
HAL Id: hal-03466365
https://hal.science/hal-03466365

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Mining closed high utility itemsets based on
propositional satisfiability

Amel Hidouri, Said Jabbour, Badran Raddaoui, Boutheina Ben Ben Yaghlane

To cite this version:
Amel Hidouri, Said Jabbour, Badran Raddaoui, Boutheina Ben Ben Yaghlane. Mining closed high
utility itemsets based on propositional satisfiability. Data and Knowledge Engineering, 2021, 136
(101927:1-101927:15), �10.1016/j.datak.2021.101927�. �hal-03466365�

https://hal.science/hal-03466365
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Mining Closed High Utility Itemsets based on
Propositional Satisfiability

Amel Hidouri1,2, Said Jabbour2, Badran Raddaoui3, and Boutheina Ben
Yaghlane1

1 LARODEC, University of Tunis, Tunis, Tunisia
boutheina.byaghlane@gmail.com

2 CRIL - CNRS UMR 8188, University of Artois, France
{hidouri,jabbour}@cril.fr

3 SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France
badran.raddaoui@telecom-sudparis.eu

Abstract. A high utility itemset mining problem is the question of rec-
ognizing a set of items that have utility values greater than a given user
utility threshold. This generalization of the classical problem of frequent
itemset mining is a useful and well-known task in data analysis and
data mining, since it is used in a wide range of real applications. In this
paper, we first propose to use symbolic Artificial Intelligence for comput-
ing the set of all closed high utility itemsets from transaction databases.
Our approach is based on reduction to enumeration problems of propo-
sitional satisfiability. Then, we enhance the efficiency of our SAT-based
approach using the weighted clique cover problem. After that, in order
to improve scalability, a decomposition technique is applied to derive
smaller and independent sub-problems in order to capture all the closed
high utility itemsets. Clearly, our SAT-based encoding can be constantly
enhanced by integrating the last improvements in powerful SAT solvers
and models enumeration algorithms. Finally, through empirical evalua-
tions on different real-world datasets, we demonstrate that the proposed
approach is very competitive with state-of-the-art specialized algorithms
for high utility itemsets mining, while being sufficiently flexible to take
into account additional constraints to finding closed high utility itemsets.

Keywords: Data Mining · High Utility · Symbolic Artificial Intelligence·
Propositional Satisfiabilty

1 Introduction

Data mining is a multi-disciplinary field that employs machine learning, stat-
ics and symbolic Artificial Intelligence in order to find novel valid relationships

This work is an extended version of our paper published in the International Con-
ference on Data Warehousing and Knowledge Discovery [37].

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0169023X21000549
Manuscript_76c254959f9338249cf33955bae4abb6

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0169023X21000549
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0169023X21000549

2 Hidouri et al.

among data. A pivotal task in knowledge discovery process concerns pattern
extraction w.r.t. various proprieties such as novelty, usefulness and understand-
ability. The problem of selecting a set of itemsets from the original data has
recently gained a lot of attention in the two last decades. Mining High Utility
itemsets (HUIM, for short) as one of the major keystone in the discovery of
patterns generalizes the problem of frequent itemsets (FIM), since traditional
frequent patterns cannot fulfill the requirement of finding the most valuable in-
formation that contribute to the major part of the total profits in the retail
databases. HUIM considers item quantities and weights and refers to recognize
the set of items that appear together in a given transaction database and having
a high importance to the user, measured by a utility function. The utility means
the importance/profitability of items to users. Indeed, the utility of items in a
transaction depends on the importance of different items, which is called external
utility, and the importance of the items in the transaction, called internal utility.
Then, the utility of an itemset is defined as the multiplication of the external
and the internal utilities. An itemset is called a high utility itemset if its utility
is no less than a user specified threshold value; otherwise, the itemset is called a
low utility itemset. Mining high utility itemsets from transaction databases is an
important task and it has a wide range of applications, including website click
stream analysis, business promotion in chain hypermarkets, online e-commerce
management, mobile commerce environment planning, and biomedical applica-
tions [1–3].

Generally speaking, existing approaches, usually called specialized approaches,
(see related work section) are designed to find particular kinds of itemsets from
transaction databases with utilities. In that sense, new additional constraints
(i.e., user preference) cannot be easily integrated in the original algorithm, and
they require a re-implementation of the whole application. In recent years, several
constraint-based languages for modeling and solving data mining problems have
been designed where the data mining task is modeled as a constraint network
or a propositional formula whose models correspond to the patterns of interest.
These methods, usually coined as declarative approaches, have then found appli-
cations in diverse data mining tasks ranging from frequent itemset mining [9] and
its concise representations [35, 36], sequences [27] and association rules [23, 24].
Clearly, this tight connection between constraint-based languages and pattern
discovery allows data mining problems to benefit from several powerful sym-
bolic Artificial Intelligence solving techniques. More interestingly, propositional
satisfiability based approaches have gained a considerable audience with the ad-
vent of a new generation of solvers able to handle large instances encoding data
mining problems [6, 7, 9].

A bottleneck of the most declarative methods is the encoding size which affect
the algorithm efficiency. Thus, the performance of such approaches decreases
when the database size grows or the threshold takes low values. To improve the
efficiency of declarative mining algorithms, a decomposition technique could be
applied in order to divide the original mining problem to smaller and independent
sub-problems.

Mining Closed HUI based on SAT 3

In this paper, we introduce SATCHUIM, a new algorithm that makes an orig-
inal use of symbolic Artificial Intelligence technique, i.e., propositional satisfia-
bility, for efficiently enumerating all closed high utility itemsets embedded in a
transaction database. Technically, the main contribution consists in developing a
method based on propositional satisfiablity to model and solve the task of mining
a concise and complete representation of HUIs in terms of constraints. Further-
more, we enhance the efficiency of our proposed approach using the weighted
clique cover problem. After that, to cope with the scalability issue, which is one
of the most important challenge of declarative frameworks, we use a decom-
position technique that allows to derive smaller and independent enumeration
sub-problems.

The paper is organized as follows. The next section presents a background
on which our work relies. Then, we present the state-of-the-art of high utility
itemset mining problem in Section 3. Section 4 is devoted to our novel SAT-
based framework as well as its decomposition-based version for discovering closed
itemsets with highest utilities. Section 5 discusses the results of our experimental
evaluation on different real-world datasets to show the efficiency and usefulness
of our approach. Finally, we conclude our work in Section 6 with some further
perspectives.

2 Background

In this section, we present the relevant preliminaries and formally define the
utility mining and the propositional satisfiability problems. Notice that all the
notations used in the rest of paper are summarized in Table 1.

2.1 High Utility Itemset Mining Problem

Let Ω denote a universe of distinct items (or symbols) that occur in the database.
A transaction database D = {T1, T2, . . . , Tm} is a set of m transactions or records
such that each transaction Ti is a set of items, i.e., Ti ⊆ Ω, and Ti has a unique
identifier i called its transaction identifier (TID, for short). Each item a ∈ Ω
is associated with a positive number wext(a), called its external utility (e.g.,
unit profit). For each transaction Ti, a positive number wint(a, Ti) is called the
internal utility of the item a ∈ Ti (e.g., purchase quantity).

