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Computational prediction of Drug-Disease
association based on Graph-regularized one bit

Matrix completion
Aanchal Mongia, Emilie Chouzenoux and Angshul Majumdar*

Abstract—Investigation of existing drugs is an effective alternative to the discovery of new drugs for treating diseases. This task of
drug re-positioning can be assisted by various kinds of computational methods to predict the best indication for a drug given the
open-source biological datasets. Owing to the fact that similar drugs tend to have common pathways and disease indications, the
association matrix is assumed to be of low-rank structure. Hence, the problem of drug-disease association prediction can be modeled
as a low-rank matrix completion problem.
In this work, we propose a novel matrix completion framework that makes use of the side-information associated with drugs/diseases
for the prediction of drug-disease indications modeled as neighborhood graph: Graph regularized 1-bit matrix completion (GR1BMC).
The algorithm is specially designed for binary data and uses parallel proximal algorithm to solve the aforesaid minimization problem
taking into account all the constraints including the neighborhood graph incorporation and restricting predicted scores within the
specified range. The results have been validated on two standard databases by evaluating the AUC across the 10-fold cross-validation
splits. The usage of the method is also evaluated through a case study where top 5 indications are predicted for novel drugs, which
then are verified with the CTD database.

Index Terms—Drug-Disease association, Graph regularization, Matrix Completion

F

1 INTRODUCTION

Inspite of the large financial investment in pharmaceutical
industry, the number of drugs approved over the past few
decades is limited [1]. This can be attributed to the time (10-
15 years) and effort it takes to test a therapeutic compound
and declare it as a market-ready drug. The problem calls
for an alternative to drug discovery: ”drug-repositioning”
or ”drug-repurposing”. This essentially means that an ex-
isting, already approved drug is identified to seek its new
indications. The benefits include shorter drug-development
timelines, established safety and savings on money for
launching the drug. Also, the strategy of drug-repurposing
offers an opportunity to overcome the threats associated
with antimicrobial resistance (AMR) [2]. Some examples of
re-positioned drugs include chlorocyclizine, an anti-allergic
drug re-purposed as an antiviral [3], sertraline, an antide-
pressant drug as an antifungal [4] and disulfiram, an anti-
alcoholic drug repurposed as an antibacterial [5], [6].

There have been some successfully re-positioned drugs
through manual and rational investigations but this is
not an efficient and scalable way given the huge space
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of drug interactions. Therefore, computational approaches
have been used over the past years to systematically predict
the indications, pruning down the massive search space for
researchers and saving huge amounts of effort, time and
cost. This explains the immense importance of predicting
new associations between drugs and diseases using statisti-
cal and machine learning-based methods .

Initial attempts to predict novel indications were based
on gene expression profiles [7], [8], [9]. [7] proposed a
database having ranked drug response gene expression
which was queried with a gene signature specific to a
disease. The drug response profiles which either correlate
or anti-correlate were identified. This approach lacks valida-
tion on a large scale dataset and may not be precise enough
owing to different conditions under which expression pro-
files are generated.

Other sets of approaches captured the notion of similar-
ity [10] where it was assumed that alternative for one of the
two diseases which are treated by the same drug, may also
be used as a potential treatment for the other disease.

Later, network-based models were proposed. [11], [12]
proposed PREDICT, a method which computationally pre-
dicts drug-disease associations using integrated drug and
disease information. Various kinds of drug and disease
similarities are calculated to find the feature vectors for
the candidate associations which are further used to train
a classification model using logistic regression. [13] created
a 3-layer heterogeneous network, corresponding to drug,
disease and targets. Edge weights between the nodes of
same type (i.e. intra-connections) correspond to similarity
between them while those between different types of nodes
are associated with the relationship or association between
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the nodes i.e. drug-target or drug-disease relationship. The
missing edges of this network are inferred using guilt-by-
association principle. In a similar fashion, [14] integrated
information from drugs, diseases and targets and proposed
a network-based prioritization method for predicting new
drug indications and novel disease treatments. Another
work, [15] integrates molecular structure, molecular activity,
and phenotype data and constructs a kernel function to
correlate drugs with diseases, and finally train an SVM (Sup-
port vector machine) classifier for the prediction of drug-
disease interaction. [16] identifies the drug/disease modules
by clustering the drug network and disease network and
then connecting drug-disease module pairs. Very recently, a
new network-based approach was proposed by Yang at al
[17] where the authors employ heterogeneous network em-
bedding for the characterization of drug-disease association
and trains an SVM for predicting novel associations.

