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Abstract. A high utility itemset mining problem is the question of rec-
ognizing a set of items that have utility values greater than a given user
utility threshold. This generalization of the classical problem of frequent
itemset mining is a useful and well-known task in data analysis and
data mining, since it is used in a wide range of real applications. In this
paper, we first propose to use symbolic Artificial Intelligence for comput-
ing the set of all closed high utility itemsets from transaction databases.
Our approach is based on reduction to enumeration problems of propo-
sitional satisfiability. Then, we enhance the efficiency of our SAT-based
approach using the weighted clique cover problem. After that, in order
to improve scalability, a decomposition technique is applied to derive
smaller and independent sub-problems in order to capture all the closed
high utility itemsets. Clearly, our SAT-based encoding can be constantly
enhanced by integrating the last improvements in powerful SAT solvers
and models enumeration algorithms. Finally, through empirical evalua-
tions on different real-world datasets, we demonstrate that the proposed
approach is very competitive with state-of-the-art specialized algorithms
for high utility itemsets mining, while being sufficiently flexible to take
into account additional constraints to finding closed high utility itemsets.

Keywords: Data Mining · High Utility · Symbolic Artificial Intelligence·
Propositional Satisfiabilty

1 Introduction

Data mining is a multi-disciplinary field that employs machine learning, stat-
ics and symbolic Artificial Intelligence in order to find novel valid relationships

This work is an extended version of our paper published in the International Con-
ference on Data Warehousing and Knowledge Discovery [37].
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among data. A pivotal task in knowledge discovery process concerns pattern
extraction w.r.t. various proprieties such as novelty, usefulness and understand-
ability. The problem of selecting a set of itemsets from the original data has
recently gained a lot of attention in the two last decades. Mining High Utility
itemsets (HUIM, for short) as one of the major keystone in the discovery of
patterns generalizes the problem of frequent itemsets (FIM), since traditional
frequent patterns cannot fulfill the requirement of finding the most valuable in-
formation that contribute to the major part of the total profits in the retail
databases. HUIM considers item quantities and weights and refers to recognize
the set of items that appear together in a given transaction database and having
a high importance to the user, measured by a utility function. The utility means
the importance/profitability of items to users. Indeed, the utility of items in a
transaction depends on the importance of different items, which is called external
utility, and the importance of the items in the transaction, called internal utility.
Then, the utility of an itemset is defined as the multiplication of the external
and the internal utilities. An itemset is called a high utility itemset if its utility
is no less than a user specified threshold value; otherwise, the itemset is called a
low utility itemset. Mining high utility itemsets from transaction databases is an
important task and it has a wide range of applications, including website click
stream analysis, business promotion in chain hypermarkets, online e-commerce
management, mobile commerce environment planning, and biomedical applica-
tions [1–3].

Generally speaking, existing approaches, usually called specialized approaches,
(see related work section) are designed to find particular kinds of itemsets from
transaction databases with utilities. In that sense, new additional constraints
(i.e., user preference) cannot be easily integrated in the original algorithm, and
they require a re-implementation of the whole application. In recent years, several
constraint-based languages for modeling and solving data mining problems have
been designed where the data mining task is modeled as a constraint network
or a propositional formula whose models correspond to the patterns of interest.
These methods, usually coined as declarative approaches, have then found appli-
cations in diverse data mining tasks ranging from frequent itemset mining [9] and
its concise representations [35, 36], sequences [27] and association rules [23, 24].
Clearly, this tight connection between constraint-based languages and pattern
discovery allows data mining problems to benefit from several powerful sym-
bolic Artificial Intelligence solving techniques. More interestingly, propositional
satisfiability based approaches have gained a considerable audience with the ad-
vent of a new generation of solvers able to handle large instances encoding data
mining problems [6, 7, 9].

A bottleneck of the most declarative methods is the encoding size which affect
the algorithm efficiency. Thus, the performance of such approaches decreases
when the database size grows or the threshold takes low values. To improve the
efficiency of declarative mining algorithms, a decomposition technique could be
applied in order to divide the original mining problem to smaller and independent
sub-problems.
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In this paper, we introduce SATCHUIM, a new algorithm that makes an orig-
inal use of symbolic Artificial Intelligence technique, i.e., propositional satisfia-
bility, for efficiently enumerating all closed high utility itemsets embedded in a
transaction database. Technically, the main contribution consists in developing a
method based on propositional satisfiablity to model and solve the task of mining
a concise and complete representation of HUIs in terms of constraints. Further-
more, we enhance the efficiency of our proposed approach using the weighted
clique cover problem. After that, to cope with the scalability issue, which is one
of the most important challenge of declarative frameworks, we use a decom-
position technique that allows to derive smaller and independent enumeration
sub-problems.

The paper is organized as follows. The next section presents a background
on which our work relies. Then, we present the state-of-the-art of high utility
itemset mining problem in Section 3. Section 4 is devoted to our novel SAT-
based framework as well as its decomposition-based version for discovering closed
itemsets with highest utilities. Section 5 discusses the results of our experimental
evaluation on different real-world datasets to show the efficiency and usefulness
of our approach. Finally, we conclude our work in Section 6 with some further
perspectives.