Definition 1 (Support of an itemset). Let D be a transaction database. We
define the support of an itemset X as the number of transactions in D that
contain X, i.e., supp(X) = |Ti / X ⊆ Ti s.t. (i, Ti) ∈ D|.

Definition 2 (Utility of an item/itemset in a transaction). Given a trans-
action database D, the utility of an item a in a transaction (i, Ti) ∈ D, denoted
by u(a, Ti), is defined as u(a, Ti) = wext(a)×wint(a, Ti). Then, the utility of an
itemset X ⊆ Ω in a transaction (i, Ti) ∈ D, denoted by u(X,Ti), is defined as:

u(X,Ti) =
∑
a∈X

u(a, Ti) (1)

4 Hidouri et al.

Notation Meaning

Ω A set of n items {a1, . . . , an} s.t. each item aj has a profit
value pa

D Transaction database, D = {T1, T2, . . . , Tm}
TID An identifier of a transaction (i, Ti) ∈ D
X A k-itemset containing k distinct items {a1, a2, . . . , ak}
wint(a, Ti) The purchase quantity of an item a in a transaction Ti
wext(a) The unit profit of an item a

u(a, Tj) The utility of an item a in a transaction Ti
u(X,Ti) The utility of an itemset X in a transaction Ti
u(X) The utility of an itemset X in the whole database

TU(Ti) The sum of the utilities of items in a transaction Ti
θ A predefined minimum high utility threshold

TWU(X,D) The transaction-weighted utility of an itemset X in the
database D

HUI A High Utility itemset

CHUI A Closed High Utility Itemset

Prop A set of propositional variables

Form A set of propositional formulas

∆ A Boolean interpretation

Table 1: Summary of notations

Example 1. Let us consider a transaction database D containing four transac-
tions, given in Table 2, which will serve as a running example throughout the
paper. Each line in Table 2 represents a transaction, where each letter represents
an item that is associated to a purchase quantity (i.e., internal utility). For in-
stance, the transaction T2 contains items a, c, and e with an internal utility of 2,
6 and 2, respectively. In addition, Table 3 indicates the external utility of each
of these items. In fact, external utility of a, c, and e are respectively 4, 1 and 3.
Then, the utility of the item a in T2 is u(a, T2) = 4×2 = 8. Finally, the utility of
the itemset {a, c} in T2 is u({ac}, T2) = u(a, T2) + u(c, T2) = 4× 2 + 1× 6 = 14.

TID Items

T1 (a, 1) (c, 1) (d, 1)

T2 (a, 2) (c, 6) (e, 2)

T3 (a, 1) (b, 2) (c, 1) (d, 6) (e, 1)

T4 (b, 4) (c, 3) (d, 3) (e, 1)

Table 2: Sample Transaction Database

Mining Closed HUI based on SAT 5

Item Unit profit

a 4

b 2

c 1

d 2

e 3

Table 3: External Utility

Now, the utility of an itemset X in a transaction database D is defined as
the sum of the itemset utilities in all the transactions of D where X appears.
More formally:

Definition 3 (Utility of an itemset in a database). Let D be a transaction
database. The utility of an itemset X in D, denoted by u(X), is defined as:

u(X) =
∑

(i,Ti)∈D | X⊆Ti

u(X,Ti) (2)

Example 2. Let us consider again the transaction database given in Example 1.
Then, the utility of the itemset {a, c} is u({a, c}) = u({a, c}, T1)+u({a, c}, T2)+
u({a, c}, T3) = 5 + 14 + 5 = 24.

Definition 4 (Closed itemset). Let D be a transaction database and X an
itemset in D. X is called a closed itemset if there exists no itemset X ′ such that
X ⊂ X ′, and ∀(i, Ti) ∈ D,X ∈ Ti → X ′ ∈ Ti.
Problem Definition.
Given a transaction database D and a user-specified minimum utility threshold
θ, the goal of mining (closed) high utility itemsets problem is to find the set of
all (closed) itemsets in D with a utility no less than θ, i.e.,

HUI = {X : u(X) | X ⊆ Ω, u(X) ≥ θ} (3)

That is, computing closed high utility itemsets is equivalent to finding the
itemsets that cover the largest part of the database utility.

Example 3. Let us consider again the transaction database given in Example 1.
Given a minimum utility threshold θ = 20, then the high-utility itemsets with
their utility in the database are {a, c, e} : 28, {c, d, e} : 28, {b, c, d, e} : 40. In
this example, the itemsets {a, d}, {c, d}, {c, e}, {a, c, d}, {a, c, e}, {b, c, d, e} and
{a, b, c, d, e} are closed HUIs, with utility values 23, 25, 22, 24, 28, 20 and 24,
respectively.

Definition 5 (Transaction Utility). Given a transaction database D, then
the transaction utility of a transaction Ti in D, denoted by TU(Ti), is the sum
of the utility of all items in Ti, i.e.,

TU(Ti) =
∑
a∈Ti

u(a, Ti) (4)

6 Hidouri et al.

Definition 6 (Transaction Weighted Utilization). The transaction weighted
utilization of an itemset X in a transaction database D, denoted by TWU(X,D),
is defined as the sum of the transaction utility of transactions containing X, i.e.,

TWU(X) =
∑

(i,Ti)∈D | X⊆Ti

TU(Ti) (5)

Here, the difference between TWU(X,D) and u(X) is that for TWU(X,D),
we sum the utilities of the whole transactions containingX, while u(X) computes
only the utilities of X in the transactions where X appears.

Example 4. Let us consider again Example 1. We have, TWU({a, c, d}, D) =
TU(T1) + TU(T3) = 7 + 24 = 31.

We conclude this subsection by pointing out that the transaction weighted
utilization measure has three important properties that are used to prune the
search space.

Overestimation. The TWU of an itemset X is always higher than or equal to
the utility of X, i.e., TWU(X,D) ≥ u(X).

Anti-monotonicity. LetX and Y be two itemsets. IfX ⊆ Y , then TWU(X,D) ≥
TWU(Y,D).

Pruning. Let X be an itemset. If TWU(X,D) < θ, then X is a low-utility
itemset as well as all its supersets.

2.2 Propositional Logic and SAT Problem

In this subsection, we present the syntax and the semantics of classical proposi-
tional logic.
Given a countable set of propositional variables Prop, we use the letters p, q, r,
etc. to range over Prop. The set of propositional formulas, denoted Form, is de-
fined inductively started from Prop, the constant > denoting true, the constant
⊥ denoting false, and using logical connectives ¬,∧,∨,→. It is worth noticing
that we can restrict the language to the connectives ¬ and ∧, since we have the
following equivalences: A ∨B ≡ ¬(¬A∧¬B) and A → B ≡ ¬B ∨A. The equiv-
alence connective ↔ is defined by A ↔ B ≡ (A → B) ∧ (B → A). We also use
P (A) to denote the set of propositional variables appearing in the formula A. |=
refers to logical inference. A Boolean interpretation ∆ of a formula A is defined
as a function from P (A) to (0, 1) (0 corresponds to false and 1 to true). A model
of a formula A is a Boolean interpretation ∆ that satisfies A, i.e., ∆(A) = 1. A
formula A is satisfiable if there exists a model of A. Moreover, the formula A
is valid or a theorem, if every Boolean interpretation is a model of A. We use
Mod(A) to denote the set of models of A.

