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Abstract

The bisection method for kinetically constrained models (KCM) of Cancrini, Martinelli,
Roberto and Toninelli is a vital technique applied also beyond KCM. In this note we
present a new way of performing it, based on a novel two-block dynamics with a
probabilistic proof instead of the original spectral one. We illustrate the method by
very directly proving an upper bound on the relaxation time of KCM like the one for
the East model in a strikingly general setting. Namely, we treat KCM on finite or
infinite one-dimensional volumes, with any boundary condition, conditioned on any
of the irreducible components of the state space, with arbitrary site-dependent state
spaces and, most importantly, arbitrary inhomogeneous rules.
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1 Introduction

The bisection method (also halving or two-block) is one of the fundamental techniques
in the rigorous theory of kinetically constrained models (KCM), introduced by Cancrini,
Martinelli, Roberto and Toninelli [4, Section 4] and inspired by [17, Proposition 3.5] for
the Glauber dynamics of the Ising model. Its variations are frequently used for KCM
[9, 10, 12, 19], but also successfully applied to other contexts [2, 6]. The technique was
originally developed to prove the positivity of the spectral gap of the East process (see
also [1]), as well as determining its sharp scaling at low temperature. For background
on the East process we direct the reader to [4, 7, 8] and the references therein. An
exposition of the original bisection method can be found in the upcoming monograph on
KCM by Toninelli [23].

In the present note we explore a new approach to the bisection method. In a way,
the idea is the same, yet the proof and outcome are completely new. It is our hope that
this new approach itself will be of independent interest and, in particular, our substitute
for the two-block dynamics, Proposition 4, and its proof. We apply it in the following
setting of unprecedented generality. The (standard) terms used are defined formally in
Section 2. Consider KCM
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Bisection for kinetically constrained models

• on an arbitrary volume L ⊂ Z, 1 6 |L| 6∞, which need not be an interval;

• with arbitrary boundary conditions;

• conditioned to belong to an arbitrarily chosen irreducible component of the state
space;

• with arbitrary on-site finite state spaces, which may vary from site to site and need
not have uniformly bounded size or atom probabilities, but the probability of being
infected is uniformly bounded from below by q > 0;

• with arbitrary update rules, which may vary from site to site, but have a range
uniformly bounded by R < ∞. Some sites may be completely unconstrained or,
inversely, frozen.

In this setting we prove that for some CR > 0 depending only on R

Trel 6 (2/q)CR log(min((2/q),|L|)),

which is known to be sharp for all homogeneous rooted KCM on an interval [15, 16],
including East [1, 4], in the most interesting regime, q → 0. In addition, it may come as
a surprise to specialists that this is also sharp for some homogeneous unrooted KCM
on intervals, despite the fact that on Z their relaxation time is only q−Θ(1) (see [18] for
definitions and background).

Let us note that for such general KCM there are usually many irreducible components
(there are always at least two, save for trivialities) and their combinatorial structure can
be very intricate. They have proved hard to deal with due to the long-range dependencies
they introduce, like those present in conservative KCM. Consequently, the only nontrivial
case in which the relaxation in an irreducible component is under control [3] (see also
[4, 5]) is the FA-1f model on an interval in its so-called ergodic component—the only
nontrivial component for this KCM. An example of a situation in which such conditioned
inhomogeneous one-dimensional KCM can arise naturally from ordinary KCM in higher
dimensions can be found in [9, Appendix A.1] and originally motivated our work.

We direct the reader to [20, 21, 22] for inhomogeneous KCM, to [4, 5, 23] for KCM
with various rules and boundary conditions and to [11, 18] for general state spaces.
Yet, we emphasise that no two among: general state spaces, inhomogeneous rules and
irreducible components have featured simultaneously until present. Formally, as we will
see, non-interval domains, boundary conditions and irreducible components other than
the ergodic one can be absorbed in the inhomogeneity of the rules, but such arbitrarily
inhomogeneous KCM have not been considered previously.

