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Abstract

We study Milner’s encoding of the call-by-value λ-calculus into the π-calculus. We show that,
by tuning the encoding to two subcalculi of the π-calculus (Internal π and Asynchronous Local
π), the equivalence on λ-terms induced by the encoding coincides with Lassen’s eager normal-
form bisimilarity, extended to handle η-equality. As behavioural equivalence in the π-calculus we
consider contextual equivalence and barbed congruence. We also extend the results to preorders.

A crucial technical ingredient in the proofs is the recently-introduced technique of unique
solutions of equations, further developed in this paper. In this respect, the paper also intends
to be an extended case study on the applicability and expressiveness of the technique.
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Introduction

Milner’s work on functions as processes [18, 19], that shows how the evaluation strategies
of call-by-name λ-calculus and call-by-value λ-calculus [1, 23] can be faithfully mimicked in the
π-calculus, is generally considered a landmark in Concurrency Theory, and more generally in
Programming Language Theory. The comparison with the λ-calculus is a significant expres-
siveness test for the π-calculus. More than that, it promotes the π-calculus to be a basis for
general-purpose programming languages in which communication is the fundamental comput-
ing primitive. From the λ-calculus point of view, the comparison provides the means to study
λ-terms in contexts other than purely sequential ones, and with the instruments available to
reason about processes. Further, Milner’s work, and the works that followed it, have contributed
to understanding and developing the theory of the π-calculus.

More precisely, Milner shows the operational correspondence between reductions in the λ-
terms and in the encoding π-terms. He then uses the correspondence to prove that the encodings
are sound, i.e., if the processes encoding two λ-terms are behaviourally equivalent, then the
source λ-terms are also behaviourally equivalent in the λ-calculus. Milner also shows that the
converse, completeness, fails, intuitively because the encodings allow one to test the λ-terms in
all contexts of the π-calculus — more diverse than those of the λ-calculus.

The main problem that Milner’s work left open is the characterisation of the equivalence
on λ-terms induced by the encoding, whereby two λ-terms are equal if their encodings are be-
haviourally equivalent π-calculus terms. The question is largely independent of the precise form
of behavioural equivalence adopted in the π-calculus because the encodings are deterministic (or
at least confluent). In the paper we consider contextual equivalence (that coincides with may
testing and trace equivalence) and barbed congruence (that coincides with bisimilarity).

For the call-by-name λ-calculus, the answer was found shortly later [26, 28]: the equality
induced is the equality of Levy-Longo Trees [16], the lazy variant of Böhm Trees. It is actually
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also possible to obtain Böhm Trees, by modifying the call-by-name encoding so to allow also
reductions underneath a λ-abstraction, and by including divergence among the observables [31].
These results show that, at least for call-by-name, the π-calculus encoding, while not fully
abstract for the contextual equivalence of the λ-calculus, is in remarkable agreement with the
theory of the λ-calculus: several well-known models of the λ-calculus yield Levy-Longo Trees or
Böhm Trees as their induced equivalence [15, 16, 4].

For call-by-value, in contrast, the problem of identifying the equivalence induced by the
encoding has remained open, for two main reasons. First, tree structures in call-by-value are
less studied and less established than in call-by-name. Secondly, proving completeness of an
encoding of λ into π requires sophisticated proof techniques. For call-by-name, for instance, a
central role is played by bisimulation up-to contexts. For call-by-value, however, existing proof
techniques, including ‘up-to contexts’, appeared not to be powerful enough.

In this paper we study the above open problem for call-by-value. Our main result is that
the equivalence induced on λ-terms by their call-by-value encoding into the π-calculus is eager
normal-form bisimilarity [13, 14]. This is a tree structure for call-by-value, proposed by Lassen
as the call-by-value counterpart of Levy-Longo Trees. Precisely we obtain the variant that
is insensitive to some η-expansions, called η-eager normal-form bisimilarity. It validates the
η-expansion law for variables:

λy.xy = x (1)

This law is also valid for abstractions: λy. (λz.M)y = λz.M if y does not occur free in
M . However, in a weak call-by-value setting, η-expanded terms should not always be equated:
indeed, Ω diverges, while λx. Ωx converges to a value.

To obtain the results we have however to make a few adjustments to Milner’s encoding
and/or specialise the target language of the encoding. These adjustments have to do with the
presence of free outputs (outputs of known names) in the encoding. Indeed, Milner had initially
translated call-by-value λ-variables using a free output: the translation of the variable x would
be a free output p〈x〉, where p is the continuation, or location, at which x is evaluated. In the
original encoding, therefore, the encoding of x at p (the encoding of λ-terms is parametrised
upon a name) is defined as p〈x〉, which can be written as follows:

V[[x]]〈p〉 def= p〈x〉. (2)

However this is troublesome for the validity of βv-reduction (the property that λ-terms that
are related by βv-reduction — the call-by-value β-reduction — are also equal in the π-calculus).
Milner solved the problem by ruling out the initial free output p〈x〉 and by replacing it with a
bound output νy p〈y〉 followed by a static link y � x. A static link y � x forwards any name
received by y to x, therefore acting as a substitution between x and y (while also constraining
the behaviour of the context, that may only use y in output). Thus, in the modified encoding,
we have:

V ′[[x]]〈p〉 def= νy (p〈y〉. y � x). (3)

It was indeed shown later [25] that with (2) the validity of βv-reduction fails. Accordingly,
the final journal paper [19] does not even mention encoding (2). If one wants to maintain the
simpler rule (2), then the validity of βv-reduction can be regained by taking, as target language,
a subset of the π-calculus in which only the output capability of names is communicated. This
can be enforced either by imposing a behavioural type system including capabilities [22], or by
syntactically taking a dialect of the π-calculus in which only the output capability of names is
communicated, such as Local π [17].

The encoding (3) still makes use of free outputs — the final action of y � x is a free output
on x. While this limited form of free output is harmless for the validity of βv-reduction, we show
in the paper that this brings problems when analysing λ-terms with free variables: desirable
call-by-value equalities fail. An example is given by the law:

I(xV ) = xV (4)

where I is λz. z and V is a value.
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Law (4) is valid in any model of call-by-value, as any context making both terms closed
also equates them: we have λx. I(xV ) = λx.xV , for instance. It also holds in any theory of
open call-by-value, as far as we know. This is indeed very natural: for any substitution of x
with a closed value, the terms become related by βv — and the identity should never be made
observable in a theory of the λ-calculus.

Two possible solutions to recover law (4) are:

1. rule out the free outputs; this essentially means transplanting the encoding onto the Inter-
nal π-calculus, Iπ [27], a version of the π-calculus in which any name emitted in an output
is fresh;

2. control the use of capabilities in the π-calculus; for instance taking Asynchronous Local π,
ALπ [17] as the target of the translation. (Controlling capabilities allows one to impose a
directionality on names, which, under certain technical conditions, may hide the identity
of the emitted names.)

In the paper we consider both approaches, and show that in both cases, the equivalence
induced coincides with η-eager normal-form bisimilarity.

In summary, there are two main contributions in the paper:

1. Showing that Milner’s encoding fails to equate terms that should be equal in call-by-value.

2. Rectifying the encoding, by considering different target calculi, and investigating Milner’s
problem in such a setting.

The rectification we make does not really change the essence of the encoding – in one case, the
encoding actually remains the same. Moreover, the languages used are well-known dialects of
the π-calculus, studied in the literature for other reasons. In the encoding, they allow us to
avoid certain accidental misuses of the names emitted in the communications. The calculi were
not known at the time of Milner’s paper [19].

A key role in the completeness proof is played by the technique of unique solution of equations,
proposed in [7]. The structure induced by Milner’s call-by-value encoding was expected to look
like Lassen’s trees; however existing proof techniques did not seem powerful enough to prove it.
The unique solution technique allows one to derive process bisimilarities from equations whose
infinite unfolding does not introduce divergences, by proving that the processes are solutions of
the same equations. The technique can be generalised to possibly-infinite systems of equations,
and can be strengthened by allowing certain kinds of divergences in equations. In this respect,
another goal of the paper is to carry out an extended case study on the applicability and
expressiveness of the techniques. Then, a by-product of the study are a few further developments
of the technique. In particular, one such result allows us to transplant uniqueness of solutions
from a system of equations, for which divergences are easy to analyse, to another one. Another
result is about the application of the technique to preorders.

Finally, we consider preorders — thus referring to the preorder on λ-terms induced by a
behavioural preorder on their π-calculus encodings. We introduce a preorder on Lassen’s trees
(preorders had not been considered by Lassen) and show that this is the preorder on λ-terms
induced by the call-by-value encoding, when the behavioural relation on π-calculus terms is the
ordinary contextual preorder (again, with the same restrictions as mentioned above). With the
move from equivalences to preorders, the overall structure of the proofs of our full abstraction
results remains the same. However, the impact on the application of the unique-solution tech-
nique is substantial, because the phrasing of this technique in the cases of preorders and of
equivalences is quite different.

Further related work. The standard behavioural equivalence in the λ-calculus is contextual
equivalence. Encodings into the π-calculus (be it for call-by-name or call-by-value) break con-
textual equivalence because π-calculus contexts are richer than those in the (pure) λ-calculus.
In the paper we try to understand how far beyond contextual equivalence the discriminating
power of the π-calculus brings us, for call-by-value. The opposite approach is to restrict the set
of ’legal’ π-contexts so to remain faithful to contextual equivalence. This approach has been
followed, for call-by-name, and using type systems, in [5, 33].

Open call-by-value has been studied in [3], where the focus is on operational properties of
λ-terms; behavioural equivalences are not considered. An important difference with our work is
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that in [3], xV1 · · ·Vk is treated as a value, i.e., β-reduction can be triggered when the argument
has this shape.

An extensive presentation of call-by-value, including denotational models, is Ronchi della
Rocca and Paolini’s book [24].

In [7], the unique-solution technique is used in the completeness proof for Milner’s call-by-
name encoding. That proof essentially revisits the proof of [28], which is based on bisimulation
up-to context. We have explained above that the case for call-by-value is quite different.

Structure of the paper. We recall basic definitions about the call-by-value λ-calculus and the π-
calculus in Section 1. The technique of unique solution of equations is introduced in Section 2,
together with some new developments. Section 3 presents our analysis of Milner’s encoding,
beginning with the shortcomings related to the presence of free outputs. The first solution to
these shortcomings is to move to the Internal π-calculus: this is described in Section 4. For the
proof of completeness, in Section 4.4, we rely on unique solution of equations; we also compare
such technique with the ‘up-to techniques’. The second solution is to move to the Asynchronous
Local π-calculus: this is discussed in Section 5. We show in Section 6 how our results can be
adapted to preorders and to contextual equivalence. Finally in Section 7 we present conclusions
and directions for future work.

Comparison with the results published in [8]. This paper is an extended version of [8]. We
provide here detailed proofs which were either absent or only sketched in [8], notably for: the
soundness of the encoding into Iπ (Sections 4.2 and 4.3, Appendix C), completeness of the same
encoding (Section 4.4), the unique solution technique for contextual relations and preorders
(Section 6.2, Appendix E), as well as some more details about the full abstraction proofs for
contextual preorders (Section 6.3) and the encoding into ALπ (Section 5.2). We also include
more detailed discussions along the paper, notably about Milner’s encoding (Section 3), the
encoding into Iπ (Section 4.1), and the encoding into ALπ (Section 5.1).

1. Background material

Throughout the paper, R ranges over relations. The composition of two relations R and R′
is written RR′. We often use infix notation for relations; thus P R Q means (P,Q) ∈ R. A

tilde represents a tuple. The i-th element of a tuple P̃ is referred to as Pi. Our notations are
extended to tuples componentwise. Thus P̃ R Q̃ means Pi R Qi for all components. Several
behavioural relations are used in this paper — Appendix A presents a summary of these.

1.1. The call-by-value λ-calculus

We let x and y range over the set of λ-calculus variables. The set Λ of λ-terms is defined by
the grammar

M ::= x | λx.M | M1M2 .

Free variables, closed terms, substitution, α-conversion etc. are defined as usual [4, 9]. Here
and in the rest of the paper (including when reasoning about π processes), we adopt the usual
“Barendregt convention”. This will allow us to assume freshness of bound variables and names
whenever needed. The set of free variables in the term M is written fv(M), and we sometimes
use fv(M,N) to denote fv(M)∪fv(N). Application is left-associative; therefore MNL is (MN)L.
We abbreviate λx1. · · · .λxn.M as λx1 · · ·xn.M , or λx̃.M if the length of x̃ is not important.
Symbol Ω stands for the always-divergent term (λx.xx)(λx.xx).

A context is a term with a hole [·], possibly occurring more than once. If C is a context,
then C[M ] is a shorthand for C where the hole [·] is substituted by M . An evaluation context,
ranged over using Ce, is a special kind of inductively defined context, with exactly one hole [·],
and in which a term replacing the hole can immediately run. In the pure λ-calculus values are
abstractions and variables.

Evaluation contexts Ce := [·] | CeM | V Ce

Values V := x | λx.M

4



We accordingly write fv(Ce) for the free variables of Ce.
Eager reduction (or βv-reduction), −→ ⊆ Λ×Λ, is defined on open terms, and is determined

by the rule:
Ce[(λx.M)V ] −→ Ce[M{V/x}],

where {V/x} stands for the capture-avoiding substitution of x with V .
A term in eager normal form is a term that has no eager reduction. We write =⇒ for the

reflexive transitive closure of −→.

Proposition 1. The following hold:

1. If M −→ M ′, then Ce[M ] −→ Ce[M
′] and Mσ −→ M ′σ, for any substitution σ that

replaces variables with values.

2. Terms in eager normal form are either values or admit a unique decomposition of the
shape Ce[xV ].

Therefore, given a term M , either M =⇒ M ′ where M ′ is a term in eager normal form, or
there is an infinite reduction sequence starting from M . In the first case, we say that M has
eager normal form M ′, written M ⇓M ′; in the second M diverges, written M ⇑. We write M ⇓
when M ⇓M ′ for some M ′.

Definition 2 (Contextual equivalence). Given M, N ∈ Λ, we say that M and N are contex-
tually equivalent, written M 'Λ

ct N , if for any context C, we have C[M ] ⇓ iff C[N ] ⇓.

1.2. Tree Semantics for call-by-value

In this section, we recall Lassen’s eager normal-form bisimilarity [13, 14, 32].

Definition 3 (Eager normal-form bisimulation). A relation R between λ-terms is an eager
normal-form bisimulation if, whenever M R N , one of the following holds:

1. both M and N diverge;

2. M ⇓ Ce[xV ] and N ⇓ C ′e[xV ′] for some x, values V , V ′, and evaluation contexts Ce and
C ′e satisfying V R V ′ and Ce[z] R C ′e[z] for a fresh z;

3. M ⇓ λx.M ′ and N ⇓ λx.N ′ for some x, M ′, N ′ with M ′ R N ′;

4. M ⇓ x and N ⇓ x for some x.

Eager normal-form bisimilarity, written -, is the largest eager normal-form bisimulation.

Essentially, the structure of a λ-term that is unveiled by Definition 3 is that of a (possibly
infinite) tree obtained by repeatedly applying βv-reduction, and branching a tree whenever
instantiation of a variable is needed to continue the reduction (clause (2)). We call such trees
Eager Trees (ETs); accordingly, we also call eager normal-form bisimilarity the Eager-Tree
equality.

Example 4. Relation - is strictly finer than contextual equivalence 'Λ
ct: the inclusion - ⊆ 'Λ

ct

follows from the congruence properties of - [13]. For strictness, examples are given by the
following equalities, which hold for 'Λ

ct but not for -:

Ω = (λy. Ω)(xV ) xV = (λy.xV )(xV ) .

Example 5 (η rule). The η-rule is not valid for -. For instance, we have Ω 6- λx. Ωx. The
rule is not even valid on values, as we also have λy.xy 6- x. It holds however for abstractions:
λy. (λx.M) y - λx.M when y /∈ fv(M).

The failure of the η-rule λy.xy 6- x is troublesome as, under any closed value substitution
(a substitution replacing variables with closed values), the two terms are indeed eager normal-
form bisimilar. Thus η-eager normal-form bisimilarity [13] takes η-expansion into account so to
recover such missing equalities.
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Definition 6 (η-eager normal-form bisimulation). A relation R between λ-terms is an η-eager
normal-form bisimulation if, whenever M R N , either one of the clauses of Definition 3, or one
of the two following additional clauses, hold:

5. M ⇓ x and N ⇓ λy.N ′ for some x, y, and N ′ such that N ′ ⇓ Ce[xV ], with y R V and
z R Ce[z] for some value V , evaluation context Ce, and fresh z.