There have also been several machine learning and deep
learning techniques used for association prediction apart
from the ones (clustering and classification methods) used
in few of the works mentioned above [18]. Very recently,
[19] trained a dual convolutional neural network on two
association layers simultaneously, one encoding the drug-
disease characteristics while another one, the associated
neighborhood information. [20] applied graph convolution
operation with attention mechanism to the drug-disease
heterogenous network to learn the embeddings of drugs
and diseases. [21] extracted feature descriptors from drug
and disease Gaussian interaction profile based and other
similarities using autoencoder and trained a random forest
classifier to predict drug-disease associations. [22] trained
a neural network on the aggregated neighborhood infor-
mation with the drugs and diseases association and simi-
larity matrices; they minimize the loss between initial and
recovered matrices while training the neural network on the
heterogeneous data.

Drug-disease association prediction can also be mod-
elled intuitively as a collaborative filtering problem. The
objective of this class of approaches is to recover a complete
matrix from its sampled entries by exploiting its low-rank
structure. The low-rank assumption stems from the idea that
similar drugs affect biological systems in a similar way and
have common indications [23].

The underlying techniques which aim to solve collab-
orative filtering problem via matrix completion are majorly
based on matrix factorization or nuclear norm minimization.
Matrix factorization has been employed in the commu-
nity over the past few years. It assumes that the number
of latent (or hidden) features which may determine the
association between a drug and a disease (such as sub-
structures, targets, enzymes, pathways, MeSH information,
etc) is very few and highly correlated. [24] used proba-
bilistic matrix factorization on causal networks connecting
drug–target–pathway–gene–disease to classify drug-disease
associations. [25] integrates genomic space into the matrix
factorization framework to exploit the molecular biological
information using gene interaction network and then pre-
dicts novel indications. [12] projects the association informa-
tion to two low-rank latent spaces, while taking into account
the topological information of drug and disease data points
by using the similarity information of drugs and diseases

in the objective function of matrix factorization. Very re-
cently, [26] deploys multi-similarities bilinear matrix fac-
torization to predict indications (diseases) for existing and
novel drugs. Matrix factorization is a bilinear non-convex
problem, which makes it challenging to solve, as spurious
local minima usually occur. This problem can be overcome
by an alternate approach for matrix completion: Nuclear
norm minimization [27]. Minimizing the nuclear norm (sum
of singular values of a matrix) is the closest convex sur-
rogate to minimizing the rank (number of singular values
of a matrix) of that matrix, which is known to be a NP-
hard problem. There are relatively few works modelling the
prediction task using nuclear norm minimization. [28] and
[29] deploy nuclear norm minimization on a heterogeneous
network matrix obtained by integrating drug similarity,
disease similarity, association matrix and its transpose; the
latter work additionally handles the noise originating from
similarities which violate the low-rankness and restrict the
predicted values to be in range [0,1]. But, the low-rank prop-
erty of the heterogeneous matrix is unexplained in both the
works, although it is a crucial assumption behind nuclear
norm minimization. This heterogeneous matrix comprises
of associations between drugs and diseases as well as drug-
drug and disease-disease similarities. The authors clearly
explain validity of the low-rank assumption in association
matrix but not for the heterogeneous matrix.

In this work, we formulate drug disease association
prediction as a one-bit matrix completion problem. Further-
more, we introduce graph regularization to exploit the sim-
ilarities between drugs and diseases. The objective function
is minimized using parallel proximal algorithm (PPXA) [30].
PPXA is an iterative proximal splitting algorithm that par-
alelly solves for each of the non-necessarily smooth terms
in the objective function, while benefiting from sounded
convergence guarantees. The novelty of our approach lies
in

• Modelling the drug-disease association prediction as
graph-regularized matrix completion problem.

• Restricting the association scores in range [0,1] for
obtaining meaningful biological scores.

• Solving the optimization problem using PPXA which
has guaranteed convergence properties [31].

A schematic overview of GR1BMC is shown in Figure 1.

2 MATERIAL AND METHODS

2.1 Dataset

We have used two gold standard databases to validate our
approach. The first one, called F dataset, proposed by [11] has
313 diseases, 593 drugs and 1933 drug-disease associations
from various sources. The second dataset, called Cdataset
is a larger one with 663 drugs, 409 diseases and 2532
associations [32]. In the remaining of the paper, we denote
n1 the number of drugs and n2, the number of diseases.