2 Formal statement

2.1 Definition of the models and notation

For all sites x ∈ Z fix a finite positive probability space (Sx, πx) called state space and
Ix ⊂ Sx satisfying πx(Ix) > q > 0. We say that x ∈ Z is infected when the event Ix occurs
and healthy otherwise. Thus, we refer to q = infx∈Z πx(Ix) as the infection probability.
The volume L ⊂ Z is a finite or infinite set. Consider the corresponding product space
SL =

∏
x∈L Sx and measure πL =

⊗
x∈L πx. We will usually denote elements of SL

(configurations) by η, ω, ξ, etc. and corresponding restrictions to any X ⊂ L by ηX and ηx
when X = {x}. A boundary condition is any ω ∈ SZ\L or an appropriate restriction, when
some of the states of ω are unimportant. Given two configurations ηL ∈ SL and η′L′ ∈ SL′
for volumes L,L′ with L ∩ L′ = ∅, we denote by ηL · η′L′ ∈ SL∪L′ the configuration equal
to ηx if x ∈ L and to η′x if x ∈ L′.

For all x ∈ L we fix an update family Ux that is a finite family of finite subsets of
Z \ {x}. Its elements are called update rules. We assume that there exists a range
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Bisection for kinetically constrained models

R ∈ [1,∞) such that for all x ∈ L, U ∈ Ux and y ∈ U we have |x− y| 6 R. For a site x ∈ L,
a configuration η ∈ SL and a boundary condition ω ∈ SZ\L, we say that the constraint at
x is satisfied if

cωx (η) = 1∃U∈Ux,∀y∈U,(η·ω)y∈Iy

equals 1. In words, we require that for at least one of the rules all its sites are infected,
taking into account the boundary condition. The transitions allowed for the KCM are
those changing the state of a single site whose constraint is satisfied (before and,
equivalently, after the transition, since rules for x do not contain x). In these terms,
Ux = ∅ corresponds to a site unable to update under any circumstances, while Ux 3 ∅
corresponds to a site whose constraint is always satisfied. The transitions define an
oriented graph with vertex set SL and symmetric edge set (containing the reverses of
its edges). We call its connected components irreducible components of the KCM and
view them as events. Given an irreducible component C ⊂ SL, we set µL = πL(·|C). We
further write µX = µL(·|ηL\X), µx = µ{x} for x ∈ Z and X ⊂ Z and denote by VarX and
Varx the corresponding variances.

The general KCM defined by L, Sx, πx, Ix, ω, Ux and C is the continuous time Markov
process with generator and Dirichlet form acting on functions f : C → R depending on
the states of finitely many sites given by

LL(f)(η) =
∑
x∈L

cωx (η) · (µx(f(η))− f(η)),

DL(f) =
∑
x∈L

µL (cωx ·Varx(f))

respectively. In other words, this is the continuous time Markov process which resamples
the state of each site at rate 1 w.r.t. µx, provided its constraint is satisfied. It is useful
to note that when cωx = 1, we have µx = πx. For the existence of such infinite-volume
processes see [14] and for basic background refer to [4, 5]. It is also not hard to check
that πL and, therefore, µL is a reversible invariant measure for the process. Finally,

T−1
rel = inf

f 6=const.

DL(f)

VarL(f)
∈ [0, 1] (1)

is the spectral gap of LL or inverse relaxation time.

2.2 Result

With this terminology, our main result is stated as follows.

Theorem 1. There exists an absolute constant C > 0 such that for any range R ∈ [1,∞),
infection probability q ∈ (0, 1], volume L ⊂ Z and general KCM with these parameters it
holds that

Trel 6 (2/q)CR
2 min(log |L|,R log(2/q)). (2)

Remark 2. Equation (2) and its proof apply to general KCM on a circle Z/nZ (uniformly
on n). For trees of maximum degree ∆ and diameter D we can only retrieve that for
some C depending on ∆ and R,

Trel 6 (2/q)C logD.

Before moving on to the proof of Theorem 1, let us mention a few applications.
As noted in Section 1, Theorem 1 is sharp not only for all homogeneous rooted

supercritical models, but also for some unrooted ones. Indeed, an unrooted KCM in
finite volume may lack clusters of infections mobile in both directions, but only be
able to create them, using ones mobile in a single direction. Such is the case of the
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homogeneous {{−2}, {1, 2}}-KCM on L = {1, . . . , 2n} with healthy boundary condition,
only 1 and |L| infected initially (so that it is in its “ergodic component,” able to infect
the entire volume). As usual, a test function showing that Trel > exp(Ω(log2(1/q))) for
|L| = 1/q →∞ is the indicator of configurations reachable from the initial state above
without creating log(1/q)/10 infections simultaneously.