Let us now define the conjunctive normal form (CNF, for short) representa-
tion of propositional formulas. A CNF formula is a conjunction (∧) of clauses

Mining Closed HUI based on SAT 7

where a clause is a disjunction (∨) of literals. A literal is a propositional variable
(p) or its negation (¬p). A CNF formula can also be seen as a set of clauses,
and a clause as a set of literals. We can point out that any propositional for-
mula can be translated into the corresponding CNF formula using linear Tseitin
encoding [20].

SAT is the decision problem that aims to determine the satisfiability of a CNF
formula, i.e., whether there exists a model of all clauses in a CNF form. This is
known as NP-Complete problem. Interestingly, state-of-the-art SAT solvers have
been shown of practical use in solving real-world instances encoding industrial
problems up to million of variables and clauses. SAT solving has been exploited
in various fields, including planning, bio-informatics, cryptography and more
recently data mining and relational databases. In most of these applications, we
are mainly interested in identifying the satisfiability of a CNF formula, or in
computing an optimal solution in Maximum Satisfiability (Max-SAT, for short).
However, in data mining we mainly deal with the computation of all the models
of a CNF formula.

3 Related work

Several proposals have been studied to enumerate HUIs (see [4, 5, 32] for a sur-
vey on the field). A popular approach to solve this problem is to discover the
set of high utility itemsets in two phases. This approach commonly adopts the
Transaction-Weighted-Downward Closure model to prune the search space. It
first generates a set of candidate high-utility itemsets by overestimating their
utility in phase 1. Then, in phase 2, it performs an extra database scan to cal-
culate the exact utility of candidates and filter out low-utility itemsets.

The two phases based approach is adopted by Two-Phase [10], IHUP [13] and
Up-Growth [18] algorithms. While two-phases based approaches are well studied,
they remain inefficient because they not only generate too many candidates in the
first phase, but they also need to scan, in phase 2, multiple times the database,
which can be computationally expensive.

To address these issues, numerous studies have been conducted in order to
develop efficient methods for mining high utility itemets directly using a single
phase (called one phase algorithms). To prune the search space, one phase ap-
proaches rely on the concept of remaining utility. Among these algorithms HUI-
Miner [12], D2HUP [17], FHM [14], EFIM [15], mHUIMiner [16], and ULB [19].
According to the comparisons in [5] between these various HUIM algorithms, it
has been demonstrated that one phase algorithms outperform candidate genera-
tion based algorithms such as Two-Phase and Up-Growth, which are impractical
for discovering HUIs from transaction databases. Furthermore, the authors in [5]
demonstrated that the most efficient algorithms (in terms of memory consump-
tion) are EFIM and D2HUP (in running time). The newest HUIM algorithms,
mHUIMiner and ULB-Miner, typically perform between EFIM and d2HUP, but
in a few cases, mHUIMiner outperforms both.

8 Hidouri et al.

Rather than mining the entire set of HUIs, some researchers proposed more
concise representations that significantly reduce the number of mined patterns
(see [4] for clear definitions of these representations). The first algorithm to find
compact representation of HUIs, called CHUD (Closed+ High Utility Itemset
Discovery), was introduced by [30]. This method aids in resolving the issue of
a large number of candidates being generated. Notice that CHUD is an exten-
sion of Eclat [33] and DCI-Closed [34] algorithms. The CHUD algorithm uses
a vertical database and computes CHUIs in a depth-first search. In [29], the
authors proposed EFIM-Closed a lossless and compact representation for high
utility itemset mining that is able to provide complete set of closed high-utility
itemsets. Another algorithm, called CHUIMiner, to find CHUIs is proposed [31].
This method computes the utility of itemsets without generating candidates.

4 SAT Encoding of (Closed) High Utility Itemset Mining

In this section, we introduce our SAT-based formulation that enables us to spec-
ify in terms of constraints the task of finding (closed) high utility itemsets over
transaction databases.

Our main goal is to provide an efficient way to encode and enumerate all
closed high utility itemsets with SAT. Without loss of generality, we fix a trans-
action database D = {(1, T1), . . . , (m,Tm)} and a minimum utility threshold
θ. Our SAT encoding for HUIM that we will consider is based on the use of
propositional variables to represent the items and the transaction identifiers in
D. Specifically, for each item a (resp. transaction identifier i), we associate a
propositional variable, denoted as pa (resp. qi). These propositional variables
will be used in 0/1 linear inequalities to capture all possible itemsets and their
covers.

More formally, given a Boolean interpretation ∆, the candidate itemset and
its cover are expressed as {a ∈ Ω | ∆(pa) = 1} and {i ∈ N | ∆(qi) = 1},
respectively. Now, we introduce our SAT-based encoding using the propositional
variables described previously. The first propositional formula allows us to obtain
the cover of the candidate itemset.

m∧
i=1

(¬qi ↔
∨

a∈Ω\Ti

pa) (6)

Intuitively, this propositional formula expresses that qi is true if and only if
the candidate itemset is supported by the ith transaction. More specifically, the
considered itemset is not supported by the ith transaction (i.e., qi is false), when
there exists an item a (i.e., pa is true) that does not appear to the transaction
(a ∈ Ω\Ti), i.e., when qi is false that means at least an item not appearing in
the transaction i is set to true.

Let us now give the formula expressing that the utility of the candidate
itemset has to be larger than the specified utility threshold θ:

Mining Closed HUI based on SAT 9

m∑
i=1

∑
a∈Ti

u(a, Ti)× (pa ∧ qi) > θ (7)

Using additional variables, Constraint 7 can be rewritten using the following
two formulas:

m∑
i=1

∑
a∈Ti

u(a, Ti)× rai > θ (8)

m∧
i=1

∧
a∈Ti

(rai ↔ pa ∧ qi) (9)

In the sequel, we use Φhuim to denote the CNF encoding that corresponds
to the conjunction of equations (6), (8), and (9).

Proposition 1. Given a transaction database D = {(1, T1), . . . , (m,Tm)} and a
minimum utility threshold θ. Then, the CNF formula Φhuim models the problem
of mining high utility itemsets from D.

Proof. It is straightforward to see that there exists a mapping between the set
of models of Φhuim and the high utility itemsets.

