1, 2})

is the character of the field ki of degree 2 ·3i; then one gets H alg
χi

≃ Z/3Z
while H ar

χi
= 1, as predicted by the conjecture and checked numerically.

In Example A.2.3, one finds H alg
χ1

≃ (Z/3Z)3 while H ar
χ1

≃ (Z/3Z)2.

Of course, the formula #H ar
χ0

· #H ar
χ1

· #H ar
χ2

= #H
alg
K does not hold

for the algebraic definition of class groups.

This phenomenon is due to the capitulation of p-classes in p-exten-
sions and we have given in [Gra2021b, Conjecture 4.1] a general conjec-
ture justified by means of many computations.

8.4. Finite Iwasawa’s theory in cyclic p-extensions. For more de-
tails and an application to classical Iwasawa’s theory for the cyclotomic
Zp-extensions, see [Gra1976, Chap. IV] (the real case being in the spirit
of Greenberg’s conjecture [Gree1976]); nevertheless, the results hold in
arbitrary totally ramified cyclic p-extensions of an abelian field, as fol-
lows depending of a base field real or imaginary:

8.4.1. Real case. Let ψ | ϕ | χ ∈ X + and set ψ = ψ0 · ψp, where
ψ0 is of order g0, prime to p, and ψp of p-power order; then, Gχ =
G0 ⊕ H in an obvious meaning. We consider, temporarily, the semi-
simple idempotents eϕ0

:= 1
g0

∑
σ∈G0

ϕ0(σ
−1)σ, for ϕ0 above ψ0. We have:

Ẽχ := EKχ/ÊKχ· FKχ =
⊕
ϕ|χ

Ẽϕ =
⊕
ϕ|χ

(Ẽχ)ϕ0
,

with Ẽϕ = Ẽ
eϕ

0
χ ; we note that Ê

eϕ
0

Kχ
≃ Eϕ′ and Ẽϕ ≃ E

eϕ
0

Kχ
/Eϕ′ · F eϕ

0

Kχ
,

where ϕ′ is above ψ0 ·ψpp and χ′ above ϕ′. This yields (EKχ/EKχ′ )ϕ ≃
Zp[µgχ ] ([Gra1976, Lemma IV.1]) and the following principle taking place

in the layers of any p-tower KN/K0, of degree p
N over an abelian field

K0, totally ramified at a set of finite places of K0 [Gra1976, Proposition
IV.1]:
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Theorem 8.4. Let χ ∈ X + be such that gχ = g0 · pn, p ∤ g0, n ≥ 2.
Let χ′, χ′′ be such that [Kχ : Kχ′ ] = [Kχ′ : Kχ′′ ] = p. To simplify,
set K := Kχ, K

′ := Kχ′ , K ′′ := Kχ′′ and assume that NK/K′(FK) =
FK′ (see Lemma 5.17 giving the ramification conditions). Let pϕ be the
maximal ideal of Zp[µgχ ]; put (FK/FK ∩ EK′)ϕ ≃ pAϕ , A ≥ 0 and, in

the isomorphism (EK′/EK′′)ϕ′ ≃ Zp[µgχ/p], put:

(FK′/FK′ ∩ EK′′)ϕ′ ≃ paϕ′ ≃ ppaϕ , a ≥ 0,

(NK/K′(EK)/NK/K′(EK) ∩ EK′′)ϕ′ ≃ pbϕ′ ≃ pp bϕ , b ≥ 0.

(i) If a < pn−2 (p− 1), then A = a− b.

(ii) If a ≥ pn−2 (p− 1), then A ≥ pn−2 (p− 1)− b.

This allows to prove again Iwasawa’s formula in the case µ = 0
[Gra1976, Theorems IV.1, IV.2, Remark IV.4] and gives an analytic
algorithm to study the p-class groups in the first layers.

Let k =: k0 be real of prime-to-p degree g and let kcyc =
⋃
n≥0 kn be its

cyclotomic Zp-extension. The condition µ = 0 of Iwasawa’s theory is here
equivalent to the existence of n0 ≫ 0 (corresponding to a character χn0

of order g pn0) such that, for each ϕn0 -component, an0−1 < pn0−2 (p−1)
(case (i) of Theorem 8.4); then the sequence #Hχn

becomes constant
giving the λ-invariant and the relations Ekn−1 = Nkn/kn−1

(Ekn) · Ekn−2 ,

for all n≫ 0; then pλ = (Ekn : Êkn· Fkn) for n≫ 0. More precisely:

pλϕ = #(Ekn/Ekn−1 · Fkn)ϕ0
, n≫ 0.

This methodology does exist in terms of p-adic L-functions for abelian
fields (see, e.g., [Gra1978b, ChapitreV]).

Recall that Greenberg’s conjecture [Gree1976] for a totally real base
field (i.e., λ = µ = 0) is equivalent to the property that the norms
Nkm/kn : Hkm → Hkn , m ≥ n ≫ 0 are isomorphisms (see other equiva-
lent conditions in [Gra2019, Corollary 3.4]). Whence the result:

Theorem 8.5. Let k be a real abelian field of prime-to-p degree. Green-

berg’s conjecture is equivalent to (Ekn : Êkn· Fkn) = constant, for all

n ≫ 0, where Êkn is the subgroup of Ekn generated by the units of the
strict subfields and Fkn is the group of Leopoldt cyclotomic units (Defi-
nitions 7.1 (i), 7.3).

8.4.2. Imaginary case. This part is related to relative p-class groups for
p 6= 2 [Gra1976, Proposition IV.2, Théorème IV.2]:

Theorem 8.6. Let χ ∈ X − be such that gχ = g0 ·pn, p ∤ g0, n ≥ 2. Let
χ′ be such that [Kχ : Kχ′ ] = p. Set K := Kχ, K

′ := Kχ′ and assume
that the Stickelberger elements BK , BK′ are p-integers in Q[GK ] and
that NK/K′(BK) = BK′ (see Lemma 5.17). Put:

B1(ψ
−1)Zp[µgχ ] = pAϕ , A ≥ 0,

B1(ψ
−p)Zp[µgχ/p] = pp aϕ , a ≥ 0.

(i) If a < pn−2 (p− 1), then A = a.

(ii) If a ≥ pn−2 (p− 1), then A ≥ pn−2 (p− 1).

Remark 8.7. The integers A and a are the Analytic Invariantsman
ϕ (H −)

and man
ϕ′ (H

−), respectively, defined § 8.2. From [Gra1976, Remark IV.4],
the Iwasawa µ-invariant is zero as soon as there exists n0 ≫ 0 such that
the case (i) of the theorem is satisfied for all ϕ of Kn0

. In a Zp-extension

k̃/k, this condition implies that the p-rank of the H ar
kn

’s is bounded (a
known result of Iwasawa’s theory [Was1997, Proposition 13.23]).
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9. Illustrations of the Finite AMC with cubic fields

9.1. Introduction. For χ ∈ X + and Ẽχ := EKχ/ÊKχ· FKχ , we have

#H ar
χ = wχ · #Ẽχ (Theorem 7.5), and for any ϕ | χ we have (conjec-

turally):

#H
ar
ϕ = wϕ · #Ẽϕ, wϕ ∈ {1, p}, where Ẽϕ = {x̃ ∈ Ẽχ, x̃

Pϕ(σχ) = 1}.

In another way, we have:




Ẽϕ ≃ Zp[µgχ ]
/
p
man

ϕ (H )
ϕ , man

ϕ (H ) ≥ 0,

H
ar
ϕ ≃

rϕ⊕
i=1

Zp[µgχ ]
/
p
mar

ϕ,i(H )
ϕ , rϕ ≥ 0, mar

ϕ,i(H ) ≥ 0,

and man
ϕ (H ) :=

∑rϕ
i=1m

ar
ϕ,i(H ) to be compared with mar

ϕ (H ).

We intend to see more precisely what happens for these analytic and
arithmetic invariants since the above equality defining man

ϕ (H ) can be

fulfilled in various ways (indeed, Ẽϕ is monogenic and Hϕ may have
arbitrary structure).

We will examine the case of the cyclic cubic fields K = Kχ for primes

p ≡ 1 (mod 3) giving two p-adic characters ϕ | χ; in that case, ÊK = 1
and #H ar

ϕ = (EK : FK).
For example, for p = 7, the possible structures, for the Z[j]-module

EK/FK , are of the form Z[j]
/[
(−2+j)m1 ·(3+j)m2 ·a

]
, (m1,m2 ≥ 0 and

a prime to 7), giving the two ϕi-components Z7/7
m1Z7 and Z7/7

m2Z7

(from
[
Z[j]/(−2 + j)m1

]
⊗ Z7 and

[
Z[j]/(3 + j)m2 ⊗ Z7

]
), for the Ẽϕ’s.

9.2. Description of the computations. The PARI program comput-
ing all the cyclic cubic fields is that given in [Gra2019, § 6.1].

A crucial fact, without which the checking of the ϕ-components of
the GK-modules EK/FK and HK could be misleading, is the definition
of a generator σ of GK giving the correct conjugation, both for the
fundamental units, the cyclotomic ones and the elements of the class
group (see more comments at the beginning of Appendix A).