This phenomenon is not related to the lack of symmetry—the same reasoning applies
to the {{−9,−8,−6}, {−7,−6,−4}, {−6,−5,−3}, {3, 5, 6}, {4, 6, 7}, {6, 8, 9}}-KCM on L =

{1, . . . , 6n+3} with the ergodic initial condition {1, 2, 4, 6n−1, 6n, 6n+3}. Indeed, for this
KCM the sites {6n− 1, 6n, 6n+ 3} are unable to infect anything, while {1, 2, 4} may infect
a group of sites of the form 6k + 1, 6k + 2, 6k + 4, provided the previous such group is
already present to its left. Hence, a similar test function yields the optimality of Eq. (2).

A more subtle application of Theorem 1 concerns homogeneous KCM in higher
dimensions. Consider a one-dimensional subset L of Zd for d > 2, that is a sequence
of sites such that if two sites are at distance more than C in the sequence, they are at
distance more than R in Zd, where R is the range of the d-dimensional KCM and C <∞
is some constant possibly depending on the KCM. In words, this is a discrete version of
a one-dimensional manifold: a parametrised curve which may not come close to itself
non-locally in the parametrisation (e.g. a line segment intersected with Zd). Fixing
the state ω of all sites in Zd \ L, the dynamics allowed to flip only sites in L becomes
a one-dimensional general KCM (with range C rather than R, but finite) treated by
our result. Notice that, even if the original d-dimensional KCM is homogeneous and
considered in infinite volume on its ergodic component, the resulting one-dimensional
one may become inhomogeneous due to L bending in Rd or due to ω not being translation
invariant. Furthermore, it may naturally occur that this restricted dynamics is no longer
able to infect all of L without changing the boundary condition ω (which is prohibited),
so irreducible components become relevant.

The above application is the main motivation for our work. Indeed, control on the
relaxation of a line segment at the boundary of a large infected region with arbitrary
boundary condition elsewhere was needed for establishing refined universality results
for two-dimensional KCM in [9]. More precisely, [9, Lemma A.1] is a direct corollary of
Theorem 1 providing a much more tractable proof than the cumbersome canonical path
approach outlined in that work.

3 Proof

Let us begin with a straightforward but important corollary of reversibility.

Observation 3. The irreducible component of a general KCM naturally identifies with
the set of sites which can be eventually updated, together with the state of all remaining
sites. We call the set of the sites that can be updated in L closure and denote it by
{η}ωL ⊂ L. We denote the state of the remaining sites by η0 := ηL\{η}ωL and refer to it as
initial condition.

Since sites in L \ {η}ωL can never be updated, we may remove them from L and
replace ω by ω · ηL\{η}ωL . With this reduction, we may assume that {η}ωL = L for the
original general KCM. Further note that we may absorb any boundary condition in the
inhomogeneous update rules by removing infected sites in ω from update rules and
removing update rules containing non-infected sites in ω. Thus, we may further assume
that our initial general KCM is defined so that its rules do not depend on the boundary
condition and therefore discard ω. Moreover, once the boundary condition is irrelevant,
we may replace L by an interval of length |L|, if L is finite, and N or Z, if L is infinite in
one or two directions. Indeed, we can map L onto {1, . . . , |L|}, N, −N or Z, preserving
the order, and this does not increase the range R. Finally, approximating L by large

ECP 26 (2021), paper 60.
Page 4/10

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP434
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Bisection for kinetically constrained models

finite segments if it is infinite (see [4, Section 2] and [14, Chapter 4]), we may assume
|L| <∞.

Henceforth, we fix a general KCM specified by its volume L, state spaces (Sx, πx),
infection events Ix, and update families Ux subject to the above simplification (we call
such a model simplified ):

• for all x ∈ L and U ∈ Ux we have U ⊂ L;

• {η}L = L;

• L = {1, . . . , |L|} with |L| <∞.

Note that in the course of the proof we will consider domains smaller than L and will
then specify the closure, initial and boundary conditions. We will prove Theorem 1 by
induction on |L|. The induction step is provided by the following two-block result, which
is the core of the argument.

Proposition 4. Let L1 = {1, . . . , `} and L2 = {` − ∆ + 1, . . . , |L|} with ` ∈ [1, |L|] and
∆ ∈ [0, `]. Then

VarL(f) 6 γ(∆)
∑

i∈{1,2}

µL

(
VarLi

(
f |{η}ηL\Li

Li
, η0
Li

))
, (3)

setting for some absolute constant C > 0

γ(∆) =

{
1 + exp

(
−∆qCR/

(
CR2

))
∆ > CR2/qCR

(2/q)CR
2

otherwise.

