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Abstract. We review space and time discretizations of the Cahn-Hilliard equa-
tion which are energy stable. In many cases, we prove that a solution converges
to a steady state as time goes to infinity. The proof is based on Lyapunov theory
and on a Lojasiewicz type inequality. In a few cases, the convergence result is only
partial and this raises some interesting questions. Numerical simulations in two
and three space dimensions illustrate the theoretical results. Several perspectives
are discussed.
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1. Introduction

We consider the Cahn-Hilliard system∂tu = ∆w,

w = −∆u+
1

ε2
(u3 − u),

x ∈ Ω, t > 0, (1.1)

where Ω is a bounded subset of Rd (d = 1, 2 or 3) with Lipschitz boundary ∂Ω.
The unknowns functions are the order parameter u and the chemical potential w.
The parameter ε > 0 is the typical thickness of the interface between two phases.
Problem (1.1) is endowed with the Neumann boundary conditions

∂nu = 0, ∂nw = 0, x ∈ ∂Ω, t ≥ 0, (1.2)

and an initial condition

u|t=0 = u0. (1.3)

The Cahn-Hilliard system (1.1) can be written equivalently as

∂tu+ ∆2u− 1

ε2
∆(u3 − u) = 0 x ∈ Ω, t > 0, (1.4)

which is known as the Cahn-Hilliard equation [24]. It was originally proposed as
a model of phase separation and it has been thouroughly investigated. The formu-
lation (1.1) has been widely used for numerical purposes because it is often eas-
ier to deal with two Laplace operators rather than with one bilaplacian operator.
We refer the reader to the reviews [38, 91, 92, 100] for the mathematical aspects
and [14, 101, 127] for details on the model.

A solution to (1.1)-(1.2) satisfies the conservation of mass,∫
Ω
u(x, t)dx =

∫
Ω
u0(x)dx, t ≥ 0, (1.5)

and the energy law

d

dt
E(u(t)) = −

∫
Ω
|∇w(x, t)|2dx, t > 0, (1.6)

where

E(u(t)) =

∫
Ω

1

2
|∇u(x, t)|2 +

1

4ε2
(u(x, t)2 − 1)2dx. (1.7)

The relation (1.6) shows that the energy is nonincreasing. More precisely, the Cahn-
Hilliard equation is a gradient flow of the energy E for the H−1 inner product. This
can be used to obtain information on the asymptotic behaviour of solutions. In
particular, the ω-limit set of a solution contains only stationary points which are
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critical points of E with prescribed mass. The global attractor also has a specific
structure [124].

If Ω is an interval, then the set of steady states with prescribed mass for the
Cahn-Hilliard equation (1.1)-(1.2) is finite [59, 122]. As a consequence, every solution
to (1.1)-(1.2) converges to a steady state as time goes to infinity; the global attractor
is also well understood [59]. In two or three space dimensions, the situation regarding
steady states is much more complicated and it is not yet fully understood (see,
e.g. [88, 129]). In constrast with the one-dimensional case, it is possible to build a
continuum of global minimizers of E with prescribed mass if Ω is a disc or a cylinder
(cf. Section 6.1).

In [114], Rybka and Hoffmann proved that every classical solution to the Cahn-
Hilliard equation (1.1)-(1.2) converges to a single equilibrium as time goes to infinity.
Their proof, which does not require any knowledge on the set of steady states, is
based on a  Lojasiewicz-Simon inequality. The latter is a generalization of the cele-
brated  Lojasiewicz inequality for analytic functions [84] introduced by Simon [121]
for some nonlinear parabolic problems. We note that the approach of Simon has been
extended to many PDEs with a gradient-like flow structure, thanks to the work of
Jendoubi [76, 77], Haraux [66] and Chill [30] (see also [16] and the reviews [67, 73]).
Without analycity, convergence to equilibrium may fail because the ω-limit set of a
bounded solution to a gradient flow may be a cycle. We refer to [3, 103] for such
examples in finite dimension and [112] for a nonconvergent bounded solution to the
semilinear heat equation with a smooth nonlinearity.

Since many time and space discretizations of the Cahn-Hilliard equation are avail-
able, it is natural to ask if the discretization reproduces the longtime dynamics of the
PDE. This study seems to have been initiated by Elliott [38] for the Cahn-Hilliard
equation. In a seminal paper [43], Elliott and Stuart thoroughly analyzed the dy-
namics of several space and time discretizations of the Allen-Cahn equation. The
Allen-Cahn equation is a gradient flow of E for the L2 inner product and it is closely
related to the Cahn-Hilliard equation.

Since the work of Elliott and Stuart, many discretizations of Cahn-Hilliard sys-
tem (1.1)-(1.2) which preserve the laws (1.5) and (1.6) at the discrete level have
been proposed. Following the terminology in [125], we refer to such discretizations
as “energy stable”. Finite element methods [36, 46, 53], finite difference meth-
ods [20, 21, 25, 27, 48] and spectral-Galerkin approaches [119] with such properties
are available. Regarding the time semidiscretization, we refer the reader to the
reviews [118, 119, 125] and to the paper [18].

Our purpose in this manuscript is to review energy stable time and/or space
discretizations of the Cahn-Hilliard system (1.1)-(1.2). We focus on the question of
convergence of a solution to a steady state as time goes to infinity. In many situations,
the answer is well-known but in some cases, some challenging questions are still open.
This approach gives a new insight into energy stable schemes for Cahn-Hilliard type
equations. We also want to point out some perspectives, since the Cahn-Hilliard
equation is a model problem for PDEs with a gradient-like structure.

If we consider a space semidiscretization which preserves the gradient flow struc-
ture, then convergence to equilibrium is a consequence of  Lojasiewicz’s convergence
result for analytic functions [84, 85]. This was demonstrated for Cahn-Hilliard type
equations in [29, 74]. Convergence to equilibrium for a fully discrete Cahn-Hilliard
equation was first proved in [90] by means of the  Lojasiewicz inequality. Several fully
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discrete Allen-Cahn equations were considered in [6]. Other fully discretized PDEs
with a gradient-like flow structure were analyzed in [61, 71, 75, 89, 115]. Concern-
ing the time semidiscretization, convergence to equilibrium for the backward Euler
scheme applied to the Allen-Cahn equation was considered in [90] (see also [49]).
In [8], the second-order backward differentiation formula (BDF) was applied to the
Cahn-Hilliard equation and in [18], BDF schemes up to order 5 were considered for
the Allen-Cahn equation.

Our manuscript is organized as follows. We first recall the functional setting of the
continuous problem (1.1)-(1.2). In Section 3, we consider a space semidiscretization
of the Cahn-Hilliard system which includes standard finite element and finite dif-
ference approximations. We show how to use the  Lojasiewicz inequality in order to
prove convergence to an equilibrium. In Section 4, we consider the time semidiscrete
problem. The schemes are classified according to the type of convergence result that
we are able to obtain. In this regard, the BDF schemes up to order 5 and a first
order convex splitting scheme turn out to be the most satisfactory. In all the other
cases, the convergence result is only partial, for various reasons, and this raises some
interesting questions. In Section 5, we consider the fully discrete case. Two exam-
ples illustrate that the situation in finite dimension is better understood than for
the time semidiscrete problem. In particular, the  Lojasiewicz inequality for semial-
gebraic functions proved by Kurdyka [81] is very helpful to deal with linear schemes.
Numerical simulations in two and three space dimensions illustrate the theoretical
results in Section 6. In the 3D case, we are able to compute the final state starting
from a random initial value for a small interface thickness. This reminds the per-
formance of Gomez, Calo, Bazilevs and Hughes in [51], but we use here a provably
energy stable scheme, namely a standard finite difference linear IMEX scheme. We
conclude with some perspectives in Section 7.

2. The time and space continuous problem

2.1. Functional setting and notation. Throughout the manuscript, Ω denotes a
bounded domain of Rd (1 ≤ d ≤ 3) which is either

a) convex with a Lipschitz boundary (for instance, a square in R2 or a cube in
R3), or

b) of arbitrary shape with a smooth boundary (for instance, a disc or an annulus
in R2).

Additional assumptions on ∂Ω will be specified when needed. The L2(Ω) inner
product is denoted (·, ·) and the associated L2(Ω)-norm, | · |0. The standard Sobolev
space V = H1(Ω) is equipped with the usual norm ‖v‖21 = |v|20 + |v|21, where | · |1 =
|∇ · |0 is the Hilbertian seminorm in V.

We denote by −∆N : V → V ′ the bounded operator associated with the inner
product on V through

〈−∆Nu, v〉V ′,V = (∇u,∇v), ∀u, v ∈ V,

where V ′ is the topological dual of V. We will use the dense and continuous injections

V ⊂ L2(Ω) = [L2(Ω)]′ ⊂ V ′.
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For a function u ∈ L2(Ω), we denote

〈u〉 =
1

|Ω|

∫
Ω
udx and u̇ = u− 〈u〉,

where |Ω| =
∫

Ω 1dx. We also define

V̇ =

{
u ∈ V :

∫
Ω
udx = 0

}
.

By the Poincaré-Wirtinger inequality, there exists a positive constant CP such that

|v − 〈v〉|0 ≤ CP |v|1, ∀v ∈ V.

As a consequence, the norms ‖v‖1 and v 7→ (|v|21 + 〈v〉2)1/2 are equivalent on V. The

operator −∆̇N : V̇ → V̇ ′, that is the restriction of −∆N , is an isomorphism. The
inner product in V̇ ′ is given by

(u̇, v̇)−1 = (∇(−∆̇N )−1u̇,∇(−∆̇N )−1v̇) = 〈u̇, (−∆̇N )−1v̇〉V̇ ′,V̇

and the norm is given by

|u̇|2−1 = (u̇, u̇)−1 = 〈u̇, (−∆̇N )−1u̇〉V̇ ′,V̇ .

We recall the interpolation inequality

|u̇|20 ≤ |u̇|−1|u̇|1, ∀u̇ ∈ V̇. (2.1)

We define the energy functional

E(u) =
1

2
|u|21 +

1

ε2
(F (u), 1), (2.2)

where F (s) =
1

4
(s2 − 1)2. The Sobolev injection V ⊂ L4(Ω) and the polynomial

growth of F ensure that E(u) < +∞ for each u ∈ V. We set

f(s) = F ′(s) = s3 − s (s ∈ R).

The corresponding map v 7→ f(v) is Lipschitz continuous on bounded sets of V with
values in L2(Ω) and by [78, Corollaire 17.8], the functional E is of class C2 on V. For
any u, v ∈ V, we have

〈dE(u), v〉V ′,V = (∇u,∇v) +
1

ε2
(f(u), v), (2.3)

where dE(u) ∈ V ′ is the first differential of E at u.
The following identity will prove useful: if (·, ·)H is an inner product associated to

the norm | · |H in the space H, then

(a, a− b)H =
1

2

(
|a|2H − |b|2H + |a− b|2H

)
, ∀a, b ∈ H. (2.4)
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2.2. Well-posedness and asymptotic behaviour. The variational formulation
of (1.1)-(1.2) reads: find (u,w) : R+ → V × V such that(∂tu(t), v) = −(∇w(t),∇v), ∀v ∈ V,

(w(t), z) = (∇u(t),∇z) +
1

ε2
(f(u(t)), z), ∀z ∈ V,

, t ≥ 0, (2.5)

where R+ = [0,+∞). By taking advantage of the conservation laws (1.5) and (1.6),
it is straightforward to show (see, e.g., [38]) that for each u0 ∈ V, there exists a
unique solution (u,w) of (2.5) such that

u ∈ L∞(R+;V) ∩ C0(R+;L2(Ω)), ∂tu ∈ L2(R+;V ′), w ∈ L2
loc(R+;V),

and u(0) = u0 [38]. This can be obtained with a Galerkin approximation as in
Section 3.2.2. Additional regularity can be obtained if u0 is more regular [38]. If
we consider the Cahn-Hilliard equation (1.4) instead of the system (1.1), then a H2

setting is more natural [92, 124].

Remark 2.1. The Cahn-Hilliard equation does not satisfy the maximum principle,
so that a solution starting with values in the interval [−1, 1] does not generally remain
with values in [−1, 1], as shown by the following simple counterexample, proposed
in [106]. Consider the one-dimensional Cahn-Hilliard equation (1.4) in Ω = (−1, 1).
Take u0(x) = 1 − x4 in the neighbourhood of zero and extend this function by a
smooth function with a prescribed average over Ω and with values in [−1, 1]. We

have u′0(0) = u′′0(0) = 0, so that [f(u0)]′′ = 0 at x = 0. Furthermore, u
(4)
0 (0) = −24

and so the PDE (1.4) yields ∂tu(0, 0) = 24 > 0. Thus, by regularity of u, we have

u(0, t) = u(0, 0) + t∂tu(0, 0) + o(t) = 1 + 24t+ o(t) > 1 for t > 0 small.