It is not too difficult to find, from K.fu giving a Z-basis of EK , a
“Minkowski unit” ε and its conjugate εσ such that 〈ε, εσ〉Z = EK , up to
a prime-to-p index; indeed, for the evaluation of ε(x) and ε(g(x)), at a
root ρ ∈ R of P , we only have a set {ρ1, ρ2, ρ3} given in a random order
by polroot(P). Any change of root gives an inconsequential permutation
(ε, εσ) 7→ (ετ , ετσ), for some τ ∈ GK .

For security, we test Reg1/Reg = 1 where Reg1 is the regulator of the
units ε(ρ) and ε(g(ρ)), computed with the root ρ, and where Reg = K.reg
is the true regulator given by PARI.

Then we must write the Leopoldt cyclotomic unit η of K of conductor
f (Definition 7.3) under the form η = εα+β σ, α, β ∈ Z, which is easy
as soon as we have η and ησ. But η is computed by means of the
analytic expression of |C| =

∏
a∈[1,f/2[, σa|K

=1
|ζa2f − ζ−a2f |, as product of

the |ζa2f − ζ−a2f | for the prime-to-f integers a < f/2 such that the Artin

symbol σa =
(Q(µf )/Q

a

)
is in Gal(Q(µf )/K) (which is tested using a

prime qa ≡ a (mod f) giving σa|K = 1 if and only if qa splits in K).

If f is prime, ζ2f − ζ−1
2f generates the prime ideal above f ; thus:

π := NQ(µf )/K
(ζ2f − ζ−1

2f ) = ±C2
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with π3 = f · η′, η′ ∈ EK , whence π3 (1−σ) = η′1−σ = η6 := (C1−σ)6

(Proposition 7.4); the program computes 3 log(C)− 1
2 log(f) =

1
2 log(η

′),

so that, to compute η from η3 =
√
η′

1−σ
, we must divide the regulator

RegC by 3 and multiply α+ j β by 1−j
3 in that case where wχ = 1.

If f is composite, we have η = C obtained via the half-system and
the class number is the product of the index of units by wχ = 3, so
this appear in the results (e.g., for the first example f = 13 · 97, P =
x3 + x2 − 420x − 1728, classgroup = [21] and Index [EK : CK] = 7, but
α + j β = −3 − 2j of norm 7; for f = 32 · 307, P = x3 − 921x− 10745,
classgroup = [21, 3] and Index [EK : CK] = 21, but α + j β = −5 − j of
norm 21).

To define the correct conjugation, ζ2f 7→ ζσ2f =: ζq2f , for some prime
q, we use the fundamental property of Frobenius automorphisms giving
yFrob(q) ≡ yq (mod q), for any q-integer y of K, if q is inert in K/Q;
using xσ = g(x), we test the congruence g(x) − xq (mod q) to decide if

σ = Frob(q) or Frob(q)2, in which case ζσ2f = ζq2f or ζq
2

2f , giving easily
the conjugate ησ.

The program and the numerical results are given in Appendix A.6.1.

Conclusion

Standard probabilistic approaches may confirm (or not) the classical
Cohen–Lenstra–Malle–Martinet heuristics on p-class groups, especially
in the non semi-simple case. Indeed, heuristics on the order of the whole
p-class group ofK are given by that of the components H ar

ϕ ’s which must

be compatible with that obtained for the (EK/ÊK·FK)ϕ0
’s; a remarkable

fact being that the structures are independent, but with (EK/ÊK·FK)ϕ0

monogenic and H ar
ϕ arbitrary as Zp[µgχ ]-module, which means that

heuristics on the structure of H ar
ϕ is another probabilistic problem which

clearly depends on that of the filtration studied in [Gra2017] and acces-
sible to probabilities in the spirit of Koymans–Pagano [KoPa2022] and
Smith [Smi2022] techniques.

Then, the main problem remains a proof of the Finite AMC in the
non semi-simple real case using the statement with Arithmetic ϕ-objects,
especially a proof that for all abelian real field K, with a cyclic maximal
p-sub-extension, we have, for all ϕ ∈ ΦK and gχ non p-power (cf. § 8.2.2):

#H
ar
ϕ = #(EK/ÊK · FK)ϕ0

, ϕ = ϕ0ϕp.

where:

(EK/ÊK·FK)ϕ0
= {ε̃ ∈ (EK/ÊK·FK), ε̃Pϕ(σχ) = 1} = (EK/ÊK·FK)eϕ0 .

As we have explained in Remark 7.15, new tools using auxiliary cy-
clotomic extensions K(µℓ) and capitulation of HK in these extensions
proves the Finite Real Abelian Main Conjecture; unfortunately, the ca-
pitulation conjecture is not yet proved, but is very attractive since it
governs several other arithmetic properties and we believe in this a lot.
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Appendix A. Numerical examples – PARI programs

As the referee pointed out to us, explicit computations in Galois
fields K need to define an embedding of Q in C, especially with PARI
[Pari2016]; so, let’s recall that PARI works in Z[x]/(P ) for irreducible
monic polynomials P defining K and gives a list G = nfgaloisconj(P),
σ ∈ GK being defined by means of x 7→ s(x), where s(x) ∈ Q[x]
defines a (mysterious) conjugate, but nfgaloisapply(K,G[i],G[j]) (where
si = G[i], sj = G[j]) computes sisj , and so on.

Similarly, nfgaloisapply(K,G[i],E[j]) computes the corresponding con-
jugate of the unit E[j].

For instance, for P = x3 − x2 − 30 ∗ x− 27 (K of conductor 7 ∗ 13),
PARI gives G = [x,−1/3 ∗ x2 + 1/3 ∗ x+ 7, 1/3 ∗ x2 − 4/3 ∗ x− 6].

In other words, if one chooses a root ρ of P (in the list polroots(P)),
this defines an embedding and the evaluations x 7→ ρ in G allow suitable
computations which, of course, depend numerically of ρ.

Then, Leopoldt definitions work in Q(ζf ) ⊂ C by means of the choice

of ζf := exp
(2iπ

f

)
, generating the subfield K. This is problematic when

one also defines K via PARI since it is ugly to express x, formal root
of P , in terms of roots of unity; so, in the programs, conjugates of
cyclotomic units are computed from the ζf ’s, and conjugates ζgf , while
the units of K are computed via the instruction K.fu and we must find
the correspondence of the two systems, which may be rough as we have
explained § 9.2. It is what we do in the forthcoming explicit examples
when we say, for instance, that the s1-conjugate of a cyclotomic unit Eta
is Etâ s1 = 945628377316488.87204143, and so on. This explains that
running the programs may give, for the user, results different from ours,
without any worries.

A.1. Exceptional congruences. The program verifies the exceptional
congruence described in Proposition 0.1, for the conductors f up to 104:

{for(m=5,10^4,if(core(m)!=m,next);if(Mod(m,9)!=-3,next);

f=quaddisc(m);PP=x^2-f;PM=x^2+f/3;KP=bnfinit(PP,1);

KM=bnfinit(PM,1);hP=KP.no;hM=KM.no;E=lift(KP.fu[1]);

t=abs(polcoeff(E,0));u=abs(polcoeff(E,1));X=hP*t*u+hM;print

("f=",f," t=",t," u=",u," h=",hP," h’=",hM," htu+h’=",lift(Mod(X,3))))}

f=24 t=5 u=1 h=1 h’=1 htu+h’=0

f=60 t=4 u=1/2 h=2 h’=2 htu+h’=0

f=33 t=23 u=4 h=1 h’=1 htu+h’=0

f=168 t=13 u=1 h=2 h’=4 htu+h’=0

f=204 t=50 u=7/2 h=2 h’=4 htu+h’=0

f=69 t=25/2 u=3/2 h=1 h’=3 htu+h’=0

(...)

A.2. Numerical examples about the gap H ar
χ v.s. H alg

χ . Let k =

Q(
√
m) be a real quadratic field and let K be the compositum of k with

a cyclic extension L of Q of p-power degree; the field K is of the form Kχ

for χ ∈ X + which is also irreducible p-adic. We have given in [Gra2021b]
many examples of capitulations of Hk in K, giving H ar

χ & H alg
χ .

