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Cut-free Ordinary Sequent Calculi for Logics
Having Generalized Finite-Valued Semantics

Arnon Avron, Jonathan Ben-Naim and Beata Konikowska

1. Introduction

For at least seven decades, many-valued logics have been a challenging and fruit-
ful field of research. This research became particularly extensive with the advent
of computers, and then information systems, data and knowledge bases, expert
systems, and artificial intelligence. In all these fields, many applications have been
found for logics having finite-valued semantics.

The applicability of finite-valued semantics has recently been greatly in-
creased by a major generalization of the ordinary many-valued semantics for logical
systems: the use of non-deterministic matrices — shortly, Nmatrices ([9, 8]). While
preserving all the good properties of the ordinary finite-valued matrices, Nmatrices
can be used to provide (generalized) finite-valued semantics for many logics which
do not possess semantics based on the former matrices (see [1, 2, 3, 4, 5, 6, 9]).
Two examples of large families of this kind are:

[8, 9]: All logics having ordinary sequent calculi with only canonical rules 1,
except those which are exact fragments of classical logic. This family includes,
e.g., all logics obtained from classical logic by deleting some rule(s) from its
standard sequent calculus.

[3, 4, 6]: All the paraconsistent LFIs (Logics with Formal Inconsistency) and
C-systems considered in ([14, 15], except for those including the axiom (l),
or the axiom (d), or the axiom (o). This family includes thousands of logics.
With the growing importance of finite-valued logics, a lot of efforts have been

devoted to developing proof systems for such logics (see [10, 16]). For an ordinary
n-valued semantics, the usual way of doing so in a uniform way is by employing a
calculus of n-sequents, i.e.: sequents with n components, or “sides” (or an equiv-
alent deduction mechanism based on sets of n-signed formulas). Unfortunately,

1Canonical rules are context-free rules introducing exactly one connective on one of the two sides
of the sequent, with the composed formula appearing only once in the conclusion.
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such mechanisms, though useful, are much less known than those which are based
on ordinary, two sided sequents. Moreover: working with calculi of the latter type
has some obvious advantages that make the search for them a worthwhile task:

1. In an ordinary sequent calculus, the answer to the question when a sentence
ϕ follows from a finite set of premises Γ (which is the central problem of
logic) is very simple: ϕ follows from Γ iff the sequent Γ ⇒ ϕ is provable in
the system. In other words: the use of two-sided sequents reflects the basic
fact that logic is all about consequence relations. In contrast, the use of an
n-sequents calculus makes even characterization of the consequence relation
a rather complicated task, since this can only be done in a roundabout way.

2. The use of two-sided sequents is universal, and independent of any particular
semantics. As opposed to this, the use of n-sequents relies in an essential
way on a specific semantics for a given logic (which might not be the only
useful one). We believe that mixing in this way the proof-theory of a logic
with its semantics is conceptually wrong. Suppose, for example, that ϕ is
valid in L2 and that L1 is an extension of L2. Suppose further that L2 has
a characteristic n-valued matrix, while L1 has a k-valued one — say, with
k < n (the literature on many-valued logics is full of this type of examples).
In this case, finding a proof of ϕ in an n-sequent calculus for L2 is of no
help in finding a proof of ϕ in an k-sequent calculus for L1: usually, all the
work has to be started from a scratch. On the other hand, when a uniform
framework is used (like ordinary two-sided sequent calculi), one can try to
develop a calculus for L1 by extending a known calculus for L2. This is indeed
often done successfully 2 — and in such a case, a proof of ϕ in L2 is also a
proof of ϕ in L1.

3. Since the most important logics (like classical logic, intuitionistic logic and
the most famous modal logics) have useful two-sided sequent calculi (or re-
lated calculi, like tableaux or resolution ones), the framework of such calculi
is well-understood, and a lot of progress has been made (with even more to
follow certainly in the future) towards developing their efficient implemen-
tations. Clearly, given some logic, it is desirable to be able to adapt such
implementations for its use. This may be possible only if a calculus of the
same type is available for that logic.
In this paper we show that for a large, central class of (generalized) finite-

valued logics, the language of which satisfies a certain minimal expressiveness con-
dition, one can transform a given sound and complete n-sequent proof system into
an equivalent sound and complete system of ordinary sequents. The expressiveness
condition is that we must be able to identify the truth-value of any formula ϕ by
determining whether certain formulas uniformly constructed from ϕ are true (i.e.:
have designated values) or not (note that we do not need to know the exact truth
values of those formulas). Obviously, any language which does not satisfy this
condition can (perhaps should) be extended to one which does, so our procedure

2See [2] for many examples of this sort where n = 4 and k = 3.
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is quite general. Moreover, our transformation preserves the structures of proofs
in the original calculus in the following sense: each rule of the original calculus
induces a finite set of rules of the new, two-sided calculus, and a rule is used in a
proof resulting from the transformation only if it is induced by a rule used in the
original proof. This fact automatically entails a weak form of the cut elimination
theorem for the resulting two-sided calculus if the same (weak) theorem obtains
for the original one (the weak form says that every sequent which has a proof with
cuts has also a cut-free proof).

The present paper is a companion to [7], where we showed special cases of the
above transformation for certain important logics, and announced a forthcoming
general result and method — which we give in this paper. We also illustrate here
that method on several concrete examples of many-valued logics, including a new
application for information sources logics.

2. General Framework for Generalized Finite-valued Logics

In this section we present the general framework for discussing generalized finite-
valued logic which will be used throughout the paper.

2.1. General Semantics and Consequence Relation

In what follows L is a propositional language, Ok (k ≥ 0) is the set of its k-ary
connectives, W is its set of wffs, p, q, r denote propositional variables, ϕ,ψ, φ, τ
denote arbitrary formulas (of L), and Γ,∆ denote finite sets of formulas.

Definition 2.1.

• A (generalized) finite-valued semantics for L is a triple (T ,D,V), where T
is a set of truth values, D, the set of designated values, is a nonempty proper
subset of T , and V is a set of functions from W to T (the “admissible”, or
“legal”, valuations). We shall usually use V also to refer to such a triple, and
denote the set of non-designated values by N .

• A formula ϕ ∈ W is satisfied by a valuation v ∈ V, in symbols v |= ϕ, if
v(ϕ) ∈ D.

• An (ordinary) sequent Σ = Γ ⇒ ∆ is satisfied by a valuation v ∈ V, in
symbols v |= Σ, iff either v does not satisfy some formula in Γ or v satisfies
some formula in ∆.

• A sequent Σ is valid if it is satisfied by all valuations v ∈ V.
• The (Scott) consequence relation on W defined by V is the relation `V on

sets of formulas in W such that, for any T, S ⊆ W , T `V S iff there exist
finite sets Γ ⊆ T,∆ ⊆ S such that the sequent Γ ⇒ ∆ is valid.

2.2. Ordinary and Non-deterministic Logical Matrices

The most common way of defining a set V of admissible valuations for a language
L is by using the well-known, ordinary logical matrices, defined as follows:
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Definition 2.2. A logical matrix for L is a triple M = (T ,D,O), where T is a
finite, non-empty set of truth values, D is a non-empty proper subset of T (con-
taining its designated values), and O includes a k-ary function �̃ : T k → T for
every k-ary connective � ∈ Ok.

A valuation in an ordinary matrix M is defined compositionally, based on
the interpretation of the connectives:

Definition 2.3. Let M = (T ,D,O) be a logical matrix. A valuation in M is a
function v : W → T such that

v(�(ψ1, . . . , ψk)) = �̃(v(ψ1), . . . , v(ψk))

for each k-ary connective � ∈ Ok and for all ψ1, . . . , ψk ∈ W.

However, many logics which do not possess finite-valued semantics based on
finite ordinary matrices can be given generalized finite-valued semantics based on
finite non-deterministic matrices, characterized by a set-valued interpretation of
connectives:

Definition 2.4. ([8, 9]) A non-deterministic matrix (Nmatrix) for L is a triple
M = (T ,D,O), where T is a non-empty set of truth values, D is a non-empty
proper subset of T (containing its designated values), and O includes a k-ary
function �̃ : T k → 2T \ {∅} for every k-ary connective � ∈ Ok.

Definition 2.5. Let M = (T ,D,O) be an Nmatrix. A valuation in M is a function
v : W → T such that

v(�(ψ1, . . . , ψk)) ∈ �̃(v(ψ1), . . . , v(ψk))

for each k-ary connective � ∈ Ok and for all ψ1, . . . , ψk ∈ W.

As one can see from the above definitions, the value of v(�(ψ1, . . . , ψk)) is
selected out of the whole range of the allowed values in �̃(v(ψ1), . . . , v(ψk)) sep-
arately and independently for each tuple 〈v(ψ1), . . . , v(ψk)〉. Thus, in contrast to
ordinary matrices, the valuations provided by Nmatrices are not compositional,
and v(ψ1), . . . , v(ψk) do not uniquely determine v(�(ψ1, . . . , ψk)).

If for each � ∈ Ok the function �̃ is singleton-valued, then M defined as above
is equivalent to an ordinary logical matrix. Thus Nmatrices are a generalization of
ordinary matrices. More importantly, finite Nmatrices preserve the basic advan-
tages of the finite ordinary, deterministic matrices, like decidability, compactness
([9]), effectiveness (i.e. the possibility to extend to a full valuation any semivalua-
tion defined on a subset of W closed under subformulas), and the availability of a
uniform method for developing corresponding cut-free n-sequent calculi for them.
This method is reviewed in the next subsection.

