
HAL Id: hal-03466176
https://hal.science/hal-03466176

Submitted on 4 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enabling Ambient Intelligence via the Web
Valerie Issarny, Daniele Sacchetti, Ferda Tartanoglu, Francoise Sailhan

To cite this version:
Valerie Issarny, Daniele Sacchetti, Ferda Tartanoglu, Francoise Sailhan. Enabling Ambient Intelligence
via the Web. De Nouvelles architectures pour les communications (DNAC), Jan 2002, Paris, France.
�hal-03466176�

https://hal.science/hal-03466176
https://hal.archives-ouvertes.fr

Enabling Ambient Intelligence via the Web�

Val�erie Issarny, Daniele Sacchetti, Ferda Tartanoglu, Fran�coise Sailhan

INRIA, UR Rocquencourt, Domaine de Voluceau, 78153 Le Chesnay, France

URL : http://www-rocq.inria.fr/arles/

Abstract

Enabling the ambient intelligence vision means that consumers will be provided
with universal and immediate access to available content and services, together
with way of e�ectively exploiting them. Concentrating on the software system
development aspect, this means that the actual implementation of any ambient in-
telligence application requested by a user can only be resolved at runtime according
to the user's speci�c situation. This paper introduces a base declarative language
and associated core middleware, which supports the abstract speci�cation of ambi-
ent intelligence applications together with their dynamic composition according to
the environment. The proposed solution builds on the Web Services Architecture,
whose pervasiveness enables both service availability in most environments, and
speci�cation of applications supporting automated retrieval and composition.

1 Introduction

The vision of ambient intelligence (also termed pervasive computing) relies on provision-
ing ubiquitous computing (i.e., useful, pleasant and unobtrusive presence of computing
devices everywhere), ubiquitous networking (i.e., access to network and computing fa-
cilities everywhere), and intelligent aware interfaces (i.e., perception of the system as
intelligent by people who naturally interact with the system that automatically adapts
to their preferences). While available technologies are signi�cant enablers of the ambient
intelligence vision, there is still a number of issues to address before its full realization,
requiring advances in most areas relating to the computer science �eld (e.g., hardware,
networking, human-computer interaction, development support). This paper concen-
trates on one such issue that is supporting the development of ambient intelligence appli-
cations, through the introduction of a base declarative language for specifying ambient
intelligence applications and associated core middleware infrastructure for the any-time,
any-where access to applications. The key feature of our solution relates to enabling the
dynamic composition, possibly distributed, of requested services (i.e., functions provided

�This work has been partially funded by the Ozone IST project;
http://www.extra.research.philips.com/euprojects/ozone/.

by the computing system) according to the user's situation, while guaranteeing quality
of service to users in terms of at least performance and security properties. Our solution
further builds on the Web that is pervasive enough for ensuring availability of services in
most situations. We more speci�cally base our work on the Web Services Architecture,
which comprises: the XML-based WSDL1 and WSCL2 declarative languages for Web
Services speci�cation, the SOAP3 protocol for the exchange of XML documents, and the
UDDI4 registry for dynamically locating and advertising Web Services. The next section
introduces the WSAMI language for the speci�cation of Web Services, which enables
their dynamic composition according to the user's situation, while keeping associated
runtime overhead low. As presented in Section 3, actual dynamic composition of services
relies on a minimal core middleware infrastructure, i.e., SOAP enriched with a nam-
ing&discovery service, which must be run on any terminal that is willing to take part
in ambient intelligence applications. Finally, Section 4 summarizes our contribution and
discusses our current and future work.

2 WSAMI

The XML-based WSAMI language allows the speci�cation of Web Services so that they
can be dynamically composed according to the environment in which services are re-
quested. The XML speci�cation of a service then decomposes into: the service's abstract
interface (x 2.1) and the non-functional properties associated with the service (x 2.2).
In addition, the notion of customizer [7] is exploited for customizing connectors with
respect to enforcing non-functional properties, leading to the associated speci�cation of
middleware services (x 2.3). For illustration, we consider the example of a collaborative
schedule service that composes a Booking service (e.g., for tennis courts) with Agenda
services so as to reach common agreement on booking according to the Booking service's
availability and to the availability and preferences of participating users.