This counterexample can easily be extended to the 2D or 3D case. Due to curvature
effects, there is also numerical evidence of solutions with initial values in [−1, 1] and
which converge to a 2D or 3D steady state with values outside [−1, 1] [120, 133].

Definition 2.2. We say that (u?, w?) ∈ V × V is a steady state for (2.5) if

(∇u?,∇z) +
1

ε2
(f(u?), z) = (w?, z), ∀z ∈ V and w? is constant on Ω. (2.6)

Equivalently, a steady state u? is a critical point of the energy E with prescribed
mass (see (2.3)).

In [114], Rybka and Hoffmann proved that each classical solution to the Cahn-
Hilliard equation (1.1)-(1.2) converges to a steady state, assuming that ∂Ω is smooth.
They also considered the case of periodic boundary conditions in Ω = (0, 1)d. A
similar convergence result was obtained in a H2 setting for the non-autonomous
Cahn-Hilliard equation by Chill and Jendoubi in [32]. In both cases, an appropriate
 Lojasiewicz-Simon inequality was used.

3. The space semidiscrete case

3.1. The convergence result. Throughout Section 3.1, we assume that the fol-
lowing three assumptions are satisfied:

H1: A is a M × M symmetric real and positive semidefinite matrix; 0 is a
simple eigenvalue of A associated to the eigenvector E1 ∈ RM .

H2: B is a M × M symmetric real and positive definite matrix; E1 is an
eigenvector of B.
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H3: The function G : RM → R is of class C2 on RM and

G(V ) ≥ 0, ∀V ∈ RM . (3.1)

We consider the following problem, which arises as a natural space semidiscretiza-
tion of the Cahn-Hilliard equation (1.1)-(1.2): find (U,W ) : R+ → RM×RM (M ≥ 2)
such that {

BU ′(t) = −AW (t)

BW (t) = AU(t) +∇G(U(t)),
t ≥ 0, (3.2)

where, for all V = (v1, . . . , vM )T ∈ RM ,

∇G(V ) = (∂v1G(V ), . . . , ∂vMG(V ))T .

Since B is invertible, we may eliminate W (t) from (3.2). This reads

U ′(t) = −B−1AB−1
(
AU(t) +∇G(U(t))

)
. (3.3)

Conversely, if U satisfies (3.3), we may define W by

W (t) = B−1
(
AU(t) +∇G(U(t))

)
, (3.4)

so that (U,W ) solves (3.2). Thus, (3.2) and (3.3) are equivalent.
It is convenient to introduce the energy

E(V ) =
1

2
V TAV +G(V ) (V ∈ RM ),

which is a Lyapunov functional for the system (3.2). We denote by ‖·‖ the Euclidean
norm in RM . We start with a useful lemma.

Lemma 3.1. There exists a positive constant c2 such that for all V ∈ RM ,

‖V ‖2 ≤ c2

(
1

2
V TAV + |ET1 V |2

)
≤ c2

(
E(V ) + |ET1 V |2

)
. (3.5)

Proof. Let λ1 = 0 < λ2 ≤ · · · ≤ λM denote the eigenvalues of A associated to the
eigenvectors (Ẽ1, Ẽ2, . . . , ẼN ) which form an orthonormal basis of RM (for the usual

inner product). Let V ∈ RM . We have V =
∑M

i=1 viẼi and

V TAV =
M∑
i=1

λiv
2
i ≥ λ2

M∑
i=2

v2
i = λ2‖V − (ẼT1 V )Ẽ1‖2, (3.6)

since λ1 = 0 and (Ẽ1, Ẽ2, . . . , ẼN ) is orthonormal. By the triangle inequality,

‖V ‖ ≤ ‖V − (ẼT1 V )Ẽ1‖+ |ẼT1 V |,

so we have

‖V ‖2 ≤ 2‖V − (ẼT1 V )Ẽ1‖2 + 2|ẼT1 V |2,

≤ 2

λ2
V TAV +

2

‖E1‖2
|ET1 V |2.

In the last inequality, we have used that E1 is proportional to Ẽ1 (since λ1 = 0 is a

simple eigenvalue), namely Ẽ1 = ±E1/‖E1‖. This shows that first inequality in (3.5)
holds. The second inequality in (3.5) follows from (3.1). �

We first prove well-posedness and a priori estimates for problem (3.2).
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Proposition 3.2. For every U0 ∈ RM , there exists a unique

(U,W ) ∈ C1(R+,RM × RM )

which solves (3.2) with the initial condition U(0) = U0. Moreover,

ET1 U(t) = ET1 U0, ∀t ≥ 0, (3.7)

d

dt

[
1

2
U(t)TAU(t) +G(U(t))

]
= −W (t)TAW (t) ≤ 0, ∀t ≥ 0. (3.8)

Equation (3.7) is the discrete version of the conservation of mass (1.5) and (3.8)
is the discrete version of the energy law (1.6).

Proof. By the Cauchy-Lipschitz theorem, equation (3.3) has a unique maximal so-
lution U ∈ C1([0, T+),RM ) such that U(0) = U0, where T+ ∈ (0,+∞]. We define
W ∈ C1([0, T+),RM ) by (3.4), so that (U,W ) solves (3.2), for all t ∈ [0, T+).
We multiply the first line of (3.2) by ET1 and we use assumption H1. This yields
ET1 BU

′(t) = 0. Using assumption H2, we find that ET1 U
′(t) = 0, so that (3.7) holds,

for all t ∈ [0, T+). Next, we multiply the second line of (3.2) by U ′(t)T and the first
line by W (t)T . We obtain (3.8), which shows that t 7→ E(U(t)) is nonincreasing, so

0 ≤ E(U(t)) ≤ E(U0), ∀t ∈ [0, T+).

Since E(U(t)) and ET1 U(t) are bounded on [0, T+), the estimate (3.5) shows that
‖U(t)‖ is bounded as well. Thus, we have T+ = +∞, and the proof is complete. �

The proof above shows that every solution is bounded on R+.
We say that (U?,W ?) ∈ RM is a steady state if{

AW ? = 0

BW ? = AU? +∇G(U?).
(3.9)

In other words, (U?,W ?) is a solution of (3.2) which does not depend on time.
Let U0 ∈ RM and (U,W ) be the solution of (3.2) such that U(0) = U0. The

ω-limit set of U0 is the subset of RM defined by

ω(U0) =
{
U∞ ∈ RM : ∃tn → +∞, U(tn)→ U∞ as n→ +∞

}
.

The following result is a consequence of Lasalle’s invariance principle, as pointed out
in [67, Theorem 8.4.6].

Theorem 3.3. Let U0 ∈ RM . Then ω(U0) is a nonempty compact and connected
subset of RM on which E is constant, and

dist(U(t), ω(U0))→ 0 as t→ +∞. (3.10)

Moreover, for all U∞ ∈ ω(U0), we have ET1 U
∞ = ET1 U0 and there exists W∞ ∈ RM

such that (U∞,W∞) is a steady state in the sense of (3.9).

In (3.10), dist denotes the distance between a point and a set, defined by

dist(V,Γ) = inf
Z∈Γ
‖V − Z‖,

for V ∈ RM and Γ ⊂ RM .
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Proof. It is well-known that

ω(U0) =
⋂
t≥0

U([t,+∞)), (3.11)

where U([t,+∞)) is the closure in RM of the set {U(s) : s ≥ t}. By Proposition 3.2,
t 7→ ‖U(t)‖ is bounded in R+. Thus, ω(U0) is a nonempty compact and connected
subset of RM , because it is the intersection of a decreasing family of such sets. The
property (3.10) is easily proved on arguing by contradiction. By (3.8), the function
t 7→ E(U(t)) is nonincreasing and since E is nonnegative (assumption H3), we have
E(U(t))→ E∞ for some nonnegative real number E∞. As a consequence, the energy
E is constant and equal to E∞ on ω(U0).

Next, we integrate (3.8) on [0, T ] and we let T tend to +∞. This yields∫ +∞

0
W (t)TAW (t)dt = E(U0)− E∞ < +∞.

By arguing as in (3.6), we see that for all V ∈ RM ,

V TA2V ≤ λMV TAV, (3.12)

where λM > 0 is the largest eigenvalue of A. Thus,
∫ +∞

0 W (t)TA2W (t)dt < +∞.
Using the first equation of (3.2), this yields∫ +∞

0
‖BU ′(t)‖2dt < +∞. (3.13)

Now let U∞ ∈ ω(U0) and let tn → +∞ such that U(tn)→ U∞. By choosing t = tn
in (3.7) and letting n tend to +∞, we obtain that ET1 U

∞ = ET1 U0. It remains to
prove that U∞ is a steady state. For every n, we denote Un the solution of (3.3) such
that Un(0) = U(tn). By the Cauchy-Lipschitz theorem, (Un) converges uniformly on
[0, 1] to the solution Ū of (3.3) such that Ū(0) = U∞. By (3.13),∫ 1

0
‖BU ′n(t)‖2dt =

∫ tn+1

tn

‖BU ′(t)‖2dt→ 0,

as n→ +∞. For each s ∈ [0, 1], we have

U(tn + s)− U(tn) =

∫ tn+s

tn

U ′(σ)dσ

=

∫ tn+s

tn

B−1BU ′(σ)dσ

≤ ‖B−1‖
(∫ tn+1

tn

‖BU ′(σ)‖2dσ
)1/2

so that U(tn + s) → U∞ as n → +∞. In the last line above, we have used the
Cauchy-Schwarz inequality. Thus, we have Ū(t) = U∞ on [0, 1]. Let

W∞ = B−1
(
AU∞ +∇G(U∞)

)
.

Since Ū = U∞ satisfies (3.3) on [0, 1], we have AW∞ = 0. This shows that
(U∞,W∞) solves (3.9), and so (U∞,W∞) is a steady state. �

The following inequality, due to  Lojasiewicz [84], is fundamental.
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Definition 3.4. Let Φ ∈ C1(RM ,R). We say that Φ satisfies the  Lojasiewicz in-
equality at U? ∈ RM if there exist θ ∈ (0, 1/2) and σ > 0 such that for all V ∈ RM ,

‖V − U?‖ < σ ⇒ |Φ(V )− Φ(U?)|1−θ ≤ ‖∇Φ(V )‖. (3.14)

If U? is not a critical point of Φ, then (3.14) is obvious by continuity.

Example 3.5. For p ≥ 2, the function Φ(U) = ‖U‖p satisfies the  Lojasiewicz
inequality at U? = 0 with the exponent θ = 1/p. In contrast, the function Φ ∈
C∞(R,R) defined by Φ(x) = exp(−1/x2) if x 6= 0 and Φ(0) = 0 does not satisfy the
 Lojasiewicz inequality at 0.

We have:

Theorem 3.6 ([84]). If Φ : RM → R is real analytic, then Φ satisfies the  Lojasiewicz
inequality at each point U? ∈ RM .

Theorem 3.7. In addition to H1, H2 and H3, we assume that G is real analytic
on RM . If (U,W ) solves (3.2), there exists a steady state (U?,W ?) ∈ RM ×RM such
that (U(t),W (t))→ (U?,W ?).

Proof. Our proof is as follows: we first show that (3.2) is a gradient flow of the
energy in an appropriate M − 1-dimensional subspace of RM , and then we adapt
the proof of [67, Theorem 10.1.6]. Namely, we first prove that a uniform  Lojasiewicz
inequality holds, then we derive a convergence rate for the energy, which in turn
provides a convergence rate for the solution.
Step 1. We may assume without loss of generality that

B = Id and E1 = (1, 0, 0, · · · , 0)T . (3.15)

Indeed, since B is positive definite, the bilinear form (V,Z) 7→ V TBZ is an inner
product on RM . We choose a basis (F1, . . . , FM ) of RM which is orthonormal for
this inner product, with F1 proportional to E1. We write U and W in this basis,
namely U(t) =

∑M
j=1 vj(t)Fj and W (t) =

∑M
j=1 zj(t)Fj . For each i, we multiply each

equation in (3.2) by the vector F Ti . This yields{
F Ti BU

′(t) = −F Ti AW (t), i = 1, 2, . . . ,M,

F Ti BW (t) = F Ti AU(t) + F Ti ∇G(U(t)), i = 1, 2 . . . ,M.

Since (F1, . . . , FN ) is orthonormal for B, this is equivalent to{
v′i(t) = −

∑M
j=1 F

T
i AFjzj(t), i = 1, . . . ,M,

zi(t) =
∑M

j=1 F
T
i Avj(t) + F Ti ∇G(

∑M
j=1 vj(t)Fj), i = 1, . . . ,M.