6. the converse of (5), i.e., N ⇓ x and M ⇓ λy.M ′ for some x, y, and M ′ such that M ′ ⇓
Ce[xV ], with V R y and Ce[z] R z for some value V , evaluation context Ce, and fresh z.

Then η-eager normal-form bisimilarity, -η, is the largest η-eager normal-form bisimulation.

We sometimes call relation -η the η-Eager-Tree equality.

Remark 7. Definition 6 coinductively allows η-expansions to occur underneath other η-expan-
sions, hence trees with infinite η-expansions may be equated with finite trees. For instance, we
have

x -η λy.xy -η λy.x(λz. yz) -η λy.x(λz. y(λw. zw)) -η . . .

An example of a finite tree being equated with an infinite tree by -η is as follows: take a fixpoint

combinator Y , and define f
def
= (λzxy.x(z y)). We then have Y fx =⇒ λy.x(Y f y), and then

x (Y f y) =⇒ x(λz. y (Y f z)), and so on. Hence, we have x -η Y fx.

1.3. The π-calculus

In all encodings we consider, the encoding of a λ-term is parametric on a name, i.e., it is a
function from names to π-calculus processes. We also need parametric processes (over one or
several names) to write recursive process definitions and equations. We call such parametric
processes abstractions. The instantiation of the parameters of an abstraction F is done via
the application construct F 〈ã〉. We use P,Q for processes, F for abstractions. Processes and
abstractions form the set of π-agents (or simply agents), ranged over by A. Small letters
a, b, . . . , x, y, . . . range over the infinite set of names. The grammar of the π-calculus is thus:

A ::= P | F (agents)

P ::= 0 | a(̃b).P | a〈̃b〉.P | νa P (processes)

| P1 | P2 | !a(̃b).P | F 〈ã〉
F ::= (ã) P | K (abstractions)

0 is the inactive process. An input-prefixed process a(̃b).P , where b̃ has pairwise distinct
components, waits for a tuple of names c̃ to be sent along a and then behaves like P{c̃/̃b}, where

{c̃/̃b} is the simultaneous substitution of names b̃ with names c̃ (see below). An output particle

a〈̃b〉 emits names b̃ at a. Parallel composition is used to run two processes in parallel. The

restriction νa P makes name a local, or private, to P . A replicated input !a(̃b).P stands for a

countable infinite number of copies of a(̃b).P in parallel. (Replication could be avoided in the
syntax since it can be encoded with recursion. However its semantics is simple, and it is a useful
construct for examples and encodings; thus we chose to include it in the grammar.)

We do not include the operators of sum and matching. We assign parallel composition the
lowest precedence among the operators. We refer to [20] for detailed discussions on the operators
of the language.

We use α to range over prefixes. In prefixes a(̃b) and a〈̃b〉, we call a the subject and b̃ the
object. When the tilde is empty, the surrounding brackets in prefixes will be omitted. We often
abbreviate α. 0 as α, and νa νb P as (νa, b)P . An input prefix a(̃b).P , a restriction νb P , and

an abstraction (̃b) P are binders for names b̃ and b, respectively, and give rise in the expected
way to the definition of free names (fn) and bound names (bn) of a term or a prefix. An agent
is name-closed if it does not contain free names. (Since the number of recursive definitions may
be infinite, some care is necessary in the definition of free names of an agent, using a least fixed-
point construction.) As in the λ-calculus, we identify processes or actions which only differ in the
choice of the bound names. The symbol = will mean “syntactic identity modulo α-conversion”.
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Sometimes, we use
def
= as abbreviation mechanism, to assign a name to an expression to which

we want to refer later.
We use constants, ranged over by K, for writing recursive definitions. Each constant has

a defining equation of the form K
4
= (x̃) P , where (x̃) P is name-closed; x̃ are the formal

parameters of the constant (replaced by the actual parameters whenever the constant is used).
Since the calculus is polyadic, we assume a sorting system [20] to avoid disagreements in the

arities of the tuples of names carried by a given name and in applications of abstractions. We
do not present the sorting system because it is not essential. The reader should take for granted
that all agents described obey a sorting.

A context C of the π-calculus is a π-agent in which some subterms have been replaced by
the hole [·] or, if the context is polyadic, with indexed holes [·]1, . . . , [·]n. Then, C[A] or C[Ã] is

the agent resulting from replacing the holes with the terms A or Ã. Holes in contexts have a
sort too, as they could be in place of an abstraction.

Substitutions are of the form {b̃/̃a}, and are finite assignments of names to names. We use
σ and ρ to range over substitutions. The application of a substitution σ to an expression H
is written Hσ. Substitutions have precedence over the operators of the language; σρ is the
composition of substitutions where σ is performed first, therefore Pσρ is (Pσ)ρ.

The Barendregt convention allows us to assume that the application of a substitution does not
affect bound names of expressions; similarly, when comparing the transitions of two processes, we
assume that the bound names of the actions do not occur free in the processes. In a statement,
we say that a name is fresh to mean that it is different from any other name which occurs in
the statement or in objects of the statement like processes and substitutions.

Abstraction and application. We say that an application redex ((x̃)P )〈ã〉 can be normalised as
P{ã/x̃}. An agent is normalised if all such application redexes have been contracted, everywhere
in the terms. When reasoning on behaviours it is useful to assume that all expressions are
normalised, in the above sense. Thus in the remainder of the paper we identify an agent with
its normalised expression. The application construct F 〈ã〉 will play an important role in the
treatment of equations in the following sections.

1.4. Operational semantics

Transitions of π-calculus processes are of the form P
µ−→ P ′, where the grammar for actions

is given by

µ ::= a(̃b) | νd̃ a〈̃b〉 | τ .

� P
a(̃b)−−−→ P ′ is an input, where b̃ are the names bound by the input prefix which is being

fired (we adopt a late version of the Labelled Transition Semantics),

� P
νd̃ a〈̃b〉−−−−−→ P ′ is an output, where d̃ ⊆ b̃ are private names extruded in the output, and

� P
τ−→ P ′ is an internal action.

We abbreviate νd̃ a〈̃b〉 as a〈̃b〉 when d̃ is empty. The occurrences of b̃ in a(̃b) and those of d̃ in

νd̃ a〈̃b〉 are bound; we define accordingly the sets of bound names and free names of an action
µ, respectively written bn(µ) and fn(µ). The set of all the names appearing in µ (both free and
bound) is written n(µ).

Figure 1 presents the transition rules for the π-calculus.

We write =⇒ for the reflexive transitive closure of
τ−→, and

µ
=⇒ for =⇒ µ−→=⇒. Then

µ̂
=⇒ (resp.

µ̂−→) is
µ

=⇒ (resp.
µ−→) if µ is not τ , and =⇒ (resp.

τ−→ or =) otherwise. In bisimilarity or other
behavioural relations for the π-calculus we consider, no name instantiation is used in the input
clause or elsewhere; technically, the relations are ground. In the subcalculi we consider ground
bisimilarity is a congruence and coincides with barbed congruence (congruence breaks in the full
π-calculus). Besides the simplicity of their definition, the ground relations make more effective
the theory of unique solutions of equations (in particular, checking divergences is simpler, see
Section 2).

The reference behavioural equivalence for π-calculi is the usual barbed congruence. We recall
its definition, on a generic subset L of π-calculus processes. A L-context is a process of L with
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a(̃b).P
a(̃b)−−−→ P !a(̃b).P

a(̃b)−−−→ !a(̃b).P | P a〈̃b〉.P a〈̃b〉−−−→ P

P
νd̃ a〈̃b〉−−−−−→ P ′

νn P
ν({n}∪d̃) a〈̃b〉−−−−−−−−−→ P ′

n ∈ b̃
n /∈ d̃

P
µ−→ P ′

νn P
µ−→ νn P ′

n /∈ n(µ)
P

a(̃b)−−−→ P ′ Q
νd̃ a〈b̃′〉−−−−−→ Q′

P | Q τ−→ νd̃ (P ′{b̃′/̃b} | Q′)

P
µ−→ P ′

P | Q µ−→ P ′ | Q
bn(µ) ∩ fn(Q) = ∅

P{b̃/̃a} µ−→ P ′

((ã) P )〈̃b〉 µ−→ P ′
F 〈ã〉 µ−→ P ′

K〈ã〉 µ−→ P ′
if K

4
= F

Figure 1: Labelled Transition Semantics for the π-calculus

a single hole [·] in it (the hole has a sort, as it could be in place of an abstraction). We write
P ⇓a if P can make an output action whose subject is a, possibly after some internal moves.

We make only output observable because this is standard in asynchronous calculi; in the case
of a synchronous calculus like Iπ, Definition 8 below yields synchronous barbed congruence, and
adding also observability of inputs does not change the induced equivalence. More details on
this are given in Section 5.

Definition 8 (Barbed congruence). Barbed bisimilarity is the largest symmetric relation '·
on π-calculus processes such that P '· Q implies:

1. If P =⇒ P ′ then there is Q′ such that Q =⇒ Q′ and P ′ '· Q′.

2. P ⇓a iff Q ⇓a.

Let L be a set of π-calculus agents, and A,B ∈ L. We say that A and B are barbed congruent
in L, written A 'L B, if for each (well-sorted) L-context C, it holds that C[A] '· C[B].

Remark 9. We have defined barbed congruence uniformly on processes and abstractions (via
a quantification on all process contexts). Usually, however, definitions will only be given for
processes; it is then intended that they are extended to abstractions by requiring closure under
ground parameters, i.e., by supplying fresh names as arguments.

As for all contextually-defined behavioural relations, so barbed congruence is hard to work
with. In all calculi we consider, it can be characterised in terms of ground bisimilarity, under
the (mild) condition that the processes are image-finite up to weak bisimilarity. (We recall that
the class of processes image-finite up to weak bisimilarity is the largest subset IF of π-calculus
processes which is closed by transitions and such that P ∈ IF implies that, for all actions µ,

the set {P ′ | P µ
=⇒ P ′} quotiented by weak bisimilarity is finite. The definition is extended

to abstractions as by Remark 9.) All the agents in the paper, including those obtained by
encodings of the λ-calculus, are image-finite up to weak bisimilarity. The distinctive feature of
ground bisimilarity is that it does not involve instantiation of the bound names of inputs (other
than by means of fresh names), and similarly for abstractions. In the remainder, we omit the
adjective ‘ground’.

Definition 10 (Bisimilarity). A symmetric relation R on π-processes is a bisimulation, if when-

ever P RQ and P
µ−→ P ′, then Q

µ̂
=⇒ Q′ for some Q′ with P ′RQ′.

Processes P and Q are bisimilar, written P ≈ Q, if P RQ for some bisimulation R.

We extend ≈ to abstractions, as per Remark 9: F ≈ G if F 〈̃b〉 ≈ G〈̃b〉 for fresh b̃.
In the proofs, we shall also use strong bisimilarity, written ∼. Relation ∼ is defined as per

Definition 10, but Q must answer with a strong transition, that is, we impose Q
µ−→ Q′.

The Expansion preorder. We define the expansion preorder, written �, where P � Q intuitively
means that P and Q have the same behaviour, and that P may not be ‘slower’ (in the sense of

doing more
τ−→ transitions) than process Q.
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Definition 11. Expansion, written �, is defined as the largest relation R such that P R Q
implies

1. if P
µ−→ P ′, then for some Q′, Q

µ
=⇒ Q′ and P ′ R Q′, and

2. if Q
µ−→ Q′, then for some P ′, P

µ̂−→ P ′ and P ′ R Q′.

The converse of � is written �.

As usual, expansion is extended to abstractions by requiring ground instantiation of the
parameters: F � F ′ if F 〈ã〉 ≈ F ′〈ã〉, where ã are fresh names of the appropriate sort.

In the following we shall use two standard properties of expansion: first, expansion is finer
than bisimilarity, i.e., � ⊆ ≈. Second, expansion, like bisimilarity, is preserved by all contexts.

1.5. The Subcalculi Iπ and ALπ

We focus on two subcalculi of the π-calculus: the Internal π-calculus (Iπ), and the Asyn-
chronous Local π-calculus (ALπ). They are obtained by placing certain constraints on prefixes.

Iπ. In Iπ, all outputs are bound. This is syntactically enforced by replacing the output construct
with the bound-output construct a(̃b).P , which, with respect to the grammar of the ordinary

π-calculus, is an abbreviation for ν b̃ a〈̃b〉.P . In all tuples (input, output, abstractions, applica-
tions) the components are pairwise distinct so to make sure that distinctions among names are
preserved by reduction.

Theorem 12. In Iπ, on agents that are image-finite up to ≈, barbed congruence and bisimi-
larity coincide.

The encoding of the λ-calculus into Iπ yields processes that are image-finite up to ≈. Thus
we can use bisimilarity as a proof technique for barbed congruence.

ALπ. ALπ is defined by enforcing that in an input a(̃b).P , all names in b̃ appear only in output
position in P . Moreover, ALπ being asynchronous, output prefixes have no continuation; in the
grammar of the π-calculus this corresponds to having only outputs of the form a〈̃b〉. 0 (which

we will simply write a〈̃b〉).
In ALπ, to maintain the characterisation of barbed congruence as (ground) bisimilarity, the

transition system has to be modified [17], allowing the dynamic introduction of additional
processes (the ‘links’, sometimes also called forwarders). In Section 5, we present the modified
transition system for ALπ, upon which weak bisimilarity is defined. We also explain how they
allow us to obtain for ALπ a property similar to that of Theorem 12 for Iπ.

2. Unique solutions in Iπ and ALπ

We adapt the proof technique of unique solution of equations, from [7] to the calculi Iπ
and ALπ, in order to derive bisimilarity results. The technique is discussed in [7] on the
asynchronous π-calculus (for possibly-infinite systems of equations). The structure of the proofs
for Iπ and ALπ is similar; in particular the completeness part is essentially the same because
bisimilarity is the same. The differences in the syntax of Iπ, and in the transition system of
ALπ, show up only in certain technical details of the soundness proofs.

The results presented in this section hold both for Iπ and for ALπ.

Equation expressions. We need variables to write equations. We use capital letters X,Y, Z
for these variables and call them equation variables (sometimes simply variables). The body
of an equation is a name-closed abstraction possibly containing equation variables (that is,
applications can also be of the form X〈ã〉). Thus, the solutions of equations are abstractions.
Free names of equation expressions and contexts are defined as for agents.

We use E to range over name-closed abstractions; and E to range over systems of equations,
defined as follows. In all the definitions, the indexing set I can be infinite.
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Definition 13. Assume that, for each i belonging to a countable indexing set I, we have a
variable Xi, and an expression Ei, possibly containing some variables. Then {Xi = Ei}i∈I
(sometimes written X̃ = Ẽ) is a system of equations. (There is one equation for each variable
Xi; we sometimes use Xi to refer to that equation.)

A system of equations is guarded if each occurrence of a variable in the body of an equation
is underneath a prefix.

E[F̃ ] is the abstraction resulting from E by replacing each occurrence of the variable Xi

with the abstraction Fi (as usual assuming F̃ and X̃ have the same sort). This is syntactic
replacement. However recall that we identify an agent with its normalised expression: hence
replacing X with (x̃)P in X〈ã〉 is the same as replacing X〈ã〉 with the process P{ã/x̃}.

Definition 14. Suppose {Xi = Ei}i∈I is a system of equations. We say that:

� F̃ is a solution of the system of equations for ≈ if for each i it holds that Fi ≈ Ei[F̃ ].

� The system has a unique solution for ≈ if whenever F̃ and G̃ are both solutions for ≈, we
have F̃ ≈ G̃.

Definition 15 (Syntactic solutions). The syntactic solutions of the system of equations X̃ = Ẽ

are the recursively defined constants KẼ,i

4
= Ei[K̃Ẽ ], for each i ∈ I, where I is the indexing set

of the system of equations.

The syntactic solutions of a system of equations are indeed solutions of it.
A process P diverges if it can perform an infinite sequence of internal moves, possibly after

some visible ones (i.e., actions different from τ); formally, there are processes Pi, i ≥ 0, and some

n, such that P = P0
µ0−−→ P1

µ1−−→ P2
µ2−−→ . . . and for all i > n, µi = τ . We call a divergence of

P the sequence of transitions
(
Pi

µi−−→ Pi+1

)
i
. In the case of an abstraction F , as per Remark 9,

F has a divergence if the process F 〈ã〉 has a divergence, where ã are fresh names. A tuple of

agents Ã is divergence-free if none of the components Ai has a divergence.
The following result is the technique we rely on to establish completeness of the encoding.