A.2.1. General PARI program. One must precise the prime p > 2, the
minimal required p-rank rpmin of Hk, the length N of the sub-tower of
k(µℓ)/k considered and the interval for m (the program uses primes ℓ (in
ell) congruent to 1 modulo 2pN , up to Bell); the class group (resp. the
p-class group) is computed in Ck (resp. Ckp). To compute JK/k(Hk),
we represent the p-classes of k by prime ideals q | q inert in K/k.
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{p=3;rpmin=1;N=2;bm=2;Bm=10^4;Bell=10^4;for(m=bm,Bm,if(core(m)!=m,next);

P=x^2-m;k=bnfinit(P,1);Ck=k.clgp;r=matsize(Ck[2])[2];Ckp=List;Ekp=List;

rp=0;for(i=1,r,ei=Ck[2][i];vi=valuation(ei,p);if(vi>0,rp=rp+1;

ai=idealpow(k,Ck[3][i],ei/p^vi);listput(Ckp,ai,rp);

listput(Ekp,p^vi,rp)));if(rp<rpmin,next);L0=List;

for(i=1,rp,listput(L0,0,i));forprime(ell=2,Bell,

if(Mod(ell-1,2*p^N)!=0 || Mod(m,ell)==0,next);

Lq=List;for(i=1,rp,A=Ckp[i];forprime(q=2,10^5,if(q==ell,next);

if(kronecker(m,q)!=1 || Mod((ell-1)/znorder(Mod(q,ell)),p)==0,next);

F=idealfactor(k,q);qi=component(F,1)[1];cij=qi;for(j=1,Ekp[i]-1,

cij=idealmul(k,cij,A);if(Mod(j,p)==0,next);

if(List(bnfisprincipal(k,cij)[1])==L0,listput(Lq,q,i);break(2)))));

print("____");print();print("m=",m," ell=",ell," Lq=",Lq);

for(n=0,N,R=polcompositum(P,polsubcyclo(ell,p^n))[1];K=bnfinit(R,1);

print();print("C",n,"=",K.cyc);for(i=1,rp,Fi=idealfactor(K,Lq[i]);

Qi=component(Fi,1)[1];print(bnfisprincipal(K,Qi)[1])))))}

We shall consider the base field k = Q(
√
4409) (i.e., m = 4409 in the

program) with ℓ = 19, then ℓ = 1747.

A.2.2. Example 1. Let L be the degree 9 subfield of Q(µ19); for conve-
nience, put k0 := k, k1 := L1k0 (resp. k2 := L2k0), where L1 (resp. L2)
is the degree 3 (resp. 9) subfield of Q(µ19). The prime 2 splits in k0, is
inert in k2/k0 and such that Q0 | 2 in k0 generates Hk0 (cyclic of order
9); considering the extensions Qi = Jki/k0(Q0) of Q0 in ki, we test its or-
der in Hki , i = 1, 2 (we are going to see that Hki ≃ Z/9Z for all i, which
is supported by the fact that Nk2/k0(Q2) = Q9

0 but Nk2/k0(Hk2) = Hk0

since k2/k0 is totally ramified at 19):

C0=[9] [4] C1=[9] [6] C2=[9] [0]

where more precisely, C0 = [9] denotes the class group of k0 and, using
the instruction bnfisprincipal, [4] means that the class of Q0 | 2 is h40,
where h0 is the generator (of order 9) given in kn.cyc by PARI; then
C1 = [9], [6], is similar for k1 in which we see a partial capitulation since
the class of Q1 = Jk1/k0(Q0) becomes of order 3. Finally, C2 = [9], [0]
shows the complete capitulation in k2; the 18 large integers below are
the coefficients, over the PARI integral basis, of a generator of Q2 in k2:

[[0],[-270476874595642910,323533824277028894,-236208800298303000,

119737461690335806,-255607858779215282,-198423813102857420,

410588865020870414,-110028179006577678,-449600797918214026,

-4906665437527948,10274048566854232,4319852458093887,

13258715755947394,-6817941144899095,-15448507867705832,

2623003974789062,-3264916449440532,-16606126998680345]]

We use obvious notations for the characters defining the fields ki,
i = 0, 1, 2. Since arithmetic norms are surjective (here, they are isomor-
phisms), the above computations prove that:

νk2/k1(Hk2 ) = Jk2/k1 ◦Nk2/k1(Hk2 ) = Jk2/k1(Hk1 ) ≃ Z/3Z,

since Nk2/k1 ◦Jk2/k1(Hk1) = H 3
k1
, or simply Jk2/k1(Hk1 ) = H 3

k2
(partial

capitulation of Hk1 ≃ Z/9Z). Whence:




H
ar
χ2

= {x ∈ Hk2 , Nk2/k1(x) = 1} = 1,

H
alg
χ2

= {x ∈ Hk2 , x
Pχ

2
(σχ

2
) = 1}

= {x ∈ Hk2 , νk2/k1(x) = 1} = H
3
k2 ≃ Z/3Z.

We have Pχ2
(σχ2

) = σ6
χ2

+ σ3
χ2

+ 1 = νk2/k1 (since L is principal, the

norms νki/Li
does not intervene in the definition of the H alg

χi
’s).

Similarly, we have:

νk1/k0(Hk1) = Jk1/k0 ◦Nk1/k0(Hk1 ) = Jk1/k0(Hk0 ) ≃ Z/3Z



NOTION OF ABELIAN ARITHMETIC ϕ-OBJECT 47

(partial capitulation of Hk0 ≃ Z/9Z); whence:
{

H
ar
χ1

= {x ∈ Hk1 , Nk1/k0(x) = 1} = 1,

H
alg
χ1

= {x ∈ Hk1 , νk1/k0(x) = 1} = H
3
k1 ≃ Z/3Z.

Thus, the formula of Theorem 3.12 giving:

#Hk2 = #H
ar
χ0

· #H
ar
χ1

· #H
ar
χ2

is of the form #Hk2 = 9× 1× 1, then #Hk1 = 9× 1 since H ar
χ0

= Hk0
.

These formulas are not fulfilled in the algebraic sense, because:

#H
alg
χ0

·#H
alg
χ1

= 9×3 = 33 and #H
alg
χ0

·#H
alg
χ1

·#H
alg
χ2

= 9×3×3 = 34.

Now we intend to compute #H ar
χ1

= #(Ek1/Êk1 ·Fk1) (analytic formula

of Theorem 7.5); in the general definition, FK denotes the Leopoldt

group of cyclotomic units of K, ÊK the group of units generated by the
units of the strict subfields of K.

We give numerical values of the units |e0 | of k0, |ei | of L1, |Ej | of k1,
and their logarithms; they are, respectively (standard PARI programs):

Units Logarithms

e0=664.00150602068057486397714386165380 6.49828441757729630972016

e1=0.2851424818297853643941198735306274 -1.25476628739511494204754

e2=4.5070186440929762986607999237156780 1.50563588039686576534798

E1=0.2851424818297853643941198735306274 -1.25476628739511494204754

E2=0.2218761622631909342666800501850506 -1.50563588039686576534798

E3=664.00150602068057486397714386165380 6.49828441757729630972016

E4=945628377316488.87204143428389231544 34.4828707719825581974318

E5=0.0025736519075274654929993463127951 -5.96242941301396593243487

Cyclotomic units:

{f=19*4409;z=exp(I*Pi/f);g1=lift(Mod(74956,f)^2);g2=lift(Mod(4410,f)^3);

frob=1;for(s=1,6,frob=lift(Mod(3*frob,f));Eta=1;for(k=1,(4409-1)/2,

for(j=1,(19-1)/3,as=lift(Mod(g1^k*g2^j*frob,f));if(as>f/2,next);

Eta=Eta*(z^as-z^-as)));print("Eta^s",s,"=",Eta," ",log(abs(Eta))))}

Eta^s1=945628377316488.87204143428 34.4828707719825581974318471

Eta^s2=2433718277092.6834663091300 28.5204413589685922649969695

Eta^s3=0.0025736519075274654929993 -5.96242941301396593243487762

Eta^s4=1.0574978754738804652063 E-15 -34.4828707719825581974318471

Eta^s5=4.1089390231091111982824 E-13 -28.5204413589685922649969695

Eta^s6=388.55293409150677930552135 5.96242941301396593243487762

One obtains easily the following relations:

E1=e1, E2=e2^-1, E3=e0, E_4^2=Eta^s, E5^2=Eta^-1,

Eta^{s^3+1}=1, Eta^{s^2-s+1}=1, giving: Eta^(s^2)=E4^2.E5^2.

Then, one gets (Ek1 : Êk1 ·Fk1) = (Ek1 : Ek0 ·EL1 ·Fk1) = 1 as expected
since H ar

χ1
= 1. Moreover, we see that the conjugates of the cyclotomic

units are not independent (due, from Lemma 5.17, to norm relations in
ki/k0 and ki/Li since 19 splits in k0 and 4409 splits in the Li’s), but,

with our point of view, this does not matter since Êk1 is of Z3-rank 3 and
Fk1 is of Z3-rank 2. Indeed, these relations lead to some difficulties in
χ-formulas of the literature using larger groups of cyclotomic units like
Sinnott’s cyclotomic units (see Remark 7.7).

To be complete, compute the classical index of Fk0 =: 〈η0〉 in Ek0 :

{f=4409;z=exp(I*Pi/f);Eta0=1;g=znprimroot(f)^2;for(k=1,(f-1)/2,

a=lift(g^k);if(a>f/2,next);Eta0=Eta0*(z^a-z^-a)/(z^(3*a)-z^-(3*a)));

print("Eta0=",Eta0," log(Eta0)=",log(abs(Eta0)))}

Eta0=3.985459685929 E-26 log(Eta0)=-58.484559758195
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giving immediately log(Eta0) = −9 ∗ log(e0) from the above computation

of log(e0); whence #H ar
χ0

= (Ek0 : Êk0 ·Fk0) = (Ek0 : Fk0) = 9; obviously,

9 is the annihilator of Ek0/Fk0 and H ar
χ0

(Conjecture 7.9).