(3.16)

The symmetric matrix AB = (F Ti AFj)1≤i,j≤M has the same signature as A (it is

positive semidefinite) and we have F Ti AFj = 0 if i = 1 or j = 1 since F1 = cE1. By

the chain rule, the function GB(ϕ1, . . . , ϕM ) = G(
∑M

j=1 ϕjFj) satisfies

∂ϕiGB(ϕ1, . . . , ϕM ) = F Ti ∇G(

M∑
j=1

ϕjFj).
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Thus, the system (3.16) can be written in matrix form{
V ′(t) = −ABZ(t),

Z(t) = ABV (t) +∇GB(V (t)).

The matrix AB satisfies assumption H1 with E1 = (1, 0, . . . , 0)T and the function
GB is real analytic and satisfies H3. This is a system of the form (3.2) in which
B = Id (the identity matrix) and E1 = (1, 0, . . . , 0)T . In the remainder of the proof,
we therefore assume that (3.15) holds, so (3.2) can be written{

U ′(t) = −AW (t)

W (t) = AU(t) +∇G(U(t)),
t ≥ 0, (3.17)

where

A =

0 · · · 0
... Ã
0

 (3.18)

and Ã is a (M − 1)× (M − 1) symmetric positive definite matrix.
Step 2. Let (U,W ) solve (3.17). From (3.18), we deduce that u′1(t) = 0, so u1(t) =
u1(0), for all t ≥ 0. We write

Ũ(t) =

 u2(t)
...

uM (t)

 , W̃ (t) =

 w2(t)
...

wM (t)

 ,

and for Ṽ = (v2, . . . , vM ) ∈ RM−1,

G̃(Ṽ ) = G(u1(0), v2, . . . , vM ).

We denote

∇̃G̃(Ṽ ) =
(
∂v2G̃(Ṽ ), . . . , ∂v2G̃(Ṽ )

)T
.

Then (3.17) reads {
Ũ ′(t) = ÃW̃ (t),

W̃ (t) = ÃŨ(t) + ∇̃G̃(Ũ(t)),
t ≥ 0. (3.19)

The component w1 can be recovered by the formula

w1(t) = ∂v1G(u1(0), u2(t), . . . , uM (t)).

We denote the energy

Ẽ(Ṽ ) =
1

2
Ṽ T ÃṼ + G̃(Ṽ ) = E(u1(0), Ṽ ) (Ṽ ∈ RM−1).

We know that the map t 7→ E(U(t)) = Ẽ(Ũ(t)) is nonincreasing and converges to
E∞ as t→ +∞. We set ϕ(t) = E(U(t))− E∞. From (3.8), we deduce that

ϕ′(t) = −W (t)AW (t) = −W̃ (t)ÃW̃ (t).

Thus, by (3.6) and (3.19)

−ϕ′(t) ≥ λ2‖W̃ (t)‖2 = λ2‖∇̃Ẽ(Ũ(t))‖2. (3.20)
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On the other hand, by (3.12), we have

−ϕ′(t) ≥ 1

λM
W (t)A2W (t) =

1

λM
‖Ũ ′(t)‖2. (3.21)

Let U0 = U(0) = (u1(0), Ũ0) and let ω(Ũ0) denote the ω-limit set of Ũ0 in RM−1,
i.e.

ω(Ũ0) =
{
Ũ∞ ∈ RM−1 : ∃tn → +∞, Ũ(tn)→ Ũ∞ as n→ +∞

}
.

It is clear that ω(U0) = {u1(0)}×ω(Ũ0) and that Γ := ω(Ũ0) inherits the properties

of ω(U0) described in Theorem 3.3. In particular, Γ is compact and Ẽ is constant
(equal to E∞) on Γ.

Next, we show that the  Lojasiewicz inequality holds uniformly on Γ. The function
Ẽ is real analytic on RM−1, so by Theorem 3.6, for each Ũ? ∈ Γ, there exist θŨ? ∈
(0, 1/2) and σŨ? > 0 such that

|Ẽ(Ṽ )− Ẽ(Ũ?)|1−θŨ? ≤ ‖∇̃Ẽ(Ṽ ‖, ∀Ṽ ∈ B(Ũ?, σŨ?),

where B(Z̃, σ) denotes the ball of radius σ > 0 centered at Z̃ in RM−1. By continuity
and by choosing a smaller σŨ? if necessary, we may assume that

|Ẽ(Ṽ )− Ẽ(Ũ?)| ≤ 1, ∀Ṽ ∈ B(Ũ?, σŨ?).

Since Γ is compact, there exist Ũ1, . . . , Ũp in RM−1 such that

Γ ⊂
p⋃
i=1

B(Ũi,
1

2
σŨi).

By choosing σ = 1
2 minσŨi and θ = min θi, we obtain that for all Ṽ ∈ RM−1,

dist(Ṽ ,Γ) < σ =⇒ |Ẽ(Ṽ )− E∞|1−θ ≤ ‖∇̃Ẽ(Ṽ )‖.

By (3.10), there exists T > 0 such that

dist(Ũ(t),Γ) < σ, ∀t ≥ T.

Thus, for all t ≥ T , we have

(ϕ(t))1−θ ≤ ‖∇̃Ẽ(Ũ(t))‖. (3.22)

By combining (3.22) and (3.20), we get

−ϕ′(t) ≥ λ2(ϕ(t))2−2θ, ∀t ≥ T.

By integrating this over [T, t], we get

ϕ(t) ≤ C1t
− 1

1−2θ , ∀t ≥ T.

Now, by (3.21), ∫ 2t

t
‖Ũ ′(s)‖2ds ≤ λM [ϕ(t)− ϕ(−2t)] ≤ C2t

− 1
1−2θ .

By the Cauchy-Schwarz inequality, we have∫ 2t

t
‖Ũ ′(s)‖ds ≤ t1/2

(
C2t
− 1

1−2θ

)1/2
=
√
C2t
− θ

1−2θ .
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Thus, for all t ≥ T , we have∫ +∞

t
‖Ũ ′(s)‖ds =

∞∑
k=0

∫ 2k+1t

2kt
‖Ũ ′(s)‖ds

≤
√
C2

∞∑
k=0

(
2kt
)− θ

1−2θ

= C3t
− θ

1−2θ .

By Cauchy’s criterion, Ũ? = limt→+∞ Ũ(t) exists and

‖Ũ(t)− Ũ?‖ ≤ C3t
− θ

1−2θ , ∀t ≥ T. (3.23)

Thus, U(t) = (u1(0), Ũ(t)) converges to U? = (u1(0), Ũ?) as t → +∞. By (3.4),
W (t) converges to W ? = AU? + ∇G(U?). Theorem 3.3 shows that (U?,W ?) is a
steady state. This concludes the proof. �

Remark 3.8. The estimate (3.23) provides a rate of convergence to equilibrium. In
case θ = 1/2, it is possible to obtain an exponential rate [67]. However, the exponent
θ is rarely known explicitly.

3.2. Examples.

3.2.1. Finite difference approximation. Let Ω = (0, 1). We set h = 1/J with J ∈ N?
and xi = ih for i = 0, 1, . . . , J . A possible finite difference discretization of (1.1)
reads (see, e.g., [120]): find (U,W ) : R+ → RJ+1 × RJ+1 such thatU

′(t) = −AhW (t),

W (t) = AhU(t) +
1

ε2
∇Fh(U),

t ≥ 0, (3.24)

where Ah is the (J + 1)× (J + 1) matrix

Ah =
1

h2



1 −1 0 · · · · · · · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

. . . −1 2 −1
0 · · · · · · · · · 0 −1 1


(3.25)

and

Fh(v0, v1, . . . , vJ) =
1

4

J∑
i=0

(v2
i − 1)2.

We have

∂viFh(v0, . . . , vJ) = v3
i − vi for i = 0, . . . , J.

The system (3.24) has the form (3.2) with A = Ah, B = IJ+1 (the identity matrix)

and G(V ) =
1

ε2
Fh(V ). It is well-known that Ah satisfies H1 with E1 = (1, 1, . . . , 1)T .
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Moreover, B = IJ+1 clearly satisfies H2 and G is real analytic on RJ+1 (because it
is a polynomial) and satisfies H3. Thus, we may apply Theorem 3.7.

On the square Ω = (0, 1) × (0, 1), the approximation (3.24) has a natural 2D

extension. Namely, we work on RJ+1 ⊗ RJ+1, which is isomorphic to R(J+1)2 , and
with the grid

(xi, yj) = ((i− 1)h, (j − 1)h) for 0 ≤ i, j ≤ J.

We set A = Ah ⊗ IJ+1 + IJ+1 ⊗Ah and

Fh(v0,0, . . . , vJ,J) =
1

4

∑
0≤i,j≤J

(v2
i,j − 1)2.

We have a system of the form (3.2) with B = IJ+1 ⊗ IJ+1 (the identity matrix) and

G(V ) =
1

ε2
Fh(V ). Again, the assumptions of Theorem 3.7 are satisfied and so the

convergence result holds. The 3D case is similar, with the matrix

A = Ah ⊗ IJ+1 ⊗ IJ+1 + IJ+1 ⊗Ah ⊗ IJ+1 + IJ+1 ⊗ IJ+1 ⊗Ah. (3.26)

3.2.2. Galerkin method. We assume that Vh is a M -dimensional subspace of V which
contains the constants. The space semidiscrete scheme reads: find (uh, wh) : R+ →
Vh × Vh such that(u′h(t), vh) = −(∇wh(t),∇vh), ∀vh ∈ Vh,

(wh(t), zh) = (∇uh(t),∇zh) +
1

ε2
(f(uh(t)), zh), ∀zh ∈ Vh,

t ≥ 0. (3.27)

We choose a basis (e1, . . . , eM ) of Vh which is orthonormal for the L2(Ω) inner prod-

uct and such that e1 is constant. We seek for uh(t) =
∑M

i=1 ui(t)ei and wh(t) =∑M
i=1wiei. The matrix version of (3.27) has the form (3.2) with

A = ((∇ei,∇ej))1≤i,j≤M , B = IM

and

G(v1, . . . , vM ) =
1

4ε2

∫
Ω

( M∑
i=1

viei(x)

)2

− 1

2

dx. (3.28)

Since 1 ≤ d ≤ 3, the Sobolev injection H1(Ω) ⊂ L4(Ω) holds [50]. We deduce that
G is well defined and of class C1 with

∂viG(v1, . . . , vM ) =
1

ε2

∫
Ω
f

(
M∑
i=1

viei(x)

)
ei(x)dx. (3.29)

Thus,

∂viG(u1(t), . . . , uM (t)) =
1

ε2
(f(uh(t)), ei),

as claimed.
It is clear that A satisfies H1 (since A has the form (3.18)), B = IM satisfies

H2 and G satisfies H3. Moreover, G is a polynomial, so it is real analytic on RM .
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Indeed, by expanding (3.28), we have

G(v1, . . . , vM ) =
1

4ε2

∑
1≤i,j,k,l≤M

vivjvkvl

∫
Ω
ei(x)ej(x)ek(x)el(x)dx

− 2

4ε2

∑
1≤i,j≤M

vivj

∫
Ω
ei(x)ej(x)dx+

1

4ε2

∫
Ω
dx. (3.30)

Thus, we may apply Theorem (3.7), which shows that (uh(t), wh(t)) converges to
(u?h, w

?
h) in Vh × Vh, as t→ +∞. Moreover, (u?h, w

?
h) is a steady state, which means

that w?h is a constant function and

(w?h, zh) = (∇u?h,∇zh) +
1

ε2
(f(u?h), zh), ∀zh ∈ Vh. (3.31)

This asymptotic convergence result for the Galerkin method (3.27) can be applied
to finite element methods such as P 1 finite elements [40] or Qk finite elements [53],
but also spectral-Galerkin methods [119].

Remark 3.9. In (3.27), we know that (uh(t), wh(t)) converges in Vh×Vh. Thus, for
any choice of a basis of Vh, the coordinates of (uh, wh) converge in RM × RM . For
the numerical computation of (uh(t), wh(t)), we therefore use the most appropriate
basis (for instance, a nodal basis if we have finite elements).

Remark 3.10. The Galerkin method (3.27) is a H1-conforming discretization of the
Cahn-Hilliard system (1.1)-(1.2). There are also several efficient space discretization
of the Cahn-Hilliard equation (1.4) based on a H2 approach [7, 34, 39, 45, 51].
However, for such discretizations, it not always clear that the energy law (1.6) is
preserved. Without the energy law, the techniques used here cannot be applied and
it is not known if a solution to the discretized problem converges to a steady state.