2.3. Proof Systems Based on n-sequents

Next we recall the basic formalism for reasoning about finite-valued logics, which
will be the main tool of our method: n-sequents (or their alternate representation
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— sets of signed formulas). In the rest of this section V is some (generalized) finite-
valued semantics. For simplicity, we assume that T = {t0, t1, . . . , tn−1} (where
n ≥ 2), and that D = {td, . . . , tn−1} (where d ≥ 1).
Definition 2.6.
• By an n-sequent 3 over a language L we mean an expression Σ of the form

Γ0 | Γ1 | . . . | Γn−1, where, for each i, Γi is a finite set of formulas of L.
• A valuation v satisfies the n-sequent Σ = Γ0 | Γ1 | . . . | Γn−1, written v |= Σ,

if there exists an i, 0 ≤ i ≤ n− 1, and ϕi ∈ Γi such that v(ϕi) = ti.
• An n-sequent Σ is valid in V, in symbols |=V Σ, if v |= Σ for every v ∈ V.

To make the presentation more intuitive, from now on the sequent bar |
which separates the non-designated values from the designated ones will usually
be replaced with the symbol ⇒ used in ordinary sequents.

As a simple consequence of the above we obtain:

Fact 1. A valuation v ∈ V satisfies an ordinary sequent Γ ⇒ ∆ (see Definition 2.1)
iff v satisfies the n-sequent Γ | Γ | · · · | Γ ⇒ ∆ | ∆ | . . . | ∆.

An alternative representation of n-sequents is provided by sets of n-signed
formulas, shortly: signed formulas.
Definition 2.7.
• A signed formula over L and T is an expression of the form a : ψ, where
a ∈ T , ψ ∈ W.

• A valuation v in V satisfies a signed formula a : ψ, in symbols v |= a : ψ, if
v(ψ) = a.

Signed formulas will be denoted by α, β, . . ., and sets of signed formulas —
by Ω,Σ,Φ.

In the sequel, for any set U ⊆ T of logical values and any set F ⊆ W of
formulas of L, we will also employ a shorthand notation of the form

U : F
df
= {u : ϕ | u ∈ U , ϕ ∈ F}

In terms of satisfaction by a valuation and validity, sets of signed formulas are
interpreted disjunctively:
• A valuation v ∈ V satisfies a set of signed formulas Ω iff it satisfies some

signed formula α ∈ Ω.
• A set of signed formulas Ω is valid, in symbols |= Ω, iff v |= Ω for every

valuation v ∈ V.
The equivalence of the two formalisms follows from the following observation:

Fact 2. A sequent Σ of the form Γ0 | Γ1 | . . . | Γn−1 is valid if and only if the set
Ω = {t0 : Γ0, t1 : Γ1, . . . , tn−1 : Γn−1} of signed formulas is valid.

Accordingly, in future we will use both the representations alternately.
Assume C is an arbitrary n-sequent calculus for the language L.

3Proof systems based on n-sequents were invented and reinvented several times in the past. See
e.g. [23, 22, 11]. See also [24, 16, 10] for further details and references.
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Definition 2.8. The consequence relation for L defined by C is the relation `C on
sets of formulas of W such that, for any T, S ⊆ W , T `C S iff there exist finite
subsets Γ ⊆ T,∆ ⊆ S such that the sequent Γ | Γ | . . . | Γ ⇒ ∆ | ∆ | . . . | ∆ is
provable in C.

By Fact 2 we have that if C is sound and complete for V then:

F `C G iff the set N : F ∪ D : G is valid in V

2.4. Streamlining of Sequential Deduction Systems

The n-sequent calculi obtained using the general method of [7] (and reviewed in
the next subsection) are as a rule hardly optimal (as is usually the case with this
type of “generic” systems). The same is true for the two-sided calculi which are
obtained from them using the method described below. Therefore in both cases
we use the three general streamlining principles from [7] to reduce them to a more
compact form. Of these three, the first and the third decrease the number of rules
(which is our main measure of complexity), while the second simplifies a rule by
decreasing the number of its premises (since the third rule increases this number,
its application is often followed by applications of the first two). Next we recall
these three principles.

Denote the system under consideration by R. Our streamlining principles
consist in: deleting a derivable rule (Princ. 1), simplifying a rule by replacing it
with one with weaker premises (Princ. 2), and combining two rules with the same
conclusion (Princ. 3) into one.

Principle 1: If a rule in R is derivable from other rules, it can be deleted.

Principle 2: If
S
Σ

(where S is a set of premises) is a rule in R, S′ is a subset of

S and
S′

Σ
is derivable in R (perhaps using cuts), then

S
Σ

can be replaced

with
S′

Σ
. In particular: if

S
Σ

is a rule in R, π ∈ S, and π is derivable from

S \ {π} in R, then
S
Σ

can be replaced with
S \ {π}

Σ
(two very simple, but

quite useful cases of this are when π is subsumed 4 by an axiom or by some
sequent in S \ {π}).

Principle 3: Two context-free rules 5 Ω1 . . . Ωk

Σ
and

Ω′1 . . . Ω′l
Σ

can be

replaced with the single rule
{Ωi ∪ Ω′j}1≤i≤k,1≤j≤l

Σ

4On the propositional level, a sequent π1 subsumes a sequent π2 if the latter can be derived from
the former using only weakenings.

5A rule R is context-free if whenever
Φ1 . . . Φk

Σ
is a valid application of R, and Σ′ is a set

of signed formulas, then
Φ1 ∪ Σ′ . . . Φk ∪ Σ′

Σ ∪ Σ′ is also a valid application of R.
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The validity of Principles 1 and 2 is obvious. As for Principle 3, since the second
rule is context-free, for each 1 ≤ i ≤ k, Ωi ∪Σ follows from {Ωi ∪Ω′j} | 1 ≤ j ≤ l}.
But then Σ follows from these k sets using the first rule, since that rule is also
context-free, and Σ ∪ Σ = Σ.

A word is in order here about the role of the cut rule (a rule that can easily be
generalized to n-sequents calculi). The rule should necessarily be at least admissible
in any system which defines a consequence relation, in particular: in any system
which is sound and complete for some reasonable semantics. It is indeed admissible
in the n-sequent calculi from [7] described below. Now if the rule is admissible in
a given ordinary sequent system then the same is true for the systems obtained
from it by using our streamlining principles, even if cuts are used in applications
of Principle II. Indeed, suppose Γ ⇒ ∆, ϕ and ϕ,Γ ⇒ ∆ are both provable in
the new system. Their proofs can then be turned into proofs with cuts in the old
system. Since the cut rule is admissible in that system, both these sequents, as
well as Γ ⇒ ∆, have cut-free proofs in it. Now the cut-free proof of Γ ⇒ ∆ in the
old system can be turned into a cut-free proof of Γ ⇒ ∆ in the new one simply by
throwing away the appropriate parts of the original proof (i.e.: deleting superfluous
premises of applications of the old rules, as well as the subproofs ending in them).

Note that the above argument does not work if the use of cuts is allowed in
applications of Principle I.

Another important note: If a system is sound and complete for some seman-

tics, then we may use a semantic version of Principle 2: If
S
Σ

is a rule in R, S′

is a subset of S, and
S′

Σ
is sound for the semantics, then

S
Σ

can be replaced

with
S′

Σ
. This version cannot be a part of a general simplification procedure, but

there may be particular cases where it might be useful.

2.5. n-sequent Systems for (Generalized) Finite-valued Logics

In [7] we developed a generic n-sequent system (presented also as a Rasiowa-
Sikorski deduction system ([20, 17]) in a signed formula set form) for any logic
based on an n-valued Nmatrix. That system, together with the method of trans-
lating an n-sequent calculus to an ordinary sequent calculus described in this
paper, form the cornerstone of our method for producing cut-free two-sided se-
quent calculi for (generalized) finite-valued logics (and provide the basis for all the
examples given below).

Given an n-valued Nmatrix M = (T ,D,O), let SFM be a deduction system
defined as follows:

• Axioms: Each set of signed formulas of the form {a : ϕ | a ∈ T }, where ϕ is
any formula in W.

• Structural inference rules: Weakening.
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• Logical inference rules: For every m-ary connective � ∈ O and any logical val-
ues a1, a2, . . . , am, b1, b2, . . . , bk ∈ T such that �̃(a1, . . . , am) = {b1, . . . , bk},
the rule:

(�-D)
Ω, a1 : ϕ1 . . . Ω, am : ϕm

Ω, b1 : �(ϕ1, . . . , ϕm), . . . , bk : �(ϕ1, . . . , ϕm)

Theorem 2.9. The system SFM is sound and complete for the Nmatrix M.

Note. In [7] we also provided an alternate semantics based on Nmatrices, the so-
called static semantics, and developed two generic n-sequent calculi for it. The
method we develop below applies to those calculi equally well.