As announced above, it holds both in Iπ and in ALπ.

Theorem 16. In Iπ and ALπ, a guarded system of equations with divergence-free syntactic
solutions has unique solution for ≈.

The proof of Theorem 16 is very similar to a similar theorem, for the π-calculus, which
is presented in [7]. Moreover, we present a proof of unique solution for trace inclusion and
trace equivalence (in Iπ) in Appendix E. The latter is also very similar in structure to the two
aforementioned proofs. For a pedagogical presentation of these proofs, we refer the reader to
[7], specifically to the proof of unique solution for weak bisimilarity in the setting of CCS.

Techniques for ensuring termination, hence divergence freedom, have been studied in, e.g.,
[34, 6, 29].

Further Developments of the Technique of Unique Solution of Equations.

We present some further developments to the theory of unique solution of equations, that
are needed for the results in this paper. The first result allows us to derive the unique-solution
property for a system of equations from the analogous property of an extended system.

Definition 17. A system of equations E ′ extends system E if there exists a fixed set of indices
J such that any solution of E can be obtained from a solution of E ′ by removing the components
corresponding to indices in J .

Lemma 18. Consider two systems of equations E ′ and E where E ′ extends E. If E ′ has a unique
solution, then the property also holds for E.

We shall use Lemma 18 in Section 4.4, in a situation where we transform a certain system
into another one, whose uniqueness of solutions is easier to establish. Then, by Lemma 18, the
property holds for the initial system.
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Remark 19. We cannot derive Lemma 18 by comparing the syntactic solutions of the two
systems E ′ and E . For instance, the equations X = τ .X and X = τ . τ . . . (where τ . τ . . .
abbreviates the corresponding recursive definition) have strongly bisimilar syntactic solutions,
yet only the latter equation has the unique-solution property. (Further, Lemma 18 allows us to
compare systems of different size).

The second development is a generalisation of Theorem 16 and Lemma 18 to trace equivalence
and to trace preorders; we postpone its presentation to Section 6.

3. Milner’s Encodings

3.1. Background: encodings V and V ′

Milner noticed [18, 19] that his call-by-value encoding can be easily tuned so to mimic forms
of evaluation in which, in an application MN , the function M is run first, or the argument N
is run first, or function and argument are run in parallel (the proofs are actually carried out for
this last option). We chose here the first option.

The core of any encoding of the λ-calculus into a process calculus is the translation of
function application. This becomes a particular form of parallel combination of two processes,
the function and its argument; βv-reduction is then modelled as process interaction.

The encoding of a λ-term is parametric over a name; this may be thought of as the location
of that term, or as its continuation. A term that becomes a value signals so at its continuation
name and, in doing so, it grants access to the body of the value. Such body is replicated, so that
the value may be copied several times. When the value is a function, its body can receive two
names: (the access to) its value argument, and the following continuation. In the translation of
application, first the function is run, then the argument; finally the function is informed of its
argument and continuation.

In the original paper [18], Milner presented two candidates for the encoding of call-by-value
λ-calculus [23]. They follow the same pattern of translation, in particular regarding application
(as described above), but with a technical difference in the rule for variables. One encoding, V, is
defined as follows (for the case of application, we adapt the encoding from parallel call-by-value
to left-to-right call by value, as described above):

V[[λx.M ]]
def
= (p) p(y). !y(x, q).V[[M ]]〈q〉

V[[MN ]]
def
= (p) (νq )(V[[M ]]〈q〉 | q(y).νr (V[[N ]]〈r〉 | r(w). y〈w, p〉))

V[[x]]
def
= (p) p〈x〉

In the other encoding, V ′, application and λ-abstraction are treated as in V; the rule for variables
is:

V ′[[x]]
def
= (p) p(y). !y(z, q).x〈z, q〉 .

In V ′, a λ-calculus variable gives rise to a one-place buffer. As the computation proceeds,
these buffers are chained together, gradually increasing the number of steps necessary to simulate
a β-reduction. This phenomenon does not occur in V, where the occurrence of a variable
disappears after it is used. Hence the encoding V is more efficient than V ′,

3.2. Some problems with the encodings

The immediate free output in the encoding of variables in V breaks the validity of βv-
reduction; i.e., there exist a term M and a value V such that V[[(λx.M)V ]] 6≈ V[[M{V/x}]] [25].
The encoding V ′ fixes this by communicating, instead of a free name, a fresh pointer to that
name. Technically, the initial free output of x is replaced by a bound output coupled with a
link to x (the process !y(z, q).x〈z, q〉, receiving at y and re-emitting at x). Thus βv-reduction is
validated, i.e., V[[(λx.M)V ]] ≈ V[[M{V/x}]] for any M and V [25].

(The final version of Milner’s paper [19] was written after the results in [25] were known and
presents only the encoding V ′.)

Nevertheless, V ′ only delays the free output, as the added link contains itself a free output.
As a consequence, we can show that other desirable equalities of call-by-value are broken in V ′.
An example is law (4) from the Introduction, as stated by Proposition 20 below. This law is
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desirable (and indeed valid for contextual equivalence, or the Eager-Tree equality) intuitively
because, in any substitution closure of the law, either both terms diverge, or they converge to
the same value. The same argument holds for their λ-closures, λx.xV and λx. I(xV ).

We recall that 'π is barbed congruence in the π-calculus.

Proposition 20 (Non-law). For any value V , we have:

V[[I(xV )]] 6'π V[[xV ]] and V ′[[I(xV )]] 6'π V ′[[xV ]] .

(The law is violated also under coarser equivalences, such as contextual equivalence.) Tech-
nically, the reason why the law fails in π can be illustrated when V = y, for encoding V. We
have:

V[[xy]]〈p〉 'π x〈y, p〉

V[[I(xy)]]〈p〉 'π (νq )(x〈y, q〉 | q(z). p〈z〉)

(details of the calculation may be found in Appendix B)
In presence of the normal form xy, the identity I becomes observable. Indeed, in the second

term, a fresh name, q, is sent instead of continuation p, and a link between q and p is installed.
This corresponds to a law which is valid in ALπ, but not in π.

Remark 21 (Generalisations of law (4)). The phenomenon observed in law 4 can be observed
in a more general setting. We can observe that for any evaluation context Ce and any value V ,
we have

V[[Ce[I(xV )]]]〈p〉 6'π V[[Ce[xV ]]]〈p〉 .

One may want to generalise further this law, by replacing the identity I by an arbitrary function
λz.M , provided M somehow “uses” z. We may take M to be equal to C ′e[z], for some evaluation
context C ′e, or any term that reduces to such a normal form. We can then show, indeed:

V[[Ce[λz.M(xV )]]]〈p〉 6'π V[[Ce[M{xV/z}]]]〈p〉 .

Generalising further, to a term M whose normal form is not written C ′e[z], is outside the scope of
this work. This could be related to Accattoli and Sacerdoti Coen’s notion of “useful reduction”
for the call-by-value λ-calculus [2].

3.3. Well-behaved encodings

The problem put forward in Proposition 20 can be avoided by iterating the transformation
that takes us from V to V ′ (i.e., the replacement of a free output with a bound output so to
avoid all emissions of free names). Thus the target language becomes Internal π; the resulting
encoding is analysed in Section 4.

Another solution is to control the use of name capabilities in processes. In this case the
target language becomes ALπ, and we need not modify the initial encoding V. This situation
is analysed in Section 5.

In both solutions, the encoding uses two kinds of names: value names x, y, . . . , v, w, . . . and
continuation names p, q, r, . . . ,. For simplicity, we assume that the set of value names contains
the set of λ-variables.

Continuation names are always used linearly, meaning that they are only used once in subject
position (once in input and once in output). On the other hand, value names may be used
multiple times. Continuation names are used to transmit a value name, and value names are
used to transmit a pair consisting of a value name and a continuation name. This is a very mild
form of typing. We could avoid the distinction between these two kinds of names, at the cost of
introducing additional replications in the encoding.

Moreover, in both solutions, the use of link processes validates the following law — a form
of η-expansion — (the law fails for Milner’s encoding into the π-calculus):

λy.xy = x .

In the call-by-value λ-calculus this is a useful law, that holds because substitutions replace
variables with values.
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I[[λx.M ]]
def
= (p) p(y). !y(x, q). I[[M ]]〈q〉

I[[x]]
def
= (p) p(y). y . x

I[[MN ]]
def
= (p) νq

(
I[[M ]]〈q〉 | q(y).νr

(
I[[N ]]〈r〉 |

r(w). y(w′, p′). (w′ . w | p′ . p)
))

Figure 2: The encoding into Iπ

4. Encoding in the Internal π-calculus

We present the encoding in Section 4.1, together with an optimised version of it, which
is actually the main object of study to establish soundness. We then proceed to establish
validity of βv-reduction and operational correspondence, both for the optimised encoding, in
Section 4.2. This allows us to derive soundness w.r.t. -η of the original (unoptimised) encoding
in Section 4.3. In Section 4.4, we establish the completeness of the encoding, using the unique
solution technique.

Some proofs are omitted from the main text, and are given in Appendix C.

4.1. The Encoding and its Optimised Version

Figure 2 presents the encoding into Iπ, derived from Milner’s encoding by removing the free
outputs as explained in Section 3. Process a . b represents a link (sometimes called forwarder;
for readability we use the infix notation a . b for the constant .). It transforms all outputs at
a into outputs at b (therefore a, b are names of the same sort). The body of a . b is replicated,
unless a and b are continuation names. The definition of the constant . therefore is:

.
4
=


(p, q) p(x). q(y). y . x

if p, q are continuation names

(x, y) !x(z, p). y(w, q). (q . p | w . z)
if x, y are value names

(The distinction between continuation names and value names is not necessary, but simplifies
the proofs.)

We recall some useful properties related to compositions of links [27].

Lemma 22. We have:

1. νq (p . q | q . r) � p . r, for all continuation names p, r.

2. νy (x . y | y . z) � x . z, for all value names x, z.

The Optimised Encoding. In order to establish operational correspondence (Proposition 27) we
introduce an optimised encoding : we remove some of the internal transitions from the encoding
of Figure 2, as they prevent the use of the expansion �. This allows us to guarantee that if
M =⇒ N , the encoding of N is faster than the encoding of M , in the sense that it performs
fewer internal steps before a visible transition. As a consequence, the encoding of a term in
normal form is ready to perform a visible transition. The results about the optimised encoding
are formulated using the expansion preorder, which is useful for the soundness proof. For the
completeness proof, we use these results with ≈ in place of �.

We therefore relate λ-terms and Iπ-terms via the optimised encoding O, presented in Fig-
ure 3. In the figure we assume that rules var-val and abs-val have priority over the others;
accordingly, in rules val-app, app-val, and app, terms M and N should not be values.

The optimised encoding is obtained from that in Figure 2 by performing a few (deterministic)
reductions, at the price of a more complex definition. Precisely, in the encoding of application
we remove some of the initial communications, including those with which a term signals to
have become a value. To achieve this, the encoding of an application is split into several cases,
depending on whether a subterm of the application is a value or not. This yields to a case
distinction according to whether the components in an application are values or not. This is
close in spirit to the idea of the colon translation in [23].
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O[[xV ]]
def
= (p) x(z, q). (OV[[V ]]〈z〉 | q . p) var-val

O[[(λx.M)V ]]
def
= (p) νy, w (OV[[λx.M ]]〈y〉 | OV[[V ]]〈w〉 abs-val

| y(w′, r′). (w′ . w | r′ . p))
O[[VM ]]

def
= (p) νy (OV[[V ]]〈y〉 | νr (O[[M ]]〈r〉 val-app

| r(w). y(w′, r′). (w′ . w | r′ . p)))
O[[MV ]]

def
= (p) νq (O[[M ]]〈q〉 | q(y).νw (OV[[V ]]〈w〉 app-val

| y(w′, r′). (w′ . w | r′ . p)))
O[[MN ]]

def
= (p) νq (O[[M ]]〈q〉 | q(y).νr (O[[N ]]〈r〉 | app

r(w). y(w′, r′). (w′ . w | r′ . p)))
O[[V ]]

def
= (p) p(y).OV[[V ]]〈y〉 opt-val

where OV[[V ]] is thus defined:

OV[[λx.M ]]
def
= (y) !y(x, q).O[[M ]]〈q〉 opt-abs

OV[[x]]
def
= (y) y . x opt-var

Moreover, in rules val-app and app-val, M is not a value; in rule appM and N are not values.

Figure 3: Optimised encoding into Iπ

The general idea of the optimised encoding can be illustrated on two particular cases. For
O[[VM ]], the corresponding equation is the result of unfolding the original encoding, and per-
forming one (deterministic) communication. In the case of O[[xV ]], not only do we unfold the
original encoding and reduce along deterministic communications, but we also perform the ad-
ministrative reductions that always precede the execution of I[[xV ]].

The next lemma builds on Lemma 22 to show that, on the processes obtained by the encoding
into Iπ, links behave as substitutions. We recall that p, q are continuation names, whereas x, y
are value names.

Lemma 23. We have:

1. νx (O[[M ]]〈p〉 | x . y) � O[[M{y/x}]]〈p〉.

2. νp (O[[M ]]〈p〉 | p . q) � O[[M ]]〈q〉.

3. νy (OV[[V ]]〈y〉 | x . y) � OV[[V ]]〈x〉.

The following lemma, relating the original and the optimised encoding, allows us to use the
latter to establish the soundness of the former. The proofs of Lemmas 23 and 24 are presented
in Appendix C.2.

Lemma 24. I[[M ]] � O[[M ]], for all M ∈ Λ.

4.2. Operational Correspondence

Thanks to the optimised encoding, we can now formulate and prove the operational corre-
spondence between the (optimised) encoding and the source λ-terms.

The proofs of the two following lemmas are presented in Appendix C.2.
We first establish that reduction in the λ-calculus yields expansion for the encodings of the

λ-terms.

Lemma 25 (Validity of βv-reduction). For any M,N in Λ, M −→ N implies that for any p,
O[[M ]]〈p〉 � O[[N ]]〈p〉.

To prove operational correspondence, we need a technical lemma about the optimised en-
coding of terms in eager normal form that are not values.

Lemma 26. We have:

O[[Ce[xV ]]]〈p〉 ∼ x(z, q). (OV[[V ]]〈z〉 | q(y).O[[Ce[y]]]〈p〉).
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In the lemma below, recall that we identify processes or transitions that only differ in
the choice of the bound names. Therefore, when we say a process has exactly one immedi-
ate transition, we mean that there is a unique pair (µ,P ), up to alpha-conversion, such that

O[[M ]]〈p〉 µ−→ P .

Proposition 27 (Operational correspondence). For any M ∈ Λ and fresh p, process O[[M ]]〈p〉
has exactly one immediate transition, and exactly one of the following clauses holds:

1. O[[M ]]〈p〉 p(y)−−−→ P and M is a value, with P = OV[[M ]]〈y〉;

2. O[[M ]]〈p〉 x(z,q)−−−−→ P and M = Ce[xV ] and P � OV[[V ]]〈z〉 | q(y).O[[Ce[y]]]〈p〉;

3. O[[M ]]〈p〉 τ−→ P and there is N with M −→ N and P � O[[N ]]〈p〉.

Proof. We rely on Proposition 1 to distinguish two cases:

� M is in eager normal form.

Then (i) either M is a value, and we are in the first case above, by definition; or (ii) we
are in the second case above, and we rely on Lemma 26 to conclude.

� There exists N such that M −→ N , We then use the property that is established in the
proof of validity of βv-reduction (Lemma 25), namely that O[[M ]]〈p〉 τ−→� O[[N ]]〈p〉.

2

The operational correspondence has two immediate consequences, regarding converging and
diverging terms.

Lemma 28. If O[[M ]]〈p〉 µ
=⇒ P and µ 6= τ , then M admits an eager normal form M ′ such that

O[[M ′]]〈p〉 µ−→ P0 and P � P0 for some P0.