4. The time semidiscrete case

Hereafter, τ > 0 denotes the time step, which is chosen constant for sake of
simplicity.

4.1. BDF schemes. The picture regarding convergence to a steady state is com-
plete regarding backward differentiation formulae (BDF). The k-step BDF scheme
(1 ≤ k ≤ 5) applied to the Cahn-Hilliard equation (2.5) reads: let u0, . . ., uk−1 in V
and for n = 0, 1, . . . , let (un+k, wn+k) ∈ V × V solve

1

τ
(Lkun+k, v) = −(∇wn+k,∇v) ∀v ∈ V,

(wn+k, z) = (∇un+k,∇z) +
1

ε2
(f(un+k), z), ∀z ∈ V,

(4.1)



16 CONVERGENCE TO EQUILIBRIUM FOR DISCRETIZED CAHN-HILLIARD EQUATIONS

where the operators Lk (1 ≤ k ≤ 5) are given by

L1u
n+1 = un+1 − un, (4.2)

L2u
n+2 =

3

2
un+2 − 2un+1 +

1

2
un, (4.3)

L3u
n+3 =

11

6
un+3 − 3un+2 +

3

2
un+1 −

1

3
un, (4.4)

L4u
n+4 =

25

12
un+4 − 4un+3 + 3un+2 −

4

3
un+1 +

1

4
un, (4.5)

L5u
n+5 =

137

60
un+5 − 5un+4 + 5un+3 −

10

3
un+2 +

5

4
un+1 −

1

5
un. (4.6)

The k-step BDF scheme (4.1) is nonlinear and uniquely solvable if the time step is
small enough (cf. Remark 4.4). Its accuracy is k if the solution is sufficiently regular
(see [5] in the case of semilinear parabolic equations). For k = 1, it is the well-known
backward Euler scheme.

Energy stability and convergence to a steady state have been proved for the two-
step BDF scheme (4.1) in [8]. We also refer to [38, 90] for the BDF1 scheme and [18,
43] for the k-step BDF scheme (k ≤ 5) applied to the Allen-Cahn equation. Here,
we extend the proof to the Cahn-Hilliard equation for all k ≤ 5.

We denote ∂un+1 = un+1 − un and, by induction, ∂jun+j = ∂(∂j−1un+j) for

j ≥ 2. We readily check that Lk =
∑k

j=1
1
j ∂

jun+j . As a consequence, Lk is a linear

combination of ∂un+k, . . . , ∂un+1. The following result was proved in [43, 123] for
the BDF1, BDF2 and BDF3 schemes and [18] for the BDF4 and BDF5 schemes.

Lemma 4.1 ([18, 43]). Let (·, ·)H be an inner product with norm | · |H and let k ≤ 5.

There exist a symmetric positive definite matrix Qk = (qij) ∈ R(k−1)×(k−1) and a

symmetric positive definite matrix Rk = (rij) ∈ Rk×k such that for all v0, . . . , vk in
the inner space H,

(Lkvk, vk − vk−1)H =

k−1∑
i,j=1

qij(∂v
i+1, ∂vj+1)H −

k−1∑
i,j=1

qij(∂v
i, ∂vj)H

+
k∑

i,j=1

rij(∂v
i, ∂vj)H + βk|∂vk|2H,

where the values βk are given by

β1 = β2 =
1

2
, β3 =

2

3
, β4 =

41

144
, β5 =

1

20
. (4.7)

The values βk will appear in the restriction on the time step. It is possible to
have values of βk which are slightly larger than (4.7), with a different choice of the
matrices Qk and Rk. The largest possible values of βk are 1 for k = 1, 2 and 95/96
for k = 3 [109]. The optimal values of β4 and β5 are given in [105]. For these optimal
values, the matrix Rk is positive semi-definite instead of positive definite.

Example 4.2. For k = 1, the term involving Q1 is empty and R1 = (1/2), that is

(L1u
n+1, ∂un+1) =

1

2
|∂un+1|2H + β1|∂un+1|2H.
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For k = 2, we have Q2 = (1/4) with

(L2u
n+2, ∂un+2) =

1

4
|∂un+2|2H −

1

4
|∂un+1|2H +

1

4
|∂un+2 − ∂un+1|2H

+
1

2
|∂un+2|2H + β2|∂un+2|2H.

For k = 3, we have (for instance)

(L3u
n+3, ∂un+3) =

5

12
|∂un+3|2H +

1

6
|∂un+3 − ∂un+2|2H −

5

12
|∂un+2|2H

−1

6
|∂un+2 − ∂un+1|2H +

1

6
|∂un+3 − ∂un+2 + ∂un+1|2H

+
1

4
|∂un+3 − ∂un+2|2H +

1

6
|∂un+3|2H + β3|∂un+3|2H.

Using Lemma 4.1, we prove below that the k-step BDF scheme is energy stable
for 1 ≤ k ≤ 5, with a restriction on the time step. For simplicity, we assume that
u0, . . . , uk−1 in V are such that

〈u0〉 = 〈u1〉 = · · · = 〈uk−1〉. (4.8)

We obtain by induction that

〈un〉 = 〈u0〉, ∀n ∈ N. (4.9)

Indeed, if we choose v = 1 in (4.1), we find that (Lkun+k, 1) = 0, and so

Lk〈un+k〉 = 0. (4.10)

The claim follows since Lk applied to the constant sequence (1) gives 0.
We define the modified energy

Êk(un+k, un+k−1, . . . , un+1) = E(un+k) +
1

τ

k−1∑
i,j=1

qij(∂u
n+i+1, ∂un+j+1)−1,

where Qk = (qij)1≤i,j≤k−1 is the matrix from Lemma 4.1. Note that ∂un ∈ V̇ for all

n ≥ 1 by (4.9). For k = 1, Ê1 is simply E and (4.8) is automatically satisfied.
The stability result for the modified energy is as follows:

Theorem 4.3. Let 1 ≤ k ≤ 5 and assume that τ ≤ 2βkε
4. If ((un, wn)) is a sequence

in V × V which complies with (4.1) and (4.8), then we have

Êk(un+k, . . . , un+1) +
1

τ

k∑
i,j=1

rij(∂u
n+i, ∂un+j)−1

+
βk
2τ
|∂un+k|2−1 +

1

4
|∂un+k|21 ≤ Êk(un+k−1, . . . , un), ∀n ≥ 0. (4.11)

Remark 4.4. By arguing as in [8, Proposition 2.1 and Proposition 2.2], it is easy
to see that if τ ≤ 2βkε

4, there exists a unique sequence ((un, wn)) in V × V which
complies with (4.1), once that u0, . . . , uk−1 are given.

Remark 4.5. The choice of Qk and Rk in Lemma 4.1 is not unique if k ≥ 2, so that
there are several choices of the modified energy for which stability holds.
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Proof. Using (4.9), we see that the BDF scheme (4.1) is equivalent to

〈un+k〉 = 〈u0〉,
1

τ
(−∆̇N )−1Lkun+k = −ẇn+k,

ẇn+k = −∆Nu
n+k +

1

ε2
f(un+k)−

1

ε2
〈f(un+k)〉,

〈wn+k〉 =
1

ε2
〈f(un+k)〉.

Eliminating wn+k leads to

1

τ
(−∆̇N )−1Lkun+k −∆Nu

n+k +
1

ε2
f(un+k)− 1

ε2
〈f(un+k)〉 = 0, (4.12)

for all n ≥ 0. On taking the L2(Ω) product of (4.12) with ∂un+k ∈ V̇, we find

1

τ
(Lkun+k, ∂un+k)−1 + (∇un+k,∇∂un+k) +

1

ε2
(f(un+k), ∂un+k) = 0. (4.13)

We have F ′′(s) = f ′(s) = 3s2 − 1 ≥ −1 so by the Taylor-Lagrange theorem,

F (r)− F (s) ≥ f(s)(r − s)− 1

2
(r − s)2, ∀r, s ∈ R.

Thus,

(f(un+k), un+k−1 − un+k) ≤ (F (un+k−1), 1)− (F (un+k), 1) +
1

2
|∂un+k|20. (4.14)

Using (4.14), the well-known identity

(∇un+k,∇(un+k − un+k−1)) =
1

2

(
|un+k|21 − |un+k−1|21 + |un+k − un+k−1|21

)
,

and Lemma 4.1 with the inner product (·, ·)−1, we deduce from (4.13) that

1

τ

k−1∑
i,j=1

qij(∂u
n+i+1, ∂un+j+1)−1 −

1

τ

k−1∑
i,j=1

qij(∂u
n+i, ∂un+j)−1

+
1

τ

k∑
i,j=1

rij(∂u
n+i, ∂un+j)−1 +

βk
τ
|∂un+k|2−1

+
1

2

(
|un+k|21 − |un+k−1|21 + |un+k − un+k−1|21

)
≤ 1

ε2

(
(F (un+k−1), 1)− (F (un+k), 1) +

1

2
|∂un+k|20

)
(2.1)

≤ 1

ε2
(F (un+k−1), 1)− 1

ε2
(F (un+k), 1) +

1

2ε2
|∂un+k|−1|∂un+k|1. (4.15)

By Young’s inequality,

1

2ε2
|∂un+k|−1|∂un+k|1 ≤ 1

4
|∂un+k|21 +

1

4ε4
|∂un+k|2−1

≤ 1

4
|∂un+k|21 +

βk
2τ
|∂un+k|2−1. (4.16)

The estimate (4.11) follows from (4.15) and (4.16). �

By arguing as in [8], we have:
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Corollary 4.6. If the assumptions of Theorem 4.3 are satisfied and if Ω has a smooth
boundary, then the whole sequence ((un, wn)) converges to a steady state (u∞, w∞)
in V × V, i.e. a solution of (2.6) such that 〈u∞〉 = 〈u0〉.

This result shows that the steady states for the BDF scheme (4.1) and for the
PDE (2.5) are the same. Moreover, we recover the correct energy level at infinity,
since

Ê(un+k, . . . , un+k−1)→ Ê(u∞, u∞, . . . , u∞) = E(u∞).

The main steps of the proof are the precompactness of trajectories, Lasalle’s in-
variance principle and the  Lojasiewicz-Simon inequality formulated in [8, Lemma
3.2]. The regularity of ∂Ω is needed for the  Lojasiewicz-Simon inequality in relation
with elliptic regularity [4].

Remark 4.7. If assumption (4.8) is not satisfied, then the sequence (〈un〉) satisfies
the linear recurrence relation (4.10). The roots of the characteristic equation are
simple roots, namely 1 and k−1 complex numbers with modulus less than 1, because
the k-step BDF scheme is strictly zero-stable for k ≤ 6 [65, 123]. Thus, (〈un〉)
converges to a constant value M with an exponential rate. By using techniques
developed for asymptotically autonomous gradient systems (see, e.g., [32, 55, 56]), it
is possible to prove that the whole sequence ((un, wn)) generated by (4.1) converges
to a steady state.

Lemma 4.1 cannot be extended to the 6-step BDF scheme [105], so that the order
5 seems to be a barrier. A related phenomenon occurs for the Nevanlinna-Odeh
multipliers [99]. These are used to prove stability and error estimates on a finite
time interval for BDF schemes applied to semilinear parabolic problems, up to order
5 [5, 87]. These considerations lead us to the following question.

Question 1. Is it possible to find a time semidiscretization of (2.5) which has order
greater than five and which is energy stable (with a possible restriction on the time
step) ? If so, does every sequence generated by the scheme converge to a steady
state ?

4.2. Convex splitting scheme. An idea introduced in [43, Equation (5.4)] for the
Allen-Cahn equation and popularized by Eyre [44] is to split the potential F (s) into
the sum of a convex function and a concave function. The convex term (or contrac-
tive) is treated implicitly and the concave term (expansive) is treated explicitly. The
resulting scheme is unconditionally energy stable. If we choose

1

4
(s2 − 1)2 =

(
s4

4
+

1

4

)
+

(
−s

2

2

)
,

the scheme reads: let u0 ∈ V and for n = 0, 1,. . . let (un+1, wn+1) ∈ V × V solve
1

τ
(un+1 − un, v) = −(∇wn+1,∇v), ∀v ∈ V,

(wn+1, z) = (∇un+1,∇z) +
1

ε2
((un+1)3 − un, z), ∀z ∈ V.

(4.17)

This is a nonlinear scheme with first order accuracy and which is unconditionally
uniquely solvable and energy stable [44, 125]. The mass is conserved, as can be seen
by choosing v = 1 in (4.17). The stability result reads:
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Theorem 4.8 ([43, 44]). Let ((un, wn)) be a sequence generated by (4.17). Then

E(un+1) + τ |wn+1|21 +
1

2
|un+1 − un|21 +

1

2ε2
|un+1 − un|20 ≤ E(un), ∀n ≥ 0. (4.18)

Proof. We choose v = τwn+1 and z = un+1 − un in (4.17). We find

−τ |w|21 = (∇un+1,∇(un+1 − un)) +
1

ε2
((un+1)3, un+1 − un)− 1

ε2
(un, un+1 − un).