Remark 5. This statement can be viewed as a Poincaré inequality for a Markov process
with two symmetric moves performed at rate 1. We update the state ηLi

from the measure
πLi

conditioned on the irreducible component of the current state in Li. Crucially, the
closure is taken only inside Li, without infecting sites in L \ Li and going back to Li, but
using ηL\Li

as a (frozen) boundary condition. In particular, the variance in Eq. (3) is not
VarLi

(f).

Before proving Proposition 4, let us briefly recall how to deduce Theorem 1, referring
to [4, Theorem 6.1] for more details. Let Γl denote the maximum of Trel over all general
KCM (simplified or not) of range at most R and infection probability at least q on volume
with cardinal at most l. Plugging Eq. (1) into the r.h.s. of Eq. (3), we get

VarL(f) 6 γ(∆)Γmax(L1,L2)µL

(∑
x∈L

cx ·Varx(f) +
∑

x∈L1∩L2

cx ·Varx(f)

)
.

We average this over N ≈ |L|1/3 choices of `, so that the L1 ∩L2 for different choices are
disjoint. All ` are chosen so that ` − |L|/2 ∈ [−N∆/2, N∆/2] for ∆ ≈ |L|1/3 fixed. This
yields the recurrence relation

Γ|L| 6 (1 + 1/N)γ(∆)Γ|L|/2+N∆,

since the simplification operation may only decrease |L| and R and increase q. Iterating
this inequality, we derive the desired Eq. (2).

Thus, our task is to prove Proposition 4, for which we need the following.

Claim 6. Let Λ be a volume. Then for any irreducible component C = ({η}ωΛ, η0), under
πΛ(·|C) the infections in the closure (1Ix)x∈{η}ωΛ stochastically dominate i.i.d. Bernoulli
variables with parameter q.
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Proof. Fix x ∈ {η}ωΛ and a configuration η ∈ C. Observe that if ηx 6∈ Ix, then every η′

such that η′y = ηy for all y ∈ Λ \ {x} is also in C by Observation 3. Hence, conditionally
on ηΛ\{x} and C, either Ix occurs a.s. or ηx has the law πx. In both cases the conditional
law of 1Ix dominates a Bernoulli one with parameter q.

Sketch of the easier case of Proposition 4. As a warm-up, let us sketch the proof of
Eq. (3) with γ(∆) = (2/q)CR

2

, which is valid for all values of ∆.

We aim to couple two copies η and η′ of the chain in Remark 5, so that they meet
with appropriate rate. To do this, we require that the following sequence of events all
occur in both chains uninterrupted by any other updates. Each chain is updated on L1

to a state such that the sites in L1 \ L2 at distance at most R from L2 (if |L1 \ L2| < R,
take all sites in L1 \ L2) which are in the closure {η}ηL\L1

L1
of the current state in L1 are

infected. Then do the same in L2, infecting all possible sites at distance at most R from
L1 in L2 \ L1. Repeat this couple of operations R+ 1 times. The configurations provided
to η and η′ so far are chosen independently, but updates occur at the same times for
both. Next update L1 in both η and η′ to the same configuration still with infections next
to L2 as above and finally update L2 in both chains to the same configuration, forcing
them to meet.

In order for this to work, we need two ingredients. Firstly, we need to check that the
rate at which this sequence of updates occurs is at least (q/2)CR

2

. Indeed, the probability
that fewer than 2(R+ 2) updates occur up to time 2CR is small; the probability that the
first 2(R+ 2) updates occur in the right positions (in L1 then in L2, again in L1, etc.) is
2−2(R+2); from Claim 6 the probability of infecting the desired (at most R) sites is at least
qR (this needs to happen 4R+ 5 times in total). Secondly, we need to check that this is a
valid coupling, namely that in the last two steps the two chains are indeed resampled
from the same distribution. For this it suffices to see that after R+ 1 repetitions of the
alternating updates in L1 and L2, necessarily the R sites in L2 \ L1 closest to L1 are all
infected. This is not surprising, since each time we provide the best possible boundary
condition and so the sequence of these boundary conditions is nondecreasing.