For both datasets, the drug information is obtained from
DrugBank [33], an exhaustive database containing compre-
hensive information about drugs and targets. The disease
information was assembled from human phenotypes listed
in public database, OMIM ( Online Mendelian Inheritance in
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Man) database [34], which has information on human genes
and diseases.

The similarity information among drugs, calculated
as Tanimato score [35], is extracted using Chemical
Development Kit (CDK) [36] based on the chemical
structures of drugs in SMILES (Simplified Molecular-
Input Line-Entry System) [37] format, obtained from
DrugBank. MimMiner [38] provides the similarities among
diseases using the medical descriptors of diseases from
OMIM database by measuring the number of MeSH
(medical subject headings vocabulary) terms. Both kinds of
similarites are encoded as a value in the range [0, 1].
The information on number of drugs, diseases and the
known associations among them has been summarized in
Table 1, for both datasets.

Fig. 1: A schematic overview of GR1BMC for predicting
drug-disease assocations

2.2 Preprocessing

As an input, we are given two similarity matrices, namely
Sdr ∈ [0, 1]n1×n1 and Sdi ∈ [0, 1]n2×n2 . We describe here-
after the pre-processing of these quantities, so as to obtain
the Laplacian matrices Ldr ∈ Rn1×n1 and Sdi ∈ Rn2×n2 ,
associated to the proposed graph regularization strategy.

2.2.1 Similarity compression:
First, in order to ensure that the local geometries of the
association data are preserved during the learning process,
both similarity matrices are compressed by keeping only
p−nearest neighbor of each drug/disease profile in the
drug/disease similarity matrix. This is done by multiply-
ing each similarity matrix element-wise (i.e., Sdr and Sdi)

TABLE 1: A summary of the number of associations, drugs
and diseases in each dataset used.

Datasets # Associations # Drugs (n1) # Diseases (n2)
# Fdataset 1933 593 313
# Cdataset 2532 663 409

with so-called “neighborhood matrices” representing the p-
nearest neighbor graphs of drugs (i.e., Ndr) and diseases
(i.e., Ndi). The row i and column j of these matrices are
given by:

N ij =


1, if j ∈ Np(i) and i ∈ Np(j),
0, if j /∈ Np(i) and i /∈ Np(j),
0.5, elsewhere

where Np(i) is the set of p nearest neighbors to the i-th
element (drug or disease). We have set p = 5 here. This
leads to the compressed similarity matrices:

Ŝdi = Ndi � Sdi, (1)

Ŝdr = Ndr � Sdr, (2)

with � the element-wise product.

2.2.2 Normalized graph Laplacians:
We use normalized versions of the graph Laplacians [39]
associated to Ŝdi and Ŝdr , given by:

Ldi = (Ddi)
−1/2(Ddi − Ŝdi)(Ddi)

−1/2, (3)

Ldr = (Ddr)
−1/2(Ddr − Ŝdr)(Ddr)

−1/2, (4)
(5)

with Ddi ∈ Rn1×n1 a diagonal matrix with i-th entry equals
to
∑n1

j=1(Ŝdi)
ij , and Ddr ∈ Rn2×n2 a diagonal matrix with

i-th entry equals to
∑n2

j=1(Ŝdr)
ij .

2.3 Proposed Algorithm
2.3.1 Problem formulation:
Our aim is to learn the drug-disease association matrix
X ∈ [0, 1]n1×n2 , from m known associations, and prior sim-
ilarity knowledge encoded in two Laplacian matrices Ldr

and Ldi. The available associations are stacked into a vector
y ∈ [0, 1]m. We furthermore introduce the binary-valued
linear operator R ∈ {0, 1}m×n1n2 such that the product
Rvec(X), with vec(X) ∈ Rn1n2 stacking the columns of X ,
contains m elements expected to be closed to the observed
ones in y. In a nutshell, our aim is to estimate X such
that y ≈ R vec(X), and X satisfies some prior knowledge.
Namely, we seek for X as a low-rank matrix with elements
in the range [0, 1], and with rows (resp. columns) correlated
through Ldi (resp. Ldr). Since rank evaluation function leads
to NP-hard minimization problems, we make use of its
closest convex surrogate i.e. nuclear norm, ‖ · ‖∗, defined
as the sum of the absolute singular values of a matrix. Note
that restricting the association scores in range [0, 1] aims at
obtaining meaningful biological scores. To incorporate the
disease and drug similarities into our framework, we finally
introduce Laplacian graph regularization terms [40], [41].
This leads to the following optimization problem:

minimize
X∈Rn1×n2

(
1

2
‖y −R vec(X)‖2 + λ‖X‖∗ + µ1Tr(X>LdiX)+

µ2Tr(XLdrX
>)
)

such that X ∈ [0, 1]n1×n2 . (6)