2.6. Paradigmatic Example: Rosser-Turquette Logics

In [7] we exemplified the method of developing n-sequent system calculi introduced
there, as well as the method of translating them to ordinary sequent calculi6, on
several interesting and important logics. Now we shall give another, particularly
suitable and illustrative example: the generic n-valued logics, where n is any non-
zero natural number, defined and examined by Rosser-Turquette [21]. The suit-
ability of those logics for our purpose follows from their famous J operators, being
dichotomous “selectors” of the individual logical values. It is exactly those oper-
ators which make Rosser-Turquette logics sufficiently expressive to be eligible for
our translation method, making them the simplest general example of the idea
behind that method.

Rosser-Turquette logics can be seen as a general framework for reasoning
about various degrees of truth, represented by the logical values 0, 1, . . . , n − 1,
ordered linearly according to the order of natural numbers.

More exactly, the n-valued Rosser-Turquette logic LRT can be represented
by the ordinary matrix MRT = (T ,D,O), where T = {0, 1, . . . , n−1},D = {s, s+
1, . . . , n − 1},O = {¬,∨,∧, J0, J1, . . . , Jn−1}, and the connectives are interpreted
as follows:

• ¬̃t =
{
n− 1 if t ∈ {0, . . . , s− 1},
0 otherwise.

• t∨̃u = max(t, u); t∧̃u = min(t, u);

• for k = 0, 1, . . . , n− 1, J̃kt =
{
n− 1 if t = k,
0 otherwise;

A direct application of the well-known (see [16, 10]) general method for gener-
ating n-sequent calculi for ordinary matrices (of which the method described in
Section 2.5 is a generalization) yields the system:

Axiom: {0 : ϕ, 1 : ϕ, . . . , (n− 1) : ϕ}

6Note that the latter method was not defined in its general form there, but only illustrated on
some examples.
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Logical inference rules:

(∨)
Ω, k : ϕ Ω, l : ϕ

Ω,max(k, l) : ϕ ∨ ψ (∧)
Ω, k : ϕ Ω, l : ϕ

Ω,min(k, l) : ϕ ∧ ψ

(¬ 1)
Ω, k : ϕ

Ω, n− 1 : ¬ϕ for any 0 ≤ k ≤ s− 1

(¬ 2)
Ω, k : ϕ
Ω, 0 : ¬ϕ for any s ≤ k ≤ n− 1

(Jk 1)
Ω, k : ϕ

Ω, n− 1 : Jkϕ
(Jk 2)

Ω, l : ϕ
Ω, 0 : Jk(ϕ)

for k 6= l

After combining rules with the same conclusions using the streamlining Princ.3
above, we can replace the whole rule groups (¬ 1), (¬ 2), and (Jk 2) with the
following single rules

(¬ 1′)
Ω, 0 : ϕ, 1 : ϕ, . . . , s− 1 : ϕ

Ω, n− 1 : ¬ϕ

(¬ 2′)
Ω, s : ϕ, s+ 1 : ϕ, . . . , n− 1 : ϕ

Ω, 0 : ¬ϕ

(Jk 2′)
Ω, {l : ϕ | l 6= k}

Ω, 0 : Jk(ϕ)

3. Translation of n-sequent Calculi to Ordinary Ones

In this section we show a general method of translating an n-sequent calculus
for an n-valued logic satisfying certain expressiveness conditions to an ordinary,
two-sided sequent calculus.

Below we use the notational conventions from the previous section. In addi-
tion, F1 will denote the set of formulas in W which have p as their only proposi-
tional variable.

Definition 3.1. The language L is sufficiently expressive for the semantics V iff
for any i, 1 ≤ i ≤ n, there exist natural numbers li,mi ≥ 0 and Ai

j , B
i
k ∈ F1,

1 ≤ j ≤ li, 1 ≤ k ≤ mi, such that, for any valuation v ∈ V and any formula
ϕ ∈ W, the following conditions are satisfied:

(i) Ai
1 = p for i ∈ N and Bi

1 = p for i ∈ D;
(ii) For any ϕ ∈ W and any ti ∈ T

v(ϕ) = ti ⇔ v(Ai
1ϕ), . . . , v(Ai

liϕ) ∈ N & v(Bi
1ϕ), . . . , v(Bi

mi
ϕ) ∈ D (1)

where Ai
jϕ and Bi

kϕ denote the substitutions of ϕ for p in Ai
j and Bi

k, re-
spectively.
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Note that Condition (i) above is not really limiting, for, given Ai
j ’s, B

j
k’s

satisfying (ii), we can simply add to them the necessary formula p without violating
(ii). Condition (i) will only be used for a backward translation from ordinary
sequents to n-sequents, and will be disregarded otherwise.

The general transformation theorem will be based on replacing each n-sequent
by a semantically equivalent set of two-sided sequents.

Definition 3.2. Let L be a sufficiently expressive language, with li,mi, A
i
j and Bi

k

like in Definition 3.1,7 and let Σ = Γ1 | Γ2 | . . . | Γn be an n-sequent over L. Call
a partition sequence for Σ any tuple π = 〈π1, . . . , πn〉, where for 1 ≤ i ≤ n, πi is
a partition of Γi of the form:

πi = {Γ′ij | 1 ≤ j ≤ li} ∪ {Γ′′ik | 1 ≤ k ≤ mi} (2)

For such a partition sequence π, and for i = 1, 2, . . . , n, define:

∆′
i =

⋃
{Ai

j(Γ
′
ij) | 1 ≤ j ≤ li}, ∆′′

i =
⋃
{Bi

k(Γ′′ik) | 1 ≤ k ≤ mi}
Σπ = ∆′

1,∆
′
2, . . . ,∆

′
n ⇒ ∆′′

1 ,∆
′′
2 , . . . ,∆

′′
n

(3)

where Ai
j(Γ

′
ij) = {Ai

jϕ | ϕ ∈ Γ′ij}, with Bi
k(Γ′′ik) defined analogously. Denote by

Π the set of all partition sequences for Σ. Then by the set of two-sided sequents
generated by Σ we mean the set

TWO(Σ) = {Σπ | π ∈ Π} (4)

Note. By Condition (i) of Definition 3.1, Ai
1ϕ = ϕ and Bi

1ϕ = ϕ. This implies that
the sequent Γ ⇒ ∆ is in TWO(Γ | Γ | . . . | Γ ⇒ ∆ | ∆ | . . . | ∆). Indeed, the
sequent Σπ coincides with Γ ⇒ ∆ when the partition sequence π of the form (2)
for the latter n-sequent is defined by: Γ′i1 = Γ for i < d, Γ′ij = ∅ if j > 1 or i ≥ d,
Γ′′i1 = ∆ for i ≥ d, and Γ′′ik = ∅ if k > 1 or i < d.

Theorem 3.3. If L is a sufficiently expressive language, then, for any n-sequent
Σ = Γ1 | Γ2 | . . . | Γn over L and any valuation v ∈ V of formulas in L, v satisfies
Σ iff v satisfies all the two-sided sequents generated by Σ, i.e.

v |= Σ iff v |= Σ′ for every Σ′ ∈ TWO(Σ) (5)

Proof. (⇒) Assume v |= Σ. Then there exist i, 1 ≤ i ≤ n, and ϕ ∈ Γi such that
v(ϕ) = ti. Hence by (1) we have v(Ai

jϕ) ∈ N for j = 1, 2, . . . , li and v(Bi
kϕ) ∈ D

for k = 1, 2, . . . ,mi.
Now consider any two-sided sequent Σ′ ∈ TWO(Σ). Then by (4) we have

Σ′ = Σπ for some partition sequence π ∈ Π, where πi is of the form (2) (with
Σπ defined as in (3)). Since ϕ ∈ Γi, and πi is a partition of Γi, then there must
exist either j such that ϕ ∈ Γ′ij or k such that ϕ ∈ Γ′′ik. In the first case, the left
hand side of the sequent Σπ contains Ai

jϕ, which in view of v(Ai
jϕ) ∈ N implies

7Strictly speaking, all the concepts and notations introduced in this definition should be
parametrized by the choice of li, mi, A

i
j and Bi

k. For the sake of readability, we omit this

parametrization in the rest of this paper.
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v |= Σπ. In the second case, the right hand side of the sequent Σπ contains Bi
kϕ,

which in view of v(Bi
kϕ) ∈ D again implies v |= Σπ.

(⇐) Assume v |= Σ′ for each Σ′ ∈ TWO(Σ). Then by (4) v |= Σπ for each
π ∈ Π. To prove that v |= Σ, we argue by contradiction. Suppose v 6|= Σ, i.e.
v(ϕ) 6= ti for each ϕ ∈ Γi, 1 ≤ i ≤ n. In view of (1), this means that

for any 1 ≤ i ≤ n and any ϕ ∈ Γi, either
(i) there exists j, 1 ≤ j ≤ li, such that v(Ai

jϕ) 6∈ N , or
(ii) there exists k, 1 ≤ k ≤ mi, such that v(Bi

kϕ) 6∈ D
(6)

For any i, 1 ≤ i ≤ n define:

Γ′ij = {ϕ ∈ Γi | v(Ai
jϕ) 6∈ N , ϕ 6∈

⋃
t<j Γ′it} (1 ≤ j ≤ li)

Γ′′ik = {ϕ ∈ Γi | v(Bi
kϕ) 6∈ D, ϕ 6∈

⋃
t<li

Γ′it ∪
⋃

t<k Γ′′it} (1 ≤ k ≤ mi)
(7)

Let , π = 〈π1, . . . , πn〉, where for each i, 1 ≤ i ≤ n πi is defined like in 2. By (6)
and (7), π is a partition sequence for Σ. In consequence, Σπ defined as in (3) is
in TWO(Σ). What is more, in view of (7), for any ϕ ∈ Γ′ij we have v(Ai

jϕ) ∈ D,
while for any ϕ ∈ Γ′′ik we have v(Bi

kϕ) ∈ N . Thus v 6|= Σπ, which in view of
Σπ ∈ TWO(Σ) is a contradiction. �

The above theorem gives a clear way of translating a sound and complete
n-sequent calculus to a sound and complete ordinary sequent calculus for L.