Therefore, it remains to see that after a couple of updates as above either the
boundary condition is already fully infected or it increases strictly. Assume the last R
sites in L1 \ L2 remain unchanged after updating L2 and then L1 as above. Then none of
the remaining non-infected sites could be updated at all, since even the best boundary
condition L2 can provide does not allow L1 to infect them. Since it was assumed that
{η}L = L, this implies that all R sites are infected, as desired.

Note that the above is sufficient to obtain Theorem 1 for |L| 6 (2/q)CR.

Proof of the harder case of Proposition 4. We consider two copies (η(t))t>0, (η′(t))t>0

of the process from Remark 5. It is well known [13, Proposition 4.7, Corollary 12.6,
Remark 13.13]1 that it suffices to couple them so that the probability that they do not
meet before time T is at most Ce−T/γ(∆) for any T large enough. Observe that whenever
several successive updates are performed at L1 (and similarly for L2), the final result
is preserved if we discard all but the last update, since the dynamics of Remark 5 is
of Glauber type. Hence, we may consider a discrete time chain with the same state
space which updates L1 at odd steps and L2 at even ones (so the update from time 0

to time 1 is in L1). Conditionally on the number of alternating updates N up to time T ,
after removing redundant ones as indicated above, the two chains η and η′ meet if their
discrete time versions do. We denote the latter by ω and ω′.

1For continuous time Markov chains the spectral radius in [13, Corollary 12.6] is replaced by e−1/Trel .
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We assume that ∆ > CR2/qCR, the alternative being treated in a similar but simpler
way as sketched above. We call any set B ⊂ L1 ∩ L2 of 2R+ 1 consecutive sites a block
and say it is infected if Ix occurs for all x ∈ B.

Claim 7. Fix θ ∈ SL such that {θ}L = L and an infected block B = x + {1, . . . , 2R + 1}.
Then {θ}θB{1,...,x} = {1, . . . , x}.

Proof. This follows immediately from the fact that the closure is increasing in the set
of infections (since constraints are), since an infected block is the maximal possible
boundary condition.

Let us denote by M = `− b∆/2c+ {−R, . . . , R} the middle block. Our coupling of ω
and ω′ is the following for integer t > 0.

• The two chains evolve independently between 2t and 2t+ 2, unless

{ω(2t)}(ω(2t))L\L1

L1
∩ {ω′(2t)}(ω

′(2t))L\L1

L1
⊃M. (4)

• If Eq. (4) occurs, we first sample two independent configurations ξ, ξ′ ∈ SL1
with the

laws of (ω(2t+ 1))L1 and (ω′(2t+ 1))L1 , given ω(2t) and ω′(2t). Let x+ {−R, . . . , R}
be the rightmost block contained in L1 ∩ L2 infected in both ξ and ξ′, if it exists.
We set ω(2t+ 1) = ξ · (ω(2t))L\L1

and

ω′(2t+ 1) = ξ{1,...,x} · ξ′{x+1,...,`} · (ω
′(2t))L\L1

and sample ω(2t+ 2) = ω′(2t+ 2) with their (common) law given the state at time
2t+ 1. If no such block exists, (ω(2t+ 1))L1

= ξ and (ω(2t+ 1))L1
= ξ′ and the two

evolve independently between 2t+ 1 and 2t+ 2.

This is a legitimate Markov coupling of the homogeneous chains (ω(2t))t>0 and (ω′(2t))t>0.
Indeed, by Claim 7, conditionally on x+ {−R, . . . , R} being the rightmost infected block,

ξ{1,...,x} and ξ′{1,...,x} are identically distributed. We define X(t) =
∣∣∣M ∩ {ω(2t)}(ω(2t))L\L1

L1

∣∣∣
and similarly for ω′. Equation (4) then reads X(t) = X ′(t) = 2R+ 1. We will lower bound
min(X(t), X ′(t)) by the discrete time Markov chain Y (t) on {0, . . . , 2R+ 2} which:

• starts at 0;

• is absorbed when reaching 2R+ 2;

• increments by 1 with probability(
1−

(
1− q4R+2

)∆/(4R+3)
)4

; (5)

• jumps to 0 with the complementary probability.

We call a transition of Y to 0 a failure.

Lemma 8. For all t > 0, P(Y (t) 6= 2R+ 2) > P(ω and ω′ have not met by time 2t).

Proof. It suffices to prove that if Eq. (4) holds, ω and ω′ meet in two steps at least with
the probability in Eq. (5), while if Eq. (4) fails, at least with the probability in Eq. (5)
each of X and X ′ not equal to 2R+ 1 increases.