2 Background

In this section, we present the relevant preliminaries and formally define the
utility mining and the propositional satisfiability problems. Notice that all the
notations used in the rest of paper are summarized in Table 1.

2.1 High Utility Itemset Mining Problem

Let Ω denote a universe of distinct items (or symbols) that occur in the database.
A transaction database D = {T1, T2, . . . , Tm} is a set of m transactions or records
such that each transaction Ti is a set of items, i.e., Ti ⊆ Ω, and Ti has a unique
identifier i called its transaction identifier (TID, for short). Each item a ∈ Ω
is associated with a positive number wext(a), called its external utility (e.g.,
unit profit). For each transaction Ti, a positive number wint(a, Ti) is called the
internal utility of the item a ∈ Ti (e.g., purchase quantity).

Definition 1 (Support of an itemset). Let D be a transaction database. We
define the support of an itemset X as the number of transactions in D that
contain X, i.e., supp(X) = |Ti / X ⊆ Ti s.t. (i, Ti) ∈ D|.

Definition 2 (Utility of an item/itemset in a transaction). Given a trans-
action database D, the utility of an item a in a transaction (i, Ti) ∈ D, denoted
by u(a, Ti), is defined as u(a, Ti) = wext(a)×wint(a, Ti). Then, the utility of an
itemset X ⊆ Ω in a transaction (i, Ti) ∈ D, denoted by u(X,Ti), is defined as:

u(X,Ti) =
∑
a∈X

u(a, Ti) (1)
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Notation Meaning

Ω A set of n items {a1, . . . , an} s.t. each item aj has a profit
value pa

D Transaction database, D = {T1, T2, . . . , Tm}
TID An identifier of a transaction (i, Ti) ∈ D
X A k-itemset containing k distinct items {a1, a2, . . . , ak}
wint(a, Ti) The purchase quantity of an item a in a transaction Ti
wext(a) The unit profit of an item a

u(a, Tj) The utility of an item a in a transaction Ti
u(X,Ti) The utility of an itemset X in a transaction Ti
u(X) The utility of an itemset X in the whole database

TU(Ti) The sum of the utilities of items in a transaction Ti
θ A predefined minimum high utility threshold

TWU(X,D) The transaction-weighted utility of an itemset X in the
database D

HUI A High Utility itemset

CHUI A Closed High Utility Itemset

Prop A set of propositional variables

Form A set of propositional formulas

∆ A Boolean interpretation

Table 1: Summary of notations

Example 1. Let us consider a transaction database D containing four transac-
tions, given in Table 2, which will serve as a running example throughout the
paper. Each line in Table 2 represents a transaction, where each letter represents
an item that is associated to a purchase quantity (i.e., internal utility). For in-
stance, the transaction T2 contains items a, c, and e with an internal utility of 2,
6 and 2, respectively. In addition, Table 3 indicates the external utility of each
of these items. In fact, external utility of a, c, and e are respectively 4, 1 and 3.
Then, the utility of the item a in T2 is u(a, T2) = 4×2 = 8. Finally, the utility of
the itemset {a, c} in T2 is u({ac}, T2) = u(a, T2) + u(c, T2) = 4× 2 + 1× 6 = 14.

TID Items

T1 (a, 1) (c, 1) (d, 1)

T2 (a, 2) (c, 6) (e, 2)

T3 (a, 1) (b, 2) (c, 1) (d, 6) (e, 1)

T4 (b, 4) (c, 3) (d, 3) (e, 1)

Table 2: Sample Transaction Database
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Item Unit profit

a 4

b 2

c 1

d 2

e 3

Table 3: External Utility

Now, the utility of an itemset X in a transaction database D is defined as
the sum of the itemset utilities in all the transactions of D where X appears.
More formally:

Definition 3 (Utility of an itemset in a database). Let D be a transaction
database. The utility of an itemset X in D, denoted by u(X), is defined as:

u(X) =
∑

(i,Ti)∈D | X⊆Ti

u(X,Ti) (2)

Example 2. Let us consider again the transaction database given in Example 1.
Then, the utility of the itemset {a, c} is u({a, c}) = u({a, c}, T1)+u({a, c}, T2)+
u({a, c}, T3) = 5 + 14 + 5 = 24.

Definition 4 (Closed itemset). Let D be a transaction database and X an
itemset in D. X is called a closed itemset if there exists no itemset X ′ such that
X ⊂ X ′, and ∀(i, Ti) ∈ D,X ∈ Ti → X ′ ∈ Ti.
Problem Definition.
Given a transaction database D and a user-specified minimum utility threshold
θ, the goal of mining (closed) high utility itemsets problem is to find the set of
all (closed) itemsets in D with a utility no less than θ, i.e.,

HUI = {X : u(X) | X ⊆ Ω, u(X) ≥ θ} (3)

That is, computing closed high utility itemsets is equivalent to finding the
itemsets that cover the largest part of the database utility.