Definition 3.4. Let C be an n-sequent calculus for the language L. Then by TWO(C)
we mean the calculus of ordinary sequents for L consisting of:
• axioms: all two-sided sequents in TWO(A), where A is any axiom of C

• inference rules: all rules of the form
TWO(S)

Σ′
, where for some rule

S
R

in C, Σ′ ∈ TWO(R) 8.

Thus each n-sequent axiom is translated to the equivalent set of ordinary sequents,
which now become axioms of the new ordinary sequent calculus. Further, given an

n-sequent rule ρ =
S
R

, we translate each n-sequent Σ in the premises S and the

conclusion R to the equivalent set of ordinary sequents TWO(Σ) defined above,
obtaining the sets S′ and R′ of ordinary sequents, respectively (where S′ is the
union of the sets of ordinary sequents corresponding to the n-sequents in S). Then
a rule ρ is replaced by the equivalent set of ordinary sequent rules which allow us
to derive each sequent in R′ out of the sequents in S′.

It should be noted that the axioms and rules obtained using the above general
method are rather inefficient — in particular, the rules usually contain many su-
perfluous premises. To remedy this, in practice we transform the resulting system
into a simpler one, using the streamlining principles of Section 2.4.

8Here TWO(S) =
S
{TWO(Σ) | Σ ∈ S}
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Theorem 3.5. If an n-sequent Σ is provable in C, then each ordinary sequent Σ′ ∈
TWO(Σ) is provable in TWO(C).

Proof. By induction on the structure of the proof of Σ in C. If Σ is an axiom of C,
then each sequent Σ′ ∈ TWO(Σ) is an axiom of TWO(C), so it has a trivial proof

there. If Σ is derived from S using a rule
S
Σ

in C, then by induction hypothesis, the

sequents in TWO(∆) are provable in TWO(C) for every ∆ ∈ S. In consequence,
each sequent Σ′ ∈ TWO(Σ) can be obtained from the above provable sequents

using the rule
TWO(S)

Σ′
from TWO(C). Accordingly, each such Σ′ is provable

in TWO(C) too. �

Theorem 3.6. Assume L is a sufficiently expressive language for V, and C is a
sound and complete sequent calculus for V. Then TWO(C) is a sound and complete
ordinary sequent calculus for V.

Proof. Soundness follows in an obvious way from the soundness of C and Theo-

rem 3.3. Indeed, consider any rule ρ′ ∈ TWO(C). Then for some rule ρ =
S
R

in C, ρ′ =
TWO(S)

Σ′
, where Σ′ ∈ TWO(R). As C is sound, then, for any v, R

is satisfied by v whenever all the sequents in S are satisfied by v. However, by
Theorem 3.3, v |= S iff v |=

⋃
TWO(S). Thus v |= TWO(S) implies v |= S,

whence v |= R by the soundness of ρ. But then v |= Σ′ by Theorem 3.3 again,
since Σ′ ∈ TWO(R). Accordingly, ρ′ is sound.

To prove completeness, assume a two-sided sequent Σ′ = Γ ⇒ ∆ over L is
valid. Then by Fact 1, the sequent Σ = Γ | Γ | . . . | Γ ⇒ ∆ | ∆ | . . . | ∆ is also
valid. As the calculus C is complete, Σ must have a proof in C. Since the sequent
Σ′ is in TWO(Σ) by (i) of Definition 3.1, this proof can be translated to a proof
of Σ′ in TWO(C) by Theorem 3.5. �

Corollary 3.7. Under the conditions of Theorem 3.6, the cut rule is admissible in
TWO(C) even if no rule in C induces it. In particular: if C is obtained by the
method of [7] (described in 2.5 above), then the cut rule is admissible in TWO(C).

Note. The proofs of Theorems 3.5 and 3.6 justify our claim in the introduction that
our translation preserves the structures of proofs (in the sense explained there).

4. Some Examples

In this section, as well as in the following Applications section, we shall show
how Theorems 3.3, 3.6 can be used to develop two-sided sequent calculi for cer-
tain many-valued logics. As part of the above, we shall also present more details
regarding the examples on which the translation method was presented in [7].
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4.1. Rosser-Turquette Logics

We begin with continuing the example of Rosser-Turquette n-valued logic from
Section 2.6. As each Jk operator is a dichotomous selector of the logical value k,
then the language LRT is sufficiently expressive. Indeed, as for any valuation v
over MRT , any formula ϕ and any k ∈ T we have:

v(ϕ) = k iff v(Jkϕ) ∈ D
Namely, as Jk : T → {0, n− 1}, then v(Jkϕ) ∈ D iff v(Jkϕ) = n− 1, which holds
iff v(ϕ) = k.

Hence LRT satisfies Condition (1), and by the thesis of Theorem 3.3, for any
valuation v over MB , we have:

v |= (Γ1 | . . . | Γs−1 ⇒ Γs | . . . | Γn−1) iff v |= (⇒ J0(Γ0), J1(Γ1), . . . , Jn−1(Γk))

for any sets of formulas Γi, i ∈ T .
Obviously, this makes the translation of the n-sequent calculus above into

an ordinary calculus according to the procedure described in Theorems 3.3,3.6
especially simple, since the J operators provide explicit separation of logical values
using atomic formulas.. As a result, we obtain the following ordinary sequent
calculus:

Axiom: ⇒ J0ϕ, J1ϕ, . . . , Jn−1ϕ

Inference rules:
Γ ⇒ ∆, Jkϕ Γ ⇒ ∆, Jlϕ

Γ ⇒ ∆, Jmax(k,l)(ϕ ∨ ψ)
Γ ⇒ ∆, Jkϕ Γ ⇒ ∆, Jlϕ

Γ ⇒ ∆, Jmin(k,l)(ϕ ∧ ψ)

Γ ⇒ ∆, J0ϕ, J1ϕ, . . . , Js−1

Γ ⇒ ∆, Jn−1¬ϕ
Γ ⇒ ∆, Jsϕ, Js+1ϕ, . . . , Jn−1ϕ

Γ ⇒ ∆, J0¬ϕ

Γ ⇒ ∆, Jkϕ
Γ ⇒ ∆, Jn−1Jkϕ

Γ ⇒ ∆, J0ϕ, . . . , Jk−1ϕ, Jk+1ϕ, Jn−1ϕ
Γ ⇒ ∆, J0Jkϕ

4.2. The logic Cmin

In [7] we considered two 3-valued Nmatrices M3
L,M3

S , for which the basic para-
consistent logic, usually denoted by Cmin ([14]), is sound and complete.

For both the matrices we have T = {f,>, t},D = {>, t},O = {¬̃, ∨̃, ∧̃, ⊃̃},
where the interpretations of ∨,∧,⊃ correspond in the obvious way to their inter-
pretations in positive classical logic. For example, we have

a∨̃b =
{
D if either a ∈ D or b ∈ D,
N if a, b ∈ N

and analogously for ∧̃, ⊃̃. However, negation is interpreted differently in each of
the matrices:

M3
L :

¬̃ f > t
t V f

M3
S :

¬̃ f > t
t D f
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Accordingly, it can be easily seen that the language of M3
S is sufficiently expressive

in the sense of Definition 3.1, because

v(ϕ) = f iff v(ϕ) ∈ N & v(¬ϕ) ∈ D
v(ϕ) = > iff v(ϕ) ∈ D & v(¬ϕ) ∈ D
v(ϕ) = t iff v(ϕ) ∈ D & v(¬ϕ) ∈ N

(8)

However, the fact that ¬̃> = T in M3
L makes it impossible to distinguish between

> and t, whence the language M3
L is not sufficiently expressive for it. Hence just

one of these matrices — namely, M3
S — allows translation of the resulting calculus

to an ordinary sequent calculus.
In [7] we obtained, using our general method, the following complete and

cut-free 3-sequent calculus for M3
S :

Axiom: (A) ϕ⇒ ϕ | ϕ

Inference rules:

Γf, ϕ⇒ Γ> | Γt Γf, ψ ⇒ Γ> | Γt
Γf, ϕ ∨ ψ ⇒ Γ> | Γt

Γf ⇒ Γ>, ϕ, ψ | Γt, ϕ, ψ
Γf ⇒ Γ>, ϕ ∨ ψ | Γt, ϕ ∨ ψ

Γf, ϕ, ψ ⇒ Γ> | Γt
Γf, ϕ ∧ ψ ⇒ Γ> | Γt

Γf ⇒ Γ>, ϕ | Γt, ϕ Γf ⇒ Γ>, ψ | Γt, ψ
Γf ⇒ Γ>, ϕ ∧ ψ | Γt, ϕ ∧ ψ

Γf ⇒ Γ>, ϕ | Γt, ϕ Γf, ψ ⇒ Γ> | Γt
Γf, ϕ ⊃ ψ ⇒ Γ> | Γt

Γf, ϕ⇒ Γ>, ψ | Γt, ψ
Γf ⇒ Γ>, ϕ ⊃ ψ | Γt, ϕ ⊃ ψ

Γf ⇒ Γ> | Γt, ϕ
Γf,¬ϕ⇒ Γ> | Γt

Γf, ϕ⇒ Γ> | Γt
Γf ⇒ Γ> | Γt,¬ϕ

Γf ⇒ Γ>, ϕ | Γt
Γf ⇒ Γ>,¬ϕ | Γt,¬ϕ

By Theorem 3.3, during the translation each 3-sequent Σ = Γf ⇒ Γ> | Γt is
replaced with the set TWO(Σ) of all the ordinary sequents of the form

Γ′f,¬Γ′′t ⇒ ¬Γ′′f ,Γ
′
>,¬Γ′′>,Γ

′
t (9)

where Γi = Γ′i ∪ Γ′′i ,Γ
′
i ∩ Γ′′i = ∅.