The verification of (Ek2 : Êk2 · Fk2) = 1 is analogous since Fk2 is of
Z3-rank 8 (Nk2/k1(Fk2) = Fk1 , Nk2/k0(Fk2) = 1, Nk2/L2

(Fk2) = 1).

A.2.3. Example 2. Consider the same framework, replacing 19 by the
prime 1747; one obtains the data showing, as before with Q0 | 2, a
partial capitulation of Hk0 in k1 (but Hk1 is not cyclic):
C0=[9] [4] C1=[9,3,3] [6,0,0]

One verifies that the ideal Q1, extending Q0 in k1, is non-principal and
such that its class is h61 h

0
2 h

0
3 on the PARI basis {h1, h2, h3}:

bnfisprincipal(K,[2, [-1,0,0,1,0,0],1,3,[0,0,0,1,0,0]]) = [[6,0,0]

but its 6-power gives as expected the principality and a generator:

bnfisprincipal(K,[64,0,0,21,0,0;0,64,0,0,0,42;0,0,64,0,21,0;0,0,0,1,0,0;

0,0,0,0,1,0;0,0,0,0,0,1])

=[[0,0,0],[8217190756304871153969213,526028282779527429138218,

-687786029075595676594134,251301709772155482917577,

-21032376402967976888126,-15609327127430752932511]]

The kernel of the arithmetic norm is isomorphic to Z/3Z×Z/3Z, thus:
{

H
ar
χ1

= {x ∈ Hk1 , Nk1/k0(x) = 1} ≃ Z/3Z× Z/3Z,

H
alg
χ1

= {x ∈ Hk1 , νk1/k0(x) = 1} ≃ Z/3Z× Z/3Z× Z/3Z.

since the transfer map applies H ar
χ0

≃ Z/9Z onto 〈h61〉.
Formula of Theorem 3.12 is of the form #Hk1 = #H ar

χ0
·#H ar

χ1
= 9×9,

since we have H ar
χ0

= Hk0 of order 9; of course a same formula with the

H alg’s does not exist since #H alg
χ0

· #H alg
χ1

= 9× 27.

A.2.4. Varying ℓ ≡ 1 (mod 9). The program gives the following other

results, for k = Q(
√
4409), varying only ell, where q is the prime split in

k0 = k and inert in k2:

ell=37 q=2 C0=[9] [4] C1=[18] [6] C2=[18] [0]

ell=73 q=2 C0=[9] [4] C1=[9] [6] C2=[171] [0]

ell=109 q=5 C0=[9] [1] C1=[9] [6] C2=[9] [0]

ell=127 q=23 C0=[9] [4] C1=[9] [6] C2=[9] [0]

ell=163 q=2 C0=[9] [4] C1=[54] [12] C2=[54] [18]

ell=181 q=2 C0=[9] [4] C1=[27] [12] C2=[81] [63]

ell=199 q=2 C0=[9] [4] C1=[9,3] [6,0] C2=[27,3] [9,0]

The image of Hk0 in k1 is of order 3, except for ℓ ∈ {163, 181}; then
Hk0 capitulates in k2, except for ℓ ∈ {163, 181, 199}. One verifies that

formula of Theorem 3.12 holds with the #H ar
ki

but not for the #H
alg
ki

.

A.3. Computation of #Hχ for K = Q(µ47). Let K := Kχ be the
field Q(µ47), of degree gχ = 46. From Theorem 5.10, we have #Hχ =

2αχ · wχ ·
∏
ψ|χ

(
− 1

2B1(ψ
−1)

)
with in that case αχ = 0 and wχ = 47

and where by definition:

−1

2
B1(ψ

−1) = −1

2

46∑
a=1

( a

47
− 1

2

)
ψ−1(σa) = −1

2

46∑
a=1

a

47
ψ−1(σa).

Let’s compute #Hχ = 47 ·NQ(µ46)/Q
(
− 1

2

46∑
a=1

a

47
ψ−1(σa)

)
:

{P=polcyclo(46);g=lift(znprimroot(47));A=0;for(n=0,45,

a=lift(Mod(g,47)^n);A=A+x^n*(1/47*a-1/2));B=Mod(-1/2*A,P);

print("47*Norm(B)=",47*norm(B))}

47*Norm(B)=139
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Note that − 47
2 B1(ψ

−1) is, writing x = ζ46, the PARI integer:

4*x^21+25*x^20+9*x^19+26*x^18-19*x^17+11*x^16-22*x^15

+x^14-24*x^13+10*x^12+6*x^11+16*x^10-21*x^9+20*x^8

+8*x^7+7*x^6-4*x^5+14*x^4-12*x^3+3*x^2+14*x+27

Whence #Hχ = 139 and Hχ ≃ Z[µ46]/p139. Since Λχ = 47, the
ideal AK is

(
σa − a, 47

)
, with for instance a = 5 (Lemma 5.14), and

AK · 1

2
BK annihilates Hχ; since the image of AK · 1

2
BK is the ideal

(1
2
B1(ψ

−1)
)
= p139, the annihilator of Hχ is p139. But this ideal is not

principal in Q(µ46) (from [Gra1979b]):

{L=bnfinit(polcyclo(46));F=idealfactor(L,139);

print(bnfisprincipal(L,component(F,1)[1])[1])}

[2]

showing that its class is the square of the PARI generating class. More
precisely, the class group of Q(µ46) = Q(µ23) is equal to 3; then any
q47 | 47 or q139 | 139 generates this class group.

A.4. Computation of annihilators of torsion groups TK . Con-
sider, for p = 7, the cubic field K of conductor f = 2557 defined by the
polynomial P = x3 + x2 − 852 x+ 9281; then (using the main program
of Appendix A.6.1), one obtains:

HK ≃ Z[j]/(1 − 2j)Z[j] and EK/FK ≃ Z[j]/(1 − 2j)Z[j],

where (1 − 2j)Z[j] is a prime p dividing 7, and TK ≃ Z/72Z⊕ Z/7Z .

The following program (only valid for prime conductors f) computes
the annihilator AK(c) of TK ; it defines the classes σk ·Gal(Q(µfpN )/K),

k = 0, 1, 2, of Artin symbols, giving AK(c) = A0 + A1σ + A2σ
2, then

β := A0 − A2 + (A1 − A2) j, yielding (β) = pu1 · pv2 in Z[j] (up to a
prime-to-p ideal):

{p=7;f=2557;N=4;pN=p^N;fpN=f*pN;c=lift(znprimroot(f));cm=Mod(c,fpN)^-1;

g=znprimroot(f);lg=lift(Mod((1-lift(g))/f,pN));g=Mod(lift(g)+lg*f,fpN);

g3=g^3;G=znprimroot(pN);lG=lift(Mod((1-lift(G))/pN,f));

G=Mod(lift(G)+lG*pN,fpN);A0=0;A1=0;A2=0;for(k=1,(f-1)/3,

for(j=1,p^(N-1)*(p-1),A=g3^k*G^j;gA=g*A;ggA=g^2*A;

a=lift(A);aa=lift(A*cm);la=(aa*c-a)/fpN;A0=A0+la*Mod(a,pN)^-1;

a=lift(gA);aa=lift(gA*cm);la=(aa*c-a)/fpN;A1=A1+la*Mod(a,pN)^-1;

a=lift(ggA);aa=lift(ggA*cm);la=(aa*c-a)/fpN;A2=A2+la*Mod(a,pN)^-1));

print(A0," ",A1," ",A2)}

Mod(184, 2401) Mod(1526, 2401) Mod(643, 2401)

Modulo 74, A0 = 184, A1 = 1526 and A2 = 643; this yields the ideal
(1 − 2j)3 = p3. Necessarily, TK ≃ Z[j]/p2 ⊕ Z[j]/p. We note that the
annihilator is p3 (and not p2) although the structure is not Z[j]/p3.