Here, Tr(·) denotes the trace operator. The above formu-
lation is a convex, but non-smooth optimization problem
that can be solved efficiently using the parallel proximal
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algorithm (PPXA) [31], [42] which can be seen as a parallel
version of ADMM [43]. PPXA benefits from sounded con-
vergence properties [31] and leads to great practical perfor-
mance, for instance in [44] in the context of biochemistry).

In PPXA algorithm, we solve (6), by introducing θ = 5
proxy variables, associated to each of the five terms in (6)
[42]. For each iteration k ∈ N, we compute the proximity
operators, associated to each of these variables:

X̂
(k)
1 = argmin

X∈Rn1×n2

(
θ

2
||y −R vec(X)||2 + 1

2
||X(k−1)

1 −X||2F
)
,

(7)

X̂
(k)
2 = argmin

X∈Rn1×n2

(
λθ||X||∗ +

1

2
||X(k−1)

2 −X||2F
)
, (8)

X̂
(k)
3 = Proj[0,1]n1×n2

(
X

(k−1)
3

)
, (9)

X̂
(k)
4 = argmin

X∈Rn1×n2

(
θµ1Tr(X>LdiX) +

1

2
||X(k−1)

4 −X||2F
)
,

(10)

X̂
(k)
5 = argmin

X∈Rn1×n2

(
θµ2Tr(XLdrX

>) +
1

2
||X(k−1)

5 −X||2F
)
.

(11)

Note that we perform a projection step onto the proxy
variable X3 to ensure that the predicted scores lie in range
[0, 1]. This projection is equivalent to the proximity operator
of the indicator function for this constraint. The next iterate
X(k) is finally obtained by averaging over the five proximal
values, as follows:

X̂(k) =
1

θ
(X̂

(k)
1 + X̂

(k)
2 + X̂

(k)
3 + X̂

(k)
4 + X̂

(k)
5 ) (12)

with θ = 5. Furthermore, each of the proxy variables is
updated via the following update rule:

X
(k)
i = X

(k−1)
i + 2X̂(k) − X̂(k−1) − X̂(k)

i , i = 1, . . . , 5.
(13)

2.3.2 Proximity steps:

Hereafter, we provide the solution for the proximity sub-
problems (7) to (11):
•We first need to solve for X̂(k)

1 . This amounts to solve:

θ(−R>)(y −Rx̂(k)1 ) + (x̂
(k)
1 − x(k−1)1 ) = 0

⇔ θR>Rx̂
(k)
1 − θR>y + x̂

(k)
1 − x(k−1)1 = 0

⇔ (θR>R+ I)x̂
(k)
1 = x

(k−1)
1 + θR>y

⇔ x̂
(k)
1 = (θR>R+ I)−1(x

(k−1)
1 + θR>y) (14)

where I is the identity matrix, x̂(k)1 = vec(X̂(k)
1 ) and

x
(k−1)
1 = vec(X(k−1)

1 ). Then, X̂(k)
1 = mat(x̂(k)1 ), with mat

the reciprocal operation of vec.
• The computation of X̂(k)

2 requires to solve the proximity
operator of a spectral function (here, the nuclear norm).
This problem has been studied, for instance, in [45], [46].
The result can be obtained by soft-thresholding, element-
wise, the singular values of X(k−1)

2 and multiplying the

thresholded singular value matrix by the left and right
singular vector matrices of X(k−1)

2 i.e.