According to Theorem 3.6, to transform the above calculus to an ordinary
one, we replace the axiom A with the equivalent set of ordinary sequents TWO(A),

and each 3-sequent rule ρ =
P
R

with the set of all ordinary sequent rules of the

form
TWO(P)

Σ′
, where Σ′ ∈ TWO(R). Following that, the resulting calculus is

reduced to a more efficient form using the streamlining principles.
Thus, the 3-sequent axiom A yields the ordinary sequents

ϕ⇒ ϕ; ¬ϕ,ϕ⇒ ϕ; ϕ⇒ ¬ϕ,ϕ; ¬ϕ,ϕ⇒ ¬ϕ; ⇒ ¬ϕ,ϕ; ¬ϕ⇒ ¬ϕ,ϕ; ¬ϕ⇒ ¬ϕ
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By deleting subsumed sequents9, this set can be reduced to just two axioms:

(A1) ϕ⇒ ϕ, (A2) ⇒ ϕ,¬ϕ
To exemplify the method of translating the rules, consider first the second

rule for disjunction. After removing the contexts for brevity, it takes the form:

⇒ ϕ,ψ | ϕ,ψ
⇒ ϕ ∨ ψ | ϕ ∨ ψ

From the premises we get the sequents

⇒ ϕ,ψ ¬ψ ⇒ ϕ,ψ ¬ϕ⇒ ϕ,ψ ¬ϕ,¬ψ ⇒ ϕ,ψ
⇒ ϕ,¬ψ,ψ ¬ψ ⇒ ϕ,¬ψ ¬ϕ⇒ ϕ,¬ψ,ψ ¬ϕ,¬ψ ⇒ ϕ,¬ψ
⇒ ¬ϕ,ψ, ϕ ¬ψ ⇒ ¬ϕ,ψ, ϕ ¬ϕ⇒ ¬ϕ,ψ ¬ϕ,¬ψ ⇒ ¬ϕ,ψ
⇒ ¬ϕ,¬ψ,ϕ, ψ ¬ψ ⇒ ¬ϕ,¬ψ,ϕ ¬ϕ⇒ ¬ϕ,¬ψ,ψ ¬ϕ,¬ψ ⇒ ¬ϕ,¬ψ

After deleting the sequents subsumed by instances of Axioms (A1), (A2) (using
the streamlining Principle 2), we are left with

⇒ ϕ,ψ ¬ψ ⇒ ϕ,ψ ¬ϕ⇒ ϕ,ψ ¬ϕ,¬ψ ⇒ ϕ,ψ

Out of these sequents, the last three are subsumed by the first, leaving the single
sequent ⇒ ϕ,ψ.

In turn, the conclusion yields the sequents

⇒ ϕ ∨ ψ ⇒ ¬(ϕ ∨ ψ), ϕ ∨ ψ ¬(ϕ ∨ ψ) ⇒ ϕ ∨ ψ ¬(ϕ ∨ ψ) ⇒ ¬(ϕ ∨ ψ)

After deleting from this set the sequents which are subsumed by the first or by
an instance of the axiom (A2) (using the streamlining Principle 1), the original

3-sequent rule is finally replaced by
⇒ ϕ,ψ
⇒ ϕ ∨ ψ , or, if we restore the contexts:

Γ ⇒ ∆, ϕ, ψ
Γ ⇒ ∆, ϕ ∨ ψ

Next, let us consider the negation rules:

(I)
Γf ⇒ Γ> | Γt, ϕ

Γf,¬ϕ⇒ Γ> | Γt
(II)

Γf, ϕ⇒ Γ> | Γt
Γf ⇒ Γ> | Γt,¬ϕ

(III)
Γf ⇒ Γ>, ϕ | Γt

Γf ⇒ Γ>,¬ϕ | Γt,¬ϕ
In an informal notation, obtained by bunching together all the ordinary sequent
rules derived from (I) by separating the alternate conclusion sequents with semi-
colons, from (I) we get (after skipping the usual contexts Γ,∆)

⇒ ϕ ¬ϕ⇒
¬ϕ⇒; ⇒ ¬¬ϕ

As the first sequent below the line is identical with one of the premises, we can
replace (I) by the rule

(I − 2)
Γ ⇒ ∆, ϕ Γ,¬ϕ⇒ ∆

Γ ⇒ ∆,¬¬ϕ

9This can be done using the streamlining Princ. 1, since an axiom is just a rule with no premises.
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In turn, (II) yields
ϕ⇒ ⇒ ¬ϕ

⇒ ¬ϕ; ¬¬ϕ⇒ , generating the rule

(II − 2)
Γ, ϕ⇒ ∆ Γ ⇒ ∆,¬ϕ

Γ,¬¬ϕ⇒ ∆

Finally, (III) yields

⇒ ϕ ⇒ ¬ϕ
⇒ ¬ϕ; ¬¬ϕ⇒ ¬ϕ; ¬¬ϕ⇒ ¬¬ϕ; ⇒ ¬¬ϕ,¬ϕ

and generates no new rules, since three sequents under the line are derivable from
the second premise using weakening, while the third one is axiomatic.

Next we can see that the first premise in rule (I-2) and the second premise in
rule (II-2) are derivable from the other premise of the respective rule by cut with
the excluded middle axiom A2 : ⇒ ϕ,¬ϕ. Hence, by the streamlining Principle 2,
the two rules can be simplified to:

(I − 2)∗
Γ,¬ϕ⇒ ∆

Γ ⇒ ∆,¬¬ϕ (II − 2)∗
Γ, ϕ⇒ ∆

Γ,¬¬ϕ⇒ ∆

Proceeding like this with the remaining rules, we obtain the standard sequent
calculus for classical positive logic, augmented by the excluded middle axiom A2,
the restricted swap rule (I − 2)∗ and the double negation rule (II − 2)∗.

Our general Theorem 2.9 (and the results of Section 3) ensure that the above
system with axiom A2 and rules (I − 2)∗, (II − 2)∗ is sound and complete, and
that the cut rule is admissible in it. Let us denote this system by SC1

min. It is easy
to see that both (I − 2)∗ and axiom A2 are derivable without cuts from the swap
rule

(Sw)
Γ, ϕ⇒ ∆

Γ ⇒ ∆,¬ϕ
Now let let SC2

min be the system obtained from SC1
min by replacing rule (I − 2)∗

and axiom A2 by the swap rule (Sw). Then from our preceding considerations it
follows that:

(i) Every (cut-free) proof of a sequent in SC1
min can be transformed to a cut-free

proof of the same sequent in SC2
min.

(ii) Since the swap rule is derivable in SC1
min augmented by cut, every proof

of a sequent in SC2
min can be transformed to a proof with cuts of the same

sequent in SC1
min. Since the weak cut-elimination theorem holds for SC1

min, in
consequence, every sequent provable in SC2

min has a cut-free proof in SC1
min.

From (i) and (ii) above it it follows that SC1
min and SC2

min are equivalent, and
that the weak cut-elimination theorem holds for both of them 10.

Observe that SC2
min was not obtained from SC1

min using our streamlining
principles (even though our considerations above are purely syntactic). Hence the

10Note that while the (weak) cut-elimination theorem for SC2
min directly follows from that of

SC1
min by (i), the converse is not true.
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two systems should be taken as different proof systems for Cmin. However, it is
important to note that SC2

min can be obtained directly by using another translation
of our 3-sequents calculus: namely, one based on the simpler representation of the
“sufficient expressiveness” condition which was used in [7]. In that representation,
the first condition in (8) is replaced by

v(ϕ) = f iff v(ϕ) ∈ N

This gives rise to a different procedure for translating the original calculus. 11

Finally, to understand better the points explained above, let SC3
min be the

system obtained from SC1
min by deleting rule (I − 2)∗ (or by replacing the swap

rule in SC2
min by the excluded middle axiom A2). Since the swap rule (of which

(I − 2)∗ is a particular case) is derivable in SC3
min, the latter system is equivalent

to SC1
min (as well as to SC2

min). Consequently, it is sound and complete for Cmin.
Now SC3

min is obviously simpler than SC1
min. However, we have not obtained it

using our general method, and so there is no reason to believe that it is cut-free.
Indeed it is not: it is easy to see that the sequent ⇒ ϕ,¬¬¬ϕ is valid in Cmin, and
easily derivable in SC1

min and in SC2
min, but has no cut-free proof in SC3

min. By
the preceding considerations, it suffices to add to SC3

min the special case (I − 2)∗

of the swap rule to obtain a system for which weak cut-elimination holds (which
is rather hard to guess in advance).