2.1 Abstract Interfaces

Using WSDL5, a Web Service speci�cation embeds: (i) the service's abstract interface
that describes the messages exchanged with the service, and (ii) the concrete binding
information that contains speci�c protocol-dependent details including the network end-
point address of the service. In our context, the �rst part is the basic for retrieving ser-
vices, while the latter is associated with service instances that are dynamically retrieved
by the middleware naming&discovery service according to the environment. Retrieval of
a service is based on the matching of the abstract interface associated with the requested
service, with the abstract interfaces of reachable instances. However, interaction with
a service should also comply with the protocol that is assumed, i.e., the conversation

1http://www.w3.org/TR/wsdl
2http://www.w3.org/TR/wscl10
3http://www.w3.org/2000/xp/Group
4http://www.uddi.org
5http://www.w3.org/TR/wsdl

that must be realized. Such a speci�cation is enabled by WSCL6. Hence, as far as the
speci�cation of the service's functional behavior is concerned, the de�nition of WSAMI is
direct from WSDL and WSCL. As an illustration, the following WSAMI element de�nes
the abstract interface of the collaborative schedule service:

<Abstract name=``CollaborativeSchedule''>

<Interface hrefSchema=``http://example.com/schedule/ScheduleRequest.wsdl''/>

<Conversation hrefSchema=``http://example.com/schedule/ScheduleInteraction.wscl''/>

</Abstract>

The WSAMI element Service that is associated with any service instance further spec-
i�es the WSAMI abstract interface of the service (Abstract element) together with
concrete binding information (Concrete element). Still taking the example of the col-
laborative schedule service, we get:

<Service name=``CollaborativeSportSchedule''

<Abstract hrefSchema=``http://example.com/schedule/CollaborativeSchedule.wsami''/>

<Concrete hrefSchema=``http://example.com/schedule/ConcreteSchedule.wsdl''/>

</Service>

Dynamic composition of services then relies on a speci�cation matching relationship de-
�ned over WSAMI abstract interfaces. Given the request for a service identi�ed by its
WSAMI abstract interface, a service instance whose abstract interface (i.e., value of the
Abstract element) matches the one of the requested service, is sought in the environ-
ment. Two abstract interfaces are then said to match if their respective documents are
syntactically equal. This allows us to keep to a minimum the processing cost associ-
ated with checking speci�cation matching: two abstract interfaces match if the related
WSAMI documents have the same URI. This further suggests the development of Web
Services for ambient intelligence, through the reuse of declarative speci�cations of ser-
vices that are made available over the Web. This is consistent with the approach that
is put forward for the development of Web Services in general, through the provision of
universal registries as, e.g., enabled by UDDI.

2.2 Non-functional Properties

A key feature of WSAMI lies in the speci�cation of non-functional properties associated
with services, so as to enforce Quality of Service (QoS) in terms of at least security, and
performance regarding resource consumption, i.e., the two mandatory criteria for the
consumer acceptance of ambient intelligence systems, independent of the users and ser-
vice providers. The former is enforced through authentication and the establishment of a
secure communication channel. The latter is enforced through content �ltering. A num-
ber of other quality of service criteria are relevant in the ambient intelligence context.
However, their handling is left upon the responsibility of the Web Service developers,
through either explicit Web Service composition (e.g., exploiting a caching service), or
a proprietary middleware for content delivery (e.g., delivery of continuous media) where

6http://www.w3.org/TR/wscl10

WSAMI may still be exploited for initiating the service (e.g., negotiating quality of ser-
vice). QoS requirements decompose into the non-functional properties that must be
provided by the service itself (i.e., built in the service implementation) and the ones that
must be enforced at the connector level. The latter speci�es customization of the mid-
dleware for interaction with the service, i.e., middleware services that need be integrated.