Proof. By induction on the length of the reduction O[[M ]]〈p〉 µ
=⇒ P . If O[[M ]]〈p〉 µ−→ P and

µ 6= τ , by Proposition 27, M is an eager normal form. Otherwise, there is P ′ such that

O[[M ]]〈p〉 τ−→ P ′
µ

=⇒ P ; by Proposition 27, there is N such that M −→ N and P ′ � O[[N ]]〈p〉.
Therefore, since P ′

µ
=⇒ P , there is Q such that O[[N ]]〈p〉 µ

=⇒ Q, P � Q and, by definition of
expansion, the sequence of transitions from O[[N ]]〈p〉 to Q is shorter than the sequence from P ′

to P . By the induction hypothesis, N admits an eager normal form N ′, with O[[N ′]]〈p〉 µ−→ Q0

and Q � Q0 for some Q0.
N ′ being an eager normal form for N , it is also an eager normal form for M . Moreover, we

deduce from Q � Q0 and P � Q that P � Q0. 2

Lemma 29. O[[M ]]〈p〉 ≈ 0 iff M ⇑.

Proof. 1. Suppose O[[M ]] 6≈ (p) 0. Then M
µ−→ P for some µ 6= τ , and by Lemma 28, M has

an eager normal form (hence M does not diverge).

2. Assume now O[[M ]] ≈ (p) 0. By Proposition 27, O[[M ]]〈p〉 τ−→ P for some P , and there
is N such that M −→ N , and O[[N ]]〈p〉 ≈ P . Since O[[M ]] ≈ (p) 0, we have P ≈ 0, thus
O[[N ]] ≈ (p) 0. With this property, we can construct an infinite sequence of reductions
from M , thus M ⇑.

2

4.3. Soundness

The structure of the proof of soundness of the encoding is similar to that for the analogous
property for Milner’s call-by-name encoding with respect to Levy-Longo Trees [28]. The details
are however different, as in call-by-value both the encoding and the trees (the Eager Trees
extended to handle η-expansion) are more complex.

Using the operational correspondence, we then show that the observables for bisimilarity in
the encoding π-terms imply the observables for η-eager normal-form bisimilarity in the encoded
λ-terms. The delicate cases are those in which a branch in the tree of the terms is produced —
case (2) of Definition 3 — and where an η-expansion occurs — thus a variable is equivalent to
an abstraction, cases (5) and (6) of Definition 6.
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For the branching, we exploit a decomposition property on π-terms, roughly allowing us to
derive from the bisimilarity of two parallel compositions the componentwise bisimilarity of the
single components. For the η-expansion, if I[[x]] ≈ I[[λz.M ]], where M ⇓ Ce[xV ], we use a
coinductive argument to derive V -η z and Ce[y] -η y, for y fresh; from this we then obtain
λz.M -η x.

The following lemma allows us to decompose an equivalence between two parallel processes.
This result is used to handle equalities of the form I[[Ce[xV ]]] ≈ I[[C ′e[xV

′]]], in order to deduce
equivalence between V and V ′ on the one hand, and between Ce[y] and C ′e[y] on the other.

Lemma 30. Suppose that a does not occur free in Q or Q′, and one of the following holds:

1. a(x).P | Q ≈ a(x).P ′ | Q′;

2. !a(x).P | Q ≈ !a(x).P ′ | Q′.

Then we also have Q ≈ Q′.

Lemma 31. Suppose !y(z, q).O[[M ]]〈q〉 ≈ !y(z, q).O[[N ]]〈q〉, where y does not occur in M,N .
Then O[[M ]]〈q〉 ≈ O[[N ]]〈q〉.

Proof. We first observe that if O[[N ]]〈p〉 =⇒ P , then there exists N ′ such that N −→∗ N ′,
P � O[[N ′]]〈p〉 andO[[N ]]〈p〉 ≈ P . This follows from operational correspondence (Proposition 27)
and validity of βv-reduction (Lemma 25).

Let us now prove the lemma. We play a transition
y(z,q)−−−−→ on the left hand side. The answer

on the right hand side leads to a process P such that O[[N ]]〈q〉 =⇒ P and

!y(z, q).O[[M ]]〈q〉 | O[[M ]]〈q〉 ≈ !y(z, q).O[[N ]]〈q〉 | P .

By the observation above, we deduce that

!y(z, q).O[[M ]]〈q〉 | O[[M ]]〈q〉 ≈ !y(z, q).O[[N ]]〈q〉 | O[[N ]]〈q〉.

We can then conclude using Lemma 30. 2

We now show that the only λ-terms whose encoding is bisimilar to the encoding of some
variable x reduce either to x, or to a (possibly infinite) η-expansion of x.

Lemma 32. If V is a value and x a variable, OV[[V ]] ≈ OV[[x]] implies that either V = x or
V = λz.M , where the eager normal form of M is of the form Ce[xV

′], with O[[V ′]] ≈ O[[z]] and
O[[Ce[y]]] ≈ O[[y]] for any y fresh.

Proof. We observe that if y 6= x, then OV[[y]] 6≈ OV[[x]]; therefore if OV[[V ]] ≈ OV[[x]] and V 6= x,
then V has to be an abstraction V = λz.M . In this case, by definition, we have:

� O[[λz.M ]]〈p〉 = p(y). !y(z, q).O[[M ]]〈q〉 and

� O[[x]]〈p〉 = p(y). !y(z, q).x(z′, q′). (z′ . z | q′ . q).

Therefore O[[M ]]〈q〉 ≈ x(z′, q′). (z′ . z | q′ . q), and by Lemma 28 and Proposition 27, M has an
eager normal form Ce[xV

′]. We have, using Lemma 26 (since � ⊆ ≈):

O[[M ]]〈q〉 ≈ O[[Ce[xV
′]]]〈q〉

≈ x(z′, q′). (OV[[V ′]]〈z′〉 | q′(y).O[[Ce[y]]]〈q〉),

which gives
OV[[V ′]]〈z′〉 | q′(y).O[[Ce[y]]]〈q〉 ≈ z′ . z | q′ . q.

We observe that z′ does not occur free in q′(y).O[[Ce[y]]]〈q〉 and q′ does not occur free in
OV[[V ′]]〈z′〉. Furthermore, OV[[V ′]]〈z′〉 is prefixed by an input on z′. By applying Lemma 30
twice, we deduce

OV[[V ′]]〈z′〉 ≈ z′ . z and q′(y).O[[E[y]]]〈q〉 ≈ q′ . q .

By definition, z′ . z = OV[[z]]〈z′〉, so we have O[[V ′]]〈z′〉 ≈ O[[z]]〈z′〉.
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We also have

q′(y).O[[Ce[y]]]〈q〉 ≈ q′ . q = q′(y). q(y′). (y′ . y),

which gives

O[[Ce[y]]]〈q〉 ≈ q(y′). (y′ . y) = O[[y]]〈q〉.

2

We can now prove soundness of the encoding.

Proposition 33 (Soundness). For any M,N ∈ Λ, if I[[M ]] ≈ I[[N ]] then M -η N .

Proof. Let R def
= {(M,N) | O[[M ]] ≈ O[[N ]]}; we show that R is an η-eager normal-form

bisimulation, and conclude by Lemma 24. Assume O[[M ]] ≈ O[[N ]].

1. If M ⇑, by Lemma 29, for any fresh p, O[[M ]]〈p〉 ≈ 0. Thus O[[N ]]〈p〉 ≈ 0, and, by
Lemma 29 again, N ⇑.

2. Otherwise, M and N have eager normal forms M ′ and N ′; i.e., M ⇓ M ′ and N ⇓ N ′.
Therefore by Lemma 24 and validity of βv-reduction, O[[M ′]] ≈ O[[N ′]]. Since M ′ is in

eager normal form, by Proposition 27, either O[[M ′]]〈p〉 x(z,q)−−−−→ P or O[[M ′]]〈p〉 p(y)−−−→ P ,
and likewise for N ′. This yields two cases:

(a) M ′ = Ce[xV ], N ′ = C ′e[xV
′], and

OV[[V ]]〈z〉 | q(y).O[[Ce[y]]]〈p〉 ≈ OV[[V ′]]〈z〉 | q(y).O[[C ′e[y]]]〈p〉 .

We observe that name q does not appear free in OV[[V ]]〈z〉 or OV[[V ′]]〈z〉, hence by
Lemma 30, OV[[V ]] ≈ OV[[V ′]], thus O[[V ]] ≈ O[[V ′]].

Likewise, z′ does not appear free in either q(y).O[[Ce[y]]]〈p〉 or q(y).O[[C ′e[y]]]〈p〉, and
both OV[[V ]]〈z〉 and OV[[V ′]]〈z〉 are prefixed by a replicated input on z. Hence, by
Lemma 30, O[[Ce[y]]] ≈ O[[C ′e[y]]].

Therefore V R V ′ and Ce[y] R C ′e[y].

(b) M ′ and N ′ are values. They can be abstractions or variables.

i. If both are abstractions M ′ = λz.M ′′, N ′ = λz.N ′′, and

!y(z, q).O[[M ′′]]〈q〉 ≈ !y(z, q).O[[N ′′]]〈q〉,

hence, by Lemma 31, O[[M ′′]] ≈ O[[N ′′]], which gives M ′′ R N ′′.

ii. If both are variables, as seen above, we necessarily have M ′ = N ′ = x. We have
x R x, thus we can conclude.

iii. Otherwise, assume M ′ = λz.M ′′ and N ′ = x without loss of generality. Then
O[[M ′]] ≈ O[[N ′]] ≈ O[[x]]. By Lemma 32, M ′′ ⇓ Ce[xV ] for some Ce, V , and also
O[[V ]] ≈ O[[z]] and O[[Ce[y]]] ≈ O[[y]] for some y fresh.
Hence, V R z, Ce[y] R y for some y fresh, and we can conclude using case 6 of
Definition 6.

2

4.4. Completeness and Full Abstraction

Suppose M -η N . Then there is an η-eager normal-form bisimulation R such that MRN .
The completeness of the encoding can thus be stated as follows: given R an η-eager normal-form
bisimulation, for all (M,N) ∈ R, I[[M ]] ≈ I[[N ]].

To increase readability of the proof, we first show completeness for -, rather than -η.
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M ⇑ and N ⇑: XM,N = (ỹ) I[[Ω]]

M ⇓ Ce[xV ] and N ⇓ C ′e[xV ′] : XM,N = (ỹ) I[[(λz.XCe[z],C′
e[z]

) (x XV,V ′)]]

M ⇓ x and N ⇓ x : XM,N = (ỹ) I[[x]]

M ⇓ λx.M ′ and N ⇓ λx.N ′ : XM,N = (ỹ) I[[λx.XM ′,N ′ ]]

M ⇓ x, N ⇓ λz.N ′, N ′ ⇓ Ce[xV ] : XM,N = (ỹ) I[[λz.
(
(λw.Xw,Ce[w]) (x Xz,V )

)
]]

M ⇓ λz.M ′, M ′ ⇓ Ce[xV ], N ⇓ x : XM,N = (ỹ) I[[λz.
(
(λw.XCe[w],w) (x XV,z)

)
]]

Figure 4: System ER of equations (the last two equations are included only when considering -η)

Introducing systems of equations. Suppose R is an eager normal-form bisimulation. We define
an (infinite) system of equations ER, solutions of which will be obtained from the encodings
of the pairs in R. The definition of ER is given on Figure 4. We then use Theorem 16 and
Lemma 18 to show that ER has a unique solution.

We assume an ordering on names and variables, so to be able to view (finite) sets of these
as tuples. In the equations of Figure 4, ỹ is assumed to be the ordering of fv(M,N). Moreover,
if F is an abstraction, say (ã) P , then (ỹ) F is an abbreviation for its uncurrying (ỹ, ã) P .

There is one equationXM,N = EM,N for each pair (M,N) ∈ R. The body EM,N is essentially
the encoding of the eager normal form (or absence thereof) of M and N , with the variables of the
equations representing the coinductive hypothesis. To formalise this, we extend the encoding of
the λ-calculus to equation variables by setting

I[[XM,N ]]
def
= (p) XM,N 〈ỹ, p〉 where ỹ = fv(M,N) .

Systems ER and E ′R. We introduce two systems of equations, ER (Figure 4) and E ′R (Figure 5).
On both figures, we provide the equations which are needed to handle -η. The systems to handle
- are obtained by omitting some equations (precisely, the last two equations in Figures 4 and 5).

Given (M,N) ∈ R, we now comment on the equation XM,N = EM,N in system ER. The
equation is parametrised on the free variables of M and N (to ensure that the body EM,N is
a name-closed abstraction) and an additional continuation name (as all encodings of terms).
Accordingly, we write ỹ for the ordering of fv(M,N).

1. If M ⇑ and N ⇑, then the equation is

XM,N = (ỹ) I[[Ω]]

(We could use (ỹ, p) 0 above, since the encoding of a diverging term is bisimilar to 0).

2. If M ⇓ x and N ⇓ x, then the equation is the encoding of x:

XM,N = (ỹ) I[[x]] = (ỹ, p) p(z). z . x

Since x is the eager normal form of M and N , x ∈ ỹ. Note that ỹ can contain more names,
occurring free in M or N .

3. If M ⇓ λx.M ′ and N ⇓ λx.N ′, then the equation encodes an abstraction whose body
refers to the normal forms of M ′, N ′, via the variable XM ′,N ′ :

XM,N = (ỹ) I[[λx.XM ′,N ′ ]]

= (ỹ, p) p(z). !z(x, q).XM ′,N ′〈ỹ ′ , q〉,

where ỹ ′ is the ordering of fv(M ′, N ′).

4. If M ⇓ Ce[xV ] and N ⇓ C ′e[xV ′], we separate the evaluation contexts and the values, as
in Definition 3. In the body of the equation, this is achieved by: (i) rewriting Ce[xV ] into
(λz.Ce[z])(xV ), for some fresh z, and similarly for C ′e and V ′ (such a transformation is
valid for -); and (ii) referring to the variable for the evaluation contexts, XCe[z],C′

e[z]
, and

to the variable for the values, XV,V ′ . This yields the equation (for z fresh):

XM,N = (ỹ) I[[(λz.XCe[z],C′
e[z]

) (x XV,V ′)]]
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As an example, suppose (I, λx.M) ∈ R, where I = λx.x and M = (λzy. z)xx′. We obtain
the following equations: (we have fv(M) = {x, x′}, and we assume x is before x′ in the ordering
of variables):

1. XI,λx.M = (x′) I[[λx.Xx,M ]]

= (x′, p) p(y). !y(x, q).Xx,M 〈x, x′, q〉

2. Xx,M = (x, x′) I[[x]]

= (x, x′, p) p(y). y . x

Before explaining how R yields solutions of the system, we prove the following important
law:

Lemma 34. If Ce is an evaluation context, V is a value, x is a name and z is fresh in Ce, then

I[[Ce[xV ]]] ≈ I[[(λz.Ce[z])(xV )]].

Proof. By induction on the evaluation context Ce. When Ce = [·], we show that I[[xV ]] ≈
I[[I(xV )]] by algebraic reasoning. The other cases can be handled similarly. 2

Solutions of ER. Having set the system of equations for R, we now define solutions for it from
the encoding of the pairs in R.

We can view the relation R as an ordered sequence of pairs (e.g., assuming some lexico-
graphical ordering). Then Ri indicates the tuple obtained by projecting the pairs in R onto the
i-th component (i = 1, 2). Moreover (Mj , Nj) is the j-th pair in R, and ỹj is fv(Mj , Nj).

We write Ic[[R1]] for the closed abstractions resulting from the encoding of R1, i.e., the tuple
whose j-th component is (ỹj) I[[Mj ]], and similarly for Ic[[R2]].

Definition 35. We define Ic[[R1]] := {(ỹ) I[[M ]] | ∃N,M R N and ỹ = fv(M,N)} . Ic[[R2]]
is defined similarly, based on the right-hand side of the relation.

We observe that if ỹ = fv(M,N), then (ỹ, p) I[[M ]]〈p〉 and (ỹ, p) I[[N ]]〈p〉 are closed abstrac-
tions.

As a direct consequence of Lemmas 24 and 25, we obtain the following result, which is used
below.

Lemma 36 (Validity of βv-reduction for the original encoding). For any M,N in Λ, M −→ N
implies that for any p, I[[M ]]〈p〉 ≈ I[[N ]]〈p〉.

Lemma 37. Ic[[R1]]and Ic[[R2]]are solutions of the system of equations ER.

Proof. We only show the property for R1, the case for R2 is handled similarly.
We show that each component of Ic[[R1]] is solution of the corresponding equation, i.e., for

the j-th component we show (ỹj) I[[Mj ]] ≈ EMj ,Nj [Ic[[R1]]].
We reason by cases over the shape of the eager normal form of Mj , Nj .