4.3. Kleene and McCarthy logics

Assume T = {f, e, t},D = {t}, O = {¬̃, ∨̃, f, e, t}, and consider the Nmatrix
MMK = (T ,D,O), where:

¬̃ f e t
t e f

∨̃ f e t
f f e t
e e e {e, t}
t t t t

with the constants f, e, t interpreted in the obvious way.
In [7] we presented a sound and complete 3-sequent system for a static se-

mantics of MMK (which represents the intersection of the famous McCarthy and
Kleene logics [19, 18]). Now in MMK the following holds for any ϕ and v:

v(ϕ) = t iff v(ϕ) ∈ D
v(ϕ) = e iff v(ϕ) ∈ N & v(¬ϕ) ∈ N
v(ϕ) = f iff v(ϕ) ∈ N & v(¬ϕ) ∈ D

Since the static semantics of [7] (as a set of valuations) is a subset of the usual
(dynamic) semantic induced by MMK , this implies that the language of MMK

is sufficiently expressive for its static semantics. It follows by Theorem 3.3 that a

11Note that this fact would directly imply that the cut elimination theorem holds for SC2
min.

However, by itself it would not imply that this theorem holds also for SC1
min, but only that

SC1
min augmented by cut is sound and complete.
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3-valued sequent Γf | Γe ⇒ Γt is satisfied by a valuation v if and only if all the
ordinary sequents of the form

Γ′f,Γ
′
e,¬Γ′′e ⇒ Γt,¬Γ′′f

are satisfied by v, where Γi = Γ′i ] Γ′′i for i ∈ {f, e}. Hence based on Theorem 3.6,
we can translate the 3-sequent calculus for MMK to an ordinary, 2-sequent one.
This calculus was described in [7] without giving many details on its derivation.
Now we present two detailed examples how its rules have been derived.

As our first example we take the rule for introducing ∨ on the left hand side
of the derived 2-sequent calculus. To obtain it, we start with the three rules of
the 3-sequent calculus developed in [7] where disjunction is introduced in some
component on the left hand side of ⇒:

(1)
Γf, ϕ | Γe ⇒ Γt Γf, ψ | Γe ⇒ Γt

Γf, ϕ ∨ ψ | Γe ⇒ Γt
(2)

Γf, ϕ | Γe ⇒ Γt Γf | Γe, ψ ⇒ Γt
Γf | Γe, ϕ ∨ ψ ⇒ Γt

(3)
Γf | Γe, ϕ⇒ Γt Γf, ψ | Γe, ψ ⇒ Γt

Γf | Γe, ϕ ∨ ψ ⇒ Γt

Translating them into ordinary sequent rules and skipping the contexts for sim-
plicity, we get the following three rules for introducing disjunction on the left hand
side of ⇒:

(1′)
ϕ⇒ ⇒ ¬ϕ ψ ⇒ ⇒ ¬ψ

ϕ ∨ ψ ⇒

(2′)
ϕ⇒ ⇒ ¬ϕ ψ ⇒ ¬ψ ⇒

ϕ ∨ ψ ⇒

(3′)
ϕ⇒ ¬ϕ⇒ ψ ⇒ {ψ,¬ψ ⇒} {ψ ⇒ ¬ψ} {¬ψ ⇒ ¬ψ}

ϕ ∨ ψ ⇒

In rule (3’), the last three premises, taken in braces, can be deleted, for the last of
them is an axiom, and the first two are subsumed by ψ ⇒.

Combining (1’) and (2’) with the help of Principle 3 from Section 2.4, we get
a rule with 16 premises. However, it is easy to see that 12 of them are subsumed
by either ϕ ⇒ or ⇒ ¬ϕ or ψ ⇒, and another one, ¬ψ ⇒ ¬ψ, is an axiom. Thus
we are left with the rule:

ϕ⇒ ⇒ ¬ϕ ψ ⇒
ϕ ∨ ψ ⇒

which we now combine with (3’), using the same Principle 3. After deleting premises
subsumed by ϕ ⇒ and ψ ⇒ and the axiomatic premise ¬ϕ ⇒ ¬ϕ, we finally get
the following well-known, simple rule:

Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆
Γ, ϕ ∨ ψ ⇒ ∆
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For our second example, we start from the following 3 -sequent rule from [7]:

Γf | Γe, ϕ⇒ Γt Γf | Γe ⇒ Γt, ψ Γf | Γe ⇒ Γt, e ∨ t
Γf | Γe ⇒ Γt, ϕ ∨ ψ

A direct translation of it yields, after skipping the contexts, the ordinary rule:

(∗) ϕ⇒ ¬ϕ⇒ ⇒ ψ ⇒ e ∨ t
⇒ ϕ ∨ ψ

We next show that the first two premises of (∗) can be deleted. For this we first
add ϕ,¬ϕ on the right hand side of all its premises and its conclusion. We get:

ϕ⇒ ϕ,¬ϕ ¬ϕ⇒ ϕ,¬ϕ ⇒ ψ,ϕ,¬ϕ ⇒ e ∨ t, ϕ,¬ϕ
(⇒ ϕ ∨ ψ), ϕ,¬ϕ

The first two premises of this last rule can be skipped as axiomatic. As the other
two can be derived from⇒ ψ and⇒ e∨t (which are premises in (∗)) by weakening,
we get as a derived rule:

Γ ⇒ ∆, ψ Γ ⇒ ∆, e ∨ t
Γ ⇒ ∆, ϕ ∨ ψ,ϕ,¬ϕ

Obviously, from the same two premises we can also infer Γ ⇒ ∆, ϕ, ψ. Now from
Γ ⇒ ∆, ϕ∨ψ,ϕ,¬ϕ and Γ ⇒ ∆, ϕ, ψ we can infer Γ ⇒ ∆, ϕ∨ψ using the following
rule (which also belongs to the set of rules for MMK derived in [7]):

Γ ⇒ ∆, ϕ,¬ϕ Γ ⇒ ∆, ϕ, ψ
Γ ⇒ ∆, ϕ ∨ ψ

Hence in view of the streamlining Principle 2 we can indeed replace rule (∗) by:

Γ ⇒ ∆, ψ Γ ⇒ ∆, e ∨ t
Γ ⇒ ∆, ϕ ∨ ψ

We remind the reader that instead of the syntactic approach used above,
we could have obtained the last rule from (∗) also by using a semantic approach,
according to which we repeatedly check and eliminate from a rule premises which
can be deleted without destroying the soundness of that rule.

5. Application: Proof Systems for Information Sources Logics

Now we will show that our method can be successfully applied to provide sequent
calculi for a class of logics motivated by problems related to handling information
coming from various sources, which are of fundamental importance in everyday
practice. Since this application is new, we will use it to demonstrate in full our
combined method for developing ordinary system calculi for generalized finite-
valued logics, which couples the procedure for developing n-sequent calculi for
such logics introduced in [7] with the method of translating them to ordinary
calculi shown in the present paper.
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Suppose we have a framework for information collecting and processing,
which consists a of set of information sources S and a processor P . The sources
provide information about formulas of classical logic LC , and we assume that for
each such formula ϕ, a source s ∈ S can say that ϕ is true, that ϕ is false, or that
it has no knowledge about ϕ. In turn, the processor collects information from the
sources, combines it according to some strategy, and defines the resulting com-
bined valuation of formulas in LC . Clearly, for any formula ϕ ∈ LC , the processor
can encounter four possible situations:
• It has information that ϕ is true but no information that ϕ is false
• It has information that ϕ is false but no information that ϕ is true
• It has both information that ϕ is true and information that ϕ is false
• It has no information on ϕ at all

In view of the above, a natural logical framework for this situation features four
logical values corresponding to the four cases above, which we can denote by

t = {1}, f = {0}, > = {0, 1}, ⊥ = ∅,
Here 1 and 0 represent “true” and “false” (respectively), and so > represents
inconsistent information, while ⊥ absence of information. Among these four truth
values we take as designated t and > — the truth values whose assignment to a
formula ϕ means that the processor has information that ϕ is true.

The above scenario has many ramifications, corresponding to various assump-
tions regarding the kind of information provided by the sources and the strategy
used by the processor to combine it. Below we shall examine four main logics
obtained under the assumption that the processor respects the deterministic con-
sequences of the classical truth tables both ways. More exactly, this assumption
means that the values assigned by the processor to complex formulas and those it
assigns to their immediate subformulas are interrelated according to the following
laws derived from the truth tables of classical logics:

(1): The processor ascribes 1 (true) to ¬ϕ iff it it assigns 0 (false) to ϕ;
(2): The processor ascribes 0 to ¬ϕ iff it assigns 1 to ϕ;
(3): If the processor ascribes 1 to either ϕ or ψ, then it ascribes 1 to ϕ ∨ ψ;
(4): The processor ascribes 0 to ϕ ∨ ψ iff it ascribes 0 to both ϕ and ψ;
(5): The processor ascribes 1 to ϕ ∧ ψ iff it assigns 1 to both ϕ and ψ;
(6): If the processor ascribes 0 to either ϕ or ψ, then it ascribes 0 to ϕ ∧ ψ.

