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Spontaneous emergence of inflectional class systems

via attraction—repulsion dynamics

Alm

Model paradigm dynamics (box 1), to explain why stable inflectional

classes can exist.

Background

Inflectional systems exhibit:

@ low conditional entropy between cells (box 2) [1-3]
® often: multiple, stable inflectional classes [4-6].

A seminal model (‘AM’) by Ackerman & Malouf |7] shows that a simple
cell filling process [8-10| generates systems with low conditional
entropy, satisfying @.

However, inflectional classes are invariably eliminated because
changes always increase classes’ similarity, failing against .

AM can be interpreted as a model of inductive reasoning with access
solely to positive evidence due to lexemes’ similarities (see AM model).

Novel contribution

Stable classes emerge, through attention to negative evidence (NE)

A rational agent will also have access to NE from dissimilarity [171]:

Suppose that for lexeme [ my current estimate is that cell ¢ has a 20%
probability of containing exponent x, but then I observe that lexeme m, in a
different inflectional class, has x in cell ¢, thus I learn that some of the x’s
have been “used up” by m’s class. My rational response is to update the
probability of x to <20%.

In Bayesian updating, if the nth piece of evidence about exponent x is
NE, then the probability of x at step n+1 decreases:

Pn+1(6’ =X | NE) — kNEPn(Q =X), where kNE < 1.

The value of kyg will depend on the inductive context [12], including
number of exponent options and speakers’ inferential assumptions.

Here, our focus is on demonstrating the implications of negative
evidence in general, so we implement kyg as a simple, ‘lumped’ para-
meter. Future directions include clarifying individual contributions to
kng under various inductive scenarios.
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AM model
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Results

12,000 evolutionary cycles of AM and AM+NE, from the same initial random conditions: 100 lexemes, 8 cells,
6 exponents per cell. Lines: means of 100 runs, shading: 90% variation. (See box 2 for entropy metrics.)
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Mean H(X|Y) Falls to zero
in both, but in AM this is
because H(X) drops to zero.

N(classes) Reliable
retention in AM+NE;
Complete levelling in AM.

Mean U(X]Y) Rises in
AM+NE. Rises slightly in
AM but then collapses.

Discussion

Different processes give rise to different evolutionary dynamics.

e AM: positive-evidence inferential process — attraction-only dynamic between
inflection classes, so they inevitably collapse together.

AM+NE: positive and negative evidence — additional repulsion dynamic
pushing classes apart, meaning complete collapse is avoided.

The outcome (stable classes) is explained by the dynamic (attraction—
repulsion), which is explained by the change process (cell-filling
inductive inference including attention to negative evidence).
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Box 1 Gaining understanding via modelling

Entities & dynamic processes Evolutionary outcomes

Real world dynamics of
observable entities leads
to observable outcomes.

Real
leads to y because z” can world,

sound compelling but observed
may hide flaws

compare
Models pair aspects of
observations with explicit
processes and generate Explicitly
explicit results, which we  [Smodelled
relate back to aspects of
observed outcomes

In our study, we show for the first time how a cell filling process can result in the
emergent outcome of stable, distinct inflection classes.

We explain not only why the seminal AM model lacks this outcome, but also why
a more complete representation of inductive inference produces it.

Box 2 Entropy measures

H(X): ENTROPY = uncertainty when guessing cell X

H(X|Y): CONDITIONAL ENTROPY = uncertainty of guessing cell X, given cell Y

I(X,Y): MUTUAL INFORMATION = reduction in uncertainty of guessing either
X or Y, upon being given the other.

IV.

We want to measure the uncertainty when guessing cell X given cell Y, and the
change in uncertainty over time.

AM use H(X|Y). However, H(X|Y) < H(X), thus H(X|Y) can decrease merely
because H(X) decreases, irrespective of overlap with H(Y) (see Results).

For our purposes: measure H(X|Y) as a proportion of H(X), or conversely I(X,Y)
as a proportion of H(X). The latter is the UNCERTAINTY COEFFICIENT, U(X]|Y).

U(X|Y) always lies between 0 and 1, which aids more meaningful comparison
among different systems, or across time in an evolving lineage (see Results).