� If M ⇑, we use Lemma 29, which gives us (ỹ) I[[M ]] ≈ (ỹ, p) 0 ≈ (ỹ) I[[Ω]].

� If M ⇓ Ce[xV ], we have to show that:

I[[M ]] ≈ I[[(λz.Ce[z])(xV )]] .

By Lemma 36, I[[M ]] ≈ I[[Ce[xV ]]]; we then conclude by Lemma 34.

� If M ⇓ λx.M ′ (and N also reduces to an abstraction), then:

EM,N [I[[R1]]]〈ỹ, p〉 = p(z). !z(x, q). I[[M ′]]〈q〉
≈ I[[M ]]〈ỹ, p〉 (by Lemma 36) .

� If M ⇓ x (and N ⇓ x), again:

EM,N [I[[R1]]]〈ỹ, p〉 = I[[x]]〈p〉
≈ I[[M ]]〈ỹ, p〉 (by Lemma 36) .

2
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M ⇑ and N ⇑: XM,N = (ỹ, p) 0

M ⇓ Ce[xv] and N ⇓ C ′e[xv′] : XM,N = (ỹ, p) x(z, q).

(XVV,V ′〈z, ỹ ′〉 | q(w).XCe[w],C′
e[w]〈ỹ ′′ , p〉)

M ⇓ V and N ⇓ V ′ : XM,N = (ỹ, p) p(y).XVv,v′〈z, ỹ ′〉
V = x and V ′ = x : XVx,x = (z, x) z . x

V = λx.M and V ′ = λx.N : XVλx.M,λx.N = (z, ỹ) !z(x, q).XM,N 〈ỹ ′ , q〉
V = x, V ′ = λz.N , N ⇓ Ce[xV ] : XVx,λz.N = (y0, ỹ) !y0(z, q).x(z′, q′).

(XVz,V 〈z′, ỹ ′〉 | q′(w).Xw,Ce[w]〈ỹ ′′ , q〉)
V = λz.M , M ⇓ Ce[xV ], V ′ = x : XVλz.M,x = (y0, ỹ) !y0(z, q).x(z′, q′).

(XVV,z〈z′, ỹ ′〉 | q′(w).XCe[w],w〈ỹ ′′ , q〉)

Figure 5: System E ′
R of equations (the last two equations are included only when considering -η)

Unique solution for ER. We rely on Theorem 16 to prove uniqueness of solutions for ER. The
only delicate requirement is the one on divergence for the syntactic solution. For this, we use
Lemma 18. We thus introduce an auxiliary system of equations, E ′R, that extends ER, and
whose syntactic solutions have no τ -transition and hence trivially satisfy the requirement. The
definition of E ′R is presented in Figure 5. Like the original system ER, so the new one E ′R is
defined by inspection of the pairs in R; in E ′R, however, a pair of R may sometimes yield more
than one equation. Thus, let (M,N) ∈ R with ỹ = fv(M,N) (we also write ỹ ′ or ỹ ′′ for the free
variables of the terms indexing the corresponding equation variable).

1. When M ⇑ and N ⇑, the equation is

XM,N = (ỹ, p) 0 .

2. When M ⇓ V and N ⇓ V ′, we introduce a new equation variable XVV,V ′ and a new
equation; this will allow us, in the following step (3), to perform some optimisations. The
equation is

XM,N = (ỹ, p) p(z).XVV,V ′〈z, ỹ ′〉 ,

and we have, accordingly, the two following additional equations corresponding to the
cases where values are functions or variables:

XVλx.M ′,λx.N ′ = (z, ỹ) !z(x, q).XM ′,N ′〈ỹ ′ , q〉
XVx,x = (z, x) z . x

3. When M ⇓ Ce[xV ] and N ⇓ Ce[xV
′], we refer to XVV,V ′ , instead of XV,V ′ , so to remove all

initial reductions in the corresponding equation for ER. The first action thus becomes an
output:

XM,N = (ỹ, p) x(z, q). (XVV,V ′〈z, ỹ ′〉 | q(w).XCe[w],C′
e[w]〈ỹ ′′ , p〉)

Lemmas 38 and 39 are needed to apply Lemma 18. (In Lemma 38, ‘extend’ is as by Defini-
tion 17.)

Lemma 38. The system of equations E ′R extends the system of equations ER.

Proof. The new system E ′R is obtained from ER by modifying the equations and adding new
ones. More precisely, whenever M and N are values, an additional equation is introduced, using
a variable written XV . A solution for the extended system yields a solution for the original
system by looking only at equation variables which are not of the form XVV,V ′ . 2

Lemma 39. E ′R has a unique solution.
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Proof. Divergence-freedom for the syntactic solutions of E ′R holds because in the equations each
name (bound or free) can appear either only in inputs or only in outputs. Indeed, in the
syntactic solutions of E ′R, linear names (p, q, . . . ) are used exactly once in subject position, and
non-linear names (x, y, w, . . . ), when used in subject position, are either used exclusively in
input or exclusively in output.

As a consequence, since the labelled transition system is ground, no τ -transition can ever
be performed, after any number of visible actions. Further, E ′R is guarded. Hence we can apply
Theorem 16.

2

Hence, by Lemma 18, ER has a unique solution.
We can observe that ER has equations of the form X = I[[Ω]] associated to a diverging λ-

term. Such equations give rise to innocuous divergences, using the terminology of [7]. A refined
version of Theorem 16 is stated in [7], in order to handle such divergences; this would make
it possible to avoid using Lemma 18, at the cost of a more intricate setting. Using Lemma 18
allows us to keep the framework simpler.

A more direct proof of Lemma 39 would have been possible, by reasoning coinductively over
the η-eager normal-form bisimulation defining the system of equations.

Lemma 40 (Completeness for -). M - N implies I[[M ]] ≈ I[[N ]], for any M,N ∈ Λ.

Proof. Consider an eager normal-form bisimulation R, and the corresponding systems of equa-
tions ER and E ′R. Lemmas 39 and 38 allow us to apply Lemma 18 and deduce that ER has a
unique solution. By Lemma 37, Ic[[R1]] and Ic[[R2]] are solutions of ER. Thus, from M R N ,
we deduce (ỹ) I[[M ]] ≈ (ỹ) I[[N ]], where ỹ = fv(M,N). Hence also I[[M ]] ≈ I[[N ]].

2

Completeness for -η. The proof for - is extended to -η, maintaining its structure. We highlight
the main additional reasoning steps.

We enrich ER with the equations corresponding to the two additional clauses of -η (Defini-
tion 6). When M ⇓ x and N ⇓ λz.N ′, where N ′ -η xz, we proceed as in case 4 of the definition
of ER, given that N -η λz. ((λw.Ce[w])(xV )). The equation is:

XM,N = (ỹ) I[[λz.
(
(λw.Xw,Ce[w]) (x Xz,V )

)
]] .

We proceed likewise in the symmetric case.
In the optimised equations, we add the following equation (relating values), as well as its

symmetric counterpart:

XVx,λz.N ′ = (y0, ỹ) !y0(z, q).x(z′, q′). (XVz,V 〈z′, ỹ ′〉 | q′(w).Xw,Ce[w]〈ỹ ′′ , q〉) .

We follow the approach of Lemmas 38 and 39 to show unique solution for ER.
The following lemma validates η-expansion for the encoding, and is useful below. It is proved

using algebraic reasoning and the definition of links.

Lemma 41. I[[λy.xy]] ≈ I[[x]].

Finally, we prove that Ic[[R1]] and Ic[[R2]] are solutions of ER. Two additional cases are to
be considered:

� If M ⇓ x and N ⇓ λy.N ′, then:

EM,N [I[[R1]]]〈ỹ, p〉 = p(z). !z(y, q). I[[(λw.w)(xy)]]〈q〉
≈ p(z). !z(y, q). I[[xy]]〈q〉 (by Lemma 34)

= I[[λy.xy]]〈q〉
≈ I[[x]]〈p〉 (by Lemma 41)

≈ I[[M ]]〈ỹ, p〉 (by Lemma 36) .
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� If M ⇓ λy.M ′, M ′ ⇓ Ce[xV ] and N ⇓ x, then:

EM,N [I[[R1]]]〈ỹ, p〉 = p(z). !z(y, q). I[[(λw.Ce[w])(xV )]]〈q〉
≈ p(z). !z(y, q). I[[Ce[xV ]]]〈q〉 (by Lemma 34)

= I[[λy.Ce[xV ]]]〈q〉
≈ I[[M ]]〈ỹ, p〉 (by Lemma 36) .

Given the previous results, we can reason as for the proof of Lemma 40 to establish com-
pleteness.

Proposition 42 (Completeness for -η). For any M,N in Λ, M -η N implies I[[M ]] ≈ I[[N ]].

Combining Propositions 33 and 42, and Theorem 12, we deduce full abstraction for -η with
respect to barbed congruence.

Theorem 43 (Full Abstraction for -η). For any M,N in Λ, we have M -η N iff I[[M ]] 'Iπ

I[[N ]]

Remark 44 (Unique solutions versus up-to techniques). For Milner’s encoding of call-by-name
λ-calculus, the completeness part of the full abstraction result with respect to Levy-Longo
Trees [28] relies on up-to techniques for bisimilarity. Precisely, given a relation R on λ-terms
that represents a tree bisimulation, one shows that the π-calculus encoding of R is a π-calculus
bisimulation up-to context and expansion.

In the up-to technique, expansion is used to manipulate the derivatives of two transitions
so to bring up a common context. Such up-to technique is not powerful enough for the call-by-
value encoding and the Eager Trees because some of the required transformations would violate
expansion (i.e., they would require to replace a term by a ‘less efficient’ one). An example of this
is the law proved in Lemma 37, that would have to be applied from right to left so to implement
the branching in clause (2) of Definition 3 (as a context with two holes).

The use of the technique of unique solution of equations allows us to overcome the problem:
the law in Lemma 37 and similar laws that introduce ’inefficiencies’ can be used (and they are
indeed used, in various places), as long as they do not produce new divergences.

5. Encoding into ALπ

Full abstraction with respect to η-Eager-Tree equality also holds for Milner’s simplest en-
coding, namely V (Section 3), provided that the target language of the encoding is taken to
be ALπ (see Section 1.5). The adoption of ALπ implicitly allows us to control capabilities,
avoiding violations of laws such as (4) in the Introduction. In ALπ, bound output prefixes such
as a(x).x(y) are abbreviations for νx (a〈x〉 | x(y)).

5.1. The Local π-calculus

We present here the results which make it possible for us to apply the unique-solution
technique to ALπ. The main idea is to exploit a characterisation of barbed congruence as
ground bisimilarity. However, to obtain this, ground bisimilarity has to be set on top of a non-
standard transition system, specialised to ALπ [17]. The Labelled Transition System (LTS) is

produced by the rules in Figure 6; these modify ordinary transitions (the
µ−→ relation) by adding

static links a� b, which are abbreviations defined thus:

a� b def
= !a(x̃). b〈x̃〉 .

(We call them static links, following the terminology in [17], so to distinguish them from the
links a . b used in Iπ, whose definition makes use of recursive process definitions — static links
only need replication.)

Notations for the ordinary LTS (
µ−→) are transported onto the new LTS (

µ7−→), yielding, e.g.,

transitions
µZ=⇒ and

µ̂Z=⇒.
We write ≈7→ for (ground) bisimilarity on the new LTS, defined as ≈ in Definition 10, but

using the new LTS in place of the ordinary one. Barbed congruence in ALπ, 'ALπ, is defined as
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P
νd̃ a〈̃b〉−−−−−→ P ′ c̃ ∩ (fn(P ) ∪ d̃) = ∅

P
νc̃ a〈c̃〉7−−−−→ νd̃ (c̃� b̃ | P ′)

P
a(̃b)−−−→ P ′

P
a(̃b)7−−→ P ′

P
τ−→ P ′

P
τ7−→ P ′

Figure 6: The modified labelled transition system for ALπ

by Definition 8 (on τ -transitions, which are the only transitions needed to define 'ALπ, the new
LTS and the original one coincide).

We present the definition of asynchronous (ground) bisimilarity, which is used in [17] to
derive a characterisation of barbed congruence; asynchrony is needed because the calculus is
asynchronous, and barbed congruence observes only output actions.

Definition 45 (Asynchronous bisimilarity). Asynchronous bisimilarity, written≈a
7→

, is the largest
symmetric relation R such that PRQ implies

� if P
µ7−→ P ′ and µ is not an input, then there is Q′ s.t. Q

µ̂Z=⇒ Q′ and P ′RQ′, and

� if P
a(̃b)7−−→ P ′, then eitherQ

a(̃b)
Z===⇒ Q′ and P ′RQ′ for someQ′, orQ =⇒ Q′ and P ′R(Q′ | a〈̃b〉)

for some Q′.

Theorem 46 ([17]). On ALπ processes that are image-finite up to ≈, relations ≈a
7→

and 'ALπ

coincide.

To apply our technique of unique solutions of equations it is however convenient to use
synchronous bisimilarity. The following result allows us to do so:

Theorem 47. On ALπ processes that are image-finite up to ≈ and have no input on a free
name, relations ≈7→ and ≈a

7→
coincide.

Proof. By construction, ≈7→ ⊆ ≈a
7→

.
To show that ≈a

7→ ⊆ ≈7→, we first establish a property about output capability and transitions.
We say that P respects output capability if any free name used in input subject position in P
may not be used in output, either in subject or object position, in P . We show that if P respects

output capability and P
µ7−→ P ′, then so does P ′.

We reason on the type of the transition P
µ′

−−→ P ′ from which P
µ7−→ P ′ is derived. For

simplicity, we consider only monadic actions.

1. if P
a(c)−−−→ P ′: then c is fresh for P , and cannot be used in input in P ′. The property

hence holds.

2. if P
τ−→ P ′: by hypothesis, the communication takes place at a restricted name (otherwise

the name would have free occurrences in input and in output in P ). If the transmitted
name is restricted as well, there is nothing to prove. Otherwise, let us suppose, to illustrate
the reasoning, that P = νa (a(b).P0 | ac)

τ−→ νa P0{c/b} (the transmitted name is c).
Because c occurs free in output in P , it cannot occur in input, since P respects output
capability. Because we are in ALπ, the new occurrences of c created by the substitution
{c/b} are in output position. So c cannot occur in input position in P ′ = νaP0{c/b}. The
proof in the general case follows the same ideas.

3. if P
ab−−→ P ′, and P

a(c)7−−→ c � b | P ′: because P respects output capability, so does P ′, as

the transition P
ab−−→ P ′ does not introduce any new occurrence of names. Since b is used

in output in P , it cannot be used in input in P , and hence P ′ does not contain output
occurrences of b. We deduce that c � b | P ′ also respects output capability: indeed, c is
fresh and thus is used only in input, and b is used only in output in c� b.

4. if P
a(b)−−−→ P ′, and P

a(c)7−−→ νb (c� b | P ′). This case is simpler than the previous one, since
b is bound in the resulting process, and, as before, c is fresh and is only used in input.
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Thus, we can consider bisimulations containing only processes that respect output capability.
Now, assume R is an asynchronous bisimulation relation containing only processes that

respect output capability. We show that R is also a synchronous bisimulation relation.

The only interesting case is when (P,Q) ∈ R, P
a(̃b)7−−→ P ′ and Q Z=⇒ Q′ for some Q′ such that

P ′ R (Q′ | a〈̃b〉). We observe that Q′ | a〈̃b〉 can perform an output on a, which implies that P ′

has a free occurrence of a in output. Since by hypothesis a /∈ b̃, this means that b occurs free in
input and in output in P , a contradiction.

Over processes that respect output capability, asynchronous bisimulation relations are syn-
chronous bisimulation relations, thus ≈a

7→
and ≈7→ coincide. This allows us to conclude, because

ALπ processes that have no free input do respect output capability. 2

The property in Theorem 47 is new – we are not aware of papers in the literature presenting
it. It is a consequence of the fact that, under the hypothesis of the theorem, and with a ground
transition system, the only input actions in processes that can ever be produced are those
emanating from the links, and two tested processes, if bisimilar, must have the same sets of
(visible) links. We can moreover remark that in Theorem 47, the condition on inputs can be
removed by adopting an asynchronous variant of bisimilarity; however, the synchronous version
is easier to use in our proofs based on unique solution of equations.

