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H(X): ENTROPY ≈ uncertainty when guessing cell X

H(X|Y): CONDITIONAL ENTROPY ≈ uncertainty of guessing cell X, given cell Y

I(X,Y): MUTUAL INFORMATION ≈ reduction in uncertainty of guessing either 
X or Y, upon being given the other.

Box 2  Entropy measures

i. We want to measure the uncertainty when guessing cell X given cell Y, and the 
change in uncertainty over time. 

ii. AM use H(X|Y). However, H(X|Y) ≤ H(X), thus H(X|Y) can decrease merely 
because H(X) decreases, irrespective of overlap with H(Y) [15] (see Results). 

iii. For our purposes: measure H(X|Y) as a proportion of H(X), or conversely I(X,Y) 
as a proportion of H(X). The latter is the UNCERTAINTY COEFFICIENT, U(X|Y). 

iv. U(X|Y) always lies between 0 and 1, which aids more meaningful comparison 
among different systems, or across time in an evolving lineage (see Results).

Box 1  Gaining understanding via modelling

i. Real world dynamics of 
observable entities leads 
to observable outcomes. 

ii. Verbal explanations “x 
leads to y because z” can 
sound compelling but 
may hide flaws [13]. 

iii. Models pair aspects of 
observations with explicit 
processes and generate 
explicit results, which we 
relate back to aspects of 
observed outcomes [14].

iv. In our study, we show for the first time how a cell filling process can result in the 
emergent outcome of stable, distinct inflection classes. 

v. We explain not only why the seminal AM model lacks this outcome, but also why 
a more complete representation of inductive inference produces it.

Model paradigm dynamics (box 1), to explain why stable inflectional 
classes can exist.

Aim

Inflectional systems exhibit:  

❶ low conditional entropy between cells (box 2) [1–3] 
❷ often: multiple, stable inflectional classes [4–6].  

A seminal model (‘AM’) by Ackerman & Malouf [7] shows that a simple 
cell filling process [8–10] generates systems with low conditional 
entropy, satisfying ❶.  

However, inflectional classes are invariably eliminated because 
changes always increase classes’ similarity, failing against ❷. 

AM can be interpreted as a model of inductive reasoning with access 
solely to positive evidence due to lexemes’ similarities (see AM model).

Background

A rational agent will also have access to NE from dissimilarity [11]:  

Suppose that for lexeme l my current estimate is that cell c has a 20% 
probability of containing exponent x, but then I observe that lexeme m, in a 
different inflectional class, has x in cell c, thus I learn that some of the x’s 
have been “used up” by m’s class. My rational response is to update the 
probability of x to <20%. 

In Bayesian updating, if the nth piece of evidence about exponent x is 
NE, then the probability of x at step n+1 decreases: 

 , where .  

The value of  will depend on the inductive context [12], including  
number of exponent options and speakers’ inferential assumptions.  

Here, our focus is on demonstrating the implications of negative 
evidence in general, so we implement  as a simple, ‘lumped’ para-
meter. Future directions include clarifying individual contributions to 

 under various inductive scenarios.

Pn+1(θ = x |NE) = kNEPn(θ = x) kNE < 1
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Stable classes emerge, through attention to negative evidence (NE)

AM 
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Model

One cycle of the models. Lexemes are in rows. Paradigm cells are in columns. Task is to 
predict a focal (held-out) cell,    . AM model: ① pick another cell, ② select/sample other 
lexemes with the same exponent, ③ in these lexemes, examine their focal cell, ④ count 
all evidence as positive: the more x’s, the more likely that    = x. AM+NE model: at ②, 
also select/sample dissimilar cells, which at ④ count as negative evidence.
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Different processes give rise to different evolutionary dynamics. 

• AM: positive-evidence inferential process → attraction-only dynamic between 
inflection classes, so they inevitably collapse together.

• AM+NE: positive and negative evidence →  additional repulsion dynamic 
pushing classes apart, meaning complete collapse is avoided.

The outcome (stable classes) is explained by the dynamic (attraction–
repulsion), which is explained by the change process (cell-filling 
inductive inference including attention to negative evidence).

Discussion

Results
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12,000 evolutionary cycles of AM and AM+NE, from the same initial random conditions: 100 lexemes, 8 cells,  
6 exponents per cell.  Lines: means of 100 runs, shading: 90% variation.  (See box 2 for entropy metrics.) 

N ( c l a s s e s ) R e l i a b l e 
re ten t ion in AM+NE; 
Complete levelling in AM.

Mean H(X|Y)  Falls to zero 
in both, but in AM this is 
because H(X) drops to zero.

Mean U(X|Y) Rises in 
AM+NE. Rises slightly in 
AM but then collapses.
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