The function F+(s) = (s4 +1)/4 is convex, so F ′′+(s) ≥ 0 and by the Taylor-Lagrange
theorem

F+(r)− F+(s) ≥ s3(r − s), ∀r, s ∈ R.
Thus,

(F+(un), 1)− F+(un+1), 1) ≥ ((un+1)3, un − un+1).

Using (2.4), we deduce from the previous calculations that

τ |w|21 +
1

2

(
|un+1|21 − |un|21 + |un+1 − un|21

)
+

1

2ε2

(
|un|20 − |un+1|20 + |un+1 − un|20

)
≤ 1

ε2
(F+(un), 1)− 1

ε2
F+(un+1), 1).

This is exactly (4.18), since

E(v) =
1

2
|v|21 +

1

ε2
(F+(v), 1)− 1

ε2
|v|20, ∀v ∈ V.

�

Using this stability result and arguing as in [8], we obtain convergence to equi-
librium for (4.17). This means that in Corollary 4.6, we may replace the word
Theorem 4.3 by the word Theorem 4.8. The convergence is valid for every choice
of τ . The proof is based on the  Lojasiewciz-Simon inequality [8, Lemma 3.2] evalu-
ated at un+1. The explicit term un is treated as in finite dimension [6], by writing
un = un+1 + (un − un+1) and using the triangle inequality.

4.3. Linear schemes. In order to have linear schemes which are energy stable, we
introduce a modified potential as in [119]. Namely, we choose K > 1, we define

FK(s) =


3K2−1

2 s2 − 2K3s+ 1
4(3K4 + 1), s > K,

1
4(s2 − 1)2, s ∈ [−K,K],
3K2−1

2 s2 + 2K3s+ 1
4(3K4 + 1), s < K,

(4.19)

and we replace f(s) = s3 − s by F ′K(s) which is

fK(s) = F ′K(s) =


(3K2 − 1)s− 2K3, s > K,

s3 − s, s ∈ [−K,K],

(3K2 − 1)s+ 2K3, s < −K.
(4.20)

Thus, FK ∈ C2(R,R) and fK has a linear growth at ±∞ with

max
s∈R
|f ′K(s)| = 3K2 − 1 = L. (4.21)
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The standard first-order linear implicit-explicit (IMEX) scheme reads: let u0 ∈ V
and for n = 0, 1, . . . , let (un+1, wn+1) ∈ V × V solve

1

τ
(un+1 − un, v) = −(∇wn+1,∇v), ∀v ∈ V,

(wn+1, z) = (∇un+1,∇z) +
1

ε2
((fK(un), z), ∀z ∈ V,

∀n ≥ 0. (4.22)

This is very efficient scheme which allows the use of FFT (Fast Fourier Trans-
form) [25]. However, it is not clear how to choose K because the Cahn-Hilliard
equation does not satisfy the maximum principle (cf. Remark 2.1 and Section 6).
The modified energy is

EK(v) =
1

2
|v|21 + (FK(v), 1), ∀v ∈ V.

The dynamics of the linear IMEX scheme were first analyzed in [43] for the Allen-
Cahn equation. Here, the energy stability reads:

Proposition 4.9 ([119]). Assume that τ ≤ 4ε4/L2, where L is the constant in (4.21).
If
(
(un, wn)

)
is a sequence generated by (4.22), then

EK(un+1) +
τ

2
|wn+1|21 ≤ EK(un), ∀n ≥ 0.

For a sequence (un) in V, we define the ω-limit set

ω((un)n∈N) = {u? ∈ V : ∃nk → +∞, unk → u? strongly in V} .

As a consequence, we have:

Proposition 4.10. If the assumptions of Proposition 4.9 are satisfied, then the ω-
limit set ω((un)n∈N) is a nonempty compact and connected subset of V on which
EK is constant. Moreover, each u∞ ∈ ω((un)n∈N) is a steady state for the modified
potential in the sense that 〈u∞〉 = 〈u0〉 and

(∇u∞,∇z) +
1

ε2
(fK(u∞), z) = (w∞, z), ∀z ∈ V, (4.23)

for some constant function w∞.

Proof. On choosing v = 1 in (4.22), we see that 〈un+1〉 = 〈un〉. Thus, by induction,
we have

〈un〉 = 〈u0〉, ∀n ≥ 0.

We deduce from (4.19) that there exist positive constants κ1 and κ2 such that

FK(s) ≥ κ1s
2 − κ2, ∀s ∈ R.

We may choose for instance κ1 = (3K2 − 1)/4. Thus, EK satisfies

EK(v) ≥ 1

2
|v|21 + κ1|v|20 − κ2|Ω|, ∀v ∈ V.

On the other hand, we know by Proposition 4.9 that (EK(un)) is nonincreasing. This
shows that (E(un)) converges to a real number E∞ and that (un) is bounded in V.
Moreover, E is constant and equal to E∞ on ω((un)n∈N). Since

τ

2
|wn+1|21 ≤ EK(un)− EK(un+1),
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we also have ẇn+1 → 0 in V. The scheme (4.22) reads
1

τ
(un+1 − un) = −∆Nw

n+1 in V ′,

wn+1 = −∆Nu
n+1 +

1

ε2
fK(un) in V ′.

We have

wn = ẇn + 〈wn〉 with 〈wn〉 =
1

ε2
〈fK(un)〉. (4.24)

Since fK has a linear growth at infinity, the sequence (fK(un)) is bounded in L2(Ω)
and so −∆Nu

n+1 = gn where (gn) is bounded in L2(Ω). By elliptic regularity [60],
(un+1) is bounded in H2(Ω). Since H2(Ω) is compactly embedded in V [50], this
shows that the set {un : n ∈ N} is precompact in V. It implies that ω((un)n∈N)
is a nonempty compact subset of V. Moreover, un+1 − un = −τ∆N ẇ

n+1 tends to 0
in V ′, and by compactness, also in V. Thus, ω((un)n∈N) is also a connected subset
of V (see, e.g., [19, Lemma 3.1]). Now, let u∞ ∈ ω((un)n∈N) and let (unk) be a
subsequence such that unk → u∞ in V as k → +∞. We may let n = nk tend to +∞
in (4.22), and we find that (4.23) holds for some constant function w∞. We note
that (wnk) converges to the constant function w∞ = 〈f(u∞)〉 in V by (4.24). The
proof is complete. �

Proposition 4.10 shows that, up to a subsequence, (un) converges to a steady
state. If d = 1, by studying a phase portrait as in [122], it is possible to prove that
there is a finite number of steady states with prescribed mass. Since the ω-limit set
ω((un)n∈N) is connected, it is therefore reduced to a singleton and the whole sequence
(un) converges. However, if d = 2 or 3, the set of steady state is more complicated
and it may even contain a continuum as in Section 6.1. In contrast with the finite
dimensional case (cf. Theorem 5.9), we are not able to prove that the whole sequence
converges because it is not known if a  Lojasiewicz-Simon type inequality holds for
EK . Indeed, the modified potential FK is not analytic on R. This raises the following
question, which is related to proving a Kurdyka- Lojasiewicz-Simon inequality for EK
(as defined, e.g., in [33]).

Question 2. If τ ≤ 4ε4/L2, does every sequence generated by (4.22) converge to a
steady state ?

Remark 4.11. A similar convergence result and a similar question hold for the
stabilized version of (4.22) considered in [123]. In the stabilized version, an extra
dissipative term S

ε2
(un+1 − un) with S ≥ L/2 is introduced. This makes the scheme

unconditionally energy stable.

4.4. Secant scheme and related schemes. The secant scheme was introduced
in [36] and its properties have been thoroughly investigated [38, 43, 48, 63]. It reads:
let (u0, w0) ∈ V × V and for n = 0, 1, . . . , let (un+1, wn+1) ∈ V × V solve

1

τ
(un+1 − un, v) = −(∇wn+1/2,∇v), ∀v ∈ V,

(wn+1/2, z) = (∇un+1/2,∇z) +
1

ε2
(f̂(un+1, un), z), ∀z ∈ V,

(4.25)
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where wn+1/2 = (wn+1 + wn)/2, un+1/2 = (un+1 + un)/2 and

f̂(r, s) =
F (r)− F (s)

r − s
, ∀r, s ∈ R. (4.26)

Since F (s) = (s4 − 2s2 + 1)/4, we can factorize and we have

f̂(r, s) =
1

4
(r3 + r2s+ rs2 + s3)− 1

2
(r + s).

The secant scheme is a nonlinear scheme with second-order accuracy and which is
unconditionally energy stable. It is solvable for any τ > 0 and uniquely solvable if
τ < 4ε4 [63]. The stability property, which does not require uniqueness, reads:

Proposition 4.12 ([36]). Let τ > 0. If
(
(un, wn)

)
complies with (4.25), then

E(un+1) + τ |∇wn+1/2|21 = E(un), ∀n ≥ 0.

Remarkably, this scheme has no numerical dissipation in the sense that the energy
law (1.6) holds at the discrete level. However, in contrast to the PDE (1.1), there
is no regularization in finite time, since ∆un+1 has the same regularity as ∆un. In
particular, it is not clear that the set {un : n ∈ N} is relatively compact in V, and
so we only obtain a partial convergence result.

Proposition 4.13. Let ((un, wn)) be a sequence which complies with (4.25). Then,

up to a subsequence, ((un+1/2, wn+1/2)) converges strongly in V ×V to a steady state
(u∞, w∞), i.e. a solution of (2.6) such that 〈u∞〉 = 〈u0〉.

Proof. On choosing v = 1 in (4.25), we obtain by induction that

〈un〉 = 〈u0〉, ∀n ≥ 0.

By Proposition 4.12, the sequence (E(un)) is nonincreasing. Since

E(v) ≥ 1

2
|v|21 + κ′1|v|20 − κ′2, ∀v ∈ V,

for some positive constants κ′1, κ′2, this implies that (un) is bounded in V. Moreover,

τ |wn+1/2|21 = E(un)− E(un+1)→ 0. (4.27)

The first equation of (4.25) reads

un+1 − un = τ∆Nw
n+1/2,

so that un+1 − un → 0 in V ′ and also weakly in V, since un+1 − un is bounded in V.
By the Rellich theorem, V is compactly embedded in L2(Ω). Thus, it is possible to
find nk → +∞ and u∞ ∈ V such that

unk → u∞ weakly in V and a.e. in Ω,

unk+1 → u∞ weakly in V and a.e. in Ω.

In particular,

f̂(unk+1, unk)→ f̂(u∞, u∞) = f(u∞) a.e. in Ω.

Since the space dimension is less than or equal to 3, the space V is continuously
embedded in L6(Ω). Thus, f̂(unk+1, unk) is bounded in L2(Ω), with

|f̂(unk+1, unk)|0 ≤ C
(
‖unk+1‖3L6(Ω) + ‖unk‖3L6(Ω) + 1

)
.
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A classical lemma (see, e.g. [78, Lemme 4.8]) shows that f̂(unk+1, unk) → f(u∞)
weakly in L2(Ω). In particular, by choosing z = 1 in (4.25), we have

(wn+1/2, 1) =
1

ε2
(f̂(un+1, un), 1)→ 1

ε2
(f(u∞), 1),

and so wn+1/2 = ẇn+1/2+〈wn+1/2〉 converges strongly in V to a constant function w∞

(cf. (4.27)). We may let n = nk tend to +∞ in (4.25), and we obtain that (u∞, w∞)

is a steady state. Using the second equation in (4.25), we see that −∆Nu
n+1/2 = gn

where (gn) is bounded in L2(Ω). By elliptic regularity [60], un+1/2 is bounded in

H2(Ω). Since H2(Ω) is compactly embedded in V, the sequence (unk+1/2) converges
strongly to u∞ in V. �

In the proof above, (un) converges weakly in V (up to a subsequence), but not
necessarily strongly in V. The convergence problem for the secant scheme is easier
in finite dimension, as shown in Section 5.2. The lack of regularity can also be seen
by examining global dynamics. In [43], it is shown that a global attractor exists
for a fully discrete Allen-Cahn equation based on the secant scheme. However, the
behaviour of this global attractor as the mesh step tends to 0 is not clear. A similar
problem was pointed out for the Crank-Nicolson scheme applied to the 2D Navier-
Stokes equation in [126]. We summarize these remarks as follows.