Example 5. We consider the transaction database given in Example 1. Then, the
formula that encodes the problem of enumerating all high utility itemsets in D
with θ = 20 can be written as follows:

¬q1 ↔ (pb ∨ pe) ¬q2 ↔ (pb ∨ pd) ¬q3 ↔ ⊥ ¬q4 ↔ pa
ra1 ↔ pa ∧ q1 rc1 ↔ pc ∧ q1 rd1 ↔ pd ∧ q1 ra2 ↔ pa ∧ q2
rc2 ↔ pc ∧ q2 re2 ↔ pe ∧ q2 ra3 ↔ pa ∧ q3 rb3 ↔ pb ∧ q3
rc3 ↔ pc ∧ q3 rd3 ↔ pd ∧ q3 re3 ↔ pe ∧ q3 rb4 ↔ pb ∧ q4
rc4 ↔ pc ∧ q4 rd4 ↔ pd ∧ q4 re4 ↔ pe ∧ q4
4ra1 + rc1 + 2rd1 + 8ra2 + 6rc2 + 6re2 + 4ra3 + 4rb3 + rc3 + 12rd3 + 3re3 + 8rb4
+3rc4 + 6rd4 + 3re4 ≥ 20

Once the CNF formula Φhuim is constructed, we systematically use a SAT
solver to enumerate all its models. Obviously, each found model of Φhuim corre-
sponds to a high utility itemset in the original transaction database. Specifically,
our method proceeds by recursively assigning variables corresponding to items
and performing unit propagation. Then, Constraint (8) is checked during the
search to verify if a conflict occurs. Such checking can be easily performed by
considering the value

∑m
i=1

∑
a∈Ti

u(a, Ti) and by subtracting u(a, Ti) each time
rai becomes false. A comparison to θ is also performed to continue the search or
to backtrack, otherwise.

In the HUIM context, there is two possibilities to define the closure constraint
on itemsets. In the first case, we can define a closed itemset as an itemset which
has any superset having the same utility [29]. The second choice is to consider the

10 Hidouri et al.

support constraint used in classical frequent itemset mining to define the closure.
However, the first definition does not allow us to obtain a reduced number of
itemsets, since in real-world application we can not find many itemsets that have
exactly the same utility as well as their supersets. In high utility enumeration,
a CHUI is a HUI having no proper supersets that are HUIs and appear in the
same number of transactions. So, our idea here is to use the support constraint
of traditional FIM task to define the closure constraint in the context of high
utility itemset mining. Hence, the following propositional formula allows us to
force a candidate itemset to be closed:

Φclos =
∧
a∈Ω

(pa ∨
∨
a 6∈Ti

qi) (10)

Intuitively, Constraint 10 ensures that if the candidate itemset is involved
in all transactions containing the item a, then a must be added to the itemset.
In other words, when in all the transactions where a does not appear, the can-
didate itemset is not included, this implies that the candidate itemset belongs
only to transactions containing the item a. Consequently, to be closed, the item
a must be added to the candidate itemset. We stress here that Constraint 10 is
necessary and sufficient to force the itemset to be closed.
Now, the closed HUIM task, denoted as CHUIM, can be encoded as the con-
junction of the formulas 6, 8, 9 and 10. More formally, Φchuim = Φclos ∧ Φhuim.

In a propositional satisfiability problem, if the CNF formula is satisfiable,
the SAT solver provides the corresponding model(s). To enumerate the models
of our Φchuim encoding, we extend a backtracking based search algorithm like
Davis–Putnam–Logemann–Loveland (DPLL, for short) procedure [28]. In the
sequel, we briefly describe the basic component of DPLL (see Algorithm 1)
designed to enumerate all models of a given CNF formula.

Typically, the DPLL solver is a tree-based backtrack search procedure. A
decision variable is chosen, i.e., by assigning variables corresponding to items
(line 17) to be added to Φ, followed by a propagation of unit literal assignments
(line 18). If there is a unit clause (all literals are false except one namely p), the
literal p is propagated (line 3-4). Otherwise, Constraint (8) is checked (line 9)
to verify its consistency. A comparison to θ is then performed to continue the
search or to backtrack. Such checking can be easily accomplished by considering
the value

∑m
i=1

∑
a∈Ti

u(a, Ti) and by subtracting u(a, Ti) each time rai becomes
false. If all literals are assigned without contradiction, then ∆ is a model of the
CNF formula (line 12). Obviously, each found model of Φchuim gives rise to a
(closed) high utility itemset from the transaction database (line 13) by restricting
the model to variables encoding items.

4.1 Pruning Strategy

The basic version of our algorithm performs a backtrack search similarly to the
TWU measure in order to prune the search space. Now, a useful extension to

Mining Closed HUI based on SAT 11

Algorithm 1: DPLL Enum: A backtracking search procedure for models
enumeration

Input: Φ: a CNF formula, θ: a minimum utility threshold
Output: S: the set of models of Φ
∆ = ∅ ; /* interpretation */1

S = ∅;2

if (Φ |= p) then3

return DPLL Enum(Φ ∧ p,∆ ∪ {p})) ; /* unit clause */4

end5

if (Φ |= ⊥) then6

return False ; /* conflict */7

end8

if check utility candidate(θ) == false then9

return False;10

end11

if (∆ |= Φ) then12

S ← S ∪ {∆} ; /* new found model */13

return False;14

else15

end16

p = select variable(V ar(Φ));17

return DPLL Enum(Φ ∧ p,∆ ∪ {p}) ∨DPLL Enum(Φ ∧ ¬p,∆ ∪ {¬p});18

return S;19

perform better pruning in the search tree consists to add a new constraint to the
previous Φchuim encoding. Notice that this constraint is derived from Inequation
(8) using the weighted clique cover problem [21]. Our main idea is to identify
the subsets of variables rai which cannot be true simultaneously. Next, we show
how this new constraint can be derived in a suitable way in order to make our
pruning strategy more efficient. To do this, let us first introduce a graphical
representation of the original transaction database as follows.

Definition 7. Let D = {T1, T2, . . . , Tm} be a transaction database. Then, the
graph associated to D is an undirected graph GD = (V,E) such that each item in
each transaction represents a vertex in GD, i.e., vai is the vertex associated to the
item a in the transaction i with 1 ≤ i ≤ m. In addition, an edge (vai, va′j) ∈ E
iff the transaction i contains a but not a′.

Example 6. Given the transaction database of Example 1. Then, the graph GD
associated to this database is depicted in Figure 1.

Definition 7 ensures that each edge of GD connects two items of D that
cannot belong simultaneously to the same high utility itemset. For instance, in
the database of Example 1, the item a in the transaction T1 cannot appear with
b in T3. Now, our aim is to partition the graph GD into overlapping sets. To do
this, we will use the notion of clique cover defined as follows.

12 Hidouri et al.

va1

(4)

vc1

(1)

vd1

(2)

va2

(8)

vc2

(6)
ve2

(6)

va3

(4)

vb3

(4)

vc3

(1)

vd3

(12)

ve3

(3)

vb4

(8)

vc4

(3)

vd4

(6)

ve4

(3)

Fig. 1: The graph GD associated to the transaction database of Example 1

Definition 8 (Clique Cover). Let G = (V,E) be an undirected graph and
C = {C1, . . . , Ck} where Ci ⊆ V for 1 ≤ i ≤ k. Then, S is a clique cover of G iff⋃

1≤i≤k Ci = V s.t. each sub-graph Gi = (Ci, Ei) where Ei = {(a, b) ∈ E | a, b ∈
Ci} is a clique4.

The clique cover is a fundamental problem in graph theory and it has nu-
merous applications in several areas such as social network analysis and bio-
informatics. Notice that the problem of clique cover has extensively studied in
the literature [25,26].

Example 7. Let us consider the graph in Example 6. Clearly, the set of sets S =
{{vd1, ve3}, {va1, vb3}, {va2, vb4}, {vc2, vd4}, {ve2, vd3}, {va3, ve4}, {vc1}, {vc3}, {vc4}}
is a clique cover of the graph GD.