The WSAMI speci�cation of abstract interfaces then extends with the de�nition of the
ServiceQoS and ConnectorQoS elements that set the non-functional properties associ-
ated with the service and connector, respectively. Properties are given in terms of the
corresponding QoS criteria using the QoSCriterion element. Still considering the collab-
orative sport schedule service, we get the following enriched speci�cation for the abstract
interface associated with the embedded Agenda service:

<Abstract name=``Agenda''

xmlns:qos=``http://www-rocq.inria.fr/arles/wsami/qos.xsd''>

<Interface hrefSchema=``http://example.com/schedule/AgendaRequest.wsdl''/>

<Conversation hrefSchema=``http://example.com/schedule/AgendaInteraction.wscl''/>

<ServiceQoS>

<QoSCriterion name=``qos:transactionalService''/>

<QoSCriterion name=``qos:security''/>

</ServiceQoS>

<ConnectorQoS>

<QoSCriterion name=``qos:security''/>

</ConnectorQoS>

</Abstract>

QoS criteria are further de�ned through the following schema, considering support for
transaction and security:

<xsd:schema xsd:id=``qos''

xmlns=``http://www.w3.org/2001/XMLSchema'' ...>

<xsd:element name=``transactionalService'' type=``xsd:anyType''>

<xsd:element name=``security'' type=``xsd:anyType''>

</xsd:schema>

The WSAMI matching relationship over abstract interfaces then enforces matching be-
havior of services with respect to both functional properties and non-functional properties
stated in the abstract interface. If QoS criteria should be enforced over the connector, as
speci�ed using the QoSConnector element, the connector must be customized, which may
lead to quite complex interactions among services and can not be realized automatically
in general. However, such automated customization can be supported for QoS properties
that are enforced through middleware services adhering to the pipe&�lter architectural
style. Such a requirement is in particular met by QoS requirements relating to security
and performance, as further discussed in the next subsection. The handling of QoS cri-
teria that do not meet the above requirement should be dealt with by the Web Service
developers who should make explicit the interactions with associated middleware services
in the Web Service implementation.

2.3 Automated Connector Customization

A basic way to improve performance in a distributed environment with varying band-
width and potential resource-constrained devices is to reduce the complexity of the con-
tent that is sent over the network. This may be achieved using speci�c proxy nodes
that �lter the content for mobile terminals [3], possibly leading to introduce a new sys-
tem of protocols and document types for interaction with the wireless client as in the
WAP (Wireless Access Protocol). An alternative approach is to use a pair of content
customizers at both ends, as presented in [7]. Our approach is based on the latter,
which may further be exploited for dealing with security requirements but also other
QoS criteria such as reliability as presented in the aforementioned reference. A Cus-
tomizer decomposes into a local and a remote service, i.e., the latter must be available in
the environment of the client while the latter must be in the environment of the server.
Then, any message exchanged between the client and the server goes through the cus-
tomizer. As an example of customizer speci�cation, the element that is de�ned below
introduces a customizer enforcing security, through the use of symmetric cryptography
for the encryption of messages that are exchanged between the client and the server. The
management of public keys associated with authentication is further integrated within
the middleware naming&discovery service. Note that it may not be possible to authen-
ticate a service with which secure communication is required, if communication must
occur with a certi�er and the connectivity does not allow so. In this case, the request
for the Web Service fails.

<Customizer name=``EnforceSecurity''

xmlns:qos=``http://www-rocq.inria.fr/arles/wsami/qos.xsd''>

<QoSCriterion name=``qos:security''/>

<Local hrefSchema=``http://example.com/QoS/SymCrypto.wsami''/>

<Remote hrefSchema=``http://example.com/QoS/SymCrypto.wsami''/>

</Customizer>

In the above de�nition, the QoSCriterion part speci�es the speci�c QoS criteria that
are enforced by the embedding customizer, and the Local and Remote parts specify the
abstract interfaces of the customizer services, which must be run close to the client, and
to the server, respectively. While in the general de�nition of customizers, the distance
between the customizer services and their associated end-point is left quite open due to
the focus on the Internet, they are here enforced to be co-located with their associated
end-point due to our concern of e�ectively supporting mobile nodes.