Example 3. Let us consider again the transaction database given in Example 1.
Given a minimum utility threshold θ = 20, then the high-utility itemsets with
their utility in the database are {a, c, e} : 28, {c, d, e} : 28, {b, c, d, e} : 40. In
this example, the itemsets {a, d}, {c, d}, {c, e}, {a, c, d}, {a, c, e}, {b, c, d, e} and
{a, b, c, d, e} are closed HUIs, with utility values 23, 25, 22, 24, 28, 20 and 24,
respectively.

Definition 5 (Transaction Utility). Given a transaction database D, then
the transaction utility of a transaction Ti in D, denoted by TU(Ti), is the sum
of the utility of all items in Ti, i.e.,

TU(Ti) =
∑
a∈Ti

u(a, Ti) (4)
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Definition 6 (Transaction Weighted Utilization). The transaction weighted
utilization of an itemset X in a transaction database D, denoted by TWU(X,D),
is defined as the sum of the transaction utility of transactions containing X, i.e.,

TWU(X) =
∑

(i,Ti)∈D | X⊆Ti

TU(Ti) (5)

Here, the difference between TWU(X,D) and u(X) is that for TWU(X,D),
we sum the utilities of the whole transactions containingX, while u(X) computes
only the utilities of X in the transactions where X appears.

Example 4. Let us consider again Example 1. We have, TWU({a, c, d}, D) =
TU(T1) + TU(T3) = 7 + 24 = 31.

We conclude this subsection by pointing out that the transaction weighted
utilization measure has three important properties that are used to prune the
search space.

Overestimation. The TWU of an itemset X is always higher than or equal to
the utility of X, i.e., TWU(X,D) ≥ u(X).

Anti-monotonicity. LetX and Y be two itemsets. IfX ⊆ Y , then TWU(X,D) ≥
TWU(Y,D).

Pruning. Let X be an itemset. If TWU(X,D) < θ, then X is a low-utility
itemset as well as all its supersets.

2.2 Propositional Logic and SAT Problem

In this subsection, we present the syntax and the semantics of classical proposi-
tional logic.
Given a countable set of propositional variables Prop, we use the letters p, q, r,
etc. to range over Prop. The set of propositional formulas, denoted Form, is de-
fined inductively started from Prop, the constant > denoting true, the constant
⊥ denoting false, and using logical connectives ¬,∧,∨,→. It is worth noticing
that we can restrict the language to the connectives ¬ and ∧, since we have the
following equivalences: A ∨B ≡ ¬(¬A∧¬B) and A → B ≡ ¬B ∨A. The equiv-
alence connective ↔ is defined by A ↔ B ≡ (A → B) ∧ (B → A). We also use
P (A) to denote the set of propositional variables appearing in the formula A. |=
refers to logical inference. A Boolean interpretation ∆ of a formula A is defined
as a function from P (A) to (0, 1) (0 corresponds to false and 1 to true). A model
of a formula A is a Boolean interpretation ∆ that satisfies A, i.e., ∆(A) = 1. A
formula A is satisfiable if there exists a model of A. Moreover, the formula A
is valid or a theorem, if every Boolean interpretation is a model of A. We use
Mod(A) to denote the set of models of A.

Let us now define the conjunctive normal form (CNF, for short) representa-
tion of propositional formulas. A CNF formula is a conjunction (∧) of clauses
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where a clause is a disjunction (∨) of literals. A literal is a propositional variable
(p) or its negation (¬p). A CNF formula can also be seen as a set of clauses,
and a clause as a set of literals. We can point out that any propositional for-
mula can be translated into the corresponding CNF formula using linear Tseitin
encoding [20].

SAT is the decision problem that aims to determine the satisfiability of a CNF
formula, i.e., whether there exists a model of all clauses in a CNF form. This is
known as NP-Complete problem. Interestingly, state-of-the-art SAT solvers have
been shown of practical use in solving real-world instances encoding industrial
problems up to million of variables and clauses. SAT solving has been exploited
in various fields, including planning, bio-informatics, cryptography and more
recently data mining and relational databases. In most of these applications, we
are mainly interested in identifying the satisfiability of a CNF formula, or in
computing an optimal solution in Maximum Satisfiability (Max-SAT, for short).
However, in data mining we mainly deal with the computation of all the models
of a CNF formula.

3 Related work

Several proposals have been studied to enumerate HUIs (see [4, 5, 32] for a sur-
vey on the field). A popular approach to solve this problem is to discover the
set of high utility itemsets in two phases. This approach commonly adopts the
Transaction-Weighted-Downward Closure model to prune the search space. It
first generates a set of candidate high-utility itemsets by overestimating their
utility in phase 1. Then, in phase 2, it performs an extra database scan to cal-
culate the exact utility of candidates and filter out low-utility itemsets.

The two phases based approach is adopted by Two-Phase [10], IHUP [13] and
Up-Growth [18] algorithms. While two-phases based approaches are well studied,
they remain inefficient because they not only generate too many candidates in the
first phase, but they also need to scan, in phase 2, multiple times the database,
which can be computationally expensive.

To address these issues, numerous studies have been conducted in order to
develop efficient methods for mining high utility itemets directly using a single
phase (called one phase algorithms). To prune the search space, one phase ap-
proaches rely on the concept of remaining utility. Among these algorithms HUI-
Miner [12], D2HUP [17], FHM [14], EFIM [15], mHUIMiner [16], and ULB [19].
According to the comparisons in [5] between these various HUIM algorithms, it
has been demonstrated that one phase algorithms outperform candidate genera-
tion based algorithms such as Two-Phase and Up-Growth, which are impractical
for discovering HUIs from transaction databases. Furthermore, the authors in [5]
demonstrated that the most efficient algorithms (in terms of memory consump-
tion) are EFIM and D2HUP (in running time). The newest HUIM algorithms,
mHUIMiner and ULB-Miner, typically perform between EFIM and d2HUP, but
in a few cases, mHUIMiner outperforms both.
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Rather than mining the entire set of HUIs, some researchers proposed more
concise representations that significantly reduce the number of mined patterns
(see [4] for clear definitions of these representations). The first algorithm to find
compact representation of HUIs, called CHUD (Closed+ High Utility Itemset
Discovery), was introduced by [30]. This method aids in resolving the issue of
a large number of candidates being generated. Notice that CHUD is an exten-
sion of Eclat [33] and DCI-Closed [34] algorithms. The CHUD algorithm uses
a vertical database and computes CHUIs in a depth-first search. In [29], the
authors proposed EFIM-Closed a lossless and compact representation for high
utility itemset mining that is able to provide complete set of closed high-utility
itemsets. Another algorithm, called CHUIMiner, to find CHUIs is proposed [31].
This method computes the utility of itemsets without generating candidates.

4 SAT Encoding of (Closed) High Utility Itemset Mining

In this section, we introduce our SAT-based formulation that enables us to spec-
ify in terms of constraints the task of finding (closed) high utility itemsets over
transaction databases.

Our main goal is to provide an efficient way to encode and enumerate all
closed high utility itemsets with SAT. Without loss of generality, we fix a trans-
action database D = {(1, T1), . . . , (m,Tm)} and a minimum utility threshold
θ. Our SAT encoding for HUIM that we will consider is based on the use of
propositional variables to represent the items and the transaction identifiers in
D. Specifically, for each item a (resp. transaction identifier i), we associate a
propositional variable, denoted as pa (resp. qi). These propositional variables
will be used in 0/1 linear inequalities to capture all possible itemsets and their
covers.

More formally, given a Boolean interpretation ∆, the candidate itemset and
its cover are expressed as {a ∈ Ω | ∆(pa) = 1} and {i ∈ N | ∆(qi) = 1},
respectively. Now, we introduce our SAT-based encoding using the propositional
variables described previously. The first propositional formula allows us to obtain
the cover of the candidate itemset.

m∧
i=1

(¬qi ↔
∨

a∈Ω\Ti

pa) (6)

Intuitively, this propositional formula expresses that qi is true if and only if
the candidate itemset is supported by the ith transaction. More specifically, the
considered itemset is not supported by the ith transaction (i.e., qi is false), when
there exists an item a (i.e., pa is true) that does not appear to the transaction
(a ∈ Ω\Ti), i.e., when qi is false that means at least an item not appearing in
the transaction i is set to true.

Let us now give the formula expressing that the utility of the candidate
itemset has to be larger than the specified utility threshold θ:
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m∑
i=1

∑
a∈Ti

u(a, Ti)× (pa ∧ qi) > θ (7)

Using additional variables, Constraint 7 can be rewritten using the following
two formulas:

m∑
i=1

∑
a∈Ti

u(a, Ti)× rai > θ (8)

m∧
i=1

∧
a∈Ti

(rai ↔ pa ∧ qi) (9)

In the sequel, we use Φhuim to denote the CNF encoding that corresponds
to the conjunction of equations (6), (8), and (9).

Proposition 1. Given a transaction database D = {(1, T1), . . . , (m,Tm)} and a
minimum utility threshold θ. Then, the CNF formula Φhuim models the problem
of mining high utility itemsets from D.

Proof. It is straightforward to see that there exists a mapping between the set
of models of Φhuim and the high utility itemsets.

Example 5. We consider the transaction database given in Example 1. Then, the
formula that encodes the problem of enumerating all high utility itemsets in D
with θ = 20 can be written as follows:

¬q1 ↔ (pb ∨ pe) ¬q2 ↔ (pb ∨ pd) ¬q3 ↔ ⊥ ¬q4 ↔ pa
ra1 ↔ pa ∧ q1 rc1 ↔ pc ∧ q1 rd1 ↔ pd ∧ q1 ra2 ↔ pa ∧ q2
rc2 ↔ pc ∧ q2 re2 ↔ pe ∧ q2 ra3 ↔ pa ∧ q3 rb3 ↔ pb ∧ q3
rc3 ↔ pc ∧ q3 rd3 ↔ pd ∧ q3 re3 ↔ pe ∧ q3 rb4 ↔ pb ∧ q4
rc4 ↔ pc ∧ q4 rd4 ↔ pd ∧ q4 re4 ↔ pe ∧ q4
4ra1 + rc1 + 2rd1 + 8ra2 + 6rc2 + 6re2 + 4ra3 + 4rb3 + rc3 + 12rd3 + 3re3 + 8rb4
+3rc4 + 6rd4 + 3re4 ≥ 20

Once the CNF formula Φhuim is constructed, we systematically use a SAT
solver to enumerate all its models. Obviously, each found model of Φhuim corre-
sponds to a high utility itemset in the original transaction database. Specifically,
our method proceeds by recursively assigning variables corresponding to items
and performing unit propagation. Then, Constraint (8) is checked during the
search to verify if a conflict occurs. Such checking can be easily performed by
considering the value

∑m
i=1

∑
a∈Ti

u(a, Ti) and by subtracting u(a, Ti) each time
rai becomes false. A comparison to θ is also performed to continue the search or
to backtrack, otherwise.

In the HUIM context, there is two possibilities to define the closure constraint
on itemsets. In the first case, we can define a closed itemset as an itemset which
has any superset having the same utility [29]. The second choice is to consider the
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support constraint used in classical frequent itemset mining to define the closure.
However, the first definition does not allow us to obtain a reduced number of
itemsets, since in real-world application we can not find many itemsets that have
exactly the same utility as well as their supersets. In high utility enumeration,
a CHUI is a HUI having no proper supersets that are HUIs and appear in the
same number of transactions. So, our idea here is to use the support constraint
of traditional FIM task to define the closure constraint in the context of high
utility itemset mining. Hence, the following propositional formula allows us to
force a candidate itemset to be closed:

Φclos =
∧
a∈Ω

(pa ∨
∨
a 6∈Ti

qi) (10)

Intuitively, Constraint 10 ensures that if the candidate itemset is involved
in all transactions containing the item a, then a must be added to the itemset.
In other words, when in all the transactions where a does not appear, the can-
didate itemset is not included, this implies that the candidate itemset belongs
only to transactions containing the item a. Consequently, to be closed, the item
a must be added to the candidate itemset. We stress here that Constraint 10 is
necessary and sufficient to force the itemset to be closed.
Now, the closed HUIM task, denoted as CHUIM, can be encoded as the con-
junction of the formulas 6, 8, 9 and 10. More formally, Φchuim = Φclos ∧ Φhuim.

In a propositional satisfiability problem, if the CNF formula is satisfiable,
the SAT solver provides the corresponding model(s). To enumerate the models
of our Φchuim encoding, we extend a backtracking based search algorithm like
Davis–Putnam–Logemann–Loveland (DPLL, for short) procedure [28]. In the
sequel, we briefly describe the basic component of DPLL (see Algorithm 1)
designed to enumerate all models of a given CNF formula.

Typically, the DPLL solver is a tree-based backtrack search procedure. A
decision variable is chosen, i.e., by assigning variables corresponding to items
(line 17) to be added to Φ, followed by a propagation of unit literal assignments
(line 18). If there is a unit clause (all literals are false except one namely p), the
literal p is propagated (line 3-4). Otherwise, Constraint (8) is checked (line 9)
to verify its consistency. A comparison to θ is then performed to continue the
search or to backtrack. Such checking can be easily accomplished by considering
the value

∑m
i=1

∑
a∈Ti

u(a, Ti) and by subtracting u(a, Ti) each time rai becomes
false. If all literals are assigned without contradiction, then ∆ is a model of the
CNF formula (line 12). Obviously, each found model of Φchuim gives rise to a
(closed) high utility itemset from the transaction database (line 13) by restricting
the model to variables encoding items.

4.1 Pruning Strategy

The basic version of our algorithm performs a backtrack search similarly to the
TWU measure in order to prune the search space. Now, a useful extension to
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Algorithm 1: DPLL Enum: A backtracking search procedure for models
enumeration

Input: Φ: a CNF formula, θ: a minimum utility threshold
Output: S: the set of models of Φ
∆ = ∅ ; /* interpretation */1

S = ∅;2

if (Φ |= p) then3

return DPLL Enum(Φ ∧ p,∆ ∪ {p})) ; /* unit clause */4

end5

if (Φ |= ⊥) then6

return False ; /* conflict */7

end8

if check utility candidate(θ) == false then9

return False;10

end11

if (∆ |= Φ) then12

S ← S ∪ {∆} ; /* new found model */13

return False;14

else15

end16

p = select variable(V ar(Φ));17

return DPLL Enum(Φ ∧ p,∆ ∪ {p}) ∨DPLL Enum(Φ ∧ ¬p,∆ ∪ {¬p});18

return S;19

perform better pruning in the search tree consists to add a new constraint to the
previous Φchuim encoding. Notice that this constraint is derived from Inequation
(8) using the weighted clique cover problem [21]. Our main idea is to identify
the subsets of variables rai which cannot be true simultaneously. Next, we show
how this new constraint can be derived in a suitable way in order to make our
pruning strategy more efficient. To do this, let us first introduce a graphical
representation of the original transaction database as follows.

Definition 7. Let D = {T1, T2, . . . , Tm} be a transaction database. Then, the
graph associated to D is an undirected graph GD = (V,E) such that each item in
each transaction represents a vertex in GD, i.e., vai is the vertex associated to the
item a in the transaction i with 1 ≤ i ≤ m. In addition, an edge (vai, va′j) ∈ E
iff the transaction i contains a but not a′.

Example 6. Given the transaction database of Example 1. Then, the graph GD
associated to this database is depicted in Figure 1.

Definition 7 ensures that each edge of GD connects two items of D that
cannot belong simultaneously to the same high utility itemset. For instance, in
the database of Example 1, the item a in the transaction T1 cannot appear with
b in T3. Now, our aim is to partition the graph GD into overlapping sets. To do
this, we will use the notion of clique cover defined as follows.
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vd4

(6)
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Fig. 1: The graph GD associated to the transaction database of Example 1

Definition 8 (Clique Cover). Let G = (V,E) be an undirected graph and
C = {C1, . . . , Ck} where Ci ⊆ V for 1 ≤ i ≤ k. Then, S is a clique cover of G iff⋃

1≤i≤k Ci = V s.t. each sub-graph Gi = (Ci, Ei) where Ei = {(a, b) ∈ E | a, b ∈
Ci} is a clique4.

The clique cover is a fundamental problem in graph theory and it has nu-
merous applications in several areas such as social network analysis and bio-
informatics. Notice that the problem of clique cover has extensively studied in
the literature [25,26].

Example 7. Let us consider the graph in Example 6. Clearly, the set of sets S =
{{vd1, ve3}, {va1, vb3}, {va2, vb4}, {vc2, vd4}, {ve2, vd3}, {va3, ve4}, {vc1}, {vc3}, {vc4}}
is a clique cover of the graph GD.

Given the graph GD, the cliques of GD are a convenient way of conceptual-
izing the required constraint that we need to consider in our SAT encoding. In
fact, a clique of GD corresponds to a subset of variables rai that among them at
most one can be assigned to true. This allows us to introduce a new constraint
that can be used to prune effectively the search space compared to the TWU
measure. Consequently, our new constraint can be derived where the sum of
weights of each subset is replaced with the maximum weight as stated in the
following proposition.

Proposition 2. Let D = {T1, T2, . . . , Tm} be a transaction database and GD
the graph associated to D. If C = {C1, . . . , Ck} is a clique cover of GD, then the
following constraint holds :

4 A clique is a graph whose nodes are all pairwise adjacent.
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∑
1≤i≤k

max
vaj∈Ci

u(a, Tj)(
∨

vaj∈Ci

raj) ≥ θ (11)

Additional variables xi (1 ≤ i ≤ k) can be used to simplify Constraint (11) in
the following way:

xi ↔
∨

vaj∈Ci

raj ∀ 1 ≤ i ≤ k

Note that the weighted clique cover problem is NP-hard and the number
of solutions can be very large. Our aim here is to minimize

∑k
i=1 wi with

wi = maxvaj∈Ci
u(a, Tj). The goal is then to obtain large cliques with maximum

weight. To avoid the NP-Hardness of the related problem, we next consider a
greedy approach to find a possible cover. To do this, we proceed by growing the
current clique one vertex at a time by looping through the remaining adjacent
vertices with high weight values in the current graph.

Example 8. Let us consider again Example 6. For the clique cover S = {{vd1, ve3},
{va1, vb3}, {va2, vb4}, {vc2, vd4}, {ve2, vd3}, {va3, ve4}, {vc1}, {vc3}, {vc4}}, we can
deduce the following constraint:

3x1 + 4x2 + rc1 + 8x3 + 6x4 + 12x5 + 4x6 + rc3 + 3rc4 ≥ 20

where
x1 = (rd1 ∨ re3) x2 = (ra1 ∨ rb3)
x3 = (ra2 ∨ rb4) x4 = (rc2 ∨ rd4)
x5 = (re2 ∨ rd3) x6 = (ra3 ∨ re4)

Using such new constraint, it is clear that if the minimum threshold exceeds
20, then we can trivially check that the set of high utility itemsets is empty which
is not the case when taking into account only Constraint (7). More generally, by
considering both Constraint (7) and the new derived one allows us to prune the
search space more efficiently.

4.2 A Decomposition-based Encoding for mining CHUIs

In this subsection, we present a decomposition-based paradigm that splits the
original transaction database into smaller and independent subsets in order to
avoid encoding the whole base. Our decomposition is motivated by the fact
that encoding the whole database into propositional logic can lead to very large
formulas, that is the solving can be unfeasible. In fact, given the set of items
Ω = {a1, . . . , an} of D, the set of high utility itemsets can be partitioned into
E1, . . . , En where E1 is the susbet of itemsets containing a1, E2 of those not con-
taining a1 but a2, and so on until En of those do not involving a1, . . . , an−1 but
an. From the encoding point of view, the subset Ei is obtained by enumerating
the models of Φi resulting from Φ by propagating pak to false for all 1 ≤ k < i
and pai to true. Formally, this yields to the next formula:

Φi = Φ ∧ pai ∧
∧

1≤k<i

¬pak
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Intuitively, Φi is based on a recursive split of the formula Φ w.r.t. its positive
and negative literals. As expressed, the formula Φi enforces pai to be true. Con-
sequently, the encoding can be restricted to transactions containing the item ai.
Also, the literal pak for all 1 ≤ k < i assigned false allows to exclude the item
ak to be in the candidate itemset. Thus, this allows to avoid encoding the entire
original database and without causing too large formulas as well as the associ-
ated memory problems. Clearly, the splitting of Φ generates a set of independent
sub-formulas that encode subsets of a specific set of transactions in the original
database.

Example 9. The partitioning tree of the transaction database of Example 1 is
depicted in Figure 2. Here, we consider at the beginning all transactions con-
taining the item a. Then, we pick all those not containing the item a but the
item b, and so on.

pa

ΦθD ∧ pa pb

ΦθD ∧ ¬pa ∧ pb pc

ΦθD ∧ ¬pa ∧ ¬pb ∧ pc

Fig. 2: Item based partitioning tree of the database D

Next, the pseudo-code of our algorithm using a decomposition-based method for
enumerating all CHUIs is summarized in Algorithm 2. The algorithm, coined
as SATCHUIM (SAT based Closed High Utility Itemset Mining), takes a
transaction database D and a minimum utility threshold θ, and it outputs all
the closed high utility itemsets in D. Notice that the decomposition technique
applied to the database D provides some significant advantages. First, splitting
the whole database into independent sub-bases can reduce significantly the size
of the original problem. Also, the algorithm does not need to generate candidate
sets since the reduced database does not contain any low utility itemset, i.e.,
each itemset that has utility lower than TWU is discarded.

The algorithm follows an order over the set of items appeared in D by count-
ing items occurrence, i.e, items are sorted in increasing order of their support.
Obviously, the splitting strategy is performed before the solving process. At each
iteration, each item ai is fixed to be in the itemset and the encoding is restricted
only to transactions containing ai, denoted Dai . Then, if the TWU of the item
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ai is less than the θ threshold, ai is discarded and it will not belong to the set
of HUIs. In the next iteration, we ignore in the current sub-database all items
having TWU less than θ. Then, the function encode huim cnf is called over Dai

in order to encode the problem into CNF. Finally, the enumeration of the models
of the CNF formula is performed using the function DPLL Enum (Algorithm
1).

Algorithm 2: SAT based Closed High Utility Itemset Mining (SATCHUIM)

Input: D: a transaction database, θ: a user-specified utility threshold
Output: S: the set of all closed high-utility itemsets of D
Ω = 〈a1, . . . , an〉 ← items(D);1

S ← ∅;2

for i ∈ 1..n do3

if TWU(ai) < θ then4

continue;5

end6

Dai ← {(ik, Tk) ∈ D | ai ∈ Tk};7

Γ ← ∅;8

for b ∈ items(Dai) do9

if TWU(b,Dai) < θ then10

Γ ← Γ ∪ {b};11

end12

end13

Φ← encode huim cnf(Dai , θ) ∧ pai ∧
∧

1≤j<i

¬paj ∧
∧
b∈Γ

¬pb;
14

S ← S ∪DPLL Enum(Φ, θ);15

end16

return S;17

Proposition 3 (Correctness). Let D be a transaction database. SATCHUIM re-
turns all closed high utility itemsets of D.

Again, we use the decomposition strategy for a scalability reason. In fact, we
have shown in our previous work [37] that a SAT-based approach cannot scale
to large datasets, e.g., Chainstore and Kosarak, since the CNF encoding of such
transaction databases is huge and cannot be resolved by the SAT solvers. Hence,
in this paper we applied the decomposition-based technique described previously
to achieve efficiency by reducing the size of the CNF encoding without losing
completeness.

5 Experimental Results

In this section, we carried out an experimental evaluation of our SAT-based
formulation for mining profitable itemsets, and then compare the performance
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of our method against the most efficient algorithms for discovering (closed) high
utility itemsets using real-world transaction databases.

5.1 Experimental Setup

Experiments are performed on a computer with an Intel Xeon quad-core machine
with 32GB of RAM running at 2.66 Ghz. To evaluate the practical performance
of our approach, experiments were carried on seven real-life datasets commonly
used in the HUIM literature: Chess, Mushroom, Connect, Kosarak, Foodmart,
Accidents and Chainstore [22]. These datasets have various characteristics and
represent data taken from real-life scenarios. For each benchmark, we report in
Table 4 the number of transactions (#Trans), the number of items (#Items), the
number of items per transaction or average transaction length (AvgTransLen),
and the density5. The density factor has a direct impact on the computation
time of mining algorithms. In our experiments, both sparse and dense datasets
were used for performance evaluation. For each dataset, we fix a timeout of 2
hours.

We conducted two experiments to evaluate the performance of our proposed
approach. In the first experiment, we compared our SATHUIM algorithm to the two
most efficient specialized approaches for enumerating HUIs [5]: EFIM [15], and
D2HUP [17]. Moreover, in the second set of experiments, we compare our SATCHUIM
method against three baselines for mining closed HUIs, namely EFIM-Closed

[29], CHUD [30], and CHUI-Miner [31]. For these baselines, we used the Sequential
Pattern Mining Framework (SPMF, for short) open-source data mining library
[22] written in Java. Our algorithms are implemented in C++ and we used
the MiniSAT solver [38] to enumerate all models of the CNF encoding. In our
experiments, for the minimum utility threshold values, we follow the work of
Zida et al. [15].

Table 4: Datasets Characteristics

Instance #Trans #Items AvgTransLen Density(%)

Chess 3196 75 37 49.33

Foodmart 4141 1559 4.42 0.28

Mushroom 8124 119 23 19.33

Connect 67557 129 43 33.33

Accidents 340183 468 33.8 7.22

Kosarak 990002 41270 8.1 0.02

Chainstore 1112949 46086 7.23 0.02

5 The density of a database D defines the ratio between the average length of trans-
actions in D and the number of distinct items in D.
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Fig. 3: Running times of SATHUIM against baselines on different datasets
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5.2 Results for HUIs Enumeration

In this experiment, we run each method on each database while comparing
the algorithms’ running time for different minimum utility thresholds. Figure
3 reported the comparative results, i.e. the CPU time, of our method SATHUIM

against the two specialized ones. Note that for our algorithm, the computation
time includes the time for generating the CNF formula and that for enumerat-
ing all models (i.e., the HUIs). The empirical results show the feasibility of our
SAT-based approach. As illustrated in Figure 3, it is clear that the performance
of all algorithms depends on the dataset characteristics. In fact, all approaches
need more time to discover the set of HUIs from large databases. In addition,
the minimum support threshold θ has a strong influence on the performance of
algorithms. We can also observe that EFIM is generally more efficient than our
SATHUIM method. Moreover, our algorithm is the second-fastest method and it
falls between EFIM and D2HUP in nearly all cases, except Foodmart and Mush-
room. As a summary, our SAT-based method is competitive and it achieves
interesting performance in enumerating HUIs, compared with the two baselines
EFIM and D2HUP.

5.3 Results for CHUIs Enumeration

In this subsection, we turn to the empirical evaluation of our SATCHUIM algorithm
and compare it to three baselines, namely, EFIM-Closed [29], CHUD [30], and
CHUI-Miner [31] for enumerating closed high utility itemsets from transaction
databases.

Figure 4 shows the execution times of the different algorithms. According to
these experimental results, our proposal achieves a good performance in 5 out
of 7 databases for different minimum utility threshold values. As we can also
see from the results, our algorithm remains competitive with the best baselines
for Mushroom and Chainstore databases. Notably, the required time for our
SATCHUIM algorithm to find all CHUIs increases when the θ value decreases on
Chess, accidents, connect and foodmart. In contrast, the running time remains
almost constant when θ threshold varies for the datasets Chainstore, kosarak
and Mushroom. In terms of average CPU time and for low values of θ, SATCHUIM
surpasses CHUD by about 163 and 9 times on Chess and Kosarak datasets ,
respectively. Likewise, SATCHUIM surpasses CHUI-Miner by about 147 and 3 times
on Chess, kosarak, respectively. In addition, our algorithm is up to 60 times faster
than CHUI-Miner, while CHUD took too long time to terminate on the dataset
Connect.

From the scalability point of view, we observe that our proposed SAT-
encoding is able to scale for all the minimum support threshold values under
the time limit for large datasets; while CHUD and CHUI-Miner algorithms not
able to scale on the datasets accidents, Connect and Chainstore under the time
limit. Overall, the empirical evaluation confirms that our SATCHUIM algorithm is
very promising.
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Finally, Table 5 provides the variation of the number of generated patterns
as well as the number of propositional variables and clauses used to encode the
problem for both classical HUIs and closed HUIs. The main observation is that
the number of found itemsets highly depends on the selected threshold values: it
decreases when the utility threshold increases and vice versa. Furthermore, the
number of patterns can be limited when the minimum utility threshold is large.
Let us also mention that the CHUIs is smaller compared to the set of HUIs. For
instance, for Chess dataset the number of HUIs is equal to 428023, while the
number of CHUIs is about 114660. According to the experiment results shown in
Table 5, we can observe that the number of clauses can exceed 400 millions (i.e.,
Kosarak dataset). Note that this number corresponds to the sum of the number of
clauses of the different sub-problems generated by our decomposition technique.
Despite this large number of clauses and variables, our approach remains efficient
and scale on all datasets in a reasonable time.

6 Conclusion

In this paper, we have introduced a novel SAT-based approach for mining (closed)
high utility itemsets. The proposed method exploits a number of well-known es-
tablished techniques for SAT-based problem solving. Technically, the main idea
is to represent a (closed) high utility itemset mining task as a CNF propositional
formula such that each of its models corresponds to a (closed) high utility item-
set of interest. In contrast with existing specialized algorithms, we have shown
a flexible formulation in terms of constraints of the task of discovering (closed)
HUIs. Experimental results have also shown that our SAT-based approach is
very competitive with the state-of-the-art techniques.

Despite our promising results, we intend to develop a parallel version to even
improve the performance of our SAT-based approach for enumerating (closed)
HUIs. Moreover, setting the appropriate minimum utility threshold is a hard
question, so we plan to extend our declarative SAT approach to enumerate the
Top-k (closed) high utility itemsets mining.
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