Question 3. Does every sequence ((un, wn)) which complies with (4.25) converge
strongly in V × V ?

Remark 4.14. A similar question holds for closely related second-order one step
schemes which are unconditionally energy stable, such as the Gomez-Hughes approxi-
mation [52], the Taylor expansion of the midpoint approach [79], the midpoint-BDF2
scheme [117] or the linear scheme of Wu-Van Zwieten-Van der Zee [130]. We refer
the reader to the review [125] for a summary of theses schemes.

4.5. SAV approach. Following ideas from [10], a Lagrange multiplier approach
was proposed in [62, 63] to derive unconditionally energy stable linear schemes for
the Cahn-Hilliard equation. The approach was generalized into the invariant energy
quadratization (IEQ) method [131, 132], so as to include other situations. In [118],
Shen, Xu and Yang introduced the scalar auxiliary variable (SAV) approach for
gradient flows, a simplification of the IEQ method.

For the Cahn-Hilliard equation, the SAV method consists in introducing the aux-
iliary variable

r(t) =

√∫
Ω
F̃ε(u(x, t))dx+ C0

where C0 > 0 is a fixed constant and F̃ε(s) =
1

ε2
F (s). Then (1.1) becomes

∂tu = ∆w,

w = −∆u+
r(t)√

(F̃ε(u), 1) + C0

f̃ε(u),

r′(t) =
1

2
√

(F̃ε(u), 1) + C0

(f̃ε(u), ∂tu),

(4.28)
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with the boundary condition (1.2), where f̃ε(s) = F̃ ′ε(s) =
1

ε2
f(s). The system (4.28)

can then by discretized by a first order or second order implicit/explicit scheme (a
modified SAV method valid up to order 5 has recently been proposed in [72] for
Cahn-Hilliard type equations).

For instance, a first-order implicit/explicit discretization of (4.28) reads:
let (u0, r0) ∈ V × R and for n = 0, 1,. . . , let (un+1, wn+1, rn+1) ∈ V × V × R solve

1

τ
(un+1 − un, v) = −(∇wn+1,∇v), ∀v ∈ V,

(wn+1, z) = (∇un+1,∇z) +
rn+1√

(F̃ε(un), 1) + C0

(f̃ε(u
n), z), ∀z ∈ V,

rn+1 − rn =
1

2
√

(F̃ε(un), 1) + C0

(f̃ε(u
n), un+1 − un).

(4.29)

At each time step, knowing (un, rn), it is possible to compute (un+1, wn+1, rn+1)
by solving two linear systems involving the bilaplacian. In contrast to the linear
IMEX scheme where a modified potential FK was introduced (see (4.19)), for the

SAV approach we keep the quartic potential, which is denoted F̃ε for notational
convenience. The mass is conserved and the scheme is unconditionally energy stable
for the modified energy

Ẽ(un, rn) =
1

2
|un|21 + (rn)2. (4.30)

The stability result reads:

Proposition 4.15 ([118]). Let τ > 0 and let ((un, wn, rn)) be a sequence in V×V×R
generated by (4.29). Then for all n ≥ 0, we have

Ẽ(un+1, rn+1) + τ |wn+1|21 +
1

2
|un+1 − un|21 + (rn+1 − rn)2 = Ẽ(un, rn) (4.31)

Proof. In (4.29), we choose v = −τwn+1, z = un+1−un, we multiply the last equation
by −2rn+1 and we add the resulting equations. We obtain

τ |wn+1|21 + (∇un+1,∇(un+1 − un)) + 2(rn+1 − rn)rn+1 = 0.

Using twice the identity (2.4), we obtain (4.31). �

The asymptotic behaviour of sequences generated by (4.29) was studied in [19].
We say that (u?, w?, r?) ∈ V × V × R is a steady state for (4.29) if

(∇u?,∇z) +
r?

s?
(f̃ε(u

?), z) = (w?, z), ∀z ∈ V, (4.32)

where s? =
√

(F̃ε(u?), 1) + C0 and w? is a constant function on Ω. Thus, a steady

state is a solution of (4.29) which does not depend on n.

Proposition 4.16. Let ((un, wn, rn)) be a sequence in V×V×R generated by (4.29).
Then, up to a subsequence, ((un, wn, rn)) converges in V × V × R to a steady state
(u?, w?, r?) such that (4.32) holds with w? constant on Ω.
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Proof. By Proposition 4.15,
(
Ẽ(un, rn)

)
is nonincreasing, so it converges to a non-

negative real number Ẽ∞. The estimate (4.31) reads

τ |wn+1|21 +
1

2
|un+1 − un|21 + (rn+1 − rn)2 ≤ Ẽ(un, rn)− Ẽ(un+1, rn+1),

so |wn+1|1 → 0, |un+1− un|1 → 0 and rn+1− rn → 0 as n→ +∞. Moreover, (|un|21)
and (rn) are bounded, by (4.30). We also know that 〈un〉 = 〈u0〉 (by choosing v = 1
in (4.29)). Thus, by the Poincaré-Wirtinger inequality, the sequence (un) is bounded
in V. The second equation in (4.29) reads

−∆Nu
n+1 +

rn+1

sn+1
f̃ε(u

n) = wn+1 in V ′,

where sn =
√

(F̃ε(un), 1) + C0. The sequence (sn) is bounded and satisfies sn ≥
√
C0 > 0, for all n ≥ 0, so we have −∆Nu

n+1 = gn where (gn) is bounded in L2(Ω).
By elliptic regularity [60], (un+1) is bounded in H2(Ω). Since H2(Ω) is compactly
embedded in V, there exists a subsequence (unk) which converges strongly in V to
some u? ∈ V. We may also assume that (rnk) converges to some r? in R. Concerning
(wn), we write wn+1 = ẇn+1 + 〈wn+1〉. By choosing z = 1/|Ω| in (4.29), we have

〈wnk+1〉 =
rnk+1

snk
〈f̃ε(unk)〉 → r?

s?
〈f̃ε(u?)〉,

where s? =
√

(F̃ε(u?), 1) + C0. Thus, (wnk+1) converges to a constant function w?

in V. We choose n = nk and we let k tend to +∞ in the second equation of (4.29).
This gives the steady state equation (4.32). �

It is possible to obtain information on the structure of the ω-limit set of the
sequence ((un, rn)) [19], but we are not able to apply the techniques involving a
 Lojasiewicz-Simon inequality and to prove that the whole sequence converges. How-
ever, the main problem for the SAV scheme (4.29) is that the ratio r?/s? in (4.32) is
generally not equal to 1, because the scheme is only a first-order approximation of the
exact solution (see [19] for theoretical and numerical examples). Thus, the steady
state equation (4.32) is only an approximation of the steady state equation (2.6)
associated to the PDE.

We stress that these differences between the steady states are not limited to the
first-order SAV scheme (4.29). The problem comes from the auxiliary variable. In-
deed, a solution of the continuous-in-time SAV system (4.28) which does not depend
on the time t also solves (4.32). It could be interesting to have a better understand-
ing of the longtime dynamics of the SAV schemes in comparison with those of the
underlying PDE. As a starter, the following question can be considered.

Question 4. Does every sequence ((un, wn, rn)) generated by (4.29) converge in
V × V × R ?

5. The fully discrete case

By combining a space discretization from Section 3 and a time discretization
from Section 4, it is easy to obtain a fully discrete approximation of the Cahn-
Hilliard equation which is energy stable. Sometimes, only the fully discrete scheme is
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meaningful. This is the case with the forward Euler scheme [6, 25], with appropriate
Runge-Kutta methods [64] or with a preconditioning as in [21, Theorem 3.3]

In this section, we focus on two examples, namely the secant scheme and the
linear IMEX scheme, which show that the convergence problem in finite dimension
is better understood. We start with a general convergence result and some tools
related to the  Lojasiewicz inequality.

5.1. A general convergence result; semialgebraic functions. We will use the
following result, which is a direct consequence of [6, Theorem 2.4] (see also [9, The-
orem 2.9] or [47, Theorem 3.1]).

Theorem 5.1 ([6]). Let Φ ∈ C1(RM ,R). Consider a bounded sequence (Un) in RM
which satisfies the following conditions:

H4: There exists a positive constant c1 such that for each n ∈ N,

Φ(Un)− Φ(Un+1) ≥ c1‖Un+1 − Un‖2;

H5: There exists a positive constant c2 such that for each n ∈ N,

‖∇Φ(Un+1)‖ ≤ c2‖Un+1 − Un‖.
If Φ satisfies the  Lojasiewicz inequality (Definition 3.4) at an accumulation point U?

of (Un), then the whole sequence (Un) converges to U?.

For implicit schemes, the nonlinearity is analytic and we will use Theorem 3.6. For
linear IMEX schemes, the nonlinearity is no longer analytic, but it is semialgebraic.
We recall here some definitions and properties from [9, 15, 17].

Definition 5.2. A subset S of Rm is a real semialgebraic set if there exists a finite
number of real polynomial functions Pij , Qij : RM → R such that

S =

p⋃
i=1

q⋂
j=1

{x ∈ Rm : Pij(x) = 0, Qij(x) < 0} .

One easily sees that the class of semialgebraic sets is stable under the operation
of finite union, finite intersection, Cartesian product or complementation.

Definition 5.3. Let S1 ⊂ Rm1 and S2 ⊂ Rm2 be two semialgebraic sets. A mapping
g : S1 → S2 is semialgebraic if its graph {(x, y) ∈ S1 × S2 : y = g(x)} is a
semialgebraic subset of Rm1+m2 .

Of course, polynomial functions are semialgebraic functions. The function FK :
R→ R given by (4.19) is also a semialgebraic function (see Lemma 5.8). The class of
semialgebraic mappings is highly flexible thanks to the Tarski-Seidenberg principle.
In particular, we have [17, Proposition 2.2.6]:

Theorem 5.4. The composition g2 ◦ g1 of semialgebraic mappings g1 : S1 → S2 and
g2 : S2 → S3 is also semialgebraic.

As a consequence, the sum g1+g2 or product g1g2 of two semialgebraic functions on
Rm is also semialgebraic, by composition of (g1, g2) : Rm → R2 with + : R2 → R or
with × : R2 → R. Kurdyka [81] generalized the  Lojasiewicz inequality to o-minimal
structures, and this includes semialgebraic functions.

Theorem 5.5 (Theorem (LI) in [81]). If Φ : RM → R is of class C1 and semi-
algebraic, then Φ satisfies the  Lojasiewicz inequality (Definition 3.4) at each point
U? ∈ RM .
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5.2. Secant scheme with Galerkin approximation. We consider the secant
scheme with variable time step, combined with a Galerkin approximation. We as-
sume that Vh is a (M + 1)-dimensional subspace of V which contains the constant
functions and that (τn) is a bounded sequence of positive real numbers such that

τ? ≤ τn ≤ τ?, ∀n ≥ 0, (5.1)

for some positive real numbers τ?, τ
?. If the time step is constant, then assump-

tion (5.1) is obviously satisfied.
The scheme reads: let (u0

h, w
0
h) ∈ Vh and for n = 0, 1, . . . , let (un+1

h , wn+1
h ) ∈

Vh × Vh solve
1

τn
(un+1
h − unh, vh) = −(∇wn+1/2

h ,∇vh), ∀vh ∈ Vh,

(w
n+1/2
h , zh) = (∇un+1/2

h ,∇zh) +
1

ε2
(f̂(un+1

h , unh), zh), ∀zh ∈ Vh,
(5.2)

where u
n+1/2
h = (un+1

h + unh)/2, w
n+1/2
h = (wn+1

h + wnh)/2 and f̂(r, s) is defined
by (4.26). Convergence to equilibrium was proved in [115] for the secant scheme
applied to a finite element discretization of a model of nematic liquid crystals with
a Ginzburg-Landau potential. Here, we prove:

Theorem 5.6. Every sequence ((unh, w
n
h)) in Vh × Vh which complies with (5.2)

converges to a steady state (u∞h , w
∞
h ) in Vh × Vh, i.e. a solution of

(∇u∞h ,∇zh) +
1

ε2
(f(u∞h ), zh) = (w∞h , zh), ∀zh ∈ Vh, with w∞h constant on Ω.

Remark 5.7. Uniqueness holds if τ < 4ε4 [63]. Thus, for large τ , there may be
several sequences corresponding to a given initial value (u0

h, w
0
h). Each one of these

sequences converges to a steady state. The scheme defines a multivalued dynamical
system [90, 109].

Proof. We first choose vh = 1 in (5.2) and we obtain by induction that

〈unh〉 = 〈u0
h〉, ∀n ≥ 0.