Given the graph GD, the cliques of GD are a convenient way of conceptual-
izing the required constraint that we need to consider in our SAT encoding. In
fact, a clique of GD corresponds to a subset of variables rai that among them at
most one can be assigned to true. This allows us to introduce a new constraint
that can be used to prune effectively the search space compared to the TWU
measure. Consequently, our new constraint can be derived where the sum of
weights of each subset is replaced with the maximum weight as stated in the
following proposition.

Proposition 2. Let D = {T1, T2, . . . , Tm} be a transaction database and GD
the graph associated to D. If C = {C1, . . . , Ck} is a clique cover of GD, then the
following constraint holds :

4 A clique is a graph whose nodes are all pairwise adjacent.

Mining Closed HUI based on SAT 13

∑
1≤i≤k

max
vaj∈Ci

u(a, Tj)(
∨

vaj∈Ci

raj) ≥ θ (11)

Additional variables xi (1 ≤ i ≤ k) can be used to simplify Constraint (11) in
the following way:

xi ↔
∨

vaj∈Ci

raj ∀ 1 ≤ i ≤ k

Note that the weighted clique cover problem is NP-hard and the number
of solutions can be very large. Our aim here is to minimize

∑k
i=1 wi with

wi = maxvaj∈Ci
u(a, Tj). The goal is then to obtain large cliques with maximum

weight. To avoid the NP-Hardness of the related problem, we next consider a
greedy approach to find a possible cover. To do this, we proceed by growing the
current clique one vertex at a time by looping through the remaining adjacent
vertices with high weight values in the current graph.

Example 8. Let us consider again Example 6. For the clique cover S = {{vd1, ve3},
{va1, vb3}, {va2, vb4}, {vc2, vd4}, {ve2, vd3}, {va3, ve4}, {vc1}, {vc3}, {vc4}}, we can
deduce the following constraint:

3x1 + 4x2 + rc1 + 8x3 + 6x4 + 12x5 + 4x6 + rc3 + 3rc4 ≥ 20

where
x1 = (rd1 ∨ re3) x2 = (ra1 ∨ rb3)
x3 = (ra2 ∨ rb4) x4 = (rc2 ∨ rd4)
x5 = (re2 ∨ rd3) x6 = (ra3 ∨ re4)

Using such new constraint, it is clear that if the minimum threshold exceeds
20, then we can trivially check that the set of high utility itemsets is empty which
is not the case when taking into account only Constraint (7). More generally, by
considering both Constraint (7) and the new derived one allows us to prune the
search space more efficiently.

4.2 A Decomposition-based Encoding for mining CHUIs

In this subsection, we present a decomposition-based paradigm that splits the
original transaction database into smaller and independent subsets in order to
avoid encoding the whole base. Our decomposition is motivated by the fact
that encoding the whole database into propositional logic can lead to very large
formulas, that is the solving can be unfeasible. In fact, given the set of items
Ω = {a1, . . . , an} of D, the set of high utility itemsets can be partitioned into
E1, . . . , En where E1 is the susbet of itemsets containing a1, E2 of those not con-
taining a1 but a2, and so on until En of those do not involving a1, . . . , an−1 but
an. From the encoding point of view, the subset Ei is obtained by enumerating
the models of Φi resulting from Φ by propagating pak to false for all 1 ≤ k < i
and pai to true. Formally, this yields to the next formula:

Φi = Φ ∧ pai ∧
∧

1≤k<i

¬pak

14 Hidouri et al.

Intuitively, Φi is based on a recursive split of the formula Φ w.r.t. its positive
and negative literals. As expressed, the formula Φi enforces pai to be true. Con-
sequently, the encoding can be restricted to transactions containing the item ai.
Also, the literal pak for all 1 ≤ k < i assigned false allows to exclude the item
ak to be in the candidate itemset. Thus, this allows to avoid encoding the entire
original database and without causing too large formulas as well as the associ-
ated memory problems. Clearly, the splitting of Φ generates a set of independent
sub-formulas that encode subsets of a specific set of transactions in the original
database.

Example 9. The partitioning tree of the transaction database of Example 1 is
depicted in Figure 2. Here, we consider at the beginning all transactions con-
taining the item a. Then, we pick all those not containing the item a but the
item b, and so on.

pa

ΦθD ∧ pa pb

ΦθD ∧ ¬pa ∧ pb pc

ΦθD ∧ ¬pa ∧ ¬pb ∧ pc

Fig. 2: Item based partitioning tree of the database D

Next, the pseudo-code of our algorithm using a decomposition-based method for
enumerating all CHUIs is summarized in Algorithm 2. The algorithm, coined
as SATCHUIM (SAT based Closed High Utility Itemset Mining), takes a
transaction database D and a minimum utility threshold θ, and it outputs all
the closed high utility itemsets in D. Notice that the decomposition technique
applied to the database D provides some significant advantages. First, splitting
the whole database into independent sub-bases can reduce significantly the size
of the original problem. Also, the algorithm does not need to generate candidate
sets since the reduced database does not contain any low utility itemset, i.e.,
each itemset that has utility lower than TWU is discarded.

The algorithm follows an order over the set of items appeared in D by count-
ing items occurrence, i.e, items are sorted in increasing order of their support.
Obviously, the splitting strategy is performed before the solving process. At each
iteration, each item ai is fixed to be in the itemset and the encoding is restricted
only to transactions containing ai, denoted Dai . Then, if the TWU of the item

Mining Closed HUI based on SAT 15

ai is less than the θ threshold, ai is discarded and it will not belong to the set
of HUIs. In the next iteration, we ignore in the current sub-database all items
having TWU less than θ. Then, the function encode huim cnf is called over Dai

in order to encode the problem into CNF. Finally, the enumeration of the models
of the CNF formula is performed using the function DPLL Enum (Algorithm
1).

Algorithm 2: SAT based Closed High Utility Itemset Mining (SATCHUIM)

Input: D: a transaction database, θ: a user-specified utility threshold
Output: S: the set of all closed high-utility itemsets of D
Ω = 〈a1, . . . , an〉 ← items(D);1

S ← ∅;2

for i ∈ 1..n do3

if TWU(ai) < θ then4

continue;5

end6

Dai ← {(ik, Tk) ∈ D | ai ∈ Tk};7

Γ ← ∅;8

for b ∈ items(Dai) do9

if TWU(b,Dai) < θ then10

Γ ← Γ ∪ {b};11

end12

end13

Φ← encode huim cnf(Dai , θ) ∧ pai ∧
∧

1≤j<i

¬paj ∧
∧
b∈Γ

¬pb;
14

S ← S ∪DPLL Enum(Φ, θ);15

end16

return S;17

Proposition 3 (Correctness). Let D be a transaction database. SATCHUIM re-
turns all closed high utility itemsets of D.

Again, we use the decomposition strategy for a scalability reason. In fact, we
have shown in our previous work [37] that a SAT-based approach cannot scale
to large datasets, e.g., Chainstore and Kosarak, since the CNF encoding of such
transaction databases is huge and cannot be resolved by the SAT solvers. Hence,
in this paper we applied the decomposition-based technique described previously
to achieve efficiency by reducing the size of the CNF encoding without losing
completeness.