The bene�t of using customizers is dependent upon the environment in which the service
is requested. While enforcing security is almost always mandatory, minimizing resource
consumption using, e.g., �ltering is dependent upon available network bandwidth and
connectivity. We rely here on the speci�c implementation of customizers to adapt to
resource availability. A more
exible solution could be undertaken by allowing to specify
constraints over resource availability for both the use of customizers and QoS require-
ments. However, this would lead to more complex computation upon composition but
also requires more cooperation from the local environment, which contradicts our goal of

introducing a minimal core middleware. In addition, as raised earlier, complex connector
customization can still be realized through explicit composition of middleware services.

3 WSAMI Middleware

The core middleware associated with Web Services lies in the provision of SOAP con-
tainers that are able to deploy Web Services, and to manage RPCs from SOAP clients
and dispatch them to services. There already exist various implementations of the above
core middleware7, which in our context may be deployed on possibly resource-constrained
mobile terminals. However, we do not consider that the deployment of Web Services on
mobile platforms is a major issue given ongoing work in the area. We are thus more
speci�cally concentrating on the design and implementation of the middleware nam-
ing&discovery service (simply referred to as ND service in the following), which supports
the dynamic composition of services according to the user's situation, given the services'
WSAMI speci�cation. We are in particular interested in exploiting both ad hoc and
infrastructure-based wireless networks for enhanced connectivity and hence enhanced
service availability. The ND support for dynamically locating requested services lies in:
(i) the management of repositories of services' abstract interfaces and instances (x 3.1),
and (ii) locating instances of services that are reachable both in the local and in the wide
area (x 3.2). In addition, the ND service handles connector customization together with
authentication of service instances (x 3.3).

3.1 Service Repository

The ND services manages two repositories, which respectively allow retrieving informa-
tion about services from their abstract interfaces, and about services instances that are
locally supported. The former repository is actually a local cache whose content evolves
according to the history of user requests, i.e., the size of the repository is set according to
available storage and entries are removed according the cache's replacement policy, which
currently adheres to the Least Recently Used (LRU) policy. The design of a dedicated
replacement policy is part of our future work based on experimental results, regarding
in particular user pro�les in terms of service requests. Advanced automatic prefetching
techniques with respect to the user's pro�le might further be exploited, although not
part of our current design. Our concern of minimizing resource consumption on mobile
terminals together with the fact that our approach relies on universal repositories of Web
Services speci�cation (including WSAMI speci�cations) lead us to not store nor process
XML documents on the terminals for service discovery. Instead, only related URIs are
exploited, which is enabled by the speci�c design choices for WSAMI.

Each element of the local repository associated with WSAMI abstract interfaces (i.e., doc-
uments that de�ne Abstract elements) allows getting the following information about

7See for instance the list at http://www.xmethods.net/ve2/ViewImplementations.po

the corresponding service: (i) the URI of the document de�ning the corresponding ab-
stract interface, and (ii) the list (possibly empty) of known matching service instances
where each element of the list is a pair that gives the URI of the corresponding service,
and the actual binding information. Known service instances further decompose into:
(i) the list of known instances available on the Internet, and (ii) the list of instances
discovered in the local environment, through the ND service support for their discovery
as discussed in the next subsection.

Elements of the local repository associated with local service instances are identi�ed
through the URIs of the corresponding Service documents. Each element allows getting
the following information about the service instance: the respective URIs of the docu-
ments de�ning the service's abstract interface, instance, concrete interface, and the URI
of the document de�ning the QoS criteria associated with the service connector -if any-
(i.e., ConnectorQoS part of Abstract). The repository may then be requested for an
entry given the associated service URI, but also for entries matching a provided abstract
interface URI.