A.5. Computation of the invariants of ψ(Ωℓ). The program com-
putes, for cyclic cubic fields, the invariants ψ(Ωℓ) = r1−r2−(r1+2 r2)·j
only with the knowledge of ηK ; taking a primitive root gℓ modulo ℓ, the
rσ’s come from the PARI instructions r = znlog(L[j], g), where the L[j]
are the rationals aσ such that ησK ≡ aσ (mod l0) in K (we use the re-

sults of Appendix A.6.2 (c) to compute ηK = εα+β σK and HK). The
line Orders of components of cl(Lell) of the form (pu, pv, · · · ) means that
the components of the p-class of l0 (on the PARI system of generators
of HK), are of orders pu, pv, · · · ; one sees that the annihilator Ωℓ is
independent on these orders, but it is clear that, using Chebotarev’s
theorem, any set of components may be obtained.
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{p=7;n=3;P=x^3+x^2-884540*x-393129;alpha=-112;beta=-70;

Q=y^2+y+1;k=bnfinit(Q);J=Mod(y,Q);pi=idealfactor(k,p);

pi1=component(pi,1)[1];pi2=component(pi,1)[2];

K=bnfinit(P,1);G=nfgaloisconj(P);CK=K.cyc;d=matsize(CK)[2];

CKp=List;for(i=1,d,h=p^valuation(CK[i],p);listput(CKp,h,i));

print("P=",P," p-class group=",CKp);

E=K.fu;E1=E[1];E2=nfgaloisapply(K,G[2],E[1]);

F1=E1^alpha*E2^beta;F2=nfgaloisapply(K,G[2],F1);

F1=lift(F1);F2=lift(F2);forprime(ell=1,5*10^5,

if(Mod(ell,p^n)!=1 || matsize(factor(P+O(ell)))[1]!=3,next);

g=znprimroot(ell);Lell=component(idealfactor(K,ell),1)[1];

F10=Mod(polcoeff(F1,0),ell);F11=Mod(polcoeff(F1,1),ell);

F12=Mod(polcoeff(F1,2),ell);Eta1=lift(F12*x^2+F11*x+F10);

F20=Mod(polcoeff(F2,0),ell);F21=Mod(polcoeff(F2,1),ell);

F22=Mod(polcoeff(F2,2),ell);Eta2=lift(F22*x^2+F21*x+F20);

Leta=List;listput(Leta,Eta1,1);listput(Leta,Eta2,2);L=List;

for(i=1,2,A=Mod(Leta[i],P);for(a=1,ell-1,v=idealval(K,A-a,Lell);

if(v>0,listput(L,a,i))));Lr=List;for(i=1,2,r=znlog(L[i],g);

listput(Lr,r));print();print("ell=",ell," Omega=",Lr);

X=Lr[1]-Lr[2]+(-Lr[1]-2*Lr[2])*J;

w1=idealval(k,X,pi1);w2=idealval(k,X,pi2);

Y=alpha+beta*J;W1=idealval(k,Y,pi1);W2=idealval(k,Y,pi2);print

("Cyclotomic invariants=",W1,",",W2," Omega invariants=",w1,",",w2);

Exp=List;Order=bnfisprincipal(K,Lell)[1];for(i=1,d,

tp=valuation(CK[i],p);if(Order[i]==0,Or=1);if(Order[i]!=0,

t=valuation(Order[i],p);Or=p^(tp-t));listput(Exp,Or));

print("Orders of components of cl(Lell)=",Exp))}

For P = x3 + x2 − 884540 ∗ x − 393129 (conductor f = 2653621,
α = −112, β = −70, the ϕ-components of the 7-class group HK are

Hϕ1
≃ Z7[j]/pϕ1

and Hϕ2
≃ Z7[j]/p

3
ϕ2
; we have Ẽϕ1

≃ Z7[j]/pϕ1
and

Ẽϕ2
≃ Z7[j]/p

3
ϕ2
.

P=x^3+x^2-884540*x-393129 p-class group=List([343,7])

conductor f=2653621

ell=1373 Omega=List([1162, 1246])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 7])

ell=7547 Omega=List([6888, 1526])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 7])

ell=8233 Omega=List([6496, 742])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([49, 7])

ell=18523 Omega=List([11830, 12586])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 1])

ell=22639 Omega=List([4004, 13104])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 7])

ell=30871 Omega=List([27734, 5390])

Cyclotomic invariants=1,3 Omega invariants=2,3

Orders of components of cl(Lell)=List([343, 1])

ell=39103 Omega=List([32018, 35812])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([49, 7])

ell=42533 Omega=List([1330, 17262])

Cyclotomic invariants=1,3 Omega invariants=1,3
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Orders of components of cl(Lell)=List([343, 7])

ell=54881 Omega=List([44366, 18662])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([49, 7])

ell=58997 Omega=List([5236, 21938])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 7])

ell=72031 Omega=List([24276, 51884])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 7])

ell=76147 Omega=List([17066, 25606])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 7])

ell=80263 Omega=List([22036, 79352])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 7])

ell=93983 Omega=List([69174, 5558])

Cyclotomic invariants=1,3 Omega invariants=1,3

Orders of components of cl(Lell)=List([343, 7])

For P = x3 − 4792107 x+ 4022175142 (conductor f = 32 · 1597369,
α = −7, β = −21, the ϕ-components of the 7-class group HK are
Hϕ1

≃ Z7[j]/pϕ1
⊕ Z7[j]/pϕ1

and Hϕ2
≃ Z7[j]/pϕ2

; nevertheless, we

have Ẽϕ1
≃ Z7[j]/p

2
ϕ1

(non-isomorphic to Hϕ1
) and Ẽϕ2

≃ Z7[j]/pϕ2
.

But almost all Ωℓ give the expected response (2, 1) whatever the order
of the p-class of l0 | ℓ:
P=x^3 - 4792107*x + 4022175142 p-class group=List([7,7,7])

conductor f=9*1597369

ell=1373 Omega=List([917, 1267])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])

ell=8233 Omega=List([1141, 3535])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 1, 7])

ell=49393 Omega=List([41069, 39277])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([1, 7, 1])

ell=54881 Omega=List([14357, 31311])

Cyclotomic invariants=2,1 Omega invariants=2,2

Orders of components of cl(Lell)=List([7, 7, 7])

ell=63799 Omega=List([53977, 53767])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])

ell=76147 Omega=List([44912, 73514])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([1, 7, 7])

ell=80263 Omega=List([20328, 16387])

Cyclotomic invariants=2,1 Omega invariants=3,1

Orders of components of cl(Lell)=List([1, 7, 7])

(...)

ell=329281 Omega=List([311136, 189770])
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Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])

ell=331339 Omega=List([157696, 276465])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])

ell=343687 Omega=List([174391, 82173])

Cyclotomic invariants=2,1 Omega invariants=2,2

Orders of components of cl(Lell)=List([7, 7, 7])

ell=363581 Omega=List([204974, 276584])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])

ell=384847 Omega=List([254100, 68887])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])

ell=396509 Omega=List([114947, 1540])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])

ell=403369 Omega=List([11361, 206458])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])

ell=408857 Omega=List([364287, 259343])

Cyclotomic invariants=2,1 Omega invariants=5,1

Orders of components of cl(Lell)=List([7, 7, 1])

ell=415717 Omega=List([239225, 363657])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 1, 7])

ell=417089 Omega=List([327908, 33957])

Cyclotomic invariants=2,1 Omega invariants=3,4

Orders of components of cl(Lell)=List([1, 7, 7])

ell=419147 Omega=List([17059, 339451])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([1, 1, 1])

ell=426007 Omega=List([161434, 215859])

Cyclotomic invariants=2,1 Omega invariants=2,1

Orders of components of cl(Lell)=List([7, 7, 7])

ell=456877 Omega=List([361697, 10010])

Cyclotomic invariants=2,1 Omega invariants=3,1

Orders of components of cl(Lell)=List([7, 7, 7])

For ℓ = 419147 (first example where any prime ideal l | ℓ is principal):
bnfisprincipal(K,Lell)=[0,0,0],[1311001361541054679,35057663364174,

1019317530188062]

but the invariants of Ωℓ are still (2, 1) giving #Hϕ1 = 72 and #Hϕ2 = 7.

A.6. Illustrations of the Finite AMC. We intend to illustrate the
Finite AMC with cyclic cubic fields and p ≡ 1 (mod 3) giving two p-
adic characters (of course, it is now a Theorem and we shall speak of the
“Finite AMT”); then statistics may have some interest.

A.6.1. The general PARI program. The program is the following and we
explain, with some examples, how to use the numerical results checking
the Finite AMT; hmin = pvp means that the program only computes
fields with p-class groups CKp of order at least pvp; then bf,Bf define an
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interval for the conductors f of the cyclic cubic field. Other indications
are given in the text of the program:

\p 50

{p=7; \\ Take any prime p congruent to 1 modulo 3

bf=2;Bf=10^6;hmin=p^2;

\\ Arithmetic of Q(j), j^2+j+1=0:

S=y^2+y+1;kappa=bnfinit(S);Y=idealfactor(kappa,p);

\\ Decomposition (p)=P1*P2 in Z[j]:

P1=component(Y,1)[1];P2=component(Y,1)[2];

\\ Iteration over the conductors f in [bf,Bf]:

for(f=bf,Bf,vf=valuation(f,3);if(vf!=0 & vf!=2,next);

F=f/3^vf;if(core(F)!=F,next);F=factor(F);Div=component(F,1);

d=matsize(F)[1];for(j=1,d,D=Div[j];if(Mod(D,3)!=1,break));

\\ Computation of solutions a and b such that f=(a^2+27*b^2)/4:

\\ Iteration over b, then over a:

for(b=1,sqrt(4*f/27),if(vf==2 & Mod(b,3)==0,next);A=4*f-27*b^2;

if(issquare(A,&a)==1,

\\ computation of the corresponding defining polynomial P:

if(vf==0,if(Mod(a,3)==1,a=-a);P=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);

if(vf==2,if(Mod(a,9)==3,a=-a);P=x^3-f/3*x-f*a/27);

K=bnfinit(P,1); \\ PARI definition of the cubic field K

\\ Test on the p-class number #CKp regarding hmin:

if(Mod(K.no,hmin)==0,print();