We choose vh = −τnwn+1/2
h and zh = un+1

h − unh in (5.2) and we add the resulting
equations. This yields

E(un+1
h )− E(unh) + τn|wn+1/2

h |21 = 0, ∀n ≥ 0. (5.3)

Thus, (E(unh)) is bounded and so the sequence (unh) is bounded in Vh, by the Poincaré-
Wirtinger inequality. Next, we apply Theorem 5.1. We choose a basis (e0, e1, . . . , eM )
of Vh which is orthonormal for the inner production in L2(Ω) and such that e0 is

constant. We write unh =
∑M

i=0 u
n
i ei and wnh =

∑M
i=0w

n
i ei. The scheme (5.2) implies

that (un0 ) is constant and that
1

τn
(Un+1 − Un) = −AhWn+1/2,

Wn+1/2 = AhU
n+1/2 +

1

ε2
F̂h(Un+1, Un),

, ∀n ≥ 0, (5.4)

where Un = (uni )1≤i≤M , Wn = (wni )1≤i≤M , Ah = (∇ei,∇ej)1≤i,j≤M and

F̂h(Un+1, Un) = (f̂(un+1
h , unh), ei))1≤i≤M .
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The M × M matrix Ah is symmetric positive definite since (∇·,∇·) is an inner

product on V̇h = Vh ∩ V̇. We define

Φ(V ) = Φ(v1, . . . , vM ) = E(u0e0 +

M∑
i=1

viei).

Then (5.3) shows that for all n ≥ 0, we have

Φ(Un)− Φ(Un+1) = τn(Wn+1/2)TAhW
n+1/2

=
1

τn
(Un+1 − Un)TA−1

h (Un+1 − Un),

≥ 1

τ?λM
‖Un+1 − Un‖2,

where λM > 0 is the largest eigenvalue of Ah. Thus, assumption H4 is satisfied.
Now, we turn to H5. We note that (5.4) is equivalent to

− 1

τn
A−1
h (Un+1 − Un) = AhU

n+1/2 +
1

ε2
F̂h(Un+1, Un). (5.5)

Since all norms are equivalent in Vh, there is a constant C such that

‖unh‖L∞(Ω) ≤ C, ∀n ≥ 0.

By Taylor’s formula, for all r, s ∈ R, there exists ξ ∈ [r, s] such that

F (s) = F (r) + (s− r)f(r) +
(s− r)2

2
f ′(ξ).

Thus, for all r, s ∈ [−C,C], we have∣∣∣f̂(r, s)− f(r)
∣∣∣ ≤ |s− r|

2
LC ,

where LC = supξ∈[−C,C] |f ′(ξ)|. It is clear that (cf. (3.29))

∇Φ(Un+1) = AhU
n+1 +

1

ε2
((f(un+1

h ), ei))1≤i≤M ,

so we have ∥∥∥∥AhUn+1/2 +
1

ε2
F̂h(Un+1, Un)−∇Φ(Un+1)

∥∥∥∥
≤ 1

2
‖Ah(Un+1 − Un)‖+

LC
2ε2
‖Un+1 − Un‖. (5.6)

Using the triangle inequality, we deduce from (5.5) and (5.6) that

‖∇Φ(Un+1)‖ ≤ C ′‖Un − Un+1‖, ∀n ≥ 0,

for some constant C ′ = C ′(τ?, ε, ‖Ah‖, ‖A−1
h ‖, LC) independent of n. This shows that

assumption H5 is satisfied. Moreover, the function Φ is a polynomial (see (3.30)).
Thus, by Theorem 3.6, Φ satisfies the  Lojasiewicz inequality at each point in RM .
We are in position to apply Theorem 5.1 and we obtain that (Un) converges. Finally,
we may pass to the limit in (5.2) and the proof is complete. �
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5.3. Linear IMEX scheme with finite difference method. We consider the
linear IMEX scheme (4.22) combine with the finite difference space discretization
from Section 3.2.1. It reads: let U0 ∈ RM and for n = 0, 1, . . . , let (Un+1,Wn+1) ∈
RM × RM solve 

1

τ
(Un+1 − Un) = −AWn+1,

Wn+1 = AUn+1 +
1

ε2
∇FK,M (Un),

(5.7)

where A satisfies assumption H1 from Section 3.1 and FK,M : RM → R is defined
by

FK,M (v1, . . . , vM ) =

M∑
i=1

FK(vi)

with FK given by (4.19). For the standard difference scheme, 0 is a simple eigenvalue
of A associated to the eigenvector E1 = (1, 1, . . . , 1)T and M = J + 1 if Ω = (0, 1)
(see (3.25)), M = (J+1)2 if Ω = (0, 1)2 and M = (J+1)3 if Ω = (0, 1)3 (see (3.26)),
where h = 1/J is the step size.

We first point out:

Lemma 5.8. The function FK,M ∈ C2(RM ,R) is semialgebraic.

Proof. We have FK,M = l ◦ g where g : RM → RM is defined by

g(v1, . . . , vM ) = (FK(v1), . . . , FK(vM )),

and l : RM → R is given by l(z1, . . . , zM ) = z1 + · · · + zM . Since l is a polynomial
function, it is semialgebraic. We claim that g is semialgebraic and so, by Theorem 5.4,
l ◦ g is semialgebraic. In order to prove the claim, we write the graph of g as the
finite intersection of the sets Si (i = 1, . . . , M) defined by

Si =
{

(v1, . . . , vM , z1, . . . , zM ) ∈ RM × RM : zi = FK(vi)
}
.

Using (4.19), we see that Si ⊂ R2M can be written as

Si =

{
1

4
(v2
i − 1)2 − zi = 0, v2

i −K2 < 0

}
⋃{

3K2 − 1

2
v2
i − 2K3vi +

1

4
(3K4 + 1)− zi = 0, K − vi < 0

}
⋃{

3K2 − 1

2
v2
i + 2K3vi +

1

4
(3K4 + 1)− zi = 0, vi +K < 0

}
⋃({

v2
i −K2 = 0, −1 < 0

}⋂{
1

4
(v2
i − 1)2 − zi = 0, −1 < 0

})
.

This shows that each Si is a semialgebraic subset of R2M (Definition 5.2), and the
proof is complete. �

Theorem 5.9. Assume that τ ≤ 4ε4/L2 where L is given by (4.21). Then every
sequence ((Un,Wn)) generated by (5.7) converges to a steady state (U∞,W∞) in
RM × RM , i.e. a solution of

AW∞ = 0, AU∞ +
1

ε2
∇FK,M (U∞) = W∞. (5.8)
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Proof. We multiply the first equation in (5.7) by ET1 and we obtain by induction that
ET1 U

n = ET1 U
0, for all n ≥ 0. Thus, we only have to deal with the remaining M − 1

degrees of freedom. By using an orthonormal basis of RM starting with E1/‖E1‖ as
in the Proof of Theorem 3.7 (Step 1), we may assume that A has the form (3.18)
and that E1 = (1, 0, . . . , 0)T . The system (5.7) becomes

1

τ
(Ũn+1 − Ũn) = −ÃW̃n+1,

W̃n+1 = ÃŨn+1 +
1

ε2
∇F̃K,M (Ũn),

where Ã is a (M − 1)× (M − 1) symmetric positive definite matrix,

Ũ = (U2, . . . , UM )T , W̃ = (w2, . . . , wM )T

and F̃K,M : RM−1 → R is a nonnegative semialgebraic function of class C2, obtained
by composition of FK,M and of a linear mapping. In the remainder of the proof,
we omit the tilde symbol and we change M − 1 into M . That is, we deal with the
system (5.7) but we assume this time that A is a M ×M symmetric positive definite
matrix.

The energy stability of the scheme reads (cf. Proposition 4.9)

τ

2
(Wn+1)TAWn+1 + Φ(Un+1) ≤ Φ(Un), ∀n ≥ 0, (5.9)

where the energy Φ : RM → R is defined by

Φ(V ) =
1

2
V TAV +

1

ε2
FK,M (V ) (V ∈ RM ).

By Lemma 3.1, the sequence (Un) is bounded. We note that the function Φ is
semialgebraic by composition of the semialgebraic maps

RM 3 V 7→ (
1

2
V TAV,

1

ε2
FK,M (V )) ∈ R2

and + : R2 → R. Thus, by Theorem 5.5, Φ satisfies the  Lojasiewicz inequality at
every point in RM . Using the first equation in (5.7), we deduce from (5.9) that

Φ(Un)− Φ(Un+1) ≥ 1

2τ
(Un+1 − Un)TA−1(Un+1 − Un)

≥ 1

2τλM
‖Un+1 − Un‖2,

for all n ≥ 0, where λM > 0 is the largest eigenvalue of A. Thus, assumption H4
holds. On the other hand, by applying to FK the Taylor inequality, we deduce that∥∥∥∥∇Φ(Un+1)−

(
AUn+1 +

1

ε2
∇FK,M (Un)

)∥∥∥∥ ≤ L

ε2
‖Un+1 − Un‖, (5.10)

for all n ≥ 0. By eliminating Wn+1 from (5.7), we have

AUn+1 +
1

ε2
∇FK,M (Un) = −1

τ
A−1(Un+1 − Un). (5.11)

Using the triangle inequality, we deduce from (5.10) and (5.11) that H5 also holds.
Thus, we may apply Theorem 5.1, and we obtain that (Un) converges. By continuity,
the limit is necessarily a steady state, and the proof is complete. �
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Remark 5.10. If we replace the finite difference by a finite element discretization
with numerical integration, a similar proof shows that the whole sequence generated
by the linear IMEX scheme converges to a steady state (see, e.g. [6]).

6. Simulations

We show 2D and 3D examples which illustrate our convergence results. For the
2D finite element computation, we used the FreeFem++ software [69]. The 3D fi-
nite difference computation was performed with a Python1 code. Concerning the
visualization, we used Visit2 for the 3D figures and MATLAB® for the other figures.

6.1. 2D finite element simulations. We have performed numerical simulations
for the Cahn-Hilliard equation (2.5) on the disc Ω of radius 1/2 centered at (0, 0).
This situation is interesting because there is a continuum of global minimizers by
rotational invariance of the steady state equation. We first point out a symmetry
breaking due to the space discretization. Then, we discuss a numerical solution to
the secant scheme with adaptive time step.

6.1.1. Symmetry breaking. For the space discretization, we use the Galerkin approx-
imation (3.27) with a P 1 finite element approximation. We note that the space
discretization induces a symmetry breaking. Indeed, the disc Ω is approximated by
a convex polygonal Ωh whose vertices lie on ∂Ω. The conformal triangulation Th
of Ωh into triangles has no rotational invariance (see Figure 1). The finite element
space Vh is a subspace of H1(Ωh), namely

Vh =
{
vh ∈ C0(Ωh) : ∀K ∈ Th, (vh)|K ∈ P 1

}
.
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Figure 1. Mesh used for (6.1)

1Python is freely available at https://www.python.org/
2Visit is freely available at https://wci.llnl.gov/simulation/computer-codes/visit

https://www.python.org/
https://wci.llnl.gov/simulation/computer-codes/visit
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We expect that the symmetry breaking results in many local minimizers with the
same prescribed mean value, which are steady states in the sense of (3.31). In order
to support this affirmation, we have computed the asymptotic state u∞h and the
energy level E(u∞h ) for different initial values. The initial value is a rotation of the
tanh(x) profile, namely

u0(x, y) = 0.9 tanh((cos(θ)x+ sin(θ)y)/0.01) (6.1)

with θ ∈ [0, π]. For each θ, we use the P 1 interpolate of u0 and we subtract its mean
value so that the mean value of the discrete approximate is zero.
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Figure 2. Final value for (6.1) with θ = 0 (left), θ = π/4 (middle)
and θ = π/2 (right). The thickness parameter ε is equal to 0.2.

The thickness parameter ε in (3.27) is equal to 0.2. The mesh Th, shown in
Figure 1, is a conforming triangulation of a regular polygon with 120 sides. It has
1333 vertices and 2544 triangles with hmin = 0.021 and hmax = 0.043, where hmin
and hmax are respectively the minimum and maximum diameter of all the triangles
in Th. Thus, the typical interface thickness ε = 0.2 is computed with a sufficient
resolution (5-10 triangles per ε).
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Figure 3. Final energy level vs. angle θ for (6.1)
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In Figure 3, we have represented the final state corresponding to the initial
value (6.1) for the parameters θ = 0, π/4 and π/2. For the time resolution, we used
the unconditionally stable convex splitting scheme (4.17) with time step τ = 0.04. By
arguing as in Theorem 5.6, it is easy to prove that for every initial value, the sequence
uniquely generated by the scheme converges to a steady state. This asymptotic con-
vergence result does not say which steady state will be reached. Remarkably, the final
state has the same orientation as the initial state. This is rather expected but it is
difficult to prove. As a consequence of the  Lojasiewicz inequality, it is known that a
local minimizer is stable with respect to the time discretization (see [90, Proposition
2.6] and [6, Theorem 2.12]).