For any M ∈ Λ and p, process V[[M ]]〈p〉 is indeed image-finite up to ≈ and has no free input.
From Theorems 46 and 47, we therefore deduce that ≈7→ and 'ALπ coincide for processes obtained
by the encoding V.

5.2. Full abstraction in ALπ

We now discuss full abstraction for Milner’s encoding V, when the target language is ALπ.
The proof of is overall very similar to that of Theorem 43.

The systems of equations for ALπ are similar to the ones we introduced for Iπ (Figures 2
and 3). They are presented in Appendix D. The equations defining the first system are exactly
the same as in Figure 2, only encoding V is used instead of I. The second system is an optimised
version of the first. Again, it is defined as in Iπ; the differences are that we use static links.

The modified LTS of Figure 6 introduces additional static links with respect to the ground
LTS. When establishing the counterpart of Lemmas 40 and 42, we need to reason about diver-
gences, and must therefore show that these links do not produce new reductions.

Lemma 48. Let P be an ALπ process such that P has no divergences in the ground LTS. Then
it has no divergences in the modified LTS for ALπ.

Proof. The replicated inputs guarding static links created by an output transition in the modified
LTS are always at fresh names—the c̃ in Figure 6. Hence, no communication at the names in c̃
is possible. Furthermore, in the ground LTS, the additional inputs at the names in c̃ are with
fresh names, so they cannot generate new τ transitions. 2

The encoding into ALπ is fully abstract.

Theorem 49. M -η N iff V[[M ]] 'ALπ V[[N ]], for any M,N ∈ Λ.

6. Contextual equivalence and preorders

We have presented full abstraction for η-Eager-Tree equality taking a ‘branching’ behavioural
equivalence, namely barbed congruence, on the π-processes. We show here the same result for
contextual equivalence, the most common ‘linear’ behavioural equivalence. We also extend the
results to preorders.

We only discuss the encoding I into Iπ. Similar results however hold for the encoding V into
ALπ.

24



6.1. Contextual relations and traces

Contextual equivalence is defined in the π-calculus analogously to its definition in the λ-
calculus (Definition 2); thus, with respect to barbed congruence, the bisimulation game on
reduction is dropped. Since we wish to handle preorders, we also introduce the contextual
preorder.

Definition 50. Two Iπ processes P,Q are in the contextual preorder, written P .Iπ
ct Q, if

C[P ] ⇓a implies C[Q] ⇓a, for all contexts C. They are contextually equivalent, written P 'Iπ
ct Q,

if both P .Iπ
ct Q and Q .Iπ

ct P hold.

As usual, these relations are extended to abstractions by requiring instantiation of the pa-
rameters with fresh names. To manage contextual preorder and equivalence in proofs, we exploit
characterisations of them as trace inclusion and equivalence. We define the traces of a process
as follows:

Definition 51. A (finite, weak, ground) trace is a finite sequence of visible actions µ1, . . . , µn
such that for i 6= j the bound names of µi and µj are all distinct and if j < i, the free names of
µj and the bound names of µi are all distinct.

For s = µ1, . . . , µn, we write P
s

=⇒ if P
µ1

==⇒ P1
µ2

==⇒ P2 . . . Pn−1
µn

==⇒ Pn, for some processes
P1, . . . , Pn. In such a situation, we sometimes say that s is a finite trace of P .

Definition 52. Two Iπ processes P,Q are in the trace inclusion, written P �tr Q, if P
s

=⇒
implies Q

s
=⇒, for each trace s. They are trace equivalent, written P ≈tr Q, if both P �tr Q and

Q �tr P hold.

The following result is standard.

Proposition 53. In Iπ, relation .Iπ
ct coincides with �tr, and relation 'Iπ

ct coincides with ≈tr.

6.2. A proof technique for preorders

We modify the technique of unique solution of equations to reason about preorders, precisely
the trace inclusion preorder.

We say that F̃ is a pre-fixed point for �tr of a system of equations {X̃ = Ẽ} if Ẽ[F̃ ] �tr F̃ ;

similarly, F̃ is a post-fixed point for �tr if F̃ �tr Ẽ[F̃ ]. In the case of equivalence, the technique
of unique solutions exploits symmetry arguments, but symmetry does not hold for preorders.
We overcome the problem by referring to the syntactic solution of the system in an asymmetric
manner. This yields the two lemmas below, intuitively stating that the syntactic solution of a
system is its smallest pre-fixed point, as well as, under the divergence-freeness hypothesis, its
greatest post-fixed point.

In [7], in order to prove that a system of equations has a unique solution, we need to extend
the transitions to equation expressions (i.e., contexts). For the same reasons, here we consider
that contexts or equations may perform transitions, obtained as for the LTS, and assuming the
hole does not perform any action. This is extended to traces. Hence, if E〈ã〉 has the trace s

(written E〈ã〉 s
=⇒), then for any F̃ , E[F̃ ]〈ã〉 s

=⇒. For more details we refer the reader to [7].

Lemma 54 (Pre-fixed points, �tr). Let E be a system of equations, and K̃E its syntactic solution.

If F̃ is a pre-fixed point for �tr of E, then K̃E �tr F̃ .

Proof. Consider a finite trace s of KẼ,i〈ã〉. As it is finite, there must be an n such that s is a

trace of Eni 〈ã〉, hence it is also a trace of Eni [F̃ ]〈ã〉. From Ẽ[F̃ ] �tr F̃ , by congruence if follows

that En+1
i [F̃ ] �tr E

n
i [Fi], hence also En+1

i [F̃ ] �tr Fi. Hence, s is a trace of Fi〈ã〉, and we can
conclude by Proposition 53. 2

Lemma 55 (Post-fixed points, �tr). Let E be a guarded system of equations, and K̃E its syntactic

solution. Suppose K̃E has no divergences. If F̃ is a post-fixed point for �tr of E, then F̃ �tr K̃E .

The proof of Lemma 55 is similar to the proof of Theorem 16 (for bisimilarity). Details of
the proof are given in Appendix E.

The following proof technique makes it possible to avoid referring to the syntactic solution
of a system of equations, which is sometimes inconvenient.
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Theorem 56. Suppose that E is a guarded system of equations with a divergence-free syntactic
solution. If F̃ (resp. G̃) is a pre-fixed point (resp. post-fixed point) for �tr of E, then G̃ �tr F̃ .

Proof. Apply Lemma 55 to F̃ and Lemma 54 to G̃: this gives G̃ �tr K̃E �tr F̃ . 2

We can also extend Lemma 18 to preorders. Given two systems of equations E and E ′, we
say that E ′ extends E with respect to a given preorder if there exists a fixed set of indices J such
that:

1. any pre-fixed point of E for the preorder can be obtained from a pre-fixed point of E ′ (for
the same preorder) by removing the components corresponding to indices in J ;

2. the same as (1) with post-fixed points in place of pre-fixed points.

Lemma 57. Consider two systems of equations E ′ and E where E ′ extends E with respect to
�tr. Furthermore, suppose E ′ is guarded and has a divergence-free syntactic solution. If F̃ is a
pre-fixed point for �tr of E, and G̃ a post-fixed point for �tr of E, then G̃ �tr F̃ .

Unique solution for trace equivalence. Theorem 56 gives the following property:

Corollary 58. In Iπ, a weakly guarded system of equations whose syntactic solution does not
diverge has a unique solution for ≈tr.

If F̃ ≈tr Ẽ[F̃ ] and G̃ ≈tr Ẽ[G̃], this gives, by applying Theorem 56 twice, F̃ �tr G̃ and

G̃ �tr F̃ , hence F̃ ≈tr G̃.

6.3. Full Abstraction

The preorder on λ-terms induced by the contextual preorder is η-eager normal-form simi-
larity, ≤η. It is obtained by imposing that M ≤η N for all N , whenever M is divergent. Thus,
with respect to the bisimilarity relation -η, we only have to change clause (1) of Definition 3,
by requiring only M to be divergent.

Definition 59 (η-eager normal-form similarity). A relation R between λ-terms is an η-eager
normal-form simulation if, whenever MRN , one of the following holds:

1. M diverges

2. M =⇒ Ce[xV ] and N =⇒ C ′e[xV
′] for some x, V , V ′, Ce and C ′e such that VRV ′ and

Ce[z]RC ′e[z] for some z fresh in Ce, C
′
e

3. M =⇒ λx.M ′ and N =⇒ λx.N ′ for some x, M ′, N ′ such that M ′RN ′

4. M =⇒ x and N =⇒ x for some x

5. M =⇒ x and N =⇒ λz.Ce[xV ] for some x, z, V and Ce such that zRV and yRCe[y] for
some y fresh in Ce

6. N =⇒ x and M =⇒ λz.Ce[xV ] for some x, z, V and Ce such that VRz and Ce[y]Ry for
some y fresh in Ce

η-eager normal form similarity is the largest η-eager normal-form simulation.

Theorem 60 (Full abstraction on preorders). For any M,N ∈ Λ, we have M ≤η N iff
I[[M ]] .Iπ

ct I[[N ]].

The structure of the proofs is similar to that for bisimilarity, using however Theorem 56. We
discuss the main aspects of the soundness and the completeness.

Soundness for trace inclusion. We show that I[[M ]] �tr I[[N ]] implies M ≤η N . The proof
follows the same lines as the proof from Section 4.3: we define the relation R := {(M,N) |
O[[M ]] �tr O[[N ]]}, and show that it is an η-eager normal-form simulation. The proof car-
ries over similarly, using the equivalents for trace inclusion of Lemmas 24, 28, 29 and 32 and
Proposition 27.
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Completeness for trace inclusion. Given an η-eager normal-form simulation R, we define a
system of equations ER as in Section 4.4. The only notable difference in the definition of the
equations is in the case where MRN , M diverges and N has an eager normal form. In this
case, we use the following equation instead:

XM,N = (ỹ) I[[Ω]] . (5)

As in Section 4.4, we define a system of guarded equations E ′R whose syntactic solutions do not
diverge. Equation (5) is replaced with XM,N = (ỹ, p) 0.

Exploiting Lemma 57, we can use unique solution for preorders (Theorem 56) with ER instead
of E ′R.

Defining Ic[[R1]] and Ic[[R2]] as previously, we need to prove that Ic[[R1]] �tr ẼR[Ic[[R1]]]

and ẼR[Ic[[R2]]] �tr Ic[[R2]]. The former result is established along the lines of the analogous
result in Section 4.4: indeed, Ic[[R1]] is a solution of ER for ≈, and ≈tr is coarser than ≈.

For the latter, the only difference is due to equation (5), when MRN , and M diverges but
not N . In that case, we have to prove that I[[Ω]] �tr I[[N ]], which follows easily because the
only trace of I[[Ω]] is the empty one, hence I[[Ω]]〈p〉 �tr P for any P .

We can then derive full abstraction for contextual equivalence as a corollary.

Corollary 61 (Full abstraction for 'Iπ
ct). For any M,N in Λ, M -η N iff I[[M ]] 'Iπ

ct I[[N ]].

7. Conclusion

In the paper we have studied the main question raised in Milner’s landmark paper on func-
tions as π-calculus processes, which is about the equivalence induced on λ-terms by their process
encoding. We have focused on call-by-value, where the problem was still open; as behavioural
equivalence on π-calculus we have taken contextual equivalence and barbed congruence (the
most common ‘linear’ and ’branching’ equivalences).

First we have shown that some expected equalities for open terms fail under Milner’s encod-
ing. We have considered two ways for overcoming this issue: rectifying the encodings (precisely,
avoiding free outputs); restricting the target language to ALπ, so to control the capabilities of
exported names. We have proved that, in both cases, the equivalence induced is Eager-Tree
equality, modulo η (i.e., Lassen’s η-eager normal-form bisimulation).

We have then introduced a preorder on these trees, and derived similar full abstraction
results for them with respect to the contextual preorder on π-terms. The paper is also a test
case for the technique of unique solution of equations (and inequations), which is essential in all
our completeness proofs.

Lassen had introduced Eager Trees as the call-by-value analogous of Levy-Longo and Böhm
Trees. The results in the paper confirm the claim, on process encodings of λ-terms: it was
known that for (weak and strong) call-by-name, the equalities induced are those of Levy-Longo
Trees and Böhm Trees [31].

For controlling capabilities, we have used ALπ. Another possibility would have been to use
a type system. In this case however, the technique of unique solution of equations needs to be
extended to typed calculi. We leave this for future work.

We also leave for future work a thorough comparison between the technique of unique solution
of equations and techniques based on enhancements of the bisimulation proof method (the “up-
to” proof techniques), including if and how our completeness results can be derived using the
latter techniques. (We recall that the “up-to” proof techniques are used in the completeness
proofs with respect to Levy-Longo Trees and Böhm Trees for the call-by-name encodings. We
have discussed the problems with call-by-value in Remark 44.) In any case, even if other solutions
existed, for this specific problem the unique solution technique appears to provide an elegant
and natural framework to carry out the proofs.

For our encodings we have used the polyadic π-calculus; Milner’s original paper [18] used
the monadic calculus (the polyadic π-calculus makes the encoding easier to read; it had not
been introduced at the time of [18]). We believe that polyadicity does not affect the results
in the paper (the possibility of autoconcurrency breaks full abstraction of the encoding of the
polyadic π-calculus into the monadic one, but autoconcurrency does not appear in the encoding
of λ-terms).
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In the call-by-value strategy we have followed, the function is reduced before the argument
in an application. Our results can be adapted to the case in which the argument runs first,
changing the definition of evaluation contexts. The parallel call-by-value, in which function and
argument can run in parallel (considered in [19]), appears more delicate, as we cannot rely on
the usual notion of evaluation context.

Interpretations of λ-calculi into π-calculi appear related to game semantics [5, 11, 10]. In
particular, for untyped call-by-name they both allow us to derive Böhm Trees and Levy-Longo
Trees [12, 21]. In this respect, it would be interesting to see whether the relationship between
π-calculus and Eager Trees studied in this paper could help to establish similar relationships in
game semantics.
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Appendix A. List of symbols for behavioural relations

The following table summarises the notation used for the equivalences and preorders in the
paper.

- eager normal-form bisimilarity (Definition 3)
-η η-eager normal-form bisimilarity (Definition 6)
≤η η-eager normal-form similarity (Section 6.3)
'L barbed congruence in L (Definition 8)
≈ (weak) bisimilarity (Definition 10)
� expansion (Definition 11)
'Λ

ct contextual equivalence in Λ (Definition 2)
'L

ct contextual equivalence in L (Section 6.1)
.Iπ

ct contextual preorder in Iπ (Section 6.1)
≈tr trace equivalence (Section 6.1)
�tr trace inclusion (Section 6.1)

where L is supposed to be a subcalculus of π; in the paper we have considered Iπ and ALπ.

Appendix B. Properties of Milner’s encoding (Section 3)

Proposition 20 (Non-law). For any value V , we have:

V[[I(xV )]] 6'π V[[xV ]] and V ′[[I(xV )]] 6'π V ′[[xV ]] .

Proof. For simplicity, we give the proof when V = y, and for encoding V. The same can be
shown for an arbitrary value V and for the encoding V ′, through similar calculations. We use
algebraic laws of the equivalence 'π, or of its associated proof techniques, to carry out the
calculations (cf. [30]).

V[[xy]]〈p〉 = νq (q〈x〉 | q(u).νr (r〈y〉 | r(w).u〈w, p〉))
'π νr (r〈y〉 | r(w).x〈w, p〉)
'π x〈y, p〉

V[[I(xy)]]〈p〉 'π νq (V[[I]]〈q〉 | q(u).νr (V[[xy]]〈r〉 | r(w).u〈w, p〉))
'π νq (q(u). !u(z, q′). q′〈z〉 | q(u).νr (V[[xy]]〈r〉 | r(w).u〈w, p〉))
'π νu (!u(z, q). q〈z〉 | νr (x〈y, r〉 | r(w).u〈w, p〉))
'π νr (x〈y, r〉 | r(w).νu (!u(z, q). q〈z〉 | u〈w, p〉))
'π νr (x〈y, r〉 | r(w). p〈w〉)
= νq (x〈y, q〉 | q(z). p〈z〉)
= νq (x〈y, q〉. q . p)

2

Appendix C. Soundness proof (Section 4)

Appendix C.1. Properties of the optimised encoding

Lemma 22. We have:

1. νq (p . q | q . r) � p . r, for all continuation names p, r.

2. νy (x . y | y . z) � x . z, for all value names x, z.