G=nfgaloisconj(P); \\ Definition of the Galois group G

\\ Frob = Artin symbol defining the PARI generator sigma=G[2]:

forprime(q=2,10^4,if(Mod(f,q)==0,next);

Pq=factor(P+O(q));if(matsize(Pq)[1]==1,Frob=q;break));X=x^Frob-G[2];

if(valuation(norm(Mod(X,P)),Frob)==0,Frob=lift(Mod(Frob^2,f)));

E=K.fu;Reg=K.reg; \\ Group of units, Regulator

\\ We certify that a suitable PARI unit is a Z[G]-generator of E_K:

E1=lift(E[1]);E2=lift(nfgaloisapply(K,G[2],E[1]));

Root=polroots(P);Rho=real(Root[1]); \\ Selecting a root of P

e1= abs(polcoeff(E1,0)+polcoeff(E1,1)*Rho+polcoeff(E1,2)*Rho^2);

e2= abs(polcoeff(E2,0)+polcoeff(E2,1)*Rho+polcoeff(E2,2)*Rho^2);

l1=log(e1);l2=log(e2);Reg1=l1^2+l1*l2+l2^2;quot=Reg1/Reg;

print(quot); \\ This quotient must be equal to 1

\\ Computation of the cyclotomic units C1,C2=sigma(C1):

z=exp(I*Pi/f);C1=1;C2=1;

\\ Case of a prime conductor f using (Z/fZ)^* cyclic):

if(isprime(f)==1,g=znprimroot(f)^3;

\\ Description of a half-system:

for(k=1,(f-1)/6,gk=lift(g^k);sgk=lift(Mod(gk*Frob,f));

C1=C1*(z^gk-z^-gk);C2=C2*(z^sgk-z^-sgk));

\\ Logarithms of C1,C2:

L1=3*log(abs(C1))-log(f)/2;L2=3*log(abs(C2))-log(f)/2;

\\ computation of the cyclotomic regulator and of the index Quot=(E:F):

RegC=L1^2+L1*L2+L2^2;Quot=1/3*RegC/Reg); \\ Division by 3 of RegC

\\ Case of a composite conductor:

if(isprime(f)==0,for(aa=1,(f-1)/2,if(gcd(aa,f)!=1,next);

\\ Search of a prime qa congruent to a modulo f, split in K:

qa=aa;while(isprime(qa)==0,qa=qa+f);

if(matsize(idealfactor(K,qa))[1]==1,next);

\\ The Artin symbol of aa fixes K:

C1=C1*(z^aa-z^-aa);C2=C2*(z^(Frob*aa)-z^-(Frob*aa)));

L1=log(abs(C1));L2=log(abs(C2)); \\ Logarithms of C1,C2

\\ computation of the cyclotomic regulator and the index Quot=(E:F):

RegC=L1^2+L1*L2+L2^2;Quot=RegC/Reg);

\\ printing of the basic data of K:

print("P=",P," f=",f,"=",factor(f)," (a,b)=","(",a,",",b")",

" class group=",K.cyc," sigma=",Frob);print("Index [E_K:C_K]=",Quot);

\\ Annihilator alpha+sigma.beta of the quotient E/C:

alpha=((log(e1)+log(e2))*L1+log(e2)*L2)/Reg;

beta=(log(e2)*L1-log(e1)*L2)/Reg;

\\ In the prime case one multiply alpha+j.beta by (1-j)/3:

if(isprime(f)==1,
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alpha0=(alpha+beta)/3;

beta0=(-alpha+2*beta)/3;alpha=alpha0;beta=beta0);

\\ Writing of alpha and beta as reals for checking:

print("(alpha,beta)=","(",alpha,", ",beta,")");

\\ Computation of alpha and beta as integers:

alpha=sign(alpha)*floor(abs(alpha)+10^-6);

beta=sign(beta)*floor(abs(beta)+10^-6);

\\ Class group (r = global rank;rp = p-rang;expo = exposant of CKp)

\\ vp = valuations of CKp, ve = valuation of the exponent expo of CKp:

CK=K.clgp;r=matsize(CK[2])[2];CKp=List;EKp=List;rp=0;vp=0;ve=0;

for(i=1,r,ei=CK[2][i];vi=valuation(ei,p);

if(vi>0,rp=rp+1;vp=vp+vi;ve=max(ve,vi));expo=p^ve;

\\ The rp following ideals Ai generate the p-class group CKp:

Ai=idealpow(K,CK[3][i],ei/p^vi);listput(CKp,Ai,i);listput(EKp,p^vi,i));

\\ Matrices h and sh of Ai and sAi on the PARI basis of CK

L0=List;for(i=1,r,listput(L0,0,i));LH=List;LsH=List;

for(i=1,rp,Ai=CKp[i];h=bnfisprincipal(K,Ai)[1];

sAi=nfgaloisapply(K,G[2],Ai);sh=bnfisprincipal(K,sAi)[1];

print("h=",h,", ","sigma(h)=",sh);listput(LH,h,i);listput(LsH,sh,i));

\\ Determination of the Pi-valuations of (alpha+j.beta), i=1,2:

Z=Mod(alpha+y*beta,S);w1=idealval(kappa,Z,P1);w2=idealval(kappa,Z,P2);

print(w1," ",w2," P1 and P2-valuations for alpha+j*beta");

\\ Galois structure of CKp; computation of the phi-components:

if(rp==1,

u=lift(LsH[1][1]*Mod(LH[1][1],expo)^-1);

YY=Mod(y-u,S);v1=idealval(kappa,YY,P1);v2=idealval(kappa,YY,P2);

v1=min(v1,ve);v2=min(v2,ve);

print(v1," ",v2," P1 and P2-valuations for H"));

if(rp==2,

\\ Computation of ci(mod expo) such that Pi=(ci+j),i=1,2:

Sp=lift(factor(S+O(p^ve)));Sp1=component(Sp,1)[1];Sp2=component(Sp,1)[2];

c1=polcoeff(Sp1,0);c2=polcoeff(Sp2,0);

\\ Coefficients of LH[1],LsH[1],LH[2],LsH[2], on the PARI basis of CK

H1=LH[1];A1=H1[1];B1=H1[2];sH1=LsH[1];C1=sH1[1];D1=sH1[2];

H2=LH[2];A2=H2[1];B2=H2[2];sH2=LsH[2];C2=sH2[1];D2=sH2[2];

\\ Computation of the determinants of the relations:

Delta1=((C1+c1*A1)*(D2+c1*B2)-(D1+c1*B1)*(C2+c1*A2));

Delta1=lift(Mod(Delta1,expo));

Delta2=((C1+c2*A1)*(D2+c2*B2)-(D1+c2*B1)*(C2+c2*A2));

Delta2=lift(Mod(Delta2,expo));

print(Delta1," ",Delta2," Determinants: Delta1,Delta2");

\\ Computation of the relations defining the phi-components:

r11x=C1+c1*A1;r11y=C2+c1*A2;r12x=D1+c1*B1;r12y=D2+c1*B2;

r11x=lift(Mod(r11x,expo));r11y=lift(Mod(r11y,expo));

r12x=lift(Mod(r12x,expo));r12y=lift(Mod(r12y,expo));

r21x=C1+c2*A1;r21y=C2+c2*A2;r22x=D1+c2*B1;r22y=D2+c2*B2;

r21x=lift(Mod(r21x,expo));r21y=lift(Mod(r21y,expo));

r22x=lift(Mod(r22x,expo));r22y=lift(Mod(r22y,expo));

print("R11=",r11x,"*X+",r11y,"*Y"," R12=",r12x,"*X+",r12y,"*Y");

print("R21=",r21x,"*X+",r21y,"*Y"," R22=",r22x,"*X+",r22y,"*Y"));

\\ Structure of the torsion group Tp of p-ramification:

n=6; \\ Choose any n, large enough, such that p^(n+1) annihilates Tp:

LTp=List;Kpn=bnrinit(K,p^n);Hpn=Kpn.cyc;

dim=component(matsize(Hpn),2);for(k=2,dim,c=component(Hpn,k);

if(Mod(c,p)==0,listput(LTp,p^valuation(c,p),k)));

print("Structure of the ",p,"-torsion group: ",LTp)))))}

A.6.2. Numerical examples. Since the approximations are in general very
good (with precision \p 50), we have suppressed useless decimals in the
results. But for some conductors, the precision\p 100 may be necessary,
because of a fundamental unit close to 0 (e.g., f = 21193, 30223). For
f = 42667, \p 100 does not compute correctly and \p 150 gives a nice
result for α and β; but we see that, for this example:

e1 = 3062171948818717694.348000505806 and e2 = 1.221295564694E − 69.
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Galois structure of EK/FK . Let ε be the Z[GK ]-generator of EK and
let η that of the subgroup FK of Leopoldt’s cyclotomic units; thus we
have η = εα+β σ and obtain the isomorphism:

EK/FK ≃ Z[j]/(α+ j β)Z[j],

where j is a root of S := y2 + y + 1.