X
(k−1)
2 = US(k−1)V > (15)

Ŝ(k−1) = soft(S(k−1), λθ/2) (16)

X̂
(k)
2 = UŜ(k−1)V > (17)

with

soft(S(k−1), λθ/2) =

sign(S(k−1))max(0, |S(k−1)| − λθ/2), (18)

where S(k−1) is the singular value diagonal matrix of
X

(k−1)
2 , and the sign and | · | operations must be understood

element-wise. Moreover, U (resp. V ) are the left (resp. right)
singular matrices, associated to the SVD decomposition of
X

(k−1)
2 .
• The update of X̂(k)

3 is performed element-wise, by capping
the entries of X(k−1)

3 onto the range [0, 1]:

X̂
(k)
3 = min(max(X

(k−1)
3 , 0), 1). (19)

• The resolution of (10) amounts to solving:

θµ1(LdiX̂
(k)
4 + L>diX̂

(k)
4 ) + (X̂

(k)
4 −X(k−1)

4 ) = 0

⇔ 2θµ1LdiX̂
(k)
4 + X̂

(k)
4 = X

(k−1)
4

⇔ X̂
(k)
4 = (2θµ1Ldi + I)−1X

(k−1)
4 (20)

• Similarly, update step for X̂(k)
5 can be obtained as follows:

X̂
(k)
5 = X

(k−1)
5 (2θµ2Ldr + I)−1. (21)

2.3.3 GR1BMC algorithm:
The complete algorithm is given in Algorithm 1 1. The
convergence of the sequence (X̂(k))k∈N to a solution to (6)
is ensured, according to [31]. We display in Figures 2 and
3, example of convergence plots (i.e. evolution of objective
function along iterations) for Fdataset and Cdataset, respec-
tively.

It should be noted that it would be possible to include
other disease and drug features in our framework. For
instance, one can modify the trace terms in the proposed
formulation so that the Laplacian matrix (Ldi or Ldr) is
replaced by the summation of Laplacians derived from
individual drug/disease graph similarities/features as was
done in [47]. Moreover, the proposed technique can be used
in cases when drugs/diseases are not observed (by simply
modifying the operator R), provided that their similarities
to the drugs/diseases already in the dataset are available
and can be incorporated into the graph regularization Lapla-
cian terms.

2.4 Parameter settings

The matrices X
(0)
1 , X

(0)
2 , X

(0)
3 , X

(0)
4 and X

(0)
5 are initial-

ized randomly, through a uniform law in [0, 1]n1×n2 . The
GR1BMC algorithm is run for a fixed number of iterations
K (K = 20 here) that appears sufficient to reach practical

1. The code of GR1BMC is available at
https://github.com/aanchalMongia/GROBMC-PPXA-DDA
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Algorithm 1 GR1BMC (y,R, Sdi, Sdr)

1: Set parameters: p, µ1, µ2, λ.
2: Initialize: X(0)

1 , X
(0)
2 , X

(0)
3 , X

(0)
4 , X

(0)
5 .

3: Preprocessing:
4: Compute Ndi, Ndr , Ŝdi = N ij

di � Sdi, Ŝdr = N ij
dr � Sdr ,

(Ddi)
ii =

∑n1

j=1(Ŝdi)
ij , (Ddr)

ii =
∑n2

j=1(Ŝdr)
ij , (∀i).

5: Define Ldi = (Ddi)
−1/2(Ddi− Ŝdi)(Ddi)

−1/2 and Ldr =
(Ddr)

−1/2(Ddr − Ŝdr)(Ddr)
−1/2.

6: For k = 1, . . . ,K

7: X̂
(k)
1 = mat

(
(5R>R+ I)−1(vec(X(k−1)

1 ) + 5R>y)
)

8: X
(k−1)
2 = US(k−1)V >

9: Ŝ(k−1) = sign(S(k−1))max(0, |Sk| − 5λ/2)

10: X̂
(k)
2 = UŜ(k−1)V >

11: X̂
(k)
3 = min(max(X

(k−1)
3 , 0), 1)

12: X̂
(k)
4 = (10µ1Ldi + I)−1X

(k−1)
4

13: X̂
(k)
5 = X

(k−1)
5 (10µ2Ldr + I)−1

14: X̂(k) = 1
5 (X̂

(k)
1 + X̂

(k)
2 + X̂

(k)
3 + X̂

(k)
4 + X̂

(k)
5 )

15: X
(k)
i = X

(k−1)
i +2X̂(k)−X̂(k−1)−X̂(k)

i , i = 1, . . . , 5
16: End
17: Return: X̂(K)