Assume that X(t) = X ′(t) = 2R+1. By Claim 7 (note that if X(t) = 2R+1, then M can

be infected inside L1) we have that {(ω(2t))L1}
(ω(2t))L\L1

L1
⊃ {1, . . . , `− d∆/2e}. Recalling

Claim 6 and the fact that the configurations ξ and ξ′ are chosen independently, we obtain
that the probability that ω(2t+ 2) 6= ω′(2t+ 2) is at most (1− q4R+2)∆/(4R+3) 6 (5), since
∆ > CR2/qCR.
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Next assume that min(X(t), X ′(t)) < 2R + 1. Then ω(2t + 2) and ω′(2t + 2) are
independent conditionally on ω(2t), ω′(2t), so it suffices to establish that

P (X(t+ 1) > min(X(t) + 1, 2R+ 1)|ω(2t) = η) >
(

1−
(
1− q2R+1

)∆/(4R+3)
)2

(6)

for any η compatible with X(t). Consider the event E that in ω(2t + 1) for at least one

block B to the left of M all sites in B ∩ {ω(2t)}(ω(2t))L\L1

L1
are infected and likewise for

ω(2t + 2), a block B′ to the right of M and B′ ∩ {ω(2t + 1)}(ω(2t+1))L\L2

L2
. By Claim 6,

P(E|ω(2t) = η) is bounded by the r.h.s. of Eq. (6). Thus, Proposition 9 below concludes
the proof of Lemma 8.

Lemma 9. In the above setting E implies X(t+ 1) > min(X(t) + 1, 2R+ 1).

Proof. Fix blocks B = x + {−R, . . . , R} and B′ = x′ + {−R, . . . , R} witnessing the oc-
currence of E and denote θ = (ω(2t + 1))L1

, ζ = (ω(2t + 1))L\L1
, θ′ = (ω(2t + 2))L2

and
ζ ′ = (ω(2t+ 2))L\L2

for shortness.

We know that {θ}ζL1
∩B is infected. Therefore,

{θ}θ{x−R,...,x−1}·ζ
{x,...,`} = {θ}ζL1

∩ {x, . . . , `},

{θ}θ{x+1,...,x+R}
{1,...,x} = {θ}ζL1

∩ {1, . . . , x}, (7)

by Claim 7 applied to the general KCM restricted to L1 after performing the simplifica-
tions from the beginning of Section 3. Consequently,

M := M ∩ {ω(2t)}ζL1
= M ∩ {θ}ζL1

= M ∩ {θ}θ{x−R,...,x−1}·ζ
{x,...,`}

⊂M ∩ {θL1∩L2
· ζ}ζ

′

L2
= M ∩ {ω(2t+ 1)}ζ

′

L2
. (8)

Using the analogous relation for the second transition, we obtain X(t+ 1) > X(t) and
equality holds iff Eq. (8) and its analogue are equalities.

Assume that X(t + 1) = X(t). Then, for an augmented configuration ω̄ equal to
ω(2t+ 1) with additionally all sites inM infected, neither update can modify states in
M \M. Thus, for ω̄ the block M simultaneously has the isolation property Eq. (7) of B
and its analogue for B′. Hence,

{ω̄}L = {ω̄}ω̄M

{1,...,`−b∆/2c−R−1} ∪M∪ {ω̄}
ω̄M

{`−b∆/2c+R+1,...,|L|},

since the update rules of each site in M cannot look both to the left of M and to its right.
Recalling that {ω̄}L ⊃ {ω(2t+ 1)}L = L, we getM = M yielding the desired conclusion
that X(t+ 1) = X(t) = 2R+ 1, since X(t) = |M|.

Returning to the proof of Proposition 4, clearly, in order for Y not to be absorbed, at
least one failure must occur in every 2R+ 2 steps. Hence, the probability that η and η′

have not met by time T > 2 is at most

e−T
∞∑
n=0

Tn

n!

(
1−

(
1−

(
1− q4R+2

)∆/(4R+3)
)8R+8

)bn/(4R+4)c

6 e−TT 9R + exp
(
−T

(
1−A1/(9R)

))
,

since N has the Poisson distribution with parameter T , setting

A = 1−
(

1−
(
1− q4R+2

)∆/(4R+3)
)8R+8

6 (8R+ 8) exp

(
−∆q4R+2

4R+ 3

)
.
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