The energy level E(u∞h ) of the asymptotic state is computed for θ = kπ/8 (k = 0,
1, . . . , 8) in Figure 3. The graphic represents the difference E(u∞h ) − 4.28992 with
respect to θ, where 4.28992 is chosen as a reference energy level. We see that the
energy levels are all different even if the relative difference is very small (less than
10−5). Thus, the asymptotic states are most likely local minimizers of the energy E
in Vh with prescribed zero mean value.

6.1.2. Secant scheme with adaptive time stepping. We have computed a numerical
solution to the secant scheme with variable time step and finite element discretiza-
tion (5.2). The thickness parameter is smaller than previously, namely ε = 0.04.
Accordingly, the mesh Th is much finer than in Figure 1. It is a conforming triangu-
lation of a regular polygon with 500 sides; Th has 43256 triangles and 21879 vertices,
with hmin = 0.0047 and hmax = 0.011 (4-10 triangles per ε).
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Figure 4. Time step vs. time for the 2D secant scheme

In order to reduce the number of iterations, we have used the time step adaptive
strategy described in [51, Algorithm 1]. The idea is to combine the second-order
secant scheme with a first order scheme in order to estimate the error due to the
time discretization. The first-order scheme here is Eyre’s convex splitting (4.17),
which is unconditionnally energy stable. The values for the safety coefficient ρ and
the tolerance tol are the same as in [51, Equation (29)], that is ρ = 0.9 and tol = 10−3.
The maximum value of the time step is 0.1. At every iteration, the two nonlinear
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systems associated to the secant scheme and to Eyre’s scheme are solved by a Newton
algorithm.
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Figure 5. Energy vs. time for the 2D secant scheme

We start with a uniformly distributed random initial value with mean value close
to 0.3 and amplitude 1, which is regularized by a few steps of Eyre’s algorithm, so
that the initial state takes values in the interval [−0.82, 0.65]. As shown in Figure 4,
the time step τn varies between 10−7 and 10−3 for t < 8 × 10−3. Once the steady
state is reached numerically (around time t = 0.01), the time step rapidly reaches
its maximum value 0.1 and remains equal to 0.1 thereafter. The time step adaptive
strategy results in a huge gain in the computational time. The energy (E(unh)) is
nonincreasing with respect to time (Figure 5), as predicted. The mean value 〈unh〉
remains constant and equal to 0.300197.

Figure 6. Time t = 0.03 · 10−5 (left) and t = 2.3 · 10−5 (right)

The iterates of the solution unh are presented in Figures 6-8. The solution converges
to a steady state, as proved in Theorem 5.6. By the Modica-Mortola theorem [95, 96],
the interface of the steady state is an approximation of an arc. The minimum value
of the final state is equal to −1.007 and its maximum value is 0.993 (see Remark 2.1).
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Figure 7. Time t = 40 · 10−5 (left) and t = 357 · 10−5 (right)

Figure 8. Time t = 532 · 10−5 (left) and steady state (right). The
thickness parameter ε is equal to 0.04.

6.2. 3D finite difference simulations. We show numerical simulations for the
finite difference linear IMEX scheme (5.7) on the unit cube Ω = (0, 1)3. At each
iteration, the linear system is solved by a Fourier-spectral space discretization of the
differential operators (Discrete Cosine Transform) and the parallelization strategy is
based on a slab decomposition which is the same as in [104]. The thickness parameter
is set to ε = 0.04 and the fixed time step is τ = 10−7. The mesh step is h = 1/256
with 2573 ≈ 17 × 106 degrees of freedom (see (3.25)-(3.26)), allowing typically 10
points per ε. The initial value is a uniformly distributed random variable in the
interval [−0.06, 0.06].

The mass of the iterates remains equal to 0 up to ±10−16, that is up to double
precision accuracy. The minimum and maximum value of the iterates (Un) of the
discrete solution over all iterations n are equal to −1.052 and +1.042 respectively.
In particular, they are outside the interval [−1, 1], in agreement with Remark 2.1.
Moreover, since the values of (Un) remain in the interval [−1.06, 1.06], we may choose
K = 1.06 in the definition (4.19) of the modified potential FK . For this particular
solution, FK coincides with F and the stability restriction on the time step reads

τ ≤ 4ε4/L2 = 1.8 · 10−6.

It is satisfied for our choice τ = 10−7. Thus, we have performed the numerical
simulation with F instead of FK , because it is much faster. In fact, for the choice
τ = 10−7 and ε = 0.04 and for other trials of the initial condition with values in
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Figure 9. Time t = 0 (left) and t = 2 · 10−5 (right)

Figure 10. Time 8 · 10−5 (left) and t = 36 · 10−5 (right)

Figure 11. Time 875 · 10−5 (left) and steady state (right). The
thickness parameter ε is equal to 0.04.

[−1, 1], we never observed any blow-up with the quartic potential F instead of FK .
A strategy to deal with the cubic nonlinearity has recently been proposed in [83].
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Several iterates are represented in Figures 9-11. In the final state (which is chosen
as the solution at time t = 1875×10−5), the two phases are completely separated by
a horizontal plane which has a thickness close to ε = 0.04. The minimum and maxi-
mum value of the numerical final state are equal to −1.001 and +1.001 respectively.
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Figure 12. Energy vs. time for 3D linear IMEX scheme

In Figure 12, the energy decreases with respect to time, as predicted by the sta-
bility analysis.

7. Conclusion and perspectives

7.1. Generalization to other Cahn-Hilliard equations. Most of the conver-
gence results proved above also hold if we replace the double-well polynomial po-
tential F (s) by a suitable analytic potential with H1 subcritical growth, as in [8].
The potential may also depend on the variable x [114]. We can also replace the
Neumann boundary conditions (1.2) by periodic boundary conditions or Dirichlet
boundary conditions. For Dirichlet boundary conditions, the mass is no longer pre-
served, but the analysis is generally easier because the Laplace operator is invertible
from H1

0 (Ω) into its dual. Some types of dynamic boundary conditions which pre-
serve a gradient-like flow structure at the continuous and discrete level are also
possible [29, 31, 68, 97, 98, 102].

If we consider the Cahn-Hilliard equation with a logarithmic potential, the situ-
ation is more complex. In [1], Abels and Wilke proved that a solution converges to
a steady state. In particular, they proved a separation property: a solution remains
bounded away from the pure states ±1. The Cahn-Hilliard equation with logarithmic
potential and a degenerate mobility is even more difficult (see [41] and [92, Section
4.5]). To the best of our knowledge, there is no proof that solutions converge to an
equilibrium in this case.

The numerical analysis and simulations of the Cahn-Hilliard equation with loga-
rithmic nonlinearity can be found, e.g., in [12, 13, 26, 35, 51]. It could be interesting
to address the question of convergence to equilibrium in these situations. The Cahn-
Hilliard equation with logarithmic potential and dynamic boundary conditions could
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also be investigated. In this case, the separation property does not hold any more [94]
(see also [28, 82] for a Caginalp system and [110] for an Allen-Cahn-Gurtin equation).

7.2. Gradient-like PDEs with inertial term. The convergence result of Si-
mon [121] has been adapted to a huge number of PDEs with a gradient-like structure.
We focus here on the damped wave equation, pointed out in the review [67]. It reads

∂ttu+ α∂tu−∆u+
1

ε2
(u3 − u) = 0, x ∈ Ω, t > 0, (7.1)

where α > 0, with Dirichlet or Neumann boundary conditions. If d = 1 or 2, then
convergence to equilibrium holds [67, 76] . If d = 3, this case is critical, but it is
possible to have an analytic nonlinearity with subcritical growth. The PDE (7.1)
can be seen as an Allen-Cahn equation with inertial term. Convergence to a steady
state for space and/or time discretizations of (7.1) has been studied in [6, 55, 66, 111]
by means of a  Lojasiewicz inequality (see also [70] for a nonlocal damping). Related
PDEs have also been considered, such as the Cahn-Hilliard equation with inertial
term [54, 57] or the modified phase-field crystal equation [56, 58].

If we consider the time semidiscretization of (7.1), a first-order approximation has
been considered in [111]. However, we have the following

Question 5. Is it possible to find a second-order time semidiscretization of (7.1)
which is energy stable and such that every sequence generated by the scheme con-
verges to a steady state ?

In contrast to what happens for gradient flows, k-step BDF schemes with k ≥ 2
do not seem to preserve the gradient-like flow structure for (7.1). A second-order
energy stable SAV scheme was considered in [19], but the steady state equation is
modified by the auxiliary variable, as in Section 4.5.

7.3. Conclusion. We have reviewed energy stable methods for time and space dis-
cretizations of the Cahn-Hilliard equation, with a focus on the asymptotic behaviour
of solutions. In many cases, it is possible to prove that every solution converges
to a steady state. Some questions are still challenging, in particular for the time
semidiscrete problem (cf. Questions 1-5).

As pointed out in [2, 93], the  Lojasiewicz-Simon inequality can be used to prove
the stability of local minimizers. This was shown for perturbations with respect to
the time discretization in [90, Proposition 2.6] and [6, Theorem 2.12], but it seems
out of reach for perturbations with respect to the space discretization. In fact, single
trajectories are generally not very robust objects with respect to perturbations, and
in this regard, it is generally best to consider global dynamics and attractors (see,
e.g., [123, 124, 128]). The stability of the global attractor as the time step or the mesh
step tends to 0 has been considered, e.g., in [11, 42, 43, 116], for discretized Allen-
Cahn or Cahn-Hilliard equations. Exponential attractors have also been explored
in [37, 86, 107, 108]. These aspects could be further investigated. In particular, it is
not clear how Crank-Nicolson type schemes or SAV schemes behave in this matter.
Other fascinating aspects of the dynamics such as the coarsening process [22, 23, 80,
113] could also be analyzed for discretized Cahn-Hilliard type equations.
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pages 35–73. Birkhäuser, Basel, 1989.

[39] C. M. Elliott and D. A. French. A nonconforming finite-element method for the two-
dimensional Cahn-Hilliard equation. SIAM J. Numer. Anal., 26(4):884–903, 1989.

[40] C. M. Elliott, D. A. French, and F. A. Milner. A second order splitting method for the Cahn-
Hilliard equation. Numer. Math., 54(5):575–590, 1989.

[41] C. M. Elliott and H. Garcke. On the Cahn-Hilliard equation with degenerate mobility. SIAM
J. Math. Anal., 27(2):404–423, 1996.

[42] C. M. Elliott and S. Larsson. Error estimates with smooth and nonsmooth data for a finite
element method for the Cahn-Hilliard equation. Math. Comp., 58(198):603–630, S33–S36,
1992.

[43] C. M. Elliott and A. M. Stuart. The global dynamics of discrete semilinear parabolic equations.
SIAM J. Numer. Anal., 30(6):1622–1663, 1993.

[44] D. J. Eyre. An unconditionally stable one-step scheme for gradient system. unpublished.
[45] X. Feng and O. A. Karakashian. Fully discrete dynamic mesh discontinuous Galerkin methods

for the Cahn-Hilliard equation of phase transition. Math. Comp., 76(259):1093–1117, 2007.
[46] X. Feng and A. Prohl. Error analysis of a mixed finite element method for the Cahn-Hilliard

equation. Numer. Math., 99(1):47–84, 2004.



42 CONVERGENCE TO EQUILIBRIUM FOR DISCRETIZED CAHN-HILLIARD EQUATIONS

[47] P. Frankel, G. Garrigos, and J. Peypouquet. Splitting methods with variable metric for
Kurdyka- lojasiewicz functions and general convergence rates. J. Optim. Theory Appl.,
165(3):874–900, 2015.

[48] D. Furihata. A stable and conservative finite difference scheme for the Cahn-Hilliard equation.
Numer. Math., 87(4):675–699, 2001.

[49] H. Gajewski and J. A. Griepentrog. A descent method for the free energy of multicomponent
systems. Discrete Contin. Dyn. Syst., 15(2):505–528, 2006.

[50] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Classics
in Mathematics. Springer-Verlag, Berlin, 2001.

[51] H. Gomez, V. M. Calo, Y. Bazilevs, and T. J. R. Hughes. Isogeometric analysis of the Cahn-
Hilliard phase-field model. Comput. Methods Appl. Mech. Engrg., 197(49-50):4333–4352, 2008.

[52] H. Gomez and T. J. R. Hughes. Provably unconditionally stable, second-order time-accurate,
mixed variational methods for phase-field models. J. Comput. Phys., 230(13):5310–5327, 2011.
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