Note that the converses of (3) and (6) do not hold. Note also that since the values
of the resulting logic correspond to the subsets of {0, 1} ascribed to the formulas,
the statement “the processor assigns 0 (1) to ϕ” means that 0 (1) is included in
the subset of {0, 1} being the value of ϕ.

Under the above assumptions, we can consider the following four scenarios:
1. CASE 1: the sources provide information about arbitrary formulas, both

atomic and composed ones, but not necessarily about all of them.
2. CASE 2: as above, but the sources taken together are required to provide

some information about all atomic formulas.
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3. CASE 3: the sources provide information about atomic formulas only. This
information is then combined in a deterministic way to yield information
about all formulas, including the composed ones.

4. CASE 4: like CASE 3, but, as in CASE 2, the sources taken together are
required to provide some information about all atomic formulas.

Cases 3, 4 have already been considered in the past (see [12, 13]) so we will not
discuss them here, though it can be shown that their well-known proof systems
can be derived with our methods. The new aspect contained in our approach is
that the sources can also provide information about complex formulas. This is
expressed by Cases 1, 2, which we shall examine in detail below.

5.1. CASE 1

We begin with the most general case, when the sources provide information about
arbitrary formulas, also complex ones, but not necessarily all of them, so this
information might be incomplete.

Rules (1)-(6) from the preceding section, which are obeyed by the processor
in assigning values to formulas, imply that the presented setup can be described
by a four-valued Nmatrix M4

I = (T ,D,O),where T = {f,⊥,>, t},D = {>, t},O =
{¬̃, ∨̃, ∧̃}, and the non-deterministic interpretations of the connectives are given
by the following tables:

∨̃ f ⊥ > t
f {f,>} {t,⊥} {>} {t}
⊥ {t,⊥} {t,⊥} {t} {t}
> {>} {t} {>} {t}
t {t} {t} {t} {t}

∧̃ f ⊥ > t
f {f} {f} {f} {f}
⊥ {f} {f,⊥} {f} {f,⊥}
> {f} {f} {>} {>}
t {f} {f,⊥} {>} {t,>}

¬̃ f ⊥ > t
t ⊥ > f

We can see that the table for negation obeys rules (1), (2), the table for disjunction
— rules (3), (4), and finally the table for conjunction – rules (5), (6). In other words,
any valuation in the Nmatrix M4

I represents possible information about values of
formulas in the information sources-processor framework.

To see that is indeed so, let us first examine one of the most perplexing cases
— the entry in the truth table for ∨̃, saying that f∨̃f = {f,>}. Suppose v(ϕ) = f,
v(ψ) = f. Then 0 ∈ v(ϕ) and 0 ∈ v(ψ), whence 0 ∈ v(ϕ ∨ ψ) by Rule (4) above,
based on the classical truth tables. If in addition one of the sources assigns 1 to
ϕ∨ψ, and consequently the processor ascribes 1 to ϕ∨ψ too, then v(ϕ∨ψ) = >,
while otherwise v(ϕ∨ψ) = f. This justifies the two options included in the discussed
table entry.

Another case worth considering is the entry in the same truth table saying
that f∨̃⊥ = {t,⊥}. Suppose v(ϕ) = f, v(ψ) = ⊥. Then 0 6∈ v(ψ). By Rule (4)
the processor cannot assign 0 to ϕ ∨ ψ in this case, because otherwise it has to
assign 0 to ψ too. However, it can assign 1 to ϕ ∨ ψ if one of the sources does so,
for neither of the rules decrees that 1 must be assigned to either ϕ or ψ in that
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case. So the processor can assign either nothing or 1 to ϕ ∨ ψ, whence it can only
evaluate v(ϕ ∨ ψ) as either ⊥ or t, respectively.

5.1.1. A 4-sequent System for M4
I . We start with the system obtained from the

generic system given in [7] and quoted in Section 2.5. Below we present its {¬,∨}-
fragment. To make its presentation more compact, we use the signed formula
set version of notation, where for brevity we often write i : ϕ,ψ, . . . instead of
i : ϕ, i : ψ, . . .

Axiom: (A) f : ϕ,⊥ : ϕ,> : ϕ, t : ϕ

Rules for Negation:

(N1)
Ω, f : ϕ

Ω, t : ¬ϕ (N2)
Ω,⊥ : ϕ

Ω,⊥ : ¬ϕ (N3)
Ω,> : ϕ

Ω,> : ¬ϕ (N4)
Ω, t : ϕ
Ω, f : ¬ϕ

Rules for Disjunction:

(D1)
Ω, f : ϕ Ω, f : ψ

Ω, f : ϕ ∨ ψ,> : ϕ ∨ ψ (D2)
Ω, f : ϕ Ω,⊥ : ψ

Ω,⊥ : ϕ ∨ ψ, t : ϕ ∨ ψ

(D3)
Ω, f : ϕ Ω,> : ψ

Ω,> : ϕ ∨ ψ (D4)
Ω, τ : ϕ Ω, t : ψ

Ω, t : ϕ ∨ ψ

(D5)
Ω,⊥ : ϕ Ω, f : ψ

Ω,⊥ : ϕ ∨ ψ, t : ϕ ∨ ψ (D6)
Ω,⊥ : ϕ Ω,⊥ : ψ

Ω,⊥ : ϕ ∨ ψ, t : ϕ ∨ ψ

(D7)
Ω,⊥ : ϕ Ω,> : ψ

Ω, t : ϕ ∨ ψ (D8)
Ω,> : ϕ Ω, f : ψ

Ω,> : ϕ ∨ ψ

(D9)
Ω,> : ϕ Ω,⊥ : ψ

Ω, t : ϕ ∨ ψ (D10)
Ω,> : ϕ Ω,> : ψ

Ω,> : ϕ ∨ ψ

(D11)
Ω, t : ϕ Ω, τ : ψ

Ω, t : ϕ ∨ ψ

Note that in the formulation of (D4) and (D11) we have employed a parameter τ
representing an arbitrary logical value. Hence each of (D4) and (D11) is actually a
rule schema representing a group of four rules of the same form. Now by using our
streamlining Principle 3 (see Section 2.4) these four rules can be combined to a
single rule with 16 premises. However, by deleting all the premises which are either
axiomatic or subsumed by others, we remain in each case with a single premise:
t : ψ in the case of (D4), t : ϕ in the case of (D11). Finally, the resulting two rules
can be combined to Rule (D4′) below.
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By applying the same procedure to the other rules for disjunction, we can
reduce Rules (D2)− (D11) to the following four rules:

(D2′)
Ω, f : ϕ,⊥ : ϕ Ω, f : ψ,⊥ : ψ Ω,⊥ : ϕ,ψ

Ω,⊥ : ϕ ∨ ψ, t : ϕ ∨ ψ

(D3′)
Ω, f : ϕ,> : ϕ Ω, f : ψ,> : ψ Ω,> : ϕ,ψ

Ω,> : ϕ ∨ ψ

(D4′)
Ω, t : ϕ,ψ

Ω, t : ϕ ∨ ψ (D5′)
Ω,⊥ : ϕ,ψ Ω,> : ϕ,ψ

Ω, t : ϕ ∨ ψ
where (D2′) is obtained from (D2, 5, 6); (D3′) — from (D3, 8, 10); and (D5′) —
from (D7, 9). Out of them, Rules (D4′) and (D5′) can be still combined, yielding

(D4′′)
Ω, t : ϕ,ψ,⊥ : ϕ,ψ Ω, t : ϕ,ψ,> : ϕ,ψ

Ω, t : ϕ ∨ ψ
All together, the original set of rules can be reduced to just four: (D1), (D2′),
(D3′), (D4′′). An analogous procedure yields the following rules for conjunction:

(C1)
f : ϕ,ψ,⊥ : ϕ,ψ f : ϕ,ψ,> : ϕ,ψ

f : ϕ ∧ ψ

(C2)
Ω,⊥ : ϕ, t : ϕ Ω,⊥ : ψ, t : ψ Ω,⊥ : ϕ,ψ

Ω, f : ϕ ∧ ψ,⊥ : ϕ ∧ ψ

(C3)
Ω,> : ϕ, t : ϕ Ω,> : ψ, t : ψ Ω,> : ϕ,ψ

Ω,> : ϕ ∧ ψ

(C4)
Ω, t : ϕ Ω, t : ψ

Ω,> : ϕ ∧ ψ, t : ϕ ∧ ψ

5.1.2. Translation to Ordinary Sequent Calculus. Recall that the sets of non-
designated and designated values of our Nmatrix are N = {f,⊥} and D = {>, t},
respectively. Accordingly, it can be easily seen that the language L4

I we are con-
sidering is sufficiently expressive for M4

I in the sense of Definition 3.1, since, for
any valuation v and any formula ϕ, we have:

v(ϕ) = f ⇔ v(ϕ) ∈ N & v(¬ϕ) ∈ D
v(ϕ) = ⊥ ⇔ v(ϕ) ∈ N & v(¬ϕ) ∈ N
v(ϕ) = > ⇔ v(ϕ) ∈ D & v(¬ϕ) ∈ D
v(ϕ) = t ⇔ v(ϕ) ∈ D & v(¬ϕ) ∈ N

(10)

By Theorem 3.3, this implies that a 4-sequent Γf | Γ⊥ ⇒ Γ> | Γt — in our current
notation, f : Γf,⊥ : Γ⊥,> : Γ>, t : Γt — is valid if and only if so are all the
elements of the set TWO(Σ) of all the ordinary sequents of the form

Γf′ ,Γ
′
⊥,¬Γ′′⊥,¬Γ′′t ⇒ ¬Γ′′f ,Γ

′
>,¬Γ′′>,Γ

′
t (11)
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where Γi = Γ′i ∪ Γ′′i ,Γ
′
i ∩ Γ′′i = ∅

Let us exemplify the translation to an ordinary sequent calculus following
from (11) and Theorem 3.6 on the axiom of our system, and on Rule (D1). The
set of ordinary sequents equivalent to the 4-sequent axiom under (11) is:

{ϕ⇒ ϕ; ¬ϕ⇒ ¬ϕ; ϕ,¬ϕ⇒ ϕ; ϕ⇒ ¬ϕ,ϕ; ¬ϕ⇒ ¬ϕ,ϕ; ϕ,¬ϕ⇒ ϕ;ϕ,¬ϕ⇒ ϕ,¬ϕ}

Since all the sequents in this set are subsumed by the first, we can take the usual
basic axiom ψ ⇒ ψ as the only axiom.