Fig. 2: Convergence plot for GR1BMC on Fdataset

Fig. 3: Convergence plot for GR1BMC on Cdataset

stabilization of the objective function, as can be seen in
Figs. 2 and 3. The running time is in the order of seconds;
PPXA takes approximately 4 and 6 seconds on Fdataset
and Cdataset respectively on a single core machine with
a clock speed of 2.8 GHz, 64 GB RAM (Intel(R) Xeon(R)
CPU E5-1603 v3 processor). We must determine suitable
values for the hyperparameters λ, µ1 and µ2, in order to
weight the importance of nuclear norm term and the trace
terms in our objective function for each of the two datasets.
The values of µ1 and µ2 determine the weights given to
each of the drug and disease laplacians, hence exhibiting
the importance of neighborhood information of drugs and
targets in our framework for a dataset. The optimal values of
these parameters are found by performing cross validation
on the training set and taking the value of parameters from
the set {0.01, 0.05, 0.1, 0.5, 1, 5, 10}. The values of λ, µ1

and µ2 are robust across the datasets and are found to be
0.1, 0.05, 0.1, respectively, for both datasets.

3 RESULTS AND DISCUSSION

3.1 Evaluation criteria

To experimentally evaluate the prediction performance of
GR1BMC, we use κ-fold cross validation strategy (κ = 10).
κ-fold cross validation is an evaluation method where we
divide the known associations into κ equal subsets (called
folds). Out of all the subsets, one of them is treated as a
testing set, while the remaining ones constitute the training
set. The associations in training set are given as input to the
algorithm which then returns the fully imputed association
matrix.

After performing the matrix completion task, the predic-
tions on testing set and other candidate associations for all
drugs are ranked in descending order of scores. TPR (True
Positive Rate)/Recall, FPR (False Positive Rate) and PPV
(Positive predicted value)/Precision are calculated for every
rank threshold. These values at every threshold are used
to plot an ROC (Receiver Operating Characteristic) curve
with FPR on x-axis and TPR on y-axis. In a similar way, a
Precision-Recall curve is obtained by plotting Recall/TPR
on x-axis and Precision on y-axis. The area under both
these curves called Area under the ROC curve (AUC) and
Area under the precision-recall curve (AUPR) are used to
assess the performance of the methods used to predict drug-
disease associations.

The above procedure is repeated κ-times and the average
of AUC/AUPR across all the κ folds is reported. Figures 4
and 5 show the ROC curves obtained on all the 10 folds
of cross validation experiment after running GR1BMC on
both the datasets. The average AUC and AUPR across all
the folds has been highlighted in black in the figures and
shown in Tables 2 and 3. As can be observed from the table,
GR1BMC performs better than the benchmarks techniques
on both the datasets, especially in terms of AUPR. It should
be noted that AUPR is a relatively more important metric in
this problem since it heavily punishes highly ranked non-
associations (false positives), which is crucial in this appli-
cation as false positive indications would lead to wastage of
resources if the proposed indications were tested in clinical
experiments.
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We assess the efficacy of the proposed technique in pre-
dicting disease association of drugs with no known disease
interactions in the database (novel drugs) by finding the
precision and recall at top k diseases (Pre@k and Rec@k,
k=3, 5 and 7) for drugs while implementing Leave-one-out-
cross validation (LOOCV) by hiding (i.e., leaving out) the
association profile of every drug in table 4. This shows the
performance of GR1BMC algorithm for predicting diseases
for novel drugs is reasonably good. Notably, Recall @7
for both the dataset is in range 0.4-0.45 showing that on
an average, 40-45% of associated diseases appear in top 7
predicted diseases.

To demonstrate the usefulness of the proposed graph-
based regularization terms, we remove either of the two
disease and drug graph regularization terms (by setting µ1

or µ2 to zero), and compare these models with the one with
both graph regularization terms (Table 5). We observe that
the addition of the graph regularization term corresponding
to drugs is degrading the results. This may be because
different drugs having widely different molecular structures
can be used to achieve the same goal; they would operate
via different pathways. For example, both Clonazepam [48]
and Melatonin [49] are used for treating sleep disorder.
However, they have very different structures as shown in
Supplementary Table 1. The graph Laplacian is not able to
account for the overall effect from the structural similarity.
We believe this may be one reason for poor performance
while trying to account for similarity arising from drug
structure. On the other hand, studies have shown that drugs
having structural similarity routinely have very different
effects [50]. The graph Laplacian for drugs is trying to
enforce similar action for structurally similar drugs. This
may be the reason why the corresponding penalty term is
degrading the results.
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Fig. 4: ROC curves obtained for all the 10 folds after apply-
ing GR1BMC on Fdataset