3.2 Locating Service Instances

The above repositories provide the base functionalities for handling requests for any ser-
vice, given the service's abstract interface. An instance is �rst searched locally through a
request to the repository of local instances. If an instance is available, request for the ser-
vice's execution may proceed. Otherwise, a remote instance needs to be retrieved. Nodes
that are contacted then depend on the underlying wireless network, including whether it
is infrastructure-based or ad hoc. We are in particular interested in the exploitation of
WLANs supporting the ad hoc mode, since communication does not incur any �nancial
cost for the consumer. Using a WLAN such as IEEE 802.11b, the network may be run in
either the ad hoc or infrastructure-based mode, where the latter requires availability of a
base station in the local communication range. We further assume that the network may
be switched from one mode to another, depending on the availability of a base station
and whether the user accepts to be charged for communication. Then, instances may be
retrieved either via the Internet if the network is in the infrastructure-based mode or via
nodes in the local communication range in either mode. The retrieval of instances that
are available in the local environment relies on an underlying service location protocol
[1], where we are more speci�cally experimenting using the SLP standard. Using such
a support, nodes running the ND service may be discovered in the local environment,
leading to get necessary binding information as well as to identify whether the nodes
are power-plugged or not. Then, given the request for a service that does not provide a
speci�c instance, a matching instance is retrieved according to the following process:

� If the network is in the infrastructure mode, the following sequential steps are
performed. The service is �rst requested to ND services in the local area that are
run on power-plugged nodes. Otherwise, it is sought whether an instance available
on the Internet is known, as given by the local repository of abstract interfaces,

which will be the one selected. If an instance is still not retrieved, the service
request is sent to the ND services run on the wireless nodes in the local area.
Ultimately, the service request is sent via the Internet, to the universal repository
that is provided by the user upon ND initialization.

� If the network is in the ad hoc mode, the service is requested to nodes in the
local area, interacting �rst with power-plugged nodes. This may ultimately lead
to notify service unavailability to the user. Note that increased availability could
be achieved by exploiting ad hoc routing protocols as, e.g., addressed in [6] for the
speci�c case of cooperative caching.

In the case where multiple instances are retrieved, one is chosen randomly, although per-
formance could still be improved by taking into account the resources available on the
hosting nodes.

It may be the case that a given service instance gets replicated over various devices (e.g.,
personal Agenda service that may be replicated over the user's mobile devices while the
persistent copy is on the user's home system). This raises the issue of which instance to
access when there is a replica accessible in the local communication range. There is no
single optimal solution to this issue since this depends on various factors, e.g., available
connectivity (i.e., available base station or not), resources that are available on the ter-
minal(s) in the local environment hosting the replica(s), coherency of the replica(s) with
respect to the persistent copy that is managed by the service itself in a way transparent
to the user. Our primary design choice is to minimize resource consumption on mobile
terminals whenever possible, leading in particular to favor the selection of services run
on power-plugged nodes in our retrieval process. In addition, every service is associated
with an additional attribute that sets whether its instance should be retrieved in priority
from its home server or any terminal hosting a replica (i.e., the Service element is ex-
tended with the attribute <home =``true j false''/>, and if home is set to false, any
replica that is reachable will be accessed �rst). The retrieval process that is given above
is modi�ed accordingly.

3.3 Connector Customization

The above retrieval process should further be enriched to cope with quality of service re-
quirements, which decompose into: (i) authenticating the nodes with which interactions
take place so as to enforce communication with trusted nodes, and (ii) customizing the
connector.

The service instances that are selected need be authenticated for the sake of security8. In
our context, authentication subdivides into: (i) authenticating an instance with respect
to its published interface (i.e., the instance does realize the abstract interface it is sup-
posed to), (ii) authenticating a given instance. The former applies to instances that are

8Note that we do not consider the case of user authentication since associated support is built in the
service.

selected at runtime given an abstract interface, the latter applies to instances that are
speci�ed in the service request. We rely on certi�cates for both types of authentication,
and every node contacts the certi�ers on a regular basis to obtain up-to-date public keys.
In the worst case, the public key on the terminal may have changed since its connectivity
enabled interaction with the certi�er. In this case, authentication may not be possible,
leading to notify temporary service unavailability to the user.