5 Experimental Results

In this section, we carried out an experimental evaluation of our SAT-based
formulation for mining profitable itemsets, and then compare the performance

16 Hidouri et al.

of our method against the most efficient algorithms for discovering (closed) high
utility itemsets using real-world transaction databases.

5.1 Experimental Setup

Experiments are performed on a computer with an Intel Xeon quad-core machine
with 32GB of RAM running at 2.66 Ghz. To evaluate the practical performance
of our approach, experiments were carried on seven real-life datasets commonly
used in the HUIM literature: Chess, Mushroom, Connect, Kosarak, Foodmart,
Accidents and Chainstore [22]. These datasets have various characteristics and
represent data taken from real-life scenarios. For each benchmark, we report in
Table 4 the number of transactions (#Trans), the number of items (#Items), the
number of items per transaction or average transaction length (AvgTransLen),
and the density5. The density factor has a direct impact on the computation
time of mining algorithms. In our experiments, both sparse and dense datasets
were used for performance evaluation. For each dataset, we fix a timeout of 2
hours.

We conducted two experiments to evaluate the performance of our proposed
approach. In the first experiment, we compared our SATHUIM algorithm to the two
most efficient specialized approaches for enumerating HUIs [5]: EFIM [15], and
D2HUP [17]. Moreover, in the second set of experiments, we compare our SATCHUIM
method against three baselines for mining closed HUIs, namely EFIM-Closed

[29], CHUD [30], and CHUI-Miner [31]. For these baselines, we used the Sequential
Pattern Mining Framework (SPMF, for short) open-source data mining library
[22] written in Java. Our algorithms are implemented in C++ and we used
the MiniSAT solver [38] to enumerate all models of the CNF encoding. In our
experiments, for the minimum utility threshold values, we follow the work of
Zida et al. [15].

Table 4: Datasets Characteristics

Instance #Trans #Items AvgTransLen Density(%)

Chess 3196 75 37 49.33

Foodmart 4141 1559 4.42 0.28

Mushroom 8124 119 23 19.33

Connect 67557 129 43 33.33

Accidents 340183 468 33.8 7.22

Kosarak 990002 41270 8.1 0.02

Chainstore 1112949 46086 7.23 0.02

5 The density of a database D defines the ratio between the average length of trans-
actions in D and the number of distinct items in D.

Mining Closed HUI based on SAT 17

 0.1

 1

 10

 100

 1000

350k 400k 500k 550k 600K

ru
n

in
g

 t
im

e
 (

s
)

θ

EFIM
D2HUP

SATHUIM

Chess

 10

 100

 1000

 10000

17500k 20000k 22500k 25000k 27500k

ru
n

in
g

 t
im

e
 (

s
)

θ

EFIM
D2HUP

SATHUIM

Accidents

 1

 10

 100

 1000

 10000

13000k 14000k 15000k 16000k

ru
n

in
g

 t
im

e
 (

s
)

θ

EFIM
D2HUP

SATHUIM

Connect

 0.1

 1

 10

1 1k 2k 2.5k 3k

ru
n

in
g

 t
im

e
 (

s
)

θ

EFIM
D2HUP

SATHUIM

Foodmart

 10

 100

 1000

1200k 1300k 1400k 1500k

ru
n

in
g

 t
im

e
 (

s
)

θ

EFIM
D2HUP

SATHUIM

Kosarak

 1

 10

 100

80k 85k 90k 95k 100k

ru
n

in
g

 t
im

e
 (

s
)

θ

EFIM
D2HUP

SATHUIM

Mushroom

 1

 10

 100

 1000

2000k 2500k 3000k 3500k 4000k

ru
n

in
g

 t
im

e
 (

s
)

θ

EFIM
D2HUP

SATHUIM

Chainstore

Fig. 3: Running times of SATHUIM against baselines on different datasets

18 Hidouri et al.

5.2 Results for HUIs Enumeration

In this experiment, we run each method on each database while comparing
the algorithms’ running time for different minimum utility thresholds. Figure
3 reported the comparative results, i.e. the CPU time, of our method SATHUIM

against the two specialized ones. Note that for our algorithm, the computation
time includes the time for generating the CNF formula and that for enumerat-
ing all models (i.e., the HUIs). The empirical results show the feasibility of our
SAT-based approach. As illustrated in Figure 3, it is clear that the performance
of all algorithms depends on the dataset characteristics. In fact, all approaches
need more time to discover the set of HUIs from large databases. In addition,
the minimum support threshold θ has a strong influence on the performance of
algorithms. We can also observe that EFIM is generally more efficient than our
SATHUIM method. Moreover, our algorithm is the second-fastest method and it
falls between EFIM and D2HUP in nearly all cases, except Foodmart and Mush-
room. As a summary, our SAT-based method is competitive and it achieves
interesting performance in enumerating HUIs, compared with the two baselines
EFIM and D2HUP.

5.3 Results for CHUIs Enumeration

In this subsection, we turn to the empirical evaluation of our SATCHUIM algorithm
and compare it to three baselines, namely, EFIM-Closed [29], CHUD [30], and
CHUI-Miner [31] for enumerating closed high utility itemsets from transaction
databases.

Figure 4 shows the execution times of the different algorithms. According to
these experimental results, our proposal achieves a good performance in 5 out
of 7 databases for different minimum utility threshold values. As we can also
see from the results, our algorithm remains competitive with the best baselines
for Mushroom and Chainstore databases. Notably, the required time for our
SATCHUIM algorithm to find all CHUIs increases when the θ value decreases on
Chess, accidents, connect and foodmart. In contrast, the running time remains
almost constant when θ threshold varies for the datasets Chainstore, kosarak
and Mushroom. In terms of average CPU time and for low values of θ, SATCHUIM
surpasses CHUD by about 163 and 9 times on Chess and Kosarak datasets ,
respectively. Likewise, SATCHUIM surpasses CHUI-Miner by about 147 and 3 times
on Chess, kosarak, respectively. In addition, our algorithm is up to 60 times faster
than CHUI-Miner, while CHUD took too long time to terminate on the dataset
Connect.

From the scalability point of view, we observe that our proposed SAT-
encoding is able to scale for all the minimum support threshold values under
the time limit for large datasets; while CHUD and CHUI-Miner algorithms not
able to scale on the datasets accidents, Connect and Chainstore under the time
limit. Overall, the empirical evaluation confirms that our SATCHUIM algorithm is
very promising.