Proof. We first show the two following laws:

νq (p . q | q . r) ∼ p(x).νq (q(y). y . x | q . r)
� p(x).νy (y . x | r(z). z . y)

∼ p(x). r(z).νy (z . y | y . x)
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and

νy (x . y | y . z) ∼ !x(p, x′).νy (y(q, y′). (y′ . x′ | q . p) | y(q, y′). z(r, z′). (z′ . y′ | r . q))
� !x(p, x′).νq, y′ . (y′ . x′ | q . p | z(r, z′). (z′ . y′ | r . q))
∼ !x(p, x′). z(r, z′). (νq (r . q | q . p) | νy′ (z′ . y′ | y′ . x′))

We define a relation R as the relation that contains, for all continuation names p, r and for
all value names x, z, the following pairs:

1. νq (p . q | q . r) and p . r
νy (x . y | y . z) and x . z

2. r(z).νy (z . y | y . x) and r(z). z . x
z(r, z′). (νq (r . q | q . p) | νy′ (z′ . y′ | y′ . x′)) and z(r, z′). (r . p | z′ . x′)
(for all non-continuation names x or x′, z′)

We show that this is an expansion up to expansion and contexts, using the previous laws
(each of those processes has only one possible action). 2

In the proofs below, we shall use the following properties about the optimised encoding,
without referring explicitly to this lemma.

Lemma 62.

� For any M,p, O[[M ]]〈p〉 cannot perform any input at p.

� For any V, y, the only transition that OV[[V ]]〈y〉 can do is an input at y.

� For any M,x, p, if x ∈ fv(M), then x appears in O[[M ]]〈p〉 only in output subject position.

The properties above follow by an easy induction. The last one allows us to use the distribu-
tivity properties of private replications [30] when reasoning algebraically about the encoding of
λ-terms.

Lemma 23. We have:

1. νx (O[[M ]]〈p〉 | x . y) � O[[M{y/x}]]〈p〉.

2. νp (O[[M ]]〈p〉 | p . q) � O[[M ]]〈q〉.

3. νy (OV[[V ]]〈y〉 | x . y) � OV[[V ]]〈x〉.

Proof. We establish the conjunction of the three following properties:

(L1) νx (O[[M ]]〈p〉 | x . y) � O[[M{y/x}]]〈p〉, and, if M is equal to some value V , we have
νx (OV[[V ]]〈y1〉 | x . y) � OV[[V {y/x}]]〈y1〉, for any y1.

(L2) νp (O[[M ]]〈p〉 | p . q) � O[[M ]]〈q〉.

(L3) If M is equal to some value V , νy (OV[[V ]]〈y〉 | x . y) � OV[[V ]]〈x〉.

Indeed, as we show below, there are dependencies between these three properties, which prevent
us from treating them separately.

We reason by induction over M , and introduce some notations. In each case, we use (IH1)
to refer to property (L1) of the induction hypothesis, and similarly for (IH2) and (IH3).

To reason about (L1), we set lhs = νx (O[[M ]]〈p〉 | x . y) and rhs = O[[M{y/x}]]〈p〉.

First case: M = z.
(L1). Then lhs = νx (O[[M ]]〈p〉 | x . y) = νx (p(y1). y1 . z | x . y). There are two sub-cases.

� M = z 6= x. Then lhs ∼ p(y1). y1 . z = rhs because νx x . y ∼ 0.

Since M is a value, we must also check that νx (OV[[z]]〈y1〉 | x . y) � OV[[z{y/x}]]〈y1〉.
Lemma 22 allows us to show this.
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� M = x. Then

lhs ∼ p(y1).νx (y1 . x | x . y) (C.1)

� p(y1). y1 . y = rhs (C.2)

(C.1) holds because the only transition lhs can do is the output at p. (C.2) follows from
Lemma 22.

Again, since x is a value, we have to show the corresponding property, which amounts to
show νx (y1 . x | x . y) � y1 . y, which is given by Lemma 22.

(L2). We write in general, for any value V (the following reasoning is also used below, in
the case where M is an abstraction):

νp (O[[V ]]〈p〉 | p . q) = νp (p(y).OV[[V ]]〈y〉 | p . q)
� νy (OV[[V ]]〈y〉 | q(y′). y′ . y) (C.3)

∼ q(y′).νy (OV[[V ]]〈y〉 | y′ . y) (C.4)

Step (C.3) holds because the first process deterministically reduces to the second, and step (C.4)
holds because the only action the process can do is the output at q.

Now since V = z, we have OV[[z]]〈y〉 = y . z, and we obtain q(y′).νy (y . z | y′ . y), a process
that expands I[[z]]〈q〉 by Lemma 22.

(L3). We check that we do have νy (y . z | x . y) � x . z by Lemma 22.

Second case: M = λz.M ′.
(L1). We distinguish two cases.

� If z 6= x, then we can write

lhs = νx (p(y1). !y1(z, q).O[[M ′]]〈q〉 | x . y)

∼ p(y1). !y1(z, q).νx (O[[M ′]]〈q〉 | x . y) (C.5)

� rhs (C.6)

Step (C.5) holds because x does not occur in the two prefixes, and step (C.6) holds by
(IH1).

Since M is a value, we have to prove νx (OV[[λz.M ′]]〈y1〉 | x . y) � OV[[λz.M ′{y/x}]]〈y1〉.
This follows by (IH1), along the lines of the above proof.

� If M = λx.M ′, then x /∈ fn(O[[M ]]〈p〉) and we can observe that: first, the link x . y
together with the restriction on x can be erased up to ∼; second, M{y/x} = M . We can
thus conclude.

Again, M is a value, so we need to prove the corresponding property, which is done as in
the proof above.

(L2). We know from the first case in the induction (step (C.4)) that

νp (O[[λz.M ′]]〈p〉 | p . q) � q(y′).νy (OV[[λz.M ′]]〈y〉 | y′ . y)

= q(y′).νy (!y(z, q′).O[[M ′]]〈q′〉 | y′ . y)

∼ q(y′). !y′(z1, q1).νy (!y(z, q′).O[[M ′]]〈q′〉
| y(z, q′). (z . z1 | q′ . q1)) (C.7)

� q(y′). !y′(z1, q1). (νy , z, q′)(!y(z, q′).O[[M ′]]〈q′〉
| O[[M ′]]〈q′〉 | z . z1 | q′ . q1) (C.8)

∼ q(y′). !y′(z1, q1). (νz , q′)(O[[M ′]]〈q′〉 | z . z1 | q′ . q1) (C.9)

� q(y′). !y′(z1, q1).O[[M ′{z1/z}]]〈q1〉 (C.10)

= O[[λz.M ′]]〈q〉 (C.11)

Step (C.7) holds because the input at y′ is the only transition that can be performed after
the bound output at q. Step (C.8) holds by performing a deterministic communication on y.
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Step (C.9) simply consists in garbage-collecting the input at y. For step (C.10), we use (IH1)
and (IH2)— note that (IH2) is necessary here to establish (IH1).

(L3). We write

νy (!y(z, q).O[[M ′]]〈q〉 | x . y) ∼ !x(z′, q′).νy (!y(z, q).O[[M ′]]〈q〉
| y(z, q). (z . z′ | q . q′))

� !x(z′, q′). (νz , q)(O[[M ′]]〈q〉 | z . z′ | q . q′)
� !x(z′, q′).O[[M ′{z′/z}]]〈q′〉

The reasoning steps are like in the proof above: expand the behaviour of a link process,
perform a deterministic communication, and rely on (IH1) and (IH2) to get rid of the forwarders.
We note that (IH1) and (IH2) are used to prove (L3) in this case.

Third case: M is an application.
(L3). We do not have to consider (L3) in this case, since M is not a value.

There are 5 sub-cases, according to the definition of the optimised encoding of Figure 3.
We let W stand for the process y1(w′, r′). (w′ .w | r′ . p), which is used in four of the clauses

in the encoding for application.

(L2). To prove (L2), we reason in the same way in four sub-cases, namely all except M = z1V :
in these sub-cases the only occurrence of p in O[[M ]]〈p〉 is in the sub-process W. We reason
modulo strong bisimilarity (∼) to bring the forwarder p . q close to that occurrence, yielding a
subterm of the form y1(w′, r′). (w′ . w | νp (r′ . p | p . q)). We use Lemma 22 to deduce that
this process expands y1(w′, r′). (w′ . w | r′ . q), which allows us to establish (L2).

Similarly, in the last case (M = z1V ), we write

νp (z1(z, q′). (OV[[V ]]〈z〉 | q′ . p) | p . q) ∼ z1(z, q′). (OV[[V ]]〈z〉 | νp (q′ . p | p . q)),

and we conclude using Lemma 22.

(L1). We analyse the 5 cases corresponding to the optimised encoding of application.

� M = M ′N ′, and none of M ′ and N ′ are values.

Then

lhs = νx (νq (O[[M ′]]〈q〉 | q(y1).νr (O[[N ′]]〈r〉 | r(w).W)) | x . y)

∼ νq (νx (O[[M ′]]〈q〉 | x . y) | q(y1).νr (νx (O[[N ′]]〈r〉 | x . y) | r(w).W))(C.12)

� νq (O[[M ′{y/x}]]〈q〉 | q(y1).νr (O[[N ′{y/x}]]〈r〉 | r(w).W)) = rhs (C.13)

Step (C.12) holds by distributivity properties of private replications, and step (C.13) holds
by applying (IH1) twice.

� M = M ′V . Then

lhs = νx (νq (O[[M ′]]〈q〉 | q(y1).νw (OV[[V ]]〈w〉 |W)) | x . y)

∼ νq (νx (O[[M ′]]〈q〉 | x . y) | q(y1).νw (νx (OV[[V ]]〈w〉 | x . y) |W) (C.14)

� rhs (C.15)

Step (C.14) is proved using the distributivity properties of private replications; step (C.15)
follows by (IH1).

� M = VM ′. This case is proved using the same kind of reasoning as the previous one.

� M = (λz.M ′)V . Then

lhs = νx (νy 1, w(OV[[λz.M ′]]〈y1〉 | OV[[V ]]〈w〉 |W) | x . y)

∼ νy 1, w(νx (OV[[λz.M ′]]〈y1〉 | x . y) | νx (OV[[V ]]〈w〉 | x . y) |W)

� rhs

Here again, we distribute the forwarder and then apply (IH1) twice (for the encoding
OV[[·]]〈·〉).
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� M = z1V . We have

lhs = νx (z1(z, q). (OV[[V ]]〈z〉 | q . p) | x . y)

We distinguish two cases:

– if z1 6= x, z1{y/x} = z1, and

lhs ∼ z1(z, q).νx (OV[[V ]]〈z〉 | x . y | q . p)
� z1(z, q). (OV[[V {y/x}]]〈z〉 | q . p) = rhs

Above, we apply (IH1) for OV[[V ]]〈z〉.
– if z1 = x, then the only transition lhs can make is a communication at x, so

lhs � (νx , q, z)(OV[[V ]]〈z〉 | q . p | x . y | y(w1, q1). (q1 . q | w1 . z))

∼ y(w1, q1).νx (νz (OV[[V ]]〈z〉 | w1 . z) | νq (q1 . q | q . p) | x . y)(C.16)

Step (C.16) holds because the only transition the process can make is the bound
output at y.

We then use Lemma 22 to contract the forwarders, yielding q1 . p; we use (IH3) to
erase the forwarder w1 . z, and we use (IH1) to replace νx (OV[[V ]]〈w1〉 | x . y) with
OV[[V {y/x}]]〈w1〉. This finally yields rhs.

We remark here that we use (IH3) to show (L1).
2

Lemma 24. I[[M ]] � O[[M ]], for all M ∈ Λ.

Proof. We reason by induction over M .
Case M = x. By definition, O[[M ]]〈p〉 = I[[M ]]〈p〉.
Case M = λx.N . Assuming O[[N ]]〈q〉 � I[[N ]]〈q〉, we have, by definition

O[[M ]]〈p〉 = p(y). !y(x, q).O[[N ]]〈q〉
� p(y). !y(x, q). I[[N ]]〈q〉 = I[[M ]]〈p〉

Case M = M1M2. We have by definition

I[[M1M2]]〈p〉 = νq (I[[M1]]〈q〉 | q(y).νr (I[[M2]]〈r〉 | r(w).W))

with W = y(w′, p′). (w′ . w | p′ . p)

We distinguish 5 cases, according to the definition of the optimised encoding in Figure 3.

� M1 = x,M2 = V .

I[[xV ]]〈p〉 � νq (q(y). y . x | q(y).νr (O[[V ]]〈r〉 | r(w).W)) (C.17)

� νy, w (y . x | OV[[V ]]〈w〉 | y(w′, p′). (w′ . w | p′ . p))
� νw,w′ (x(z, q). (z . w′ | q . p′) | OV[[V ]]〈w〉 | w′ . w | p′ . p)
∼ x(z, q).νw,w′ (OV[[V ]]〈w〉 | z . w′ | w′ . w | q . p′ | p′ . p) (C.18)

� x(z, q).νw (OV[[V ]]〈w〉 | z . w | q . p) (C.19)

� x(z, q). (OV[[V ]]〈z〉 | q . p) = O[[xV ]]〈p〉 (C.20)

Step (C.17) follows by definition (for the encoding of x), and by induction (for the encoding
of V ). The two following � steps are derived by performing deterministic τ transitions.
We then remark that the only action that can be performed is a bound output at x
(step (C.18)), and contract fowarders using Lemma 22 (step (C.19)). Finally, we use
Lemma 23 in step (C.20).
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� Case M = (λx.N)V .

I[[(λx.N)V ]]〈p〉 = νq (q(y). !y(x, p′). I[[N ]]〈p′〉 | q(y).νr (I[[V ]]〈r〉 | r(w).W)))

� νq (q(y). !y(x, p′). I[[N ]]〈p′〉
| q(y).νr (r(w).OV[[V ]]〈w〉 | r(w).W)) (C.21)

� ν(y, w) (!y(x, p′). I[[N ]]〈p′〉 | OV[[V ]]〈w〉 |W) (C.22)

� ν(y, w) (!y(x, p′).O[[N ]]〈p′〉 | OV[[V ]]〈w〉 |W) (C.23)

= O[[M ]]〈p〉

Steps (C.21) and (C.23) follow by induction. Step (C.22) follows by performing two
deterministic τ -transitions and garbage-collecting the restrictions on q and r.

� Case M1 = V,M2 = N .

I[[V N ]]〈p〉 � νq (q(y).OV[[V ]]〈y〉 | q(y).νr (O[[N ]]〈r〉 | r(w).W))

� νy (OV[[V ]]〈y〉 | νr (O[[N ]]〈r〉 | r(w).W)) = O[[V N ]]〈p〉

Again, we use the inductive hypothesis, and perform a deterministic τ -transition on q.

� Case M1 = N,M2 = V .

I[[NV ]]〈p〉 � νq (O[[N ]]〈q〉 | q(y).νr (r(w).OV[[V ]]〈r〉 | r(w).W))

� νq (O[[N ]]〈q〉 | q(y).νw (OV[[V ]]〈w〉 |W)) = O[[NV ]]〈p〉

Again, we first use the inductive hypothesis, then contract a deterministic communication
on r.

� Finally, if neither M1 nor M2 is a value, the two encodings coincide, and the property is
immediate.

2

Appendix C.2. Operational Correspondence and Soundness

The following lemma is the central property we need to derive the validity of βv-reduction.

Lemma 63. νx (O[[M ]]〈p〉 | OV[[V ]]〈x〉) � O[[M{V/x}]]〈p〉.

Proof. We establish the following property

νx (O[[M ]]〈p〉 | OV[[V ]]〈x〉) � O[[M{V/x}]]〈p〉
and, if M is a value V ′, νx (OV[[V ′]]〈y〉 | OV[[V ]]〈x〉 � OV[[V ′{V/x}]]〈y〉

by induction over the size of M . We write rhs for the right hand side of the first relation above,
that is, rhs stands for O[[M{V/x}]]〈p〉. We use similarly lhs for νx (O[[M ]]〈p〉 | OV[[V ]]〈x〉).

We distinguish several cases, following the definition of the optimised encoding in Figure 3.

� M is a variable. We distinguish two sub-cases.

– M = z, z 6= x. Then M{V/x} = z, and we can write

lhs = νx (p(y). y . z | OV[[V ]]〈x〉)
∼ p(y). y . z (C.24)

= rhs

Relation (C.24) above holds because x is fresh for p(y). y . z and because OV[[V ]]〈x〉
starts with an input on x.