3.2 Comparison with benchmark techniques
To evaluate the performance of GR1BMC, we compare
the results of cross-validation experiments with those of
the latest methods proposed for drug-disease association
prediction: Bounded nuclear norm regularization (BNNR)
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Fig. 5: ROC curves obtained for all the 10 folds after apply-
ing GR1BMC on Cdataset

[29], Heterogeneous Network for drug-Disease association
prediction (HNRD) [22] and drug repositioning recommen-
dation system (DRRS) [28]. BNNR and DRRS are the clos-
est in terms of formulation used to model the problem.
Both the methods deploy nuclear norm minimization on
a heterogeneous network matrix obtained by integrating
drug similarity, disease similarity, association matrix and its
transpose; BNNR additionally handles the noise originating
from similarities which violate the low-rankness and restrict
the predicted values to be in range [0,1]. However, the choice
for imposing the low-rank property of the heterogeneous
matrix remains unexplained in both aforementioned works,
although it is a crucial assumption when resorting to nuclear
norm minimization.

The results of 10-fold cross-validation have been shown
in tables 2 and 3. It can be seen that our proposed approach
shows competetive performance in terms of area under the
ROC curve and is better than the benchmark techniques in
temrms of precision and recall also.

3.3 Case study to predict novel associations

To asses the practical usage of the proposed algorithm,
we perform a case study where we chose 5 candidate
drugs to look for their novel indications (dummy drug

TABLE 2: Average AUC across 10-fold cross-validation for
various techniques while predicting drug-disease associa-
tions.

Datasets GR1BMC BNNR HNRD DRRS
Fdataset 0.9773 0.9330 0.9420 0.9300
Cdataset 0.9807 0.9480 0.9500 0.9470

TABLE 3: Average AUPR across 10-fold cross-validation for
various techniques while predicting drug-disease associa-
tions.

Datasets GR1BMC BNNR HNRD DRRS
Fdataset 0.7247 0.4410 0.5720 0.3780
Cdataset 0.7537 0.4710 0.6700 0.4020
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TABLE 4: Precision@k and Recall@k for association predic-
tion for k=3, 5 and 7 with LOOCV for novel drugs

Metric Datasets k=3 k=5 k=7
Precision Fdataset 0.2901 0.2246 0.1795

Cdataset 0.3097 0.2531 0.2038
Recall Fdataset 0.3307 0.4060 0.4458

Cdataset 0.2897 0.3762 0.4153

TABLE 5: Comparison of prediction results (average AUPR)
after removing disease or drug Laplacian term versus results
obtained with both terms.

Datasets GR1BMC(µ1 = 0) GR1BMC(µ2 = 0) GR1BMC
Fdataset 0.7102 0.9405 0.7247
Cdataset 0.7288 0.9415 0.7537

re-positioning) after predicting the associations using our
proposed approach.

We train our model on the known associations on
Fdataset. After the matrix completion is done, we rank the
remaining candidate diseases for each drug in descending
order of predicted association scores.

These rankings or predictions of novel indications for
drugs is verified by validating the top-5 indications for any
5 drugs with the public database comparative toxicoge-
nomics database (CTD) [51]. We show the validation on
the following 5 drugs: Levodopa, Doxorubicin, Amantadine,
Flecainide and Metformin.

The indications predicted by GR1BMC and the evidence
from CTD is shown in table 6. It can be seen that at least 3
indications are confirmed with the CTD database for 4 out
of 5 drugs and a total of 17 out of 25 predicted associations
have evidence in CTD database. Also, the indications which
are not verified could be potential candidates for drug-
repositioning and could be explored by medical researchers.
Let us note that the training data in Fdataset and CTD
database have been collected and used independently. The
presence of predicted associations using Cdataset in the
CTD database shows their overlap but nowhere in the
training process, the CTD dataset was used.

4 CONCLUSION

The huge amount of time and efforts taken for the devel-
opment drugs calls for the need for efficient and reliable
computational methods to assist drug re-positioning. In
this paper, we present a novel approach to predict drug-
disease indications based on parallel proximal algorithm,
which benefits from guaranteed convergence and great nu-
merical performance. Cross validation and experiments on
gold standard dataset demonstrate the superiority of the
proposed approach over the benchmark techniques. The
practical usage is also validated by a case study where novel
indications for existing drugs are found and majority are
validated with the CTD database. The proposed method is
generic and can be applied to other association/interaction
prediction problems such as protein-protein interaction pre-
diction, human microbe-disease association (MDA) predic-
tion, gene-disease association prediction, etc.
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