In all the sequel, from a factorization p = (r1+ j r
′
1) · (r2+ j r′2) giving

the ideal product (p) = p1p2 in Z[j], we associate, for the exponent pe,
the two annihilators ci + σ such that (ci + j) = pei (up to a prime-to-p
ideal); this preserves the definition of the ϕ1 and ϕ2-components.

For instance, for p = 7, p1 := (−2 + j)Z[j] and p2 := (3 + j)Z[j];
writing (α+ j β) =: pu1 · pv2 · a, a prime to 7, we get immediately the two

ϕ-components of ẼK = EK/FK (e.g., if e = 2, the two annihilators are
19+ j and −18+ j, respectively; for p = 13, we get 23+ j and −22+ j).

Galois structure of HK . Recall that bnfisprincipal(K,A)[1] gives the
matrix of components of the class of A on the basis {h1, . . . , hr} given
by K.clgp (in CK) and the fact that 0 at the place i means that the
corresponding component of cl(A) on hi is trivial.

We first replace the generators of HK by generators Ai of HK (where
rp ≤ r is the p-rank). The Galois action on the Ai is computed using the
instructions (where G[2] gives the σ-conjugate, G[1] being the identity):
h=bnfisprincipal(K,Ai)[1];sAi=nfgaloisapply(K,G[2],Ai);

sh=bnfisprincipal(K,sAi)[1]};

so the Galois structure of HK becomes linear algebra from the matrices
given by the program, via the relations:

h =
∏rp
i=1 h

ai
i (in h) & hσ =

∏rp
i=1 h

bi
i (in sh).

(a) Case of 7-rank r7 = 1. This case is obvious, writing h = ha1 ,
hσ = hb1; we put Pϕ1

≡ c1+y (mod 7e) and Pϕ2
≡ c2+y (mod 7e), where

7e is the exponent of HK ; we obtain hc1+σ = hc1a+b1 and hc2+σ = hc2a+b1 ;
so HK = Hϕ1

(resp. Hϕ2
) if and only if c1a + b ≡ 0 (mod 7e) (resp.

c2a+b ≡ 0 (mod 7e)). In fact one computes −a∗b+j, where a∗ is inverse
of a modulo 7e, and write (−a∗b+ j) = pui for the suitable i ∈ {1, 2}.

The Galois actions are to be read in columns; for instance, the valu-
ations in the two lines:

v 0 P1 and P2− valuations for alpha+ j ∗ beta
v 0 P1 and P2− valuations for H

give the structures Z[j]/pv1 · p02 for “M = Ẽ = E /F and H ”, respec-
tively, whence Mϕ1

≃ Z[j]/pv1, Mϕ2
= 1, and so on. First examples:

P=x^3+x^2-104*x+371 f=313=Mat([313,1]) (a,b)=(35,1)

Class group=[7] sigma=4

(alpha,beta)=(-3.000000000,-2.000000000) Index [E_K:C_K]=7.000000000

h=[1], sigma(h)=[2]

1 0 P1 and P2-valuations for alpha+j*beta

1 0 P1 and P2-valuations for H

Structure of the 7-torsion group: List([7,7])

We have Ẽϕ1
≃ Hϕ1

≃ (Z[j]/p1) ⊗ Z7 ≃ Z/7Z and the conjugation

hσ = h2, giving the annihilator (−2 + j) = p1 as expected; whence the
two columns given by the program. We deduce that TK = HK ⊕ RK .

P=x^3+x^2-2450*x-1089 f=7351=Mat([7351,1]) (a,b)=(-1,33)

Class group=[49] sigma=4

(alpha,beta)=(5.000000000,8.000000000) Index [E_K:C_K]=49.000000000

h=[1], sigma(h)=[30]

2 0 P1 and P2-valuations for alpha+j*beta
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2 0 P1 and P2-valuations for H

Structure of the 7-torsion group: List([2401])

We have (α+ j β) = (5+8j), thus the annihilator (19+ j) = p21; then
hσ = h30 gives (modulo 72) the same annihilator. The ϕ2-components

are trivial. Since TK ≃ Z/74Z, RK = T 72

K , HK ≃ TK/RK ≃ Z/72Z.

The first field such that HK ≃ Z/73Z is the following:
P=x^3+x^2-77006*x-34225 f=231019=Mat([231019,1]) (a,b)=(-1,185)

Class group=[343] sigma=4

(alpha,beta)=(19.000000000,18.000000000) Index [E_K:C_K]=343.000000000

h=[1], sigma(h)=[18]

0 3 P1 and P2-valuations for alpha+j*beta

0 3 P1 and P2-valuations for H

Structure of the 7-torsion group: List([343,7])

The annihilator of HK is (−18 + j) = p32. The structures are similar
with the ϕ2-components since (19 + 18j) = p32. In that case, TK =
HK ⊕ RK with HK ≃ Z/73Z and RK ≃ Z/7Z.

(b) Case of 7-rank r7 = 2 This case depends on the matrices giving:

h = [a, b], sigma(h) = [c, d] & h′ = [a′, b′], sigma(h′) = [c′, d′];

this means that the corresponding generating classes h, h′, fulfill the
relations (regarding the basis {h1, h2} of the class group) h = ha1 ·hb2 and

hσ = hc1 ·hd2, then h′ = ha
′

1 ·hb′2 and h′σ = hc
′

1 ·hd′2 . Thus we compute the
conditions Hci+σ = 1, i = 1, 2, for H := hx · h′y; this gives the relations
R11, R21 (R12, R22 are checked by security since they must be pro-
portional to the previous ones); whence the arrangement of lines when
the conjecture holds. The program computes the corresponding deter-
minants of the relation (Determinants Delta1 Delta2); this is superfluous
but have been computed (but not printed) for verification.

P=x^3+x^2-3422*x-1521 f=10267=Mat([10267,1]) (a,b)=(-1,39)

Class group=[7,7] sigma=2

(alpha,beta)=(-7.000000000,-7.000000000) Index [E_K:C_K]=49.000000000

h=[1,0], sigma(h)=[0,1]

h’=[0,1], sigma(h’)=[6,6]

1 1 P1 and P2-valuations for alpha+j*beta

R11=3*X+6*Y R12=1*X+2*Y

R21=5*X+6*Y R22=1*X+4*Y

Structure of the 7-torsion group: List([49,7])

This case means that ẼK ≃ Z[j]/(7), giving the two non trivial ϕ-
components of order 7. The relations, for HK , reduce to R11 and R21
Thus HK = Hϕ1

⊕ Hϕ2
≃ Z/7Z⊕ Z/7Z, RK = T 7

K ≃ Z/7Z.

P=x^3+x^2-55296*x-1996812 f=165889=[19,1;8731,1] (a,b)=(-322,144)

Class group=[294,2,2,2] sigma=25

(alpha,beta)=(-32.000000000,-20.000000000) Index [E_K:C_K]=784.000000000

h=[6,0,0,0], sigma(h)=[108,1,0,0]

0 2 P1 and P2-valuations for alpha+j*beta

0 2 P1 and P2-valuations for H

Structure of the 7-torsion group: List([49])

Here RK = 1 and TK = HK ≃ (Z[j]/p22)⊗ Z7 ≃ Z7/7
2Z7.

P=x^3+x^2-453576*x+117425873 f=1360729=Mat([1360729,1]) (a,b)=(2333,1)

Class group=[98,14] sigma=2

(alpha,beta)=(42.000000000,28.000000000) Index [E_K:C_K]=1372.000000000

h=[1,0], sigma(h)=[44,11]

h’=[0,1], sigma(h’)=[7,11]

2 1 P1 and P2-valuations for alpha+j*beta

R11=14*X+7*Y R12=11*X+30*Y

R21=26*X+7*Y R22=11*X+42*Y

Structure of the 7-torsion group: List([49,7,7])
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We have (α+ βj) = 2 · 7(3 + 2j) giving the annihilator p21p2 which is
also the annihilator of HK . The structure is TK = HK ⊕ RK .

P=x^3+x^2-884540*x-393129 f=2653621=Mat([2653621,1]) (a,b)=(-1,627)

Class group=[686,14] sigma=2

(alpha,beta)=(-112.00000000,-70.00000000) Index [E_K:C_K]=9604.00000000

h=[2,0], sigma(h)=[36,2]

h’=[0,2], sigma(h’)=[0,4]

1 3 P1 and P2-valuations for alpha+j*beta

R11=74*X+0*Y R12=2*X+42*Y

R21=0*X+0*Y R22=2*X+311*Y

Structure of the 7-torsion group: List([343,49])

In that case, TK ≃ Z/73Z⊕Z/72Z and RK ≃ (Z/73Z)0 ⊕ (7Z/72Z).