Since M is a value, we must also prove the second relation mentioned above. We
have indeed νx (OV[[z]]〈y〉 | OV[[V ]]〈x〉) ∼ y . z = OV[[V ]]〈x〉, and we can conclude
since ∼ ⊆ �.
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– M = x. Then M{V/x} = V , and we can write

lhs = νx (p(y). y . x | OV[[V ]]〈x〉)
∼ p(y).νx (OV[[V ]]〈x〉 | y . x) (C.25)

� p(y).OV[[V ]]〈y〉 (C.26)

= rhs

Relation (C.25) holds because OV[[V ]]〈x〉 starts with an input at x. Relation (C.26)
follows by Lemma 23.

Again, in this case M is a value, so we must also prove the second relation. We can
indeed check that νx (OV[[x]]〈y〉 | OV[[V ]]〈x〉) � OV[[V ]]〈y〉 by Lemma 23.

� M is an abstraction. We distinguish two sub-cases.

– M = λx.M ′. Then M{V/x} = M , and we can write

lhs = νx (p(y). !y(x, q).O[[M ′]]〈q〉 | OV[[V ]]〈x〉)
∼ p(y). !y(x, q).O[[M ′]]〈q〉 (C.27)

= rhs

Relation (C.27) above holds because x does not occur free in p(y). !y(x, q)O[[M ′]]〈q〉,
and OV[[V ]]〈x〉 starts with an input at x.

M is a value, so we must prove the second relation as well. We have

νx (OV[[λx.M ′]]〈y〉 | OV[[V ]]〈x〉)
= νx (!y(x, q).O[[M ′]]〈q〉 | OV[[V ]]〈x〉)
∼ !y(x, q).O[[M ′]]〈q〉 | νxOV[[V ]]〈x〉 (C.28)

∼ OV[[M ]]〈y〉 (C.29)

Relation (C.28) holds because x does not occur free in !y(x, q).O[[M ′]]〈q〉, and re-
lation (C.29) holds because the only possible transition of OV[[V ]]〈x〉 is an input at
x.

– M = λz.M ′ with z 6= x. Then M{V/x} = λz. (M ′{V/x}), and by definition,
rhs = p(y). !y(z, q).O[[M ′{V/x}]]〈q〉.
We can write

lhs = νx (p(y). !y(z, q).O[[M ′]]〈q〉 | OV[[V ]]〈x〉)
∼ p(y). !y(z, q).νx (O[[M ′]]〈q〉 | OV[[V ]]〈x〉)
� p(y). !y(z, q).OV[[M ′{V/x}]]〈q〉 = rhs

M is a value, so we must also prove the second relation:

νx (OV[[λz.M ′]]〈y〉 | OV[[V ]]〈x〉)
= νx (!y(z, q).O[[M ′]]〈q〉 | OV[[V ]]〈x〉)
∼ !y(z, q).νx (O[[M ′]]〈q〉 | OV[[V ]]〈x〉) (C.30)

� !y(z, q).O[[M ′{x/V }]]〈q〉 (C.31)

= OV[[M{x/V }]]〈y〉

� M is an application. We distinguish 5 sub-cases, according to the definition of the opti-
mised encoding of Figure 3. In the following, we let W stand for the process y(w′, r′). (w′ .
w | r′ . p), which is used in the different clauses in the encoding.

We also make use of some standard properties of replicated resources [30].

– M = M ′N ′, and none of M ′ and N ′ are values. Then we have:

lhs = νx νq (O[[M ]]〈q〉 | OV[[V ]]〈x〉 | q(y).νr (O[[N ]]〈r〉 | r(w).W))

∼ νq νx (O[[M ]]〈q〉 | OV[[V ]]〈x〉
| q(y).νr (νx (O[[N ]]〈r〉 | OV[[V ]]〈x〉) | r(w).W)) (C.32)

� νq (O[[M{V/x}]]〈q〉 | q(y).νr (O[[N{V/x}]]〈r〉 | r(w).W)) (C.33)

= rhs
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Relation (C.32) holds by the distributivity properties of private replications [30] (note
in particular that x is not used in input in O[[M ]]〈q〉 and in O[[N ]]〈r〉). Relation (C.33)
holds by using the induction hypothesis twice.

– M = M ′V ′. Then

lhs = νx (νq (O[[M ′]]〈q〉 | q(y).νw (OV[[V ′]]〈w〉 |W) | OV[[V ]]〈x〉)
∼ νq (νx (O[[M ′]]〈q〉 | OV[[V ]]〈x〉)

| q(y).νw (νx (OV[[V ′]]〈w〉 | OV[[V ]]〈x〉) |W))) (C.34)

� νq (O[[M ′{x/V }]]〈q〉 | q(y).νw (OV[[V ′{x/V }]]〈w〉 |W)) (C.35)

= rhs

– M = V ′M ′. Then

lhs = νx (νy (OV[[V ′]]〈y〉 | νr (O[[M ′]]〈r〉 | r(w).W | OV[[V ]]〈x〉)
∼ νy (νx (OV[[V ′]]〈y〉 | OV[[V ]]〈x〉)

| νr (νx (O[[M ′]]〈r〉 | OV[[V ]]〈x〉) |W)))) (C.36)

� νr (O[[M ′{x/V }]]〈r〉 | νr (OV[[V ′{x/V }]]〈r〉 |W)) (C.37)

– M = x′V ′.

* If x′ = x, then M{x/V } = V V ′. We have

lhs = νx (x(z, q). (OV[[V ′]]〈z〉 | q . p) | OV[[V ]]〈x〉)

We consider two cases.
Suppose V = z, then OV[[V ]]〈x〉 = x . z.
Suppose V = λz.M ′, then OV[[V ]]〈x〉 = !x(z, q).O[[M ′]]〈q〉.

* If x′ 6= x, then M{x/V } = x′ V ′. We have

lhs = νx (x′(z, q). (OV[[V ′]]〈z〉 | q . p) | OV[[V ]]〈x〉)
∼ x′(z, q). (νx (OV[[V ′]]〈z〉 | OV[[V ]]〈x〉) | q . p) (C.38)

� x′(z, q). (OV[[V ′{x/V }]]〈z〉 | q . p) = rhs (C.39)

– M = (λx′.M ′)V ′. Then

lhs = νx (νy , w(OV[[λx′.M ′]]〈y〉 | OV[[V ′]]〈w〉 |W) | OV[[V ]]〈x〉)
∼ νy , w(νx (OV[[λx′.M ′]]〈y〉 | OV[[V ]]〈x〉)

| νx (OV[[V ′]]〈w〉 | OV[[V ]]〈x〉) |W) (C.40)

� νy , w(νx (OV[[(λx′.M ′]]〈y〉){x/V } | OV[[V ]]〈x〉)
| νx (OV[[V ′{x/V }]]〈w〉 | OV[[V ]]〈x〉) |W) (C.41)

= rhs
2

Lemma 25 (Validity of βv-reduction). For any M,N in Λ, M −→ N implies that for any p,
O[[M ]]〈p〉 � O[[N ]]〈p〉.

Proof. We show a stronger property, namely thatO[[M ]]〈p〉 τ−→� O[[N ]]〈p〉. This is a consequence
of Lemma 63, exploiting the congruence properties of �, and the fact that for any M , Ce and p,
the only transition O[[Ce[M ]]]〈p〉 can do arises from a transition of the encoding of M (intuitively,
the encoding of the hole is in active position). 2

Lemma 26. We have:

O[[Ce[xV ]]]〈p〉 ∼ x(z, q). (OV[[V ]]〈z〉 | q(y).O[[Ce[y]]]〈p〉).

Proof. We reason by induction over the shape of the evaluation context Ce.
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� Base case: Ce = [·]. We observe O[[y]]〈p〉 = p(z). z . y, hence q(y).O[[y]]〈p〉 = q . p.

We then write

O[[xV ]]〈p〉 = x(z, q). (OV[[V ]]〈z〉 | q . p) by definition

= x(z, q). (OV[[V ]]〈z〉 | q(y).O[[y]]〈p〉)

� Case Ce = V ′C ′e. We write

O[[Ce[xV ]]]〈p〉 = νs
(
OV[[V ′]]〈s〉 | νr (O[[C ′e[xV ]]]〈r〉 | P0)

)
with P0 = r(w). s(w′, r′). (w′ . w | r′ . p)

We have by induction

O[[C ′e[xV ]]]〈r〉 ∼ x(z1, q1). (OV[[V ]]〈z1〉 | q1(y1).O[[C ′e[y1]]]〈r〉),

which gives

O[[Ce[xV ]]]〈p〉 ∼ νs
(
OV[[V ′]]〈s〉 |
νr (x(z1, q1). (OV[[V ]]〈z1〉 | q1(y1).O[[C ′e[y1]]]〈r〉) | P0)

)
∼ x(z1, q1).νs

(
OV[[V ′]]〈s〉

| νr (OV[[V ]]〈z1〉 | q1(y1).O[[C ′e[y1]]]〈r〉 | P0)
)

(C.42)

∼ x(z1, q1).
(
OV[[V ]]〈z1〉

| q1(y1). (νs (OV[[V ′]]〈s〉 | νr (O[[C ′e[y1]]]〈r〉 | P0)))
)

(C.43)

For (C.42), we observe that OV[[V ′]]〈s〉 starts with an input at s, and P0 starts with an
input at r. Therefore, the bound output at x is the only possible transition for the process
above, which allows us to bring the prefix on top.

For (C.43), we recall that P0 = r(w). s(w′, r′). (w′ . w | r′ . p). We observe that P0 can
start interacting only after the prefix q1(y1) is triggered, because the only possible output
at r is within O[[C ′e[y1]]]〈r〉. In turn, because the output at s in P0 is guarded by the input
at r, the subterm OV[[V ′]]〈s〉 can become active only after the interaction at r, and hence
it is sound, modulo strong bisimilarity, to place OV[[V ′]]〈s〉 under the prefix q1(y1).

We can then conclude, by observing that νs (OV[[V ′]]〈s〉 | νr (O[[C ′e[y1]]]〈r〉 | P0)) is equal
to O[[V ′C ′e[y1]]]〈p〉 by definition.

� Case Ce = C ′eM . We reason as follows:

O[[Ce[xV ]]]〈p〉 = νs (O[[C ′e[xV ]]]〈s〉 | s(z).νr (O[[M ]]〈r〉 | P0))

with P0 = r(w). z(w′, r′). (w′ . w | r′ . p)
∼ νs

(
x(z1, q1). (OV[[V ]]〈z1〉 | q1(y1).O[[C ′e[y1]]]〈s〉)
| s(z).νr (O[[M ]]〈r〉 | P0)

)
(C.44)

∼ x(z1, q1).
(
OV[[V ]]〈z1〉 | q1(y1).νs (O[[C ′e[y1]]]〈s〉)

| s(z).νr (O[[M ]]〈r〉 | P0))
)

(C.45)

Step (C.44) follows by induction, and step (C.45) is deduced as in the previous case.
2

Appendix C.3. Completeness

Lemma 34. If Ce is an evaluation context, V is a value, x is a name and z is fresh in Ce, then

I[[Ce[xV ]]] ≈ I[[(λz.Ce[z])(xV )]].

Proof. We use Lemma 26 and 24; we get:

I[[Ce[xV ]]]〈p〉 ≈ x(z, q). (OV[[V ]]〈z〉 | q(y). I[[Ce[y]]]〈p〉)

and
I[[(λw.Ce[w])(xV )]]〈p〉 ≈ x(z, q). (OV[[V ]]〈z〉 | q(y). I[[(λw.Ce[w])y]]〈p〉)

We conclude by validity of β-reduction (Lemma 36) applied to I[[(λw.Ce[w])y]]〈p〉. 2
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M ⇑ and N ⇑: XM,N = (ỹ) V[[Ω]]

M ⇓ x and N ⇓ x : XM,N = (ỹ) V[[x]]

M ⇓ λx.M ′ and N ⇓ λx.N ′ : XM,N = (ỹ) V[[λx.XM ′,N ′ ]]

M ⇓ Ce[xV ] and N ⇓ C ′e[xV ′] : XM,N = (ỹ) V[[(λz.XCe[z],C′
e[z]

) (x XV,V ′)]]

M ⇓ x, N ⇓ λz.N ′, N ′ ⇓ Ce[xV ] : XM,N = (ỹ) V[[λz.
(
(λw.Xw,Ce[w]) (x Xz,V )

)
]]

M ⇓ λz.M ′, M ′ ⇓ Ce[xV ], N ⇓ x : XM,N = (ỹ) V[[λz.
(
(λw.XCe[w],w) (x XV,z)

)
]]

Figure D.7: System EL
R of equations (the last two equations are only needed for -η)

M ⇑ and N ⇑: XM,N = (ỹ, p) 0

M ⇓ Ce[xv] and N ⇓ C ′e[xv′] : XM,N = (ỹ, p) (νz, q )(x〈z, q〉 | XVV,V ′〈z, ỹ ′〉
| q(w).XCe[w],C′

e[w]〈ỹ ′′ , p〉)
M ⇓ V and N ⇓ V ′ : XM,N = (ỹ, p) (νy )(p〈y〉 | XVv,v′〈z, ỹ ′〉)
V = x and V ′ = x : XVx,x = (z, x) z � x

V = λx.M and V ′ = λx.N : XVλx.M,λx.N = (z, ỹ) !z(x, q).XM,N 〈ỹ ′ , q〉
V = x, V ′ = λz.N , N ⇓ Ce[xV ] : XVx,λz.N = (y0, ỹ) !y0(z, q). (νz′, q′ )

(x〈z′, q′〉 | XVz,V 〈z′, ỹ ′〉
| q′(w).Xw,Ce[w]〈ỹ ′′ , q〉)

V = λz.M , M ⇓ Ce[xV ], V ′ = x : XVλz.M,x = (y0, ỹ) !y0(z, q). (νz′, q′ )

(x〈z′, q′〉 | XVV,z〈z′, ỹ ′〉
| q′(w).XCe[w],w〈ỹ ′′ , q〉)

Figure D.8: System EL′
R of equations (the last two equations are only needed for -η)

Appendix D. Systems of equations for ALπ (Section 5)

The systems of equations for ALπ are presented on Figures D.7 and D.8.
To introduce the second system of equations, we define the extension of the encoding to

equation variables as follows:

V[[XM,N ]]
def
= (p) XM,N 〈ỹ, p〉 where ỹ = fv(M,N)

Appendix E. Unique solution techniques for contextual relations (Section 6)

The proof of the following lemma is very similar to the proof of Theorem 16. For more
details, we refer the reader to [7], particularly the proof of unique solution for weak bisimilarity
in the setting of CCS.

Lemma 55 (Post-fixed points, �tr). Let E be a guarded system of equations, and K̃E its syntactic

solution. Suppose K̃E has no divergences. If F̃ is a post-fixed point for �tr of E, then F̃ �tr K̃E .

Proof. For simplicity, we only give the proof for a single equation E, rather than a system of
equations. Generalisation to systems of equations does not add any particular difficulty.

Assume E is an equation, F an abstraction, and F �tr E[P ]. We fix a set of fresh names
ã, and write P for F 〈ã〉. If α̃ = α1 . . . αn is a finite trace of P , we build a growing sequence of

transitions of En〈ã〉 such that En[F ]〈ã〉
α1...αik=====⇒ En[F ]

αik+1,...,αn
========⇒ Pn.

We start by making two observations:
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1. If the transitions in α̃ are all transitions of the context En〈ã〉, we stop and we have

En〈ã〉 α̃
=⇒, and thus KE〈ã〉

α̃
=⇒ . So α̃ is a trace of KE〈ã〉.

2. Otherwise there is an infinite sequence of transitions from KE〈ã〉 with visible actions
α1, . . . , αik for some k; therefore KE〈ã〉 has a divergence.

We now explain the construction of the sequence. Assume for that that we have both

(i) : En〈ã〉
α1,...,αik======⇒ En and (ii) : En[F ]

αik+1,...,αn
========⇒.

By (i) it follows that En+1[F ]〈ã〉
α1,...,αik======⇒ En[E[F ]].

By (ii) and congruence of �tr, it follows that αik+1, . . . , αn is a trace of En〈ã〉[F ] �tr

En[E[F ]].
We take for the new sequence of transitions the concatenation of the previous one, and the

part of En[E[F ]]
αik+1,...,αn

========⇒ that is a transition of the context En[E]. Since E is weakly
guarded, this is not an empty sequence.

By observation 2 above this construction has to stop, otherwise there would be a divergence.
We conclude by observation 1.

2
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