In the case where a remote instance is accessed, connector customization is necessary if
quality of service criteria are stated in the QoSConnector element of the service's abstract
interface. However, customization needs only to be realized on the client-side since, by
de�nition of the service's abstract interface, the service instance already accounts for
the connector customization. Then, what needs to be achieved is customization on the
client-side, which should match the one already achieved on the server-side. Every service
instance thus keeps track of the speci�c customizers that are used, and in particular of the
URIs of the related local customizers (i.e., the information is kept in the repository of local
service instances). Then, hit messages in reply to service requests sent by the ND service
embeds these URIs as part of the information about eligible service instances. Upon
receipt of a hit message for a requested service, the requester checks for local availability
of the local customizers embedded in the message, and the service will be selected only
if the customizers are available. Increased availability of services may be achieved by
ultimately downloading the code of the local customizer service, with respect to speci�c
platforms. We will experiment with such a facility in our middleware prototype, which
will be based on Java, but this is not part of the core middleware speci�cation, since it
is platform-speci�c.

4 Conclusion

The vision of ambient intelligence is among today's most challenging topics for infor-
mation technology. Realizing the vision means that consumers will be provided with
universal and immediate access to available content and services, together with ways of
e�ectively exploiting them, which raises a number of issues relevant to most areas of
computer science. This paper has concentrated on one such issue that is supporting the
development of ambient intelligence software systems.

Our solution primarily lies in the development of ambient intelligence applications in
terms of the composition of services that are de�ned through their abstract interfaces.
The ambient intelligence requirement of enabling anytime, anywhere access to applica-
tions from any terminal further leads to bind with related services instances at runtime,
according to the environment in which the service is requested and in particular service
instances that may be reached. Such a facility then requires a software technology that
is pervasive enough for being able to rely on both consistent speci�cation and availability
of services in most environments, so as to actually support anytime, anywhere discovery
of service instances from abstract interfaces. This has led us to base our solution on the

Web, and more speci�cally on the Web Services architecture. Our solution then lies in
the XML-based WSAMI declarative language for the speci�cation of Web Services tak-
ing part in the realization of ambient intelligence applications, together with associated
core SOAP-based middleware. The language allows for dynamically retrieving instances
of services matching the realization of a requested application. Actual composition of
services at runtime relies on the core middleware, which amounts to supporting SOAP
and to a naming&discovery service for the dynamic retrieval of service instances, both
in the local and the wide area, according to the network connectivity and associated cost.

Supporting the development of ambient intelligence or pervasive computing systems has
given rise to extensive research over the last couple of years, which has led to introduce a
number of complex middleware services that place high demand on the underlying plat-
form and hence limit deployment in most environments (e.g., [2, 4, 5]). Our contribution
lies in the de�nition of a minimal middleware infrastructure for the actual dynamic com-
position of services, i.e., a naming&discovery service in addition to SOAP, which allows
for its wide deployment but also incurs minimal overhead in terms of resource consump-
tion and response time. We are currently implementing a �rst prototype, using an exist-
ing Web Services platform. We will then assess our solution through the development of
ambient intelligence demonstrators. We are further investigating the exploitation of user
pro�les for the naming&discovery service, which will in particular enable the integration
of dedicated caching and prefetching techniques for enhancing response time.

References

[1] C. Bettstetter and C. Renner. A comparison of service discovery protocols and implementation of
the service location protocol. In Proceedings of the 6th EUNICE Open European Summer School:
Innovative Internet Applications, 2000.

[2] M. Esler, J. Hightower, T. Anderson, and G. Borriello. Next century challenges: Date-centric net-
working for invisible computing. In Proceedings of MOBICOM'99, 1999.

[3] A. Fox, S. D. Gribble, and Y. Chawathe. Adapting to network and client variation using active
proxies: Lessons and perspectives. Special Issue of IEEE Personal Communications on Adaptation,
1998.

[4] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project Aura: Toward distraction-free
pervasive computing. IEEE Pervasive Computing, 1(2), 2002.

[5] D. Milojicic, A. Messaer, P. Bernadat, I. Greeberg, O. Spinczyk, D. Beuche, and W. Shroder-
Preikschat. - pervasive services infrastructure. In Proceedings of TES'01, 2001. LNCS 2193.

[6] F. Sailhan and V. Issarny. Cooperative caching in ad hoc network. In Proceedings of the 4th
International Conference on Mobile Data Management (MDM), 2003. to appear.

[7] J. Steinberg and J. Pasquale. A Web middleware architecture for dynamic customization of content
for wireless clients. In Proceedings of the WWW'02 Conference, 2002.