(c) Larger 7-ranks. If the order 73, with 7-rank 1 or 2, is rather
frequent for the 7-class group, we find, after several days of computer,
only three examples of 7-rank 3 in the interval f ∈ [7, 50071423]; they are
obtained with the conductors f = 14376321, 39368623, 43367263, giving
interesting structures (use precision \p 100). The least cubic field with
7-rank 3 is the following:

P=x^3-4792107*x+4022175142 f=14376321=[3,2;1597369,1] (a,b)=(-7554,128)

Class group=[21,7,7] sigma=5

(alpha,beta)=(-7.000000000,-21.000000000) Index [E_K:C_K]=343.000000000

h =[3,0,0], sigma(h) =[15,4,0]

h’=[0,1,0], sigma(h’)=[3,1,0]

h"=[0,0,1], sigma(h")=[6,5,2]

2 1 P1 and P2-valuations for alpha+j*beta

Structure of the 7-torsion group: List([7,7,7])

Using the information on α and β, we obtain, for ẼK = EK/FK :

ẼK ≃ (Z[j]/7p2)⊗ Z7 ≃ (Z[j]/p21 p2)⊗ Z7 ≃ (Z[j]/p21 ⊕ Z[j]/p2)⊗ Z7,

where p1 = (−2 + j) and p2 = (3 + j). We get the ϕ-components:

Ẽϕ1
≃ (Z[j]/p21)⊗ Z7 ≃ Z/72Z and Ẽϕ2

≃ (Z[j]/p2)⊗ Z7 ≃ Z/7Z.

To obtain the two ϕ-components of HK = TK , we put H = hxh′yh′′z

and we determine the solutions of the two relationsHPϕ
i
(σ) = 1, i = 1, 2,

that is to say, H−2+σ = 1 and H3+σ = 1, respectively.

We then obtain the systems (considered modulo 7 since the exponent
of HK is 7) of ranks 1 and 2, respectively:

{
2x+ 3y + 6z = 0

4x+ 6y + 5z = 0
(H−2+σ = 1) &





3x+ 3y + 6z = 0

4x+ 4y + 5z = 0

z = 0,

(H3+σ = 1).

They are equivalent to:

2x+ 3y + 6z = 0 (H−2+σ= 1) &
[
x+ y = 0 & z = 0

]
(H3+σ= 1).

Which gives, considering the F7-dimensions given by the systems:

Hϕ1
≃

[
(Z[j]/p1)⊗ Z7

]
⊕
[
(Z[j]/p1)⊗ Z7

]
& Hϕ2

≃ (Z[j]/p2)⊗ Z7.

We have indeed equalities for the orders of the ϕ-components relative

to ẼK and HK , respectively, but of course with different structures of

Z7[j]-modules since Ẽϕ1
≃ Z/72Z and Hϕ1

≃
[
Z/7Z

]2
.

The two other examples are similar:

P=x^3+x^2-13122874*x-7765825411

f=39368623=[7,1;79,1;71191,1] (a,b)=(-5323,2187)

class group=[21,21,7] sigma=4

(alpha,beta)=(28.000000000,-7.000000000) Index [E_K:C_K]=1029.000000000

h =[3,0,0], sigma(h) =[3,9,0]

h’=[0,3,0], sigma(h’)=[18,15,0]
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h"=[0,0,1], sigma(h")=[15,6,4]

1 2 P1 and P2-valuations for alpha+j*beta

Structure of the 7-torsion group: List([7,7,7])

P=x^3+x^2-14455754*x-16977480367

f=43367263=[43,1;1008541,1] (a,b)=(-10567,1513)

class group=[273,7,7] sigma=2

(alpha,beta)=(42.000000000,77.000000000) Index [E_K:C_K]=4459.000000000

h =[39,0,0], sigma(h) =[0,5,1]

h’=[0,1,0], sigma(h’)=[156,6,5]

h"=[0,0,1], sigma(h")=[0,0,2]

2 1 P1 and P2-valuations for alpha+j*beta

Structure of the 7-torsion group: List([49,7,7])

(d) Larger primes p. Let’s give, without comments, some examples:

p=13 P=x^3+x^2-15196*x-726047 f=45589=Mat([45589,1]) (a,b)=(-427,1)

Class group=[169] sigma=2

(alpha,beta)=(15.000000000,8.000000000) Index [E_K:C_K]=169.000000000

h=[1], sigma(h)=[146]

2 0 P1 and P2-valuations for alpha+j*beta

2 0 P1 and P2-valuations for H

Structure of the 13-torsion group: List([169])

p=13 P=x^3+x^2-238516*x-7579519 f=715549=Mat([715549,1]) (a,b)=(-283,321)

Class group=[13,13] sigma=2

(alpha,beta)=(7.000000000,-8.000000000) Index [E_K:C_K]=169.000000000

h =[1,0], sigma(h) =[9,0]

h’=[0,1], sigma(h’)=[0,9]

0 2 P1 and P2-valuations for alpha+j*beta

R11=0*X+0*Y R12=0*X+0*Y

R21=6*X+0*Y R22=0*X+6*Y

Structure of the 13-torsion group: List([13,13])

p=19 P=x^3-137271*x+45757 f=411813=[3,2;45757,1] (a,b)=(-3,247)

Class group=[1083] sigma=2

(alpha,beta)=(-21.000000000,-5.000000000) Index [E_K:C_K]=361.000000000

h=[3], sigma(h)=[204]

0 2 P1 and P2-valuations for alpha+j*beta

0 2 P1 and P2-valuations for H

Structure of the 19-torsion group: List([361])

p=19 P=x^3+x^2-162636*x+25190561 f=487909=[31,1;15739,1] (a,b)=(1397,1)

Class group=[57,19] sigma=2

(alpha,beta)=(19.00000000,4.19514516 E-69) Index [E_K:C_K]=361.00000000

h =[3,0], sigma(h) =[51,16]

h’=[0,1], sigma(h’)=[3,1]

1 1 P1 and P2-valuations for alpha+j*beta

R11=18*X+3*Y R12=16*X+9*Y

R21=11*X+3*Y R22=16*X+13*Y

Structure of the 19-torsion group: List([19,19])

p=31 P=x^3+x^2-63804*x+6181931 f=191413=Mat([191413,1]) (a,b)=(875,1)

class group=[31,31] sigma=4

(alpha,beta)=(31.00000000,-4.10842850 E-69) Index [E_K:C_K]=961.00000000

h=[1,0], sigma(h) =[30,30]

h’=[0,1], sigma(h’)=[1,0]

1 1 P1 and P2-valuations for alpha+j*beta

R11=5*X+1*Y R12=30*X+6*Y

R21=25*X+1*Y R22=30*X+26*Y

Structure of the 31-torsion group: List([31,31])

p=31 P=x^3+x^2-76004*x-8090239 f=228013=Mat([228013,1]) (a,b)=(-955,1)

class group=[961] sigma=2

(alpha,beta)=(-11.000000000,-35.000000000) Index [E_K:C_K]=961.000000000

h=[1], sigma(h)=[439]

2 0 P1 and P2-valuations for alpha+j*beta

2 0 P1 and P2-valuations for H

Structure of the 31-torsion group: List([961])
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http://eudml.org/doc/90370
http://www.numdam.org/item?id=CM_1996__103_2_241_0
https://doi.org/10.2969/jmsj/02710150
http://eudml.org/doc/150624
http://eudml.org/doc/147605
https://doi.org/10.1112/jlms.12123
https://link.springer.com/content/pdf/bbm%3A978-1-4612-0987-4%2F1
https://doi.org/10.1112/S0010437X1000494X
https://doi.org/10.1007/BF01388599
https://theses.hal.science/tel-01795150
https://doi.org/10.5802/aif.1045
https://doi.org/10.4310/PAMQ.2006.V2.N2.A4
https://doi.org/10.5802/pmb.a-4
https://doi.org/10.5802/pmb.a-5
https://projecteuclid.org/download/pdf_1/euclid.nmj/1118786304
https://doi.org/10.4064/aa-46-4-331-354
https://doi.org/10.1090/mcom/3712
http://www.numdam.org/item/SB_1989-1990__32__69_0/


NOTION OF ABELIAN ARITHMETIC ϕ-OBJECT 63

https://www.imo.universite-paris-saclay.fr/∼biblio/cours-m2/Fonctions L p-adiques et theorie Iwasawa.pdf
6

[Rib2008] K.A. Ribet, Bernoulli numbers and ideal classes, SMF, Gazette 118

(2008), 42–49. https://smf.emath.fr/system/files/filepdf/gaz-118.pdf 3, 5
[Rib2008b] K.A. Ribet, Modular constructions of unramified extensions and their

relation with a theorem of Herbrand (Class groups and Galois represen-
tations), ENS., J. Herbrand centennaire 2008.
https://math.berkeley.edu/∼ribet/herbrand.pdf 5

[Rub1990] K. Rubin, The main conjecture, Appendix to Cyclotomic fields
I, II by S. Lang GTM 121, Springer-Verlag 1990, pp. 397–419.
https://link.springer.com/content/pdf/bbm%3A978-1-4612-0987-4%2F1.pdf
5

[SchS2019] K. Schaefer and E. Stubley, Class groups of Kummer extensions via
cup products in Galois cohomology, Trans. Amer. Math. Soc. 372 (2019),
6927–6980. https://doi.org/10.1090/tran/7746 5

[Ser1978] J-P. Serre, Sur le résidu de la fonction zêta p-adique d’un corps de
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