Mining Closed HUI based on SAT 19

 1

 10

 100

 1000

 10000

350k 400k 500k 550k 600K

ru
n

in
g

 t
im

e
 (

s
)

θ

EFIM-Closed
CHUI-Miner
SATCHUIM

CHUD

Chess

 100

 1000

 10000

17500k 20000k 22500k 25000k 27500k

ru
n

in
g

 t
im

e
 (

s
)

θ

EFIM-Closed
SATCHUIM

Accidents

 10

 100

 1000

 10000

 100000

13000k 14000k 15000k 16000k

ru
n

in
g

 t
im

e
 (

s
)

θ

EFIM-Closed
CHUI-Miner
SATCHUIM

Connect

 0.1

 1

 10

1 1k 2k 2.5k 3k

ru
n

in
g

 t
im

e
 (

s
)

θ

EFIM-Closed
CHUI-Miner
SATCHUIM

CHUD

Foodmart

 10

 100

 1000

 10000

1200k 1300k 1400k 1500k

ru
n

in
g

 t
im

e
 (

s
)

θ

EFIM-Closed
CHUI-Miner
SATCHUIM

CHUD

Kosarak

 1

 10

 100

80k 85k 90k 95k 100k

ru
n

in
g

 t
im

e
 (

s
)

θ

EFIM-Closed
CHUI-Miner
SATCHUIM

CHUD

Mushroom

 10

 100

 1000

2000k 2500k 3000k 3500k 4000k

ru
n

in
g

 t
im

e
 (

s
)

θ

EFIM-Closed
CHUI-Miner
SATCHUIM

Chainstore

Fig. 4: Running times of SATCHUIM against baselines on different datasets

20 Hidouri et al.

Finally, Table 5 provides the variation of the number of generated patterns
as well as the number of propositional variables and clauses used to encode the
problem for both classical HUIs and closed HUIs. The main observation is that
the number of found itemsets highly depends on the selected threshold values: it
decreases when the utility threshold increases and vice versa. Furthermore, the
number of patterns can be limited when the minimum utility threshold is large.
Let us also mention that the CHUIs is smaller compared to the set of HUIs. For
instance, for Chess dataset the number of HUIs is equal to 428023, while the
number of CHUIs is about 114660. According to the experiment results shown in
Table 5, we can observe that the number of clauses can exceed 400 millions (i.e.,
Kosarak dataset). Note that this number corresponds to the sum of the number of
clauses of the different sub-problems generated by our decomposition technique.
Despite this large number of clauses and variables, our approach remains efficient
and scale on all datasets in a reasonable time.

6 Conclusion

In this paper, we have introduced a novel SAT-based approach for mining (closed)
high utility itemsets. The proposed method exploits a number of well-known es-
tablished techniques for SAT-based problem solving. Technically, the main idea
is to represent a (closed) high utility itemset mining task as a CNF propositional
formula such that each of its models corresponds to a (closed) high utility item-
set of interest. In contrast with existing specialized algorithms, we have shown
a flexible formulation in terms of constraints of the task of discovering (closed)
HUIs. Experimental results have also shown that our SAT-based approach is
very competitive with the state-of-the-art techniques.

Despite our promising results, we intend to develop a parallel version to even
improve the performance of our SAT-based approach for enumerating (closed)
HUIs. Moreover, setting the appropriate minimum utility threshold is a hard
question, so we plan to extend our declarative SAT approach to enumerate the
Top-k (closed) high utility itemsets mining.

References

1. C.F. Ahmed, S.K. Tanbeer, B.-S. Jeong, and Y.-K. Lee, “Efficient Tree Structures
for High Utility Pattern Mining in Incremental Databases,” IEEE Trans. Knowl-
edge and Data Eng., vol. 21, no. 12, pp. 1708-1721, Dec. 2009.

2. B.-E. Shie, H.-F. Hsiao, V., S. Tseng, and P.S. Yu, “Mining High Utility Mobile
Sequential Patterns in Mobile Commerce Environments,” Proc. 16th Int’l Conf.
DAtabase Systems for Advanced Applications (DASFAA ’11), vol. 6587/2011, pp.
224-238, 2011.

3. S.J. Yen and Y.S. Lee, “Mining High Utility Quantitative Association Rules.”
Proc. Ninth Int’l Conf. Data Warehousing and Knowledge Discovery (DaWaK),
pp. 283-292, Sept. 2007.

Mining Closed HUI based on SAT 21

HUIM CHUIM

Dataset θ #Var #Clauses #HUIs #Clauses #CHUIs

Chess

350k 4428501 1520768 4429609 348633
400k 4372199 428023 4373242 114660
500k 3271 4181330 24979 4182148 10888
550k 4149748 4214 4150431 2439
600k 4026018 583 4026669 394

Foodmart

1 493550 233231 568824 6680
1k 476507 219012 539443 6454
2k 5700 399040 154670 448748 5273

2.5k 350465 117592 395121 4552
3k 299205 85034 338374 3804

Mushroom

80k 5404598 2042385 5407235 8017
85k 5365314 1700923 5367873 7267
90k 8243 5332928 1426503 5335436 6569
95k 5306318 1221641 5308730 5957
100k 5280456 1045780 5282798 5337

Connect

1300k 101535054 452108 101535737 19336
1400k 99721925 87602 99722512 7334
1500k 67686 92501566 11317 92502128 1831
1600k 87973803 613 87974308 214

Accidents

17500k 352955542 23824 352956530 23824
20000k 328418715 5991 328419469 5991
22500k 340651 310834204 1341 310834834 1341
25000k 299295508 266 299296039 266
27500k 294620791 46 294621239 46

Kosarak

1100k 412482672 102 412482836 102
1200k 392671175 87 392671301 87
1300k 1031272 367975399 78 367975491 78
1400k 343918121 67 343918197 67
1500k 318686329 61 318686395 61

Chainstore

2000k 83494966 127 83495116 127
2500k 72354830 87 72354869 87
3000k 1159035 62883758 66 62883775 66
3500k 55819252 57 55819266 57
4000k 49970086 46 49970098 46

Table 5: Comparative results using different minimum utility threshold values

4. Fournier-Viger, P., Lin, J. C.-W., Vo, B, Chi, T.T., Zhang, J., Le, H. B. (2017).
A Survey of Itemset Mining. WIREs Interdisciplinary reviews - Data Mining and
Knowledge Discovery, Wiley.

5. Zhang Chonsheng et al. An empirical evaluation of high utility itemset mining
algorithms. In: 101(2018). pp.91-115.

6. T. Guns, S. Nijssen, and L. D. Raedt, “Itemset mining: A constraint programming
perspective,” Artificial Intelligence, vol. 175, no. 12-13, pp. 1951–1983, 2011..

7. L. D. Raedt, T. Guns, and S. Nijssen, “Constraint programming for itemset min-
ing,” in ACM SIGKDD, 2008, pp. 204–212.

22 Hidouri et al.

8. E. Coquery, S. Jabbour, L. Sais, and Y. Salhi, “A sat-based approach for discov-
ering frequent, closed and maximal patterns in a sequence,” in Proceedings of the
20th European Conference on Artificial Intelligence (ECAI’12), 2012, pp. 258–263.

9. S. Jabbour, L. Sais, and Y. Salhi, “The top-k frequent closed itemset mining us-
ing top-k sat problem,” in Proceedings of the European Conference on Machine
Learning and Knowledge Discovery in Databases (ECML/PKDD’03), 2013, pp.
403–418.

10. Liu, Y., Liao, W., Choudhary, A.: A two-phase algorithm for fast discovery of high
utility itemsets. In: Proc. 9th Pacic-Asia Conf. on Knowl. Discovery and Data
Mining, pp. 689695 (2005)

11. Tseng, V. S., Shie, B.-E., Wu, C.-W., Yu., P. S.: Efficient algorithms for mining
high utility itemsets from transactional databases. IEEE Trans. Knowl. Data Eng.
25(8), 1772-1786 (2013)

12. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In:
Proc. 22nd ACM Intern. Conf. Info. and Know. Management, pp. 5564 (2012).

13. Krishnamoorthy, S.: Pruning strategies for mining high utility itemsets. Expert
Systems with Applications, 42(5), 2371-2381 (2015)

14. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V. S.: FHM: Faster high-utility
itemset mining using estimated utility co-occurrence pruning. In: Proc. 21st Intern.
Symp. on Methodologies for Intell. Syst., pp. 8392 (2014)

15. Zida, Souleymane, Fournier Viger, Philippe, Lin, Chun-Wei, Wu, Cheng-Wei,
Tseng, Vincent. (2017). EFIM: a fast and memory efficient algorithm for high-
utility itemset mining. Knowledge and Information Systems. 51. 10.1007/s10115-
016-0986-0.

16. Alex Yuxuan Peng, Yun Sing Koh, and Patricia Riddle. “mHUIMiner: A Fast
High Utility Itemset Mining Algorithm for Sparse Datasets”. en. In: Advances in
Knowledge Discovery and Data Mining. Ed. by Jinho Kim et al. Vol. 10235. Cham:
Springer International Publishing, 2017, pp. 196–207.

17. Liu, Junqiang Wang, ke Fung, Benjamin. (2012). Direct Discovery of High Utility
Itemsets without Candidate Generation. Proceedings - IEEE International Con-
ference on Data Mining, ICDM. 984-989. 10.1109/ICDM.2012.20.

18. Vincent S. Tseng, Cheng-Wei Wu, Bai-En Shie, and Philip S. Yu. 2010. UP-
Growth: an efficient algorithm for high utility itemset mining. In Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery and data
mining (KDD ’10). Association for Computing Machinery, New York, NY, USA,
253–262. DOI:https://doi.org/10.1145/1835804.1835839.

19. Quang-Huy Duong et al. “Efficient High Utility Itemset Mining Using Buffered
Utility-lists”. In: Applied Intelligence 48.7 (July 2018), pp. 1859–1877.

20. Tseitin, G.: On the complexity of derivations in the propositional calculus. In:
Structures in Constructives Mathematics and Mathematical Logic, Part II. pp.
115-125 (1968).

21. Wen-Lian Hsu, George L. Nemhauser. A polynomial algorithm for the minimum
weighted clique cover problem on claw-free perfect graphs, Discrete Mathematics,
1982,Pages 65-71.

22. P. Fournier-Viger. SPMF: A Java Open-Source Data Mining Library. URL: www.
philippe-fournier-viger.com/spmf/ (visited on 08/15/2018).

23. A. Boudane, S. Jabbour, L. Sais, Y. Salhi, “A SAT-Based Approach for Mining
Association Rules,” in Proceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence (IJCAI’16), 2016, pp. 2472-2478.

Mining Closed HUI based on SAT 23

24. A. Boudane, S. Jabbour, L. Sais, Y. Salhi, “Enumerating Non-redundant Asso-
ciation Rules Using Satisfiability,” in Proceedings of the Pacific-Asia Conference
on Advances in Knowledge Discovery and Data Mining (PAKDD’17), 2017, pp.
824-836.

25. James Cheng, Yiping Ke, Ada Wai-Chee Fu, Jeffrey Xu Yu, and Linhong Zhu.
2011. Finding maximal cliques in massive networks. ACM Trans. Database Syst.
36, 4.

26. Eblen, J.D., Phillips, C.A., Rogers, G.L. et al. The maximum clique enumeration
problem: algorithms, applications, and implementations. BMC Bioinformatics 13,
S5 (2012).

27. S. Jabbour et al., Boolean satisfiability for sequence mining, in proceedings of
CIKM’13, pages 649-658.

28. Martin Davis, George Logemann, and Donald Loveland. 1962. A machine
program for theorem-proving. Commun. ACM 5, 7 (July 1962), 394–397.
DOI:https://doi.org/10.1145/368273.368557.

29. Fournier-Viger P., Zida S., Lin J.CW., Wu CW., Tseng V.S. (2016) EFIM-
Closed: Fast and Memory Efficient Discovery of Closed High-Utility Itemsets.
In: Perner P. (eds) Machine Learning and Data Mining in Pattern Recognition.
MLDM 2016. Lecture Notes in Computer Science, vol 9729. Springer, Cham.
https://doi.org/10.1007/978-3-319-41920-6-15.

30. V. S. Tseng, C. Wu, P. Fournier-Viger and P. S. Yu, ”Efficient Algorithms for
Mining the Concise and Lossless Representation of High Utility Itemsets,” in IEEE
Transactions on Knowledge and Data Engineering, vol. 27, no. 3, pp. 726-739, 1
March 2015, doi: 10.1109/TKDE.2014.2345377.

31. C. Wu, P. Fournier-Viger, J. Gu and V. S. Tseng, ”Mining closed+ high util-
ity itemsets without candidate generation,” 2015 Conference on Technologies and
Applications of Artificial Intelligence (TAAI), 2015, pp. 187-194.

32. Rahmati, Bahareh & Sohrabi, Mohammad. (2019). A Systematic Survey on High
Utility Itemset Mining. International Journal of Information Technology & Deci-
sion Making. 18. 10.1142/S0219622019300027.

33. S. Selvan and R. V. Nataraj, ”Efficient Mining of Large Maximal Bicliques from
3D Symmetric Adjacency Matrix,” in IEEE Transactions on Knowledge and Data
Engineering, vol. 22, no. 12, pp. 1797-1802, Dec. 2010, doi: 10.1109/TKDE.2010.97.

34. C. Lucchese, S. Orlando and R. Perego, ”Fast and memory efficient mining of fre-
quent closed itemsets,” in IEEE Transactions on Knowledge and Data Engineering,
vol. 18, no. 1, pp. 21-36, Jan. 2006, doi: 10.1109/TKDE.2006.10.

35. Dlala, Imen & Jabbour, Said & Badran, Raddaoui & Sais, Lakhdar. (2018). A
Parallel SAT-Based Framework for Closed Frequent Itemsets Mining: 24th Inter-
national Conference, CP 2018, Lille, France, August 27-31, 2018, Proceedings.
10.1007/978-3-319-98334-9 37.

36. Dlala, Imen & Jabbour, Said & Badran, Raddaoui & Sais, Lakhdar. (2018). A
Parallel SAT-Based Framework for Closed Frequent Itemsets Mining: 24th Inter-
national Conference, CP 2018, Lille, France, August 27-31, 2018, Proceedings.
10.1007/978-3-319-98334-9 37.

37. Hidouri A., Jabbour S., Raddaoui B., Yaghlane B.B. (2020) A SAT-Based Ap-
proach for Mining High Utility Itemsets from Transaction Databases. In Data
Analytics and Knowledge Discovery. DAWAK 2020.

38. Niklas Eént Niklas Sörensson “An Extensible SAT-solver”. In Proceedings of SAT,
2003, p. 502–518.