Let us now pass to Rule (D1). In the standard 4-sequent notation used in
the translation theorem and in (11), this rule takes the form:

Γf, ϕ | Γ⊥ ⇒ Γ> | Γt Γf, ψ | Γ⊥ ⇒ Γ> | Γt
Γf, ϕ ∨ ψ | Γ⊥ ⇒ Γ>, ϕ ∨ ψ | Γt

Hence, if we replace the arbitrary context in the 4-sequents above by an arbitrary
context Γ,∆ in two-sided sequents, the set of ordinary sequents corresponding to
the premises under (11) can be written as

P ′ = {Γ, ϕ⇒ ∆; Γ ⇒ ∆,¬ϕ; Γ, ψ ⇒,∆; Γ ⇒ ∆,¬ψ}

while the set of ordinary sequents corresponding to the conclusion is

R′ = {Γ, ϕ ∨ ψ ⇒ ∆, ϕ ∨ ψ; Γ, ϕ ∨ ψ ⇒ ∆,¬(ϕ ∨ ψ);
Γ ⇒ ∆,¬(ϕ ∨ ψ); Γ ⇒ ∆, ϕ ∨ ψ,¬(ϕ ∨ ψ)}

As the first sequent in R′ is an instance of the axiom of the ordinary sequent
calculus, and all others are subsumed by Γ ⇒ ∆,¬(ϕ ∨ ψ), we are only left with
the latter one, yielding the rule

Γ, ϕ⇒ ∆; Γ ⇒ ∆,¬ϕ; Γ, ψ ⇒,∆; Γ ⇒ ∆,¬ψ
Γ ⇒ ∆,¬(ϕ ∨ ψ)

It can be shown that using our streamlining principles this last rule can be sim-
plified by eliminating its first and third premises12. We thus finally obtain:

Γ ⇒ ∆,¬ϕ Γ ⇒ ∆,¬ψ
Γ ⇒ ∆,¬(ϕ ∨ ψ)

Applying same procedure to all the remaining rules, we finally translate our
4-valued calculus into the following ordinary calculus:

Axiom: ϕ⇒ ϕ

12Again, we can instead use the semantic approach to check that the rule remains valid for M4
I

after eliminating these premises.
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Inference rules:

(n1)
Γ, ϕ⇒ ∆

Γ,¬¬ϕ⇒ ∆
(n2)

Γ ⇒ ∆, ϕ
Γ ⇒ ∆,¬¬ϕ

(d1)
Γ ⇒ ∆, ϕ, ψ

Γ ⇒ ∆, ϕ ∨ ψ (d2)
Γ,¬ϕ,¬ψ ⇒ ∆

Γ,¬(ϕ ∨ ψ) ⇒ ∆

(d3)
Γ ⇒ ∆,¬ϕ Γ ⇒ ∆,¬ψ

Γ ⇒ ∆,¬(ϕ ∨ ψ)

(c1)
Γ, ϕ, ψ ⇒ ∆,
Γ, ϕ ∧ ψ ⇒ ∆

(c2)
Γ ⇒ ∆,¬ϕ,¬ψ

Γ ⇒ ∆,¬(ϕ ∧ ψ)

(c3)
Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ∧ ψ

Therefore from our general theorems we get:

Theorem 5.1. The ordinary sequent calculus developed above is sound and complete
for M4

I , and the cut rule is admissible in it.

5.2. CASE 2

The second case is when the sources provide complete information about all atomic
formulas. Thus, for any atomic formula p of the classical language LC , some source
in S must say either that p is true or that p is false. Assuming the general rules for
the processor’s behavior given in the introduction to Section 5, one can easily prove
by induction that under this condition no formula is given the value ⊥. Hence this
scenario gives rise to a logic based on the three-valued Nmatrix M3

I = (T ,D,O),
where T = {f,>, t},D = {>, t},O = {¬̃, ∨̃, ∧̃}, and the non-deterministic inter-
pretations of the connectives are given by:

¬̃ f > t
t > f

∨̃ f > t
f {f,>} {>} {t}
> {>} {>} {t}
t {t} {t} {t}

∧̃ f > t
f {f} {f} {f}
> {f} {>} {>}
t {f} {>} {t,>}

Again we can first develop a 3-sequent system for the logic under consider-
ation by using the general method from [7]. What we obtain after applying the
streamlining principles are the axiom and rules shown below:

Axiom: f : ϕ,> : ϕ, t : ϕ

Inference rules:

Negation:

(N1)
Ω, f : ϕ

Ω, t : ¬ϕ (N2)
Ω,> : ϕ

Ω,> : ¬ϕ (N3)
Ω, t : ϕ
Ω, f : ¬ϕ
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Disjunction:

(D1)
Ω, f : ϕ Ω, f : ψ

Ω, f : ϕ ∨ ψ,> : ϕ ∨ ψ

(D2)
Ω, f : ϕ,> : ϕ Ω, f : ψ,> : ψ Ω,> : ϕ,ψ

Ω,> : ϕ ∨ ψ

(D3)
Ω, t : ϕ,ψ

Ω, t : ϕ ∨ ψ

Conjunction:

(C1)
Ω, f : ϕ,ψ

Ω, f : ϕ ∧ ψ

(C2)
Ω,> : ϕ, t : ϕ Ω,> : ψ, t : ψ Ω,> : ϕ,ψ

Ω,> : ϕ ∧ ψ

(C3)
Ω, t : ϕ Ω, t : ψ

Ω,> : ϕ ∧ ψ, t : ϕ ∧ ψ

As the sets of non-designated and designated values of our Nmatrix are N = {f}
and D = {>, t}, respectively, it can be easily seen that the language L3

I we are
considering is sufficiently expressive for M3

I . Indeed, for any valuation v and any
formula ϕ, we have:

v(ϕ) = f ⇔ v(ϕ) ∈ N & v(¬ϕ) ∈ D
v(ϕ) = > ⇔ v(ϕ) ∈ D & v(¬ϕ) ∈ D
v(ϕ) = t ⇔ v(ϕ) ∈ D & v(¬ϕ) ∈ N

(12)

By Theorem 3.3, this implies that a 3-sequent Γf ⇒ Γ> | Γt — in our current
notation, f : Γf,> : Γ>, t : Γt — is valid if and only if so are all the ordinary
sequents of the form Γ′f,¬Γ′′t ⇒ ¬Γ′′f ,Γ

′
>,¬Γ′′>,Γ

′
t, where Γτ = Γ′τ ] Γ′′τ . Therefore

with the help of Theorem 3.6 we can translate the above 3-sequent calculus to
the ordinary sequent calculus we have obtained in the preceding section for M4

I ,
augmented with the excluded middle axiom ⇒ ϕ,¬ϕ.

Alternatively, since now N = {f}, the first line of (12) can be simplified to

v(ϕ) = t iff v(ϕ) ∈ N

The translation which is based on this simplified form of (12) again leads us to a
different (though of course equivalent) ordinary sequent calculus. Namely, we get
just the single basic axiom ϕ ⇒ ϕ, while the excluded middle axiom is replaced
by the left-to-right swap rule. Thus the new negation rules are:

Γ ⇒ ∆, ϕ
Γ,¬¬ϕ⇒ ∆

Γ ⇒ ∆, ϕ
Γ ⇒ ∆,¬¬ϕ

Γ, ϕ⇒ ∆
Γ ⇒ ∆,¬ϕ
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while all the disjunction and conjunction rules remain unchanged. Thus the situ-
ation here is similar to that in the case of Cmin considered above. However, here
the addition of the swap rule does not allow us to eliminate any of the previous
negation rules, for none of them is derivable from it.

References

[1] A. Avron, Non-deterministic Semantics for Families of Paraconsistent Logics, To
appear in Paraconsistency with no Frontiers (J.-Y. Beziau and W. Carnielli, eds.).

[2] A. Avron, A Non-deterministic View on Nonclassical Negations, Studia Logica 80,
159-194 (2005).

[3] A. Avron, Non-deterministic Matrices and Modular Semantics of Rules, in Logica
Universalis (J.-Y. Beziau, ed.), 149-167, Birkhäuser Verlag